1
|
Alves ADDF, Dias FCR, Cadena PG, Silva-Jr VA. Use of phytocanabinoids in animal models of Parkinson's disease: Systematic review. Neurotoxicology 2024; 105:34-44. [PMID: 39182852 DOI: 10.1016/j.neuro.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/29/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
This systematic review was carried out with the aim of evaluating the use of medicinal Cannabis for the treatment of Parkinson's disease in experimental models. Furthermore, we sought to understand the main intracellular mechanisms capable of promoting the effects of phytocannabinoids on motor disorders, neurodegeneration, neuroinflammation and oxidative stress. The experimental models were developed in mice, rats and marmosets. There was a predominance of using only males in relation to females; in three studies, the authors evaluated treatments in males and females. Drugs were used as inducers of Parkinson's disease: 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), lipopolysaccharide (LPS), and rotenone. Substances capable of promoting catalepsy in animals were also used: haloperidol, L-nitro-N-arginine (L-NOARG), WIN55,212-2, and reserpine. The inducing agent was injected stereotaxically or intraperitoneally. The most commonly used treatments were cannabidiol (CBD), Delta-9-tetrahydrocannabinol (Δ-9 THC) and Delta-9-tetrahydrocannabivarin (Δ-9 THCV), administered intraperitoneally, orally, subcutaneously and intramuscularly. The use of phytocannabinoids improved locomotor activity and involuntary movement and reduced catalepsy. There was an improvement in the evaluation of dopaminergic neurons, while in relation to dopamine content, the treatment had no effect. Inflammation, microglial/astrocyte activation and oxidative stress were reduced after treatment with phytocannabinoids, the same was observed in the results of tests for allodynia and hyperalgesia.
Collapse
Affiliation(s)
| | - Fernanda Carolina Ribeiro Dias
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil; Cellular Interactions Laboratory, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | | | | |
Collapse
|
2
|
Verma A, Goyal A. Beyond insulin: The Intriguing role of GLP-1 in Parkinson's disease. Eur J Pharmacol 2024; 982:176936. [PMID: 39182542 DOI: 10.1016/j.ejphar.2024.176936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
GLP-1 (Glucagon-like peptide 1) serves as both a peptide hormone and a growth factor, is released upon nutrient intake and contributes to insulin secretion stimulated by glucose levels. Also, GLP-1 is synthesized within several brain areas and plays a vital function in providing neuroprotection and reducing inflammation through the activation of the GLP-1 receptor. Parkinson's Disease (PD) is a neurodegenerative illness that worsens with time and is defined by considerable morbidity. Presently, there are few pharmaceutical choices available, and none of the existing therapies are capable of modifying the course of the disease. There is a suggestion that type 2 diabetes mellitus (T2DM) could increase the risk of PD, and the presence of both conditions concurrently might exacerbate PD symptoms and hasten neurodegeneration. GLP-1 receptor (GLP-1R) agonists exhibit numerous implications like enhancement of glucose-dependent insulin release and biosynthesis, suppression of glucagon secretion and gastric emptying. Also, some GLP-1R agonists have received clinical approval for the management of T2DM. Moreover, the use of GLP-1R agonists has demonstrated counter-inflammatory, neurotrophic, and neuroprotective actions in various preclinical models of neurodegenerative disorders. Considering the significant amount of evidence backing the potential of GLP-1R agonists to protect the nervous system across different research settings, this article delves into examining the hopeful prospect of GLP-1R agonists as a treatment option for PD. This review sheds light on combined neuroprotective benefits of GLP-1R agonists and the possible mechanisms driving the protective effects on the PD brain, through the collection of data from various preclinical and clinical investigations.
Collapse
Affiliation(s)
- Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
3
|
Serra M, Faustini G, Brembati V, Casu MA, Pizzi M, Morelli M, Pinna A, Bellucci A. Early α-synuclein/synapsin III co-accumulation, nigrostriatal dopaminergic synaptopathy and denervation in the MPTPp mouse model of Parkinson's Disease. Exp Neurol 2024; 383:115040. [PMID: 39500391 DOI: 10.1016/j.expneurol.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/10/2024]
Abstract
Parkinson's disease (PD) is characterized by the loss of nigrostriatal dopaminergic neurons and the presence of Lewy bodies (LB), intraneuronal inclusions mainly composed of α-synuclein (α-Syn) fibrils. Compelling evidence supports that, in PD brains, synapses are the sites where neurodegeneration initiates several years before the manifestation of motor symptoms. Furthermore, the amount of α-Syn deposited at synaptic terminals is several orders greater than that constituting LB. This hints that pathological synaptic α-Syn aggregates may be the main trigger for the retrograde synapse-to-cell body degeneration pattern characterizing early prodromal phases of PD. Identifying reliable biomarkers of synaptopathy is therefore crucial for early diagnosis. Here, we studied the alterations of key dopaminergic and non-dopaminergic striatal synaptic markers during the initial phases of axonal and cell body degeneration in mice subjected to 3 or 10 administrations of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine + probenecid (MPTPp), a model for early prodromal PD. We found that MPTPp administration resulted in progressive deposition of α-Syn, advancing from synaptic terminals to axons and dopaminergic neuron cell bodies. This was accompanied by marked co-accumulation of Synapsin III (Syn III), a synaptic protein previously identified as a component of α-Syn fibrils in post-mortem PD brains and as a main stabilizer of α-Syn aggregates, as well as very early and severe reduction of vesicular monoamine transporter 2 (VMAT2), dopamine transporter (DAT) and tyrosine hydroxylase (TH) immunoreactivity in nigrostriatal neurons. Results also showed that striatal α-Syn accumulation and VMAT2 decrease, unlike other markers, did not recover following washout from 10 MPTPp administrations, supporting that these changes were precocious and severe. Finally, we found that early changes in striatal α-Syn, Syn III, VMAT2 and DAT observed following 3 MPTPp administrations, correlated with nigrostriatal neuron loss after 10 MPTPp administrations. These findings indicate that α-Syn/Syn III co-deposition characterizes very early stages of striatal dopaminergic dysfunction in the MPTPp model and highlight that VMAT2 and Syn III could be two reliable molecular imaging biomarkers to predict dopamine neuron denervation and estimate α-Syn-related synaptopathy in prodromal and early symptomatic phases of PD.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Gaia Faustini
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Viviana Brembati
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy.
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy.
| |
Collapse
|
4
|
Scorziello A, Sirabella R, Sisalli MJ, Tufano M, Giaccio L, D’Apolito E, Castellano L, Annunziato L. Mitochondrial Dysfunction in Parkinson's Disease: A Contribution to Cognitive Impairment? Int J Mol Sci 2024; 25:11490. [PMID: 39519043 PMCID: PMC11546611 DOI: 10.3390/ijms252111490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Among the non-motor symptoms associated with Parkinson's disease (PD), cognitive impairment is one of the most common and disabling. It can occur either early or late during the disease, and it is heterogeneous in terms of its clinical manifestations, such as Subjective Cognitive Dysfunction (SCD), Mild Cognitive Impairment (MCI), and Parkinson's Disease Dementia (PDD). The aim of the present review is to delve deeper into the molecular mechanisms underlying cognitive decline in PD. This is extremely important to delineate the guidelines for the differential diagnosis and prognosis of the dysfunction, to identify the molecular and neuronal mechanisms involved, and to plan therapeutic strategies that can halt cognitive impairment progression. Specifically, the present review will discuss the pathogenetic mechanisms involved in the progression of cognitive impairment in PD, with attention to mitochondria and their contribution to synaptic dysfunction and neuronal deterioration in the brain regions responsible for non-motor manifestations of the disease.
Collapse
Affiliation(s)
- Antonella Scorziello
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.T.); (L.G.); (E.D.); (L.C.)
| | - Rossana Sirabella
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.T.); (L.G.); (E.D.); (L.C.)
| | - Maria Josè Sisalli
- Department of Translational Medicine, Federico II University of Naples, 80138 Napoli, Italy;
| | - Michele Tufano
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.T.); (L.G.); (E.D.); (L.C.)
| | - Lucia Giaccio
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.T.); (L.G.); (E.D.); (L.C.)
| | - Elena D’Apolito
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.T.); (L.G.); (E.D.); (L.C.)
| | - Lorenzo Castellano
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.T.); (L.G.); (E.D.); (L.C.)
| | | |
Collapse
|
5
|
Pan H, Huang M, Zhu C, Lin S, He L, Shen R, Chen Y, Fang F, Qiu Y, Qin M, Bao P, Tan Y, Xu J, Ding J, Chen S. A novel compound alleviates oxidative stress via PKA/CREB1-mediated DJ-1 upregulation. J Neurochem 2024; 168:3034-3049. [PMID: 38994800 DOI: 10.1111/jnc.16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024]
Abstract
Oxidative stress is one of the major culprits causing dopaminergic neuron loss in Parkinson's disease (PD). DJ-1 is a protein with multiple actions against oxidative stress, apoptosis, neuroinflammation, etc. DJ-1 expression is decreased in sporadic PD, therefore increasing DJ-1 expression might be beneficial in PD treatment. However, drugs known to upregulate DJ-1 are still lacking. In this study, we identified a novel DJ-1-elevating compound called ChemJ through luciferase assay-based high-throughput compound screening in SH-SY5Y cells and confirmed that ChemJ upregulated DJ-1 in SH-SY5Y cell line and primary cortical neurons. DJ-1 upregulation by ChemJ alleviated MPP+-induced oxidative stress. In exploring the underlying mechanisms, we found that the transcription factor CREB1 bound to DJ-1 promoter and positively regulated its expression under both unstressed and 1-methyl-4-phenylpyridinium-induced oxidative stress conditions and that ChemJ promoted DJ-1 expression via activating PKA/CREB1 pathway in SH-SY5Y cells. Our results demonstrated that ChemJ alleviated the MPP+-induced oxidative stress through a PKA/CREB1-mediated regulation of DJ-1 expression, thus offering a novel and promising avenue for PD treatment.
Collapse
Affiliation(s)
- Hong Pan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| | - Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxiang Zhu
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| | - Suzhen Lin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruinan Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimeng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Fang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Qiu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiling Qin
- Institute of Neuroscience and State key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Puhua Bao
- Institute of Neuroscience and State key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Xu
- Institute of Neuroscience and State key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| |
Collapse
|
6
|
Techaniyom P, Korsirikoon C, Rungruang T, Pakaprot N, Prombutara P, Mukda S, Kettawan AK, Kettawan A. Cold-pressed perilla seed oil: Investigating its protective influence on the gut-brain axis in mice with rotenone-induced Parkinson's disease. Food Sci Nutr 2024; 12:6259-6283. [PMID: 39554352 PMCID: PMC11561828 DOI: 10.1002/fsn3.4265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 11/19/2024] Open
Abstract
Perilla seed oil, derived from a regional plant native to northern Thailand, undergoes cold-pressing to analyze its bioactive components, notably alpha-linolenic acid (ALA). ALA, constituting approximately 61% of the oil, serves as a precursor for therapeutic omega-3 fatty acids, EPA and DHA, with neurodegenerative disease benefits and anti-inflammatory responses. This study administered different concentrations of perilla seed oil to male C57BL/6 mice, categorized as low dose (LP 5% w/w), middle dose (MP 10% w/w), and high dose (HP 20% w/w), along with a fish oil (FP 10% w/w) diet. An experimental group received soybean oil (5% w/w). Over 42 days, these diets were administered while inducing Parkinson's disease (PD) with rotenone injections. Mice on a high perilla seed oil dose exhibited decreased Cox-2 expression in the colon, suppressed Iba-1 microglia activation, reduced alpha-synuclein accumulation in the colon and hippocampus, prevented dopaminergic cell death in the substantia nigra, and improved motor and non-motor symptoms. Mice on a middle dose showed maintenance of diverse gut microbiota, with an increased abundance of short-chain fatty acid (SCFA)-producing bacteria (Bifidobacteria, Lactobacillus, and Faecalibacteria). A reduction in bacteria correlated with PD (Turicibacter, Ruminococcus, and Akkermansia) was observed. Results suggest the potential therapeutic efficacy of high perilla seed oil doses in mitigating both intestinal and neurological aspects linked to the gut-brain axis in PD.
Collapse
Affiliation(s)
- Peerapa Techaniyom
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Chawin Korsirikoon
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of ScienceChulalongkorn UniversityBangkokThailand
- Mod Gut Co., Ltd.BangkokThailand
| | - Sujira Mukda
- Research Center for NeuroscienceInstitute of Molecular Biosciences, Mahidol UniversityNakhon PathomThailand
| | | | | |
Collapse
|
7
|
García-Revilla J, Ruiz R, Espinosa-Oliva AM, Santiago M, García-Domínguez I, Camprubí-Ferrer L, Bachiller S, Deierborg T, Joseph B, de Pablos RM, Rodríguez-Gómez JA, Venero JL. Dopaminergic neurons lacking Caspase-3 avoid apoptosis but undergo necrosis after MPTP treatment inducing a Galectin-3-dependent selective microglial phagocytic response. Cell Death Dis 2024; 15:625. [PMID: 39223107 PMCID: PMC11369297 DOI: 10.1038/s41419-024-07014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc). Apoptosis is thought to play a critical role in the progression of PD, and thus understanding the effects of antiapoptotic strategies is crucial for developing potential therapies. In this study, we developed a unique genetic model to selectively delete Casp3, the gene encoding the apoptotic protein caspase-3, in dopaminergic neurons (TH-C3KO) and investigated its effects in response to a subacute regime of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, which is known to trigger apoptotic loss of SNpc dopaminergic neurons. We found that Casp3 deletion did not protect the dopaminergic system in the long term. Instead, we observed a switch in the cell death pathway from apoptosis in wild-type mice to necrosis in TH-C3KO mice. Notably, we did not find any evidence of necroptosis in our model or in in vitro experiments using primary dopaminergic cultures exposed to 1-methyl-4-phenylpyridinium in the presence of pan-caspase/caspase-8 inhibitors. Furthermore, we detected an exacerbated microglial response in the ventral mesencephalon of TH-C3KO mice in response to MPTP, which mimicked the microglia neurodegenerative phenotype (MGnD). Under these conditions, it was evident the presence of numerous microglial phagocytic cups wrapping around apparently viable dopaminergic cell bodies that were inherently associated with galectin-3 expression. We provide evidence that microglia exhibit phagocytic activity towards both dead and stressed viable dopaminergic neurons through a galectin-3-dependent mechanism. Overall, our findings suggest that inhibiting apoptosis is not a beneficial strategy for treating PD. Instead, targeting galectin-3 and modulating microglial response may be more promising approaches for slowing PD progression.
Collapse
Affiliation(s)
- Juan García-Revilla
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden.
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Marti Santiago
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Irene García-Domínguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Faculty of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Sara Bachiller
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José A Rodríguez-Gómez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José Luis Venero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
8
|
Saponjic J, Mejías R, Nikolovski N, Dragic M, Canak A, Papoutsopoulou S, Gürsoy-Özdemir Y, Fladmark KE, Ntavaroukas P, Bayar Muluk N, Zeljkovic Jovanovic M, Fontán-Lozano Á, Comi C, Marino F. Experimental Models to Study Immune Dysfunction in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:4330. [PMID: 38673915 PMCID: PMC11050170 DOI: 10.3390/ijms25084330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, age-related, progressive multisystem disease associated with neuroinflammation and immune dysfunction. This review discusses the methodological approaches used to study the changes in central and peripheral immunity in PD, the advantages and limitations of the techniques, and their applicability to humans. Although a single animal model cannot replicate all pathological features of the human disease, neuroinflammation is present in most animal models of PD and plays a critical role in understanding the involvement of the immune system (IS) in the pathogenesis of PD. The IS and its interactions with different cell types in the central nervous system (CNS) play an important role in the pathogenesis of PD. Even though culture models do not fully reflect the complexity of disease progression, they are limited in their ability to mimic long-term effects and need validation through in vivo studies. They are an indispensable tool for understanding the interplay between the IS and the pathogenesis of this disease. Understanding the immune-mediated mechanisms may lead to potential therapeutic targets for the treatment of PD. We believe that the development of methodological guidelines for experiments with animal models and PD patients is crucial to ensure the validity and consistency of the results.
Collapse
Affiliation(s)
- Jasna Saponjic
- Department of Neurobiology, Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| | - Rebeca Mejías
- Department of Physiology, School of Biology, University of Seville, 41012 Seville, Spain; (R.M.); (Á.F.-L.)
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Neda Nikolovski
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| | - Milorad Dragic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.D.); (M.Z.J.)
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences–National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Asuman Canak
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize 53100, Turkey;
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Health Sciences, University of Thessaly, Biopolis, 41500 Larisa, Greece; (S.P.); (P.N.)
| | | | - Kari E. Fladmark
- Department of Biological Science, University of Bergen, 5020 Bergen, Norway;
| | - Panagiotis Ntavaroukas
- Department of Biochemistry and Biotechnology, Faculty of Health Sciences, University of Thessaly, Biopolis, 41500 Larisa, Greece; (S.P.); (P.N.)
| | - Nuray Bayar Muluk
- Department of Otorhinolaryngology, Faculty of Medicine, Kirikkale University, Kirikkale 71450, Turkey;
| | - Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.D.); (M.Z.J.)
| | - Ángela Fontán-Lozano
- Department of Physiology, School of Biology, University of Seville, 41012 Seville, Spain; (R.M.); (Á.F.-L.)
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy;
| | - Franca Marino
- Center for Research in Medical Pharmacology, School of Medicine, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
9
|
Peng Y, Wang C, Ma W, Chen Q, Xu G, Kong Y, Ma L, Ding W, Zhang W. Deficiency of polypeptide N-acetylgalactosamine transferase 9 contributes to a risk for Parkinson's disease via mitochondrial dysfunctions. Int J Biol Macromol 2024; 263:130347. [PMID: 38401583 DOI: 10.1016/j.ijbiomac.2024.130347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Polypeptide N-acetylgalactosamine transferase 9 (GALNT9) catalyzes the initial step of mucin-type O-glycosylation via linking N-acetylgalactosamine (GalNAc) to serine/threonine in a protein. To unravel the association of GALNT9 with Parkinson's disease (PD), a progressive neurodegenerative disorder, GALNT9 levels were evaluated in the patients with PD and mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and statistically analyzed based on the GEO datasets of GSE114918 and GSE216281. Glycoproteins with exposing GalNAc were purified using lectin affinity chromatography and identified by LC-MS/MS. The influence of GALNT9 on cells was evaluated via introducing a GALNT9-specific siRNA into SH-SY5Y cells. Consequently, GALNT9 deficiency was found to occur under PD conditions. GALNT9 silencing contributed to a causative factor in PD pathogenesis via reducing the levels of intracellular dopamine, tyrosine hydroxylase and soluble α-synuclein, and promoting α-synuclein aggregates. MS identification revealed 14 glycoproteins. 5 glycoproteins, including ACO2, ATP5B, CKB, CKMT1A, ALDOC, were associated with energy metabolism. GALNT9 silencing resulted in mitochondrial dysfunctions via increasing ROS accumulation, mitochondrial membrane depolarization, mPTPs opening, Ca2+ releasing and activation of the CytC-related apoptotic pathway. The dysfunctional mitochondria then triggered mitophagy, possibly intermediated by adenine nucleotide translocase 1. Our study suggests that GALNT9 is potentially developed into an auxiliary diagnostic index and therapeutic target of PD.
Collapse
Affiliation(s)
- Yuanwen Peng
- Department of Epidemiology, Dalian Medical University, Dalian 116044, China
| | - Cui Wang
- Department of Neurology, Dalian Municipal Central Hospital, Dalian 116033, China
| | - Wei Ma
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qianhui Chen
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Guannan Xu
- Department of Epidemiology, Dalian Medical University, Dalian 116044, China
| | - Ying Kong
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Li Ma
- Department of Epidemiology, Dalian Medical University, Dalian 116044, China
| | - Wenyong Ding
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Wenli Zhang
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
10
|
Regoni M, Valtorta F, Sassone J. Dopaminergic neuronal death via necroptosis in Parkinson's disease: A review of the literature. Eur J Neurosci 2024; 59:1079-1098. [PMID: 37667848 DOI: 10.1111/ejn.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive dysfunction and loss of dopaminergic neurons of the substantia nigra pars compacta (SNc). Several pathways of programmed cell death are likely to play a role in dopaminergic neuron death, such as apoptosis, necrosis, pyroptosis and ferroptosis, as well as cell death associated with proteasomal and mitochondrial dysfunction. A better understanding of the molecular mechanisms underlying dopaminergic neuron death could inform the design of drugs that promote neuron survival. Necroptosis is a recently characterized regulated cell death mechanism that exhibits morphological features common to both apoptosis and necrosis. It requires activation of an intracellular pathway involving receptor-interacting protein 1 kinase (RIP1 kinase, RIPK1), receptor-interacting protein 3 kinase (RIP3 kinase, RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL). The potential involvement of this programmed cell death pathway in the pathogenesis of PD has been studied by analysing biomarkers for necroptosis, such as the levels and oligomerization of phosphorylated RIPK3 (pRIPK3) and phosphorylated MLKL (pMLKL), in several PD preclinical models and in PD human tissue. Although there is evidence that other types of cell death also have a role in DA neuron death, most studies support the hypothesis that this cell death mechanism is activated in PD tissues. Drugs that prevent or reduce necroptosis may provide neuroprotection for PD. In this review, we summarize the findings from these studies. We also discuss how manipulating necroptosis might open a novel therapeutic approach to reduce neuronal degeneration in PD.
Collapse
Affiliation(s)
- Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Heo JY, Park AH, Lee MJ, Ryu MJ, Kim YK, Jang YS, Kim SJ, Shin SY, Son HJ, Stein TD, Huh YH, Chung SK, Choi SY, Kim JM, Hwang O, Shong M, Hyeon SJ, Lee J, Ryu H, Kim D, Kweon GR. Crif1 deficiency in dopamine neurons triggers early-onset parkinsonism. Mol Psychiatry 2023; 28:4474-4484. [PMID: 37648779 DOI: 10.1038/s41380-023-02234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Mitochondrial dysfunction has been implicated in Parkinson's Disease (PD) progression; however, the mitochondrial factors underlying the development of PD symptoms remain unclear. One candidate is CR6-interacting factor1 (CRIF1), which controls translation and membrane insertion of 13 mitochondrial proteins involved in oxidative phosphorylation. Here, we found that CRIF1 mRNA and protein expression were significantly reduced in postmortem brains of elderly PD patients compared to normal controls. To evaluate the effect of Crif1 deficiency, we produced mice lacking the Crif1 gene in dopaminergic neurons (DAT-CRIF1-KO mice). From 5 weeks of age, DAT-CRIF1-KO mice began to show decreased dopamine production with progressive neuronal degeneration in the nigral area. At ~10 weeks of age, they developed PD-like behavioral deficits, including gait abnormalities, rigidity, and resting tremor. L-DOPA, a medication used to treat PD, ameliorated these defects at an early stage, although it was ineffective in older mice. Taken together, the observation that CRIF1 expression is reduced in human PD brains and deletion of CRIF1 in dopaminergic neurons leads to early-onset PD with stepwise PD progression support the conclusion that CRIF1-mediated mitochondrial function is important for the survival of dopaminergic neurons.
Collapse
Affiliation(s)
- Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ah Hyung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min Joung Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yun Seon Jang
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Soo Jeong Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - So Yeon Shin
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jin Son
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Yang Hoon Huh
- Electron Microscopy Research center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Sookja K Chung
- Faculty of Medicine & Dr Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Song Yi Choi
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Minho Shong
- Graduate School of Medical Science and Education, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
12
|
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener 2023; 12:36. [PMID: 37468944 PMCID: PMC10354932 DOI: 10.1186/s40035-023-00368-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.
Collapse
Affiliation(s)
- Axelle Dovonou
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Cyril Bolduc
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Victoria Soto Linan
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Charles Gora
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Modesto R Peralta Iii
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
13
|
Santoro M, Fadda P, Klephan KJ, Hull C, Teismann P, Platt B, Riedel G. Neurochemical, histological, and behavioral profiling of the acute, sub-acute, and chronic MPTP mouse model of Parkinson's disease. J Neurochem 2023; 164:121-142. [PMID: 36184945 PMCID: PMC10098710 DOI: 10.1111/jnc.15699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is a heterogeneous multi-systemic disorder unique to humans characterized by motor and non-motor symptoms. Preclinical experimental models of PD present limitations and inconsistent neurochemical, histological, and behavioral readouts. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD is the most common in vivo screening platform for novel drug therapies; nonetheless, behavioral endpoints yielded amongst laboratories are often discordant and inconclusive. In this study, we characterized neurochemically, histologically, and behaviorally three different MPTP mouse models of PD to identify translational traits reminiscent of PD symptomatology. MPTP was intraperitoneally (i.p.) administered in three different regimens: (i) acute-four injections of 20 mg/kg of MPTP every 2 h; (ii) sub-acute-one daily injection of 30 mg/kg of MPTP for 5 consecutive days; and (iii) chronic-one daily injection of 4 mg/kg of MPTP for 28 consecutive days. A series of behavioral tests were conducted to assess motor and non-motor behavioral changes including anxiety, endurance, gait, motor deficits, cognitive impairment, circadian rhythm and food consumption. Impairments in balance and gait were confirmed in the chronic and acute models, respectively, with the latter showing significant correlation with lesion size. The sub-acute model, by contrast, presented with generalized hyperactivity. Both, motor and non-motor changes were identified in the acute and sub-acute regime where habituation to a novel environment was significantly reduced. Moreover, we report increased water and food intake across all three models. Overall, the acute model displayed the most severe lesion size, while across the three models striatal dopamine content (DA) did not correlate with the behavioral performance. The present study demonstrates that detection of behavioral changes following MPTP exposure is challenging and does not correlate with the dopaminergic lesion extent.
Collapse
Affiliation(s)
- Matteo Santoro
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
- Present address:
Department of Neurosurgery, School of MedicineStanford UniversityPalo AltoCaliforniaUSA
| | - Paola Fadda
- Department of NeuroscienceUniversity of CagliariCagliariItaly
| | - Katie J. Klephan
- Newcastle UniversitySchool of Biomedical, Nutritional, and Sport SciencesNewcastle upon TyneUK
- Present address:
AccuRXLondonLondonUK
| | - Claire Hull
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Peter Teismann
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Bettina Platt
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Gernot Riedel
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
14
|
Vallés AS, Barrantes FJ. The synaptic lipidome in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184033. [PMID: 35964712 DOI: 10.1016/j.bbamem.2022.184033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Sofia Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), 8000 Bahía Blanca, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina.
| |
Collapse
|
15
|
Effect of Different MPTP Administration Intervals on Mouse Models of Parkinson's Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:2112146. [PMID: 35299590 PMCID: PMC8906981 DOI: 10.1155/2022/2112146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022]
Abstract
Objective To research the effect of different 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration intervals on the behavior and pathology of mouse models of Parkinson's disease. Methods Eighteen C57 male mice were divided into a control group, subacute model group, and chronic model group (6 mice per group). Animal models of Parkinson's disease were built according to MPTP administration. The behavior of mice was determined through an open-field test and pole test. Tyrosine hydroxylase expression in brain tissues was checked by immunohistochemistry and western blot. Result In the open-field test, the total activity distance in the chronic model group (1271.05 ± 207.93 cm) was reduced significantly compared with that of the control group (1964.21 ± 379.77 cm), while the distance had no significant differences in the subacute model group (1950.57 ± 273.54 cm). At the same time, the number of times the mice crossed the center grid in the chronic model group (3.17 ± 1.17) was reduced compared with that in the control group (11.67 ± 6.65), while there were few differences in the subacute model group (9.33 ± 2.81). In the pole test, the climbing time (8.49 ± 1.44 s) and total rest time (103.64 ± 26.57 s) of mice in the chronic model group were longer than those in the control group, respectively (4.31 ± 0.70 s, 45.21 ± 14.36 s), while there were no significant differences in the subacute model group (4.51 ± 0.48 s, 52.44 ± 25.98 s). Besides, compared with the control group, TH expression in the subacute model group and chronic model group was reduced notably, and the changes of TH expression in the chronic model group were more significant. Conclusion There is a little loss of midbrain dopaminergic neurons in the subacute Parkinson's disease mouse models induced by continuous MPTP administration, but there is no effect on the behavior. Long interval MPTP-induced chronic Parkinson's disease mouse models lose a lot of dopaminergic neurons, which is accompanied by anxiety-like behaviors in addition to motor dysfunction.
Collapse
|
16
|
Huo X, Wang L, Shao J, Zhou C, Ying X, Zhao J, Jin X. LINC00667 regulates MPP
+
‐induced neuronal injury in Parkinson’s disease. Ann Clin Transl Neurol 2022; 9:707-721. [PMID: 35426258 PMCID: PMC9082386 DOI: 10.1002/acn3.51480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Parkinson’s disease (PD), also known as paralysis tremor, is a chronic disease of the central nervous system. It has been reported that hepatocyte nuclear factor 4 alpha (HNF4A) is upregulated in PD, but its specific function has not been well explored. Methods We established an in vitro PD model in SH‐SY5Y cells stimulated with 1‐methyl‐4‐phenylpyridinium (MPP+). Meanwhile, the effect of HNF4A on MPP+‐treated SH‐SY5Y cell behavior was monitored by functional assays. Mechanism assays were conducted to verify the relationship among LINC00667/miR‐34c‐5p/HNF4A. Rescue experiments validated the regulatory mechanism in PD model. Results The results revealed that depletion of HNF4A suppressed cell cytotoxicity and apoptosis caused by MPP+. Knockdown of HNF4A recovered MPP+‐stimulated oxidative stress and neuroinflammation. Mechanically, HNF4A was targeted and inhibited by miR‐34c‐5p. Furthermore, we found that LINC00667 positively modulated HNF4A expression via sequestering miR‐34c‐5p in MPP+‐stimulated SH‐SY5Y cells. Interestingly, the data indicated that HNF4A could transcriptionally activate LINC00667 expression. Rescue experiments presented that miR‐34c‐5p interference or HNF4A overexpression could mitigate the effects of LINC00667 knockdown on cell viability, cytotoxicity, cell apoptosis, oxidative stress, and neuroinflammation in MPP+‐treated SH‐SY5Y cells. Conclusion Our study first proved LINC00667, miR‐34c‐5p, and HNF4A constructed a positive feedback loop in MPP+‐treated SH‐SY5Y cells, enriching our understanding of PD.
Collapse
Affiliation(s)
- Xinlong Huo
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Lisong Wang
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Jiahui Shao
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Chenhang Zhou
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Xiaowei Ying
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Jinhua Zhao
- Department of Neurosurgery The First People’s Hospital of Xianyang Xianyang Shaanxi 712000 China
| | - Xinchun Jin
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| |
Collapse
|
17
|
Pereira MCL, Boese AC, Murad R, Yin J, Hamblin MH, Lee JP. Reduced dopaminergic neuron degeneration and global transcriptional changes in Parkinson's disease mouse brains engrafted with human neural stems during the early disease stage. Exp Neurol 2022; 352:114042. [PMID: 35271839 DOI: 10.1016/j.expneurol.2022.114042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Current stem cell therapies for Parkinson's disease (PD) focus on a neurorestorative approach that aims to repair the CNS during the symptomatic phase. However, the pleiotropic and supportive effects of human neural stem cells (hNSCs) may make them effective for PD treatment during the disease's earlier stages. In the current study, we investigated the therapeutic effects of transplanting hNSCs during the early stages of PD development when most dopaminergic neurons are still present and before symptoms appear. Previous studies on hNSCs in Parkinson's disease focus on the substantia nigra and its immediate surroundings, but other brain structures are affected in PD as well. Here, we investigated the therapeutic effects of hNSCs on the entire PD-afflicted brain transcriptome using RNA sequencing (RNA-seq). METHODS PD was induced with a single intranasal infusion of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and hNSCs were transplanted unilaterally into the striatum one week later. The timepoint for hNSC transplantation coincided with upregulation of endogenous proinflammatory cytokines in the CNS, which play a role in stem cell migration. At 3 weeks post-transplantation (4 weeks post-MPTP), we assessed motor symptoms through behavioral tests, quantified dopaminergic neurons in the substantia nigra, and performed global transcriptional profiling to understand the mechanism underlying the effect of hNSCs on dopaminergic neuron degeneration. RESULTS We found that early hNSC engraftment mitigated motor symptoms induced by MPTP, and also reduced MPTP-induced loss of dopaminergic neurons. In this study, we uniquely presented the first comprehensive analysis of the effect of hNSC transplantation on the transcriptional profiling of PD mouse brains showing decreased expression of 249 and increased expression of 200 genes. These include genes implicated in mitochondrial bioenergetics, proteostasis, and other signaling pathways associated with improved PD outcome following hNSC transplantation. CONCLUSION These findings indicate that NSC transplantation during the asymptomatic phase of PD may limit or halt the progression of this neurodegenerative disorder. Transcriptional profiling of hNSC-engrafted PD mouse brains provides mechanistic insight that could lead to novel approaches to ameliorating degeneration of dopaminergic neurons and improving behavioral dysfunction in PD.
Collapse
Affiliation(s)
- Marcia C L Pereira
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Austin C Boese
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rabi Murad
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Yin
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Milton H Hamblin
- Tulane University Health Sciences Center, Tulane University, New Orleans, LA 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
18
|
Annexin A2 degradation contributes to dopaminergic cell apoptosis via regulating p53 in neurodegenerative conditions. Neuroreport 2021; 32:1263-1268. [PMID: 34494994 DOI: 10.1097/wnr.0000000000001721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND P53 overexpression has been shown to involve in mitochondria-mediated dapaminergic neuron cell death in Parkinson's disease. However, the exactly molecular mechanisms responsible for the p53-dependent intrinsic cell death in neurodegenerative conditions remain unclearly. Annexin A2 is a multifunctional protein that negatively regulates p53 expression. The purpose of this study was to explore the mechanism of p53 dependent dopaminergic cell death and implication of Annexin A2 in cellular apoptosis in 1-methyl-4-phenylpyridinium (MPP+)-induced PC12 cells. METHODS The cell viability of neural PC12 cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-razolium bromide assay. Flow cytometry was used to evaluate the apoptosis and mitochondrial transmembrane potential of neural PC12 cells. The expression of p53 and Annexin A2 was analyzed by western blot assay. RESULTS The present study showed that the exposure of PC12 cells to neurotoxin MPP+ increased the expression levels of p53 and the discharge of mitochondrial transmembrane potential. Notably, Annexin A2 degradation was also observed in this cellular model of Parkinson's disease, in a time and dose-dependent manner. This expressing change of Annexin A2 was in direct proportion to the loss of cell viability of PC12 cells, and this expression pattern was in inverse proportion to p53 levels in this cellular model of Parkinson's disease. CONCLUSION These results indicated that Annexin A2 degradation plays a crucial role the degeneration of dapaminergic cells of Parkinson's disease, and Annexin A2 downregulation-mediated the cell death is closely associated with mitochondrial dysfunction via p53-dependent pathway; thus provide a novel therapeutic target for Parkinson's disease treatment.
Collapse
|
19
|
Houser MC, Caudle WM, Chang J, Kannarkat GT, Yang Y, Kelly SD, Oliver D, Joers V, Shannon KM, Keshavarzian A, Tansey MG. Experimental colitis promotes sustained, sex-dependent, T-cell-associated neuroinflammation and parkinsonian neuropathology. Acta Neuropathol Commun 2021; 9:139. [PMID: 34412704 PMCID: PMC8375080 DOI: 10.1186/s40478-021-01240-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background The etiology of sporadic Parkinson’s disease (PD) remains uncertain, but genetic, epidemiological, and physiological overlap between PD and inflammatory bowel disease suggests that gut inflammation could promote dysfunction of dopamine-producing neurons in the brain. Mechanisms behind this pathological gut-brain effect and their interactions with sex and with environmental factors are not well understood but may represent targets for therapeutic intervention. Methods We sought to identify active inflammatory mechanisms which could potentially contribute to neuroinflammation and neurological disease in colon biopsies and peripheral blood immune cells from PD patients. Then, in mouse models, we assessed whether dextran sodium sulfate-mediated colitis could exert lingering effects on dopaminergic pathways in the brain and whether colitis increased vulnerability to a subsequent exposure to the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We assessed the involvement of inflammatory mechanisms identified in the PD patients in colitis-related neurological dysfunction in male and female mice, utilizing mice lacking the Regulator of G-Protein Signaling 10 (RGS10)—an inhibitor of nuclear factor kappa B (NFκB)—to model enhanced NFκB activity, and mice in which CD8+ T-cells were depleted. Results High levels of inflammatory markers including CD8B and NFκB p65 were found in colon biopsies from PD patients, and reduced levels of RGS10 were found in immune cells in the blood. Male mice that experienced colitis exhibited sustained reductions in tyrosine hydroxylase but not in dopamine as well as sustained CD8+ T-cell infiltration and elevated Ifng expression in the brain. CD8+ T-cell depletion prevented colitis-associated reductions in dopaminergic markers in males. In both sexes, colitis potentiated the effects of MPTP. RGS10 deficiency increased baseline intestinal inflammation, colitis severity, and neuropathology. Conclusions This study identifies peripheral inflammatory mechanisms in PD patients and explores their potential to impact central dopaminergic pathways in mice. Our findings implicate a sex-specific interaction between gastrointestinal inflammation and neurologic vulnerability that could contribute to PD pathogenesis, and they establish the importance of CD8+ T-cells in this process in male mice. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40478-021-01240-4.
Collapse
|
20
|
Wu F, Wang DD, Shi HH, Wang CC, Xue CH, Wang YM, Zhang TT. N-3 PUFA-Deficiency in Early Life Exhibits Aggravated MPTP-Induced Neurotoxicity in Old Age while Supplementation with DHA/EPA-Enriched Phospholipids Exerts a Neuroprotective Effect. Mol Nutr Food Res 2021; 65:e2100339. [PMID: 34378848 DOI: 10.1002/mnfr.202100339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/04/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Malnutrition in early life affects the growth and development of fetus and children, which has a long-term impact on adult health. Previous studies reveal a relationship between dietary omega-3 polyunsaturated fatty acid (n-3 PUFA) content, brain development, and the prevalence of neurodevelopmental disorders and inflammation. However, it is unclear about the effect of n-3 PUFA-deficiency in early life on the development of Parkinson's disease (PD) in old age, as well as the neuroprotective effect of DHA- and EPA-enriched phospholipids (DHA/EPA-PLs) supplemented in old age in long-term n-3 PUFA-deficient mice. METHODS AND RESULTS The PD mice induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) in n-3 PUFA-adequate (N) and -deficient (DEF) group are supplemented with a DHA/EPA-PLs diet for 2 weeks (N+DPL, DEF+DPL). DHA/EPA-PLs supplementation significantly protects against MPTP-induced impairments. The DEF+DPL group shows poorer motor performance, the loss of dopaminergic neurons, mitochondrial dysfunction, and neurodevelopment delay than the N+DPL group, and still did not recover to the Control level. CONCLUSIONS Dietary n-3 PUFA-deficiency in early life exhibits more aggravated MPTP-induced neurotoxicity in old age, than DHA/EPA-PLs supplementation recovers brain DHA levels and exerts neuroprotective effects in old age in long-term n-3 PUFA-deficient mice, which might provide a potential dietary guidance.
Collapse
Affiliation(s)
- Fang Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Dan-Dan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| |
Collapse
|
21
|
Li Q, Shen C, Liu Z, Ma Y, Wang J, Dong H, Zhang X, Wang Z, Yu M, Ci L, Sun R, Shen R, Fei J, Huang F. Partial depletion and repopulation of microglia have different effects in the acute MPTP mouse model of Parkinson's disease. Cell Prolif 2021; 54:e13094. [PMID: 34312932 PMCID: PMC8349650 DOI: 10.1111/cpr.13094] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive and selective degeneration of dopaminergic neurons. Microglial activation and neuroinflammation are associated with the pathogenesis of PD. However, the relationship between microglial activation and PD pathology remains to be explored. MATERIALS AND METHODS An acute regimen of MPTP was administered to adult C57BL/6J mice with normal, much reduced or repopulated microglial population. Damages of the dopaminergic system were comprehensively assessed. Inflammation-related factors were assessed by quantitative PCR and Multiplex immunoassay. Behavioural tests were carried out to evaluate the motor deficits in MPTP-challenged mice. RESULTS The receptor for colony-stimulating factor 1 inhibitor PLX3397 could effectively deplete microglia in the nigrostriatal pathway of mice via feeding a PLX3397-formulated diet for 21 days. Microglial depletion downregulated both pro-inflammatory and anti-inflammatory molecule expression at baseline and after MPTP administration. At 1d post-MPTP injection, dopaminergic neurons showed a significant reduction in PLX3397-fed mice, but not in control diet (CD)-fed mice. However, partial microglial depletion in mice exerted little effect on MPTP-induced dopaminergic injuries compared with CD mice at later time points. Interestingly, microglial repopulation brought about apparent resistance to MPTP intoxication. CONCLUSIONS Microglia can inhibit PD development at a very early stage; partial microglial depletion has little effect in terms of the whole process of the disease; and microglial replenishment elicits neuroprotection in PD mice.
Collapse
Affiliation(s)
- Qing Li
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China.,Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai, China
| | - Chenye Shen
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhaolin Liu
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jinghui Wang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hongtian Dong
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zishan Wang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mei Yu
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai, China
| | - Ruling Shen
- Joint Laboratory for Technology of Model Organism, Shanghai Laboratory Animal Research Center and School of Life Science and Technology, Tongji University.,Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Jian Fei
- Joint Laboratory for Technology of Model Organism, Shanghai Laboratory Animal Research Center and School of Life Science and Technology, Tongji University.,Shanghai Laboratory Animal Research Center, Shanghai, China.,School of Life Science and Technology, Tongji University, Shanghai, China
| | - Fang Huang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
23
|
Saminathan H, Ghosh A, Zhang D, Song C, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Fyn Kinase-Mediated PKCδ Y311 Phosphorylation Induces Dopaminergic Degeneration in Cell Culture and Animal Models: Implications for the Identification of a New Pharmacological Target for Parkinson's Disease. Front Pharmacol 2021; 12:631375. [PMID: 33995031 PMCID: PMC8113680 DOI: 10.3389/fphar.2021.631375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress, neuroinflammation and apoptosis are some of the key etiological factors responsible for dopamin(DA)ergic degeneration during Parkinson's disease (PD), yet the downstream molecular mechanisms underlying neurodegeneration are largely unknown. Recently, a genome-wide association study revealed the FYN gene to be associated with PD, suggesting that Fyn kinase could be a pharmacological target for PD. In this study, we report that Fyn-mediated PKCδ tyrosine (Y311) phosphorylation is a key event preceding its proteolytic activation in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinsonism. MPP+/MPTP induced Fyn kinase activation in N27 DAergic neuronal cells and the mouse substantia nigra. PKCδ-Y311 phosphorylation by activated Fyn initiates the apoptotic caspase-signaling cascade during DAergic degeneration. Pharmacological attenuation of Fyn activity protected DAergic neurons from MPP+-induced degeneration in primary mesencephalic neuronal cultures. We further employed Fyn wild-type and Fyn knockout (KO) mice to confirm whether Fyn is a valid pharmacological target of DAergic neurodegeneration. Primary mesencephalic neurons from Fyn KO mice were greatly protected from MPP+-induced DAergic cell death, neurite loss and DA reuptake loss. Furthermore, Fyn KO mice were significantly protected from MPTP-induced PKCδ-Y311 phosphorylation, behavioral deficits and nigral DAergic degeneration. This study thus unveils a mechanism by which Fyn regulates PKCδ's pro-apoptotic function and DAergic degeneration. Pharmacological inhibitors directed at Fyn activation could prove to be a novel therapeutic target in the delay or halting of selective DAergic degeneration during PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Anumantha G. Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
24
|
Melnik BC. Synergistic Effects of Milk-Derived Exosomes and Galactose on α-Synuclein Pathology in Parkinson's Disease and Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:1059. [PMID: 33494388 PMCID: PMC7865729 DOI: 10.3390/ijms22031059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies associate milk consumption with an increased risk of Parkinson's disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
25
|
Zaiter J, Hibot A, Hafid A, Khouili M, Neves CMB, Simões MMQ, Neves MGPMS, Faustino MAF, Dagci T, Saso L, Armagan G. Evaluation of the cellular protection by novel spiropyrazole compounds in dopaminergic cell death. Eur J Med Chem 2021; 213:113140. [PMID: 33454549 DOI: 10.1016/j.ejmech.2020.113140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 01/09/2023]
Abstract
The loss of neurons is strongly correlated with aging and aging-associated disorders. In this study, cell viability assays and mitochondrial function were performed to evaluate the effect of new spiro-pyrazole derivatives, prepared from aldehydes and 3-amino-1-phenyl-2-pyrazolin-5-one, on neuroprotection in an in vitro model of dopaminergic cell death induced by 1-methyl-4-phenylpyridinium (MPP+). The percentages of neuroprotection by derivatives were found between 21.26% and 52.67% at selected concentrations (10-50 μM) with compound 4d exerting the best neuroprotective effect. The results show that the studied spiropyrazolones perform important roles in dopaminergic neuroprotection and can be used for potential new therapies in the treatment of neurodegenerative disorders including Parkinson's disease.
Collapse
Affiliation(s)
- Jamila Zaiter
- Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Achraf Hibot
- Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Abderrafia Hafid
- Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Mostafa Khouili
- Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Claudia M B Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mário M Q Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Taner Dagci
- Department of Physiology, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Güliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
26
|
Xie Y, Zhang S, Lv Z, Long T, Luo Y, Li Z. SOX21-AS1 modulates neuronal injury of MMP +-treated SH-SY5Y cells via targeting miR-7-5p and inhibiting IRS2. Neurosci Lett 2021; 746:135602. [PMID: 33421490 DOI: 10.1016/j.neulet.2020.135602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 01/29/2023]
Abstract
Parkinson's disease (PD), caused by the decreased number of dopaminergic neurons in the substantia nigra, is identified as the second most familiar age-dependent neurodegenerative disease to the public. Long non-coding RNAs (lncRNAs) have been reported to participate in the development of PD. In our research, the expression of lncRNA SRY-box transcription factor 21 antisense divergent transcript 1 (SOX21-AS1) was up-regulated in 1-methyl-4-phenylpyridinium (MMP+)-treated SH-SY5Y cells. In addition, SOX21-AS1 depletion weakened the cell injury induced by MMP+. Moreover, SOX21-AS1 knockdown decreased Reactive Oxygen Species (ROS) generation and levels of TNF-α, IL-1β and IL-6, but increased SOD activity. However, SOX21-AS1 up-regulation led to opposite results. Further, SOX21-AS1 could bind with miR-7-5p, whose overexpression relieved MMP+-induced cell injury. Additionally, insulin receptor substrate 2 (IRS2) served as the target gene of miR-7-5p, and its expression was positively modulated by SOX21-AS1. Similarly, IRS2 knockdown also had alleviative effects on cell injury stimulated by MMP+ treatment. In sum up, our study demonstrated a new regulatory network consisted of SOX21-AS1, miR-7-5p and IRS2 in SH-SY5Y cells, supplying with a better comprehension about the pathogenic mechanism of PD.
Collapse
Affiliation(s)
- Yang Xie
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Shujiang Zhang
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Zhiyu Lv
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Ting Long
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Ying Luo
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Zuoxiao Li
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China.
| |
Collapse
|
27
|
Thadathil N, Xiao J, Hori R, Alway SE, Khan MM. Brain Selective Estrogen Treatment Protects Dopaminergic Neurons and Preserves Behavioral Function in MPTP-induced Mouse Model of Parkinson's Disease. J Neuroimmune Pharmacol 2020; 16:667-678. [PMID: 33221984 DOI: 10.1007/s11481-020-09972-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra and loss of both motor and non-motor features. Several clinical and preclinical studies have provided evidence that estrogen therapy reduces the risk of PD but have limitations in terms of adverse peripheral effects. Therefore, we examined the potential beneficial effects of the brain-selective estrogen prodrug, 10β, 17β-dihydroxyestra-1,4-dien-3-one (DHED) on nigrostriatal dopaminergic neurodegeneration and behavioral abnormalities in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Wild-type mice were treated with daily subcutaneous injections of DHED (50 and 100 µg/kg) or vehicle for four weeks. To produce PD-like symptoms, mice were injected with MPTP (18 mg/kg in saline; intraperitoneally) four times at 2-hr intervals for one day. After behavioral examination, mice were sacrificed, and the brains were isolated for neurochemical and morphological examinations. MPTP injected mice exhibited loss of dopaminergic neurons and fibers in substantia nigra and striatum respectively, along with impaired motor function at day 7 post MPTP injection. These phenotypes were associated with significantly increased oxidative stress and inflammatory responses in the striatum regions. DHED treatments significantly mitigated behavioral impairments and dopaminergic neurodegeneration induced by MPTP. We further observed that DHED treatment suppressed oxidative stress and inflammation in the striatum of MPTP treated mice when compared to vehicle treated mice. In conclusions, our findings suggest that DHED protects dopaminergic neurons from MPTP toxicity in mouse model of PD and support a beneficial effect of brain-selective estrogen in attenuating neurodegeneration and motor symptoms in PD-related neurological disorders. Graphical Abstract.
Collapse
Affiliation(s)
- Nidheesh Thadathil
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA
| | - Jianfeng Xiao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA
| | - Roderick Hori
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA.
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
28
|
Vijayanathan Y, Lim SM, Tan MP, Lim FT, Majeed ABA, Ramasamy K. Adult Endogenous Dopaminergic Neuroregeneration Against Parkinson's Disease: Ideal Animal Models? Neurotox Res 2020; 39:504-532. [PMID: 33141428 DOI: 10.1007/s12640-020-00298-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The etiology of PD remains an enigma with no available disease modifying treatment or cure. Pharmacological compensation is the only quality of life improving treatments available. Endogenous dopaminergic neuroregeneration has recently been considered a plausible therapeutic strategy for PD. However, researchers have to first decipher the complexity of adult endogenous neuroregeneration. This raises the need of animal models to understand the underlying molecular basis. Mammalian models with highly conserved genetic homology might aid researchers to identify specific molecular mechanisms. However, the scarcity of adult neuroregeneration potential in mammals obfuscates such investigations. Nowadays, non-mammalian models are gaining popularity due to their explicit ability to neuroregenerate naturally without the need of external enhancements, yet these non-mammals have a much diverse gene homology that critical molecular signals might not be conserved across species. The present review highlights the advantages and disadvantages of both mammalian and non-mammalian animal models that can be essentially used to study the potential of endogenous DpN regeneration against PD.
Collapse
Affiliation(s)
- Yuganthini Vijayanathan
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Maw Pin Tan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fei Ting Lim
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
29
|
Cenci MA, Björklund A. Animal models for preclinical Parkinson's research: An update and critical appraisal. PROGRESS IN BRAIN RESEARCH 2020; 252:27-59. [PMID: 32247366 DOI: 10.1016/bs.pbr.2020.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal models of Parkinson's disease (PD) are essential to investigate pathogenic pathways at the whole-organism level. Moreover, they are necessary for a preclinical investigation of potential new therapies. Different pathological features of PD can be induced in a variety of invertebrate and vertebrate species using toxins, drugs, or genetic perturbations. Each model has a particular utility and range of applicability. Invertebrate PD models are particularly useful for high throughput-screening applications, whereas mammalian models are needed to explore complex motor and non-motor features of the human disease. Here, we provide a comprehensive review and critical appraisal of the most commonly used mammalian models of PD, which are produced in rats and mice. A substantial loss of nigrostriatal dopamine neurons is necessary for the animal to exhibit a hypokinetic motor phenotype responsive to dopaminergic agents, thus resembling clinical PD. This level of dopaminergic neurodegeneration can be induced using specific neurotoxins, environmental toxicants, or proteasome inhibitors. Alternatively, nigrostriatal dopamine degeneration can be induced via overexpression of α-synuclein using viral vectors or transgenic techniques. In addition, protein aggregation pathology can be triggered by inoculating preformed fibrils of α-synuclein in the substantia nigra or the striatum. Thanks to the conceptual and technical progress made in the past few years a vast repertoire of well-characterized animal models are currently available to address different aspects of PD in the laboratory.
Collapse
Affiliation(s)
- M Angela Cenci
- Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden.
| | - Anders Björklund
- Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Zhang L, Wang J, Liu Q, Xiao Z, Dai Q. Knockdown of long non-coding RNA AL049437 mitigates MPP+ -induced neuronal injury in SH-SY5Y cells via the microRNA-205-5p/MAPK1 axis. Neurotoxicology 2020; 78:29-35. [PMID: 32057949 DOI: 10.1016/j.neuro.2020.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been defined as critical regulators of various human diseases. However, the functions of lncRNAs in Parkinson's disease (PD) have not yet been elucidated. In this study, we investigated the role of lncRNA AL049437 in PD and its underlying mechanism. METHODS An in vivo model of PD was established using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), while an in vitro model was created using N-methyl-4-phenylpyridinium (MPP+). Gene expression was evaluated using quantitative reverse transcriptase polymerase chain reaction and western blotting. The effects and mechanism of AL049437 in PD were explored using Cell Counting Kit-8 assay, flow cytometry, enzyme-linked immunosorbent assay, and 2',7'-dichlorodihydrofluorescein diacetate fluorescence assay. The interaction between AL049437, miR-205-5p, and mitogen-activated protein kinase 1 (MAPK1) was evaluated using luciferase reporter and RNA pull-down assays. RESULTS The expression of AL049437 was upregulated, while that of miR-205-5p was downregulated in MPTP-induced PD mouse model and MPP+-treated SH-SY5Y cells. Silencing of AL049437 mitigated MPP+-induced neurotoxicity in SH-SY5Y cells, as demonstrated by increased cell viability and reduced cell apoptosis. Furthermore, silencing of AL049437 alleviated MPP+-induced neuroinflammation and oxidative stress, as indicated by the reduction in tumor necrosis factor-α and interleukin-6 levels and reactive oxygen species production. In addition, AL049437 was predominantly localized in the cytoplasm of SH-SY5Y cells and functioned as an miR-205-5p sponge. Moreover, MAPK1 was identified as a downstream target of miR-205-5p. Remarkably, the impact of AL049437 silencing on MPP+-induced neuronal damage could be blocked by miR-205-5p inhibition or MAPK1 overexpression. CONCLUSION Knockdown of lncRNA AL049437 mitigates MPP+ -induced neuronal injury in SH-SY5Y cells by regulating the miR-205-5p/MAPK1 axis. Our research reveals a novel regulatory mechanism of AL049437 in PD progression.
Collapse
Affiliation(s)
- Liang Zhang
- The Stroke Unit, The First People's Hospital of Shangqiu, Shangqiu City, 476100, Henan Province, PR China
| | - Jingzhong Wang
- The Stroke Unit, The First People's Hospital of Shangqiu, Shangqiu City, 476100, Henan Province, PR China
| | - Qin Liu
- The Stroke Unit, The First People's Hospital of Shangqiu, Shangqiu City, 476100, Henan Province, PR China
| | - Zhiqiang Xiao
- Department of Neurosurgery, The First People's Hospital of Shangqiu, Shangqiu City, 476100, Henan Province, PR China
| | - Quande Dai
- The Stroke Unit, The First People's Hospital of Shangqiu, Shangqiu City, 476100, Henan Province, PR China.
| |
Collapse
|
31
|
Liu H, Wu H, Zhu N, Xu Z, Wang Y, Qu Y, Wang J. Lactoferrin protects against iron dysregulation, oxidative stress, and apoptosis in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced Parkinson’s disease in mice. J Neurochem 2019; 152:397-415. [DOI: 10.1111/jnc.14857] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 07/10/2019] [Accepted: 08/01/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Huiying Liu
- School of Clinical Medicine Qingdao University Qingdao China
| | - Hao Wu
- School of Clinical Medicine Qingdao University Qingdao China
| | - Ning Zhu
- School of Clinical Medicine Qingdao University Qingdao China
| | - Zijie Xu
- School of Clinical Medicine Qingdao University Qingdao China
| | - Yue Wang
- School of Clinical Medicine Qingdao University Qingdao China
| | - Yan Qu
- Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders Department of Physiology Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology Medical College of Qingdao University Qingdao China
| | - Jun Wang
- Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders Department of Physiology Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology Medical College of Qingdao University Qingdao China
| |
Collapse
|
32
|
Zhou H, Niu L, Xia X, Lin Z, Liu X, Su M, Guo R, Meng L, Zheng H. Wearable Ultrasound Improves Motor Function in an MPTP Mouse Model of Parkinson's Disease. IEEE Trans Biomed Eng 2019; 66:3006-3013. [DOI: 10.1109/tbme.2019.2899631] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Ren Y, Chen J, Wu X, Gui C, Mao K, Zou F, Li W. Role of c-Abl-GSK3β Signaling in MPP+-Induced Autophagy-Lysosomal Dysfunction. Toxicol Sci 2019; 165:232-243. [PMID: 30165626 DOI: 10.1093/toxsci/kfy155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Impairment in autophagy-lysosomal pathway (ALP) results in accumulation of misfolded proteins and dysfunctional organelles, which is the hallmark of neurodegenerative diseases including Parkinson's disease (PD). Recent studies revealed activated nonreceptor tyrosine kinase Abelson (c-Abl) in PD models and brain specimen of PD patients. Inhibition of c-Abl through pharmacological inhibitors has been shown to enhance ALP function and provide neuroprotective effects in cells and animal models of PD. However, the molecular mechanisms of neuroprotective effects underlying c-Abl inhibition remain elusive. In this study, STI-571, a c-Abl inhibitor, rescued the ALP function through facilitating the nuclear translocation of TFEB and protected against MPP+-induced neuronal cell death. Furthermore, siRNA-mediated knock-down or pharmacological inhibition of GSK3β mitigated the MPP+-induced neuronal cell death, which was achieved through promoting TFEB nuclear localization and subsequently reversing the function of ALP. Intriguingly, either DPH, c-Abl activator, or MPP+ led to the activation of GSK3β, which is a negative regulator of TFEB. In addition, c-Abl directly interacted with GSK3β and catalyzed its phosphorylation at tyrosine 216, and their interaction was enhanced under MPP+ treatment. In contrast, STI-571 abrogated phosphorylation of GSK3β-Tyr216 induced by MPP+ in SN4741 cells and in primary midbrain neurons. Taken together, these results demonstrate that GSK3β is a novel c-Abl substrate, and c-Abl-GSk3β pathway mediates MPP+-induced ALP defects and neuronal cell death, which may represent a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Yixian Ren
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jialong Chen
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xian Wu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Chen Gui
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Kanmin Mao
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Wenjun Li
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| |
Collapse
|
34
|
Taştan P, Armagan G, Dağcı T, Kıvçak B. Evaluation of cell protection by Psephellus pyrrhoblepharus (Boiss.) Wagenitz extracts in MPP +-induced dopaminergic cell damage. Drug Chem Toxicol 2019; 45:70-76. [PMID: 31474160 DOI: 10.1080/01480545.2019.1659808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neurodegenerative diseases affect millions of people. Major reasons behind the onset and progression of these diseases are still under investigation. Therefore, any approach that would treat/prevent progression is important. In this study, we aimed to investigate the potential protective effects of Psephellus pyrrhoblepharus (Boiss.) Wagenitz extracts in MPP+-induced dopaminergic cell damage and compare the effectiveness of different extracts (methanol:water (1:1), chloroform and n-hexane). The cells were pretreated with four different concentrations (10, 50, 100, and 200 µg/ml) of methanol:water (1:1), chloroform and n-hexane extracts of P. pyrrhoblepharus following MPP+ treatment for 12 or 24 h. The changes in cell viability were determined using the MTT assay. Additionally, antioxidant activities and total phenolic/flavonoid contents of the extracts were determined with radical scavenging capacity, Folin-Ciocalteu and aluminum chloride assays, respectively. The extracts at selected concentrations were found to be protective in a dose-dependent manner at 12 and 24 h. Nevertheless, the methanol extract of the plant showed the highest protection both at 100 and 200 µg/ml (115.13%±3.98, 121.87%±1.66; p < 0.05) against dopaminergic damage at 24 h. The results showed that selected concentrations were not toxic and did not affect cell proliferation rate. Besides, the chloroform extract was found to have higher antioxidant activity than the other extracts (p < 0.05). The total phenolic and total flavonoid contents were found consistent with antioxidant activities. Our findings support the neuroprotective and antioxidant potential of P. pyrrhoblepharus. However, further studies on identifying the presence of chemicals in P. pyrrhoblepharus extracts which are responsible for protection should be carried out to confirm their therapeutic potential.
Collapse
Affiliation(s)
- Pelin Taştan
- Department of Pharmacognosy, Ege University, Faculty of Pharmacy , Izmir , Turkey
| | - Güliz Armagan
- Department of Biochemistry, Ege University, Faculty of Pharmacy , Izmir , Turkey
| | - Taner Dağcı
- Department of Physiology, Ege University, Faculty of Medicine , Izmir , Turkey
| | - Bijen Kıvçak
- Department of Pharmacognosy, Ege University, Faculty of Pharmacy , Izmir , Turkey
| |
Collapse
|
35
|
Harischandra DS, Ghaisas S, Zenitsky G, Jin H, Kanthasamy A, Anantharam V, Kanthasamy AG. Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. Front Neurosci 2019; 13:654. [PMID: 31293375 PMCID: PMC6606738 DOI: 10.3389/fnins.2019.00654] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Occupational or environmental exposure to manganese (Mn) can lead to the development of "Manganism," a neurological condition showing certain motor symptoms similar to Parkinson's disease (PD). Like PD, Mn toxicity is seen in the central nervous system mainly affecting nigrostriatal neuronal circuitry and subsequent behavioral and motor impairments. Since the first report of Mn-induced toxicity in 1837, various experimental and epidemiological studies have been conducted to understand this disorder. While early investigations focused on the impact of high concentrations of Mn on the mitochondria and subsequent oxidative stress, current studies have attempted to elucidate the cellular and molecular pathways involved in Mn toxicity. In fact, recent reports suggest the involvement of Mn in the misfolding of proteins such as α-synuclein and amyloid, thus providing credence to the theory that environmental exposure to toxicants can either initiate or propagate neurodegenerative processes by interfering with disease-specific proteins. Besides manganism and PD, Mn has also been implicated in other neurological diseases such as Huntington's and prion diseases. While many reviews have focused on Mn homeostasis, the aim of this review is to concisely synthesize what we know about its effect primarily on the nervous system with respect to its role in protein misfolding, mitochondrial dysfunction, and consequently, neuroinflammation and neurodegeneration. Based on the current evidence, we propose a 'Mn Mechanistic Neurotoxic Triad' comprising (1) mitochondrial dysfunction and oxidative stress, (2) protein trafficking and misfolding, and (3) neuroinflammation.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Shivani Ghaisas
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Gary Zenitsky
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Huajun Jin
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
36
|
Long non-coding RNA-p21 regulates MPP +-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells. Chem Biol Interact 2019; 307:73-81. [PMID: 31004593 DOI: 10.1016/j.cbi.2019.04.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD), the second most prevalent age-related neurodegenerative disease, occurs as a result of the loss of dopaminergic neurons in the substantia nigra. Long non-coding RNA-p21 (lnc-p21) has been demonstrated to be upregulated in PD. However, its role in PD is unknown. Here, the results showed that lnc-p21 was highly expressed in human neuroblastoma SH-SY5Y cells treated with MPP+. Knockdown of lnc-p21 attenuated the cytotoxicity and cell apoptosis induced by MPP+ as shown by enhanced cell viability, decreased LDH release and cell apoptosis rate, accompanying with reduction of caspase-3 activity and Bax expression, and enhancement of Bcl-2 expression. Furthermore, knockdown of lnc-p21 mitigated MPP+-induced oxidative stress and neuroinflammation, as evidenced by the decrease in ROS generation, increase in SOD activity and decline in TNF-α, IL-1β and IL-6 levels. Conversely, overexpression of lnc-p21 resulted in the opposite effect. miR-625 was identified as a target of lnc-p21. lnc-p21 overturned the inhibitory effect of miR-625 on MPP+-induced neuronal injury in SH-SY5Y cells. Additionally, lnc-p21 positively regulated TRPM2 expression by targeting miR-625, and knockdown of TRPM2 inhibited MPP+-induced neuronal injury. Overall, our study identified a new lnc-p21-miR-625-TRPM2 regulatory network that lnc-p21 regulated MPP + -induced neuronal injury by sponging miR-625 and upregulating TRPM2 in SH-SY5Y cells, which provide a better understanding for the pathogenesis of PD.
Collapse
|
37
|
Alarcón-Aguilar A, Luna-López A, López-Diazguerrero NE, Königsberg M. The Effect of MPP+ on the Viability of Primary Cortical Astrocytes Isolated from Female and Male Wistar Rats of Different Ages. Cell Mol Neurobiol 2019; 39:321-328. [PMID: 30539419 DOI: 10.1007/s10571-018-0643-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
Abstract
Although age is known to be the main risk for developing chronic and neurodegenerative diseases, those illnesses have a different prevalence depending on the sex. It has been questioned whether genetic and hormonal differences are preserved in primary cultures from individuals of different genders. Therefore, here we studied the susceptibility of astrocytes, obtained from female and male Wistar rats of different ages (newborn, 9 and 24 months-old), to the well-known toxin MPP+ after 2 weeks in vitro, at different concentrations and exposure times. Our results showed that there are no variances due to gender, but that there are important differences associated to age in terms of the viability against this toxin.
Collapse
Affiliation(s)
- Adriana Alarcón-Aguilar
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | | | | | - Mina Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico.
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340, Ciudad de México, Mexico.
| |
Collapse
|
38
|
Wang Y, Zhou Y, Wang X, Zhen F, Chen R, Geng D, Yao R. Osthole alleviates MPTP-induced Parkinson's disease mice by suppressing Notch signaling pathway. Int J Neurosci 2019; 129:833-841. [PMID: 30668212 DOI: 10.1080/00207454.2019.1573171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objectives: Parkinson's disease (PD) is an age-related neurodegenerative disease characterized by motor dysfunctions. Dopaminergic neuron loss, inflammation and oxidative stress responses play key roles in the pathogenisis of PD. Osthole (Ost), a natural coumarin derivative, isolated from various herbs such as Cnidium monnieri (L.), has anti-inflammatory, anti-apoptotic and anti-oxidative stress properties. However, whether it has effects on PD is unknown. Methods: In this study, mice were subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection to induce PD symptoms, and treated with osthole. Stepping and cylinder tests were performed to determine their motor function. Immunohistochemical and immunofluorescence staining were performed to detect tyrosine hydroxylase (TH) and ionized calcium binding adaptor molecule 1 (Iba-1). The expression levels of inflammatory cytokines and oxidative stress factors were detected by qPCR and ELISA. Notch signaling pathway was investigated by western blot. Results: We found that injection of MPTP induced motor deficits in mice, enhanced the loss dopaminergic neurons and the activation of microglia, increased inflammatory and oxidative stress responses, and inhibited Notch signaling pathway. Osthole treatment suppressed theses MPTP-induced alterations. Conclusion: In conclusion, osthole attenuates PD symptoms by suppressing Notch signaling pathway.
Collapse
Affiliation(s)
- Yu Wang
- a Department of Neurology, Xuzhou Key Laboratory of Neurobiology , Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou , China
| | - Yong Zhou
- b Department of Neurology , The Second People's Hospital of Huaian, The Affiliated Huai an Hospital of Xuzhou Medical University , Huaian , China
| | - Xiang Wang
- a Department of Neurology, Xuzhou Key Laboratory of Neurobiology , Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou , China
| | - Fei Zhen
- c Department of Anatomy , Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou , China
| | - Rui Chen
- b Department of Neurology , The Second People's Hospital of Huaian, The Affiliated Huai an Hospital of Xuzhou Medical University , Huaian , China
| | - Deqin Geng
- d Department of Neurology , The Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Ruiqin Yao
- e Department of Cell Biology and Neurobiology , Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou , China
| |
Collapse
|
39
|
Prediger RD, Schamne MG, Sampaio TB, Moreira ELG, Rial D. Animal models of olfactory dysfunction in neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:431-452. [PMID: 31604561 DOI: 10.1016/b978-0-444-63855-7.00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Olfactory dysfunction seems to occur earlier than classic motor and cognitive symptoms in many neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD). Thus, the use of the olfactory system as a clinical marker for neurodegenerative diseases is helpful in the characterization of prodromal stages of these diseases, early diagnostic strategies, differential diagnosis, and, potentially, prediction of treatment success. The use of genetic and neurotoxin animal models has contributed to the understanding of the mechanisms underlying olfactory dysfunction in a number of neurodegenerative diseases. In this chapter, we provide an overview of behavioral and neurochemical alterations observed in animal models of different neurodegenerative diseases (such as genetic and Aβ infusion models for AD and neurotoxins and genetic models of PD), in which olfactory dysfunction has been described.
Collapse
Affiliation(s)
- Rui D Prediger
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Marissa G Schamne
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tuane B Sampaio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduardo L G Moreira
- Department of Physiological Sciences, Center of Biological Sciences¸ Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniel Rial
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
40
|
Crowley EK, Nolan YM, Sullivan AM. Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson's disease: Evidence from rodent models. Prog Neurobiol 2018; 172:2-22. [PMID: 30481560 DOI: 10.1016/j.pneurobio.2018.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/25/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterised by degeneration of dopaminergic neurons of the nigrostriatal pathway, which leads to the cardinal motor symptoms of the disease - tremor, rigidity and postural instability. A number of non-motor symptoms are also associated with PD, including cognitive impairment, mood disturbances and dysfunction of gastrointestinal and autonomic systems. Current therapies provide symptomatic relief but do not halt the disease process, so there is an urgent need for preventative strategies. Lifestyle interventions such as aerobic exercise have shown potential to lower the risk of developing PD and to alleviate both motor and non-motor symptoms. However, there is a lack of large-scale randomised clinical trials that have employed exercise in PD patients. This review will focus on the evidence from studies on rodent models of PD, for employing exercise as an intervention for both motor and non-motor symptoms.
Collapse
Affiliation(s)
- E K Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - A M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
41
|
Xie N, Qi J, Li S, Deng J, Chen Y, Lian Y. Upregulated lncRNA small nucleolar RNA host gene 1 promotes 1-methyl-4-phenylpyridinium ion-induced cytotoxicity and reactive oxygen species production through miR-15b-5p/GSK3β axis in human dopaminergic SH-SY5Y cells. J Cell Biochem 2018; 120:5790-5801. [PMID: 30302821 DOI: 10.1002/jcb.27865] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
Abstract
Long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) has been demonstrated to be upregulated and play a crucial role in the pathology of Parkinson's disease (PD). However, the exact role of SNHG1 and its underlying mechanisms in PD remains elusive. In this study, we found that SNHG1 and glycogen synthase kinase 3 beta (GSK3β) were upregulated, but miR-15b-5p was downregulated in 1-methyl-4-phenylpyridinium ion (MPP+ )-treated SH-SY5Y cells. The upregulation of SNHG1 enhanced MPP+ -induced cellular toxicity in SH-SY5Y cells, as shown by decreased cell viability, increased ROS production, and increased number of TdT-mediated dUTP Nick-End labeling-positive cells, accompanied with the upregulation of cleaved caspase 3 and elevation of cytochrome C release. Meanwhile, SNHG1 knockdown presented the converse effects. SNHG1 was demonstrated to interact with miR-15b-5p. Moreover, SNHG1 could attenuate the inhibitory effects of miR-15b-5p on MPP+ -induced cytotoxicity and production of ROS. Besides, GSK3β was identified as a direct target of miR-15b-5p. The inhibitory effects of SNHG1 knockdown or miR-15b-5p overexpression on MPP+ -induced cytotoxicity and reactive oxygen species (ROS) production were abrogated by upregulation of GSK3β. Taken together, these results demonstrate that upregulated lncRNA SNHG1 promotes MPP+ -induced cytotoxicity and ROS production through the miR-15b-5p/GSK3β axis in human dopaminergic SH-SY5Y cells, suggesting that SNHG1 may act as a potential therapeutic target for PD treatment in the future.
Collapse
Affiliation(s)
- Na Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Neurology, Anyang District Hospital of Puyang City, Anyang, Henan, China
| | - Jinxing Qi
- Department of Neurology, Anyang District Hospital of Puyang City, Anyang, Henan, China
| | - Shuang Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianzhong Deng
- Department of Neurology, Anyang District Hospital of Puyang City, Anyang, Henan, China
| | - Yuan Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
42
|
Wang Y, Yu X, Zhang P, Ma Y, Wang L, Xu H, Sui D. Neuroprotective effects of pramipexole transdermal patch in the MPTP-induced mouse model of Parkinson's disease. J Pharmacol Sci 2018; 138:31-37. [DOI: 10.1016/j.jphs.2018.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 01/12/2023] Open
|
43
|
Singh SS, Rai SN, Birla H, Zahra W, Kumar G, Gedda MR, Tiwari N, Patnaik R, Singh RK, Singh SP. Effect of Chlorogenic Acid Supplementation in MPTP-Intoxicated Mouse. Front Pharmacol 2018; 9:757. [PMID: 30127737 PMCID: PMC6087758 DOI: 10.3389/fphar.2018.00757] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and neuroinflammation play a key role in dopaminergic (DA) neuronal degeneration, which results in the hindrance of normal ongoing biological processes in the case of Parkinson's disease. As shown in several studies, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, different behavioral parameters have suggested motor impairment and damage of antioxidant defence. Thus, some specific biological molecules found in medicinal plants can be used to inhibit the DA neuronal degeneration through their antioxidant and anti-inflammatory activities. With this objective, we studied chlorogenic acid (CGA), a naturally occurring polyphenolic compound, for its antioxidant and anti-inflammatory properties in MPTP-intoxicated mice. We observed significant reoccurrence of motor coordination and antioxidant defence on CGA supplementation, which has been in contrast with MPTP-injected mice. Moreover, in the case of CGA-treated mice, the enhanced expression of tyrosine hydroxylase (TH) within the nigrostriatal region has supported its beneficial effect. The activation of glial cells and oxidative stress levels were also estimated using inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP) immunoreactivity within substantia nigra (SN) and striatum of MPTP-injected mice. Administration of CGA has prevented the neuroinflammation in SN by regulating the nuclear factor-κB expression in the MPTP-induced group. The significant release of certain pro-inflammatory mediators such as tumor necrosis factor-α and interleukin (IL)-1β has also been inhibited by CGA with the enhanced expression of anti-inflammatory cytokine IL-10. Moreover, reduced GFAP staining within the nigrostriatal region has supported the fact that CGA has significantly helped in the attenuation of astrocyte activation. Hence, our study has shown that CGA supplementation shows its therapeutic ability by reducing the oxidative stress and neuroinflammation in MPTP-intoxicated mice.
Collapse
Affiliation(s)
- Saumitra S. Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sachchida N. Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Gaurav Kumar
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Mallikarjuna R. Gedda
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Neeraj Tiwari
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ranjana Patnaik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Rakesh K. Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surya P. Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
44
|
Yao L, Dai X, Sun Y, Wang Y, Yang Q, Chen X, Liu Y, Zhang L, Xie W, Liu J. Inhibition of transcription factor SP1 produces neuroprotective effects through decreasing MAO B activity in MPTP/MPP+
Parkinson's disease models. J Neurosci Res 2018; 96:1663-1676. [DOI: 10.1002/jnr.24266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Lu Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Xing Dai
- Department of Orthopaedics; The First Affiliated Hospital, Xi'an Jiaotong University; Xi'an China
| | - Yina Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Yong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Qian Yang
- Department of Neurosurgery; Tangdu Hospital, The Fourth Military Medical University; Xi'an China
| | - Xinlin Chen
- Institute of Neurobiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Yong Liu
- Institute of Neurobiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Wen Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
45
|
Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6241017. [PMID: 30050657 PMCID: PMC6040293 DOI: 10.1155/2018/6241017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/29/2018] [Indexed: 12/16/2022]
Abstract
A wide range of neurodegenerative diseases (NDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and prion diseases, share common mechanisms such as neuronal loss, apoptosis, mitochondrial dysfunction, oxidative stress, and inflammation. Intervention strategies using plant-derived bioactive compounds have been offered as a form of treatment for these debilitating conditions, as there are currently no remedies to prevent, reverse, or halt the progression of neuronal loss. Rutin, a glycoside of the flavonoid quercetin, is found in many plants and fruits, especially buckwheat, apricots, cherries, grapes, grapefruit, plums, and oranges. Pharmacological studies have reported the beneficial effects of rutin in many disease conditions, and its therapeutic potential in several models of NDs has created considerable excitement. Here, we have summarized the current knowledge on the neuroprotective mechanisms of rutin in various experimental models of NDs. The mechanisms of action reviewed in this article include reduction of proinflammatory cytokines, improved antioxidant enzyme activities, activation of the mitogen-activated protein kinase cascade, downregulation of mRNA expression of PD-linked and proapoptotic genes, upregulation of the ion transport and antiapoptotic genes, and restoration of the activities of mitochondrial complex enzymes. Taken together, these findings suggest that rutin may be a promising neuroprotective compound for the treatment of NDs.
Collapse
|
46
|
Bernardes CP, Santos NAG, Sisti FM, Ferreira RS, Santos-Filho NA, Cintra ACO, Cilli EM, Sampaio SV, Santos AC. A synthetic snake-venom-based tripeptide (Glu-Val-Trp) protects PC12 cells from MPP + toxicity by activating the NGF-signaling pathway. Peptides 2018; 104:24-34. [PMID: 29684590 DOI: 10.1016/j.peptides.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023]
Abstract
Venom small peptides that target neurotrophin receptors might be beneficial in neurodegeneration, including Parkinsońs disease (PD). Their small size, ease of synthesis, structural stability and target selectivity make them important tools to overcome the limitations of endogenous neurotrophins as therapeutic agents. Additionally, they might be optimized to improve resistance to enzymatic degradation, bioavailability, potency and, mainly, lipophilicity, important to cross the blood brain barrier (BBB). Here, we evaluated the neuroprotective effects and mechanisms of the synthetic snake-venom-based peptide p-BTX-I (Glu-Val-Trp) in PC12 cells treated with MPP+ (1-methyl-4-phenylpyridinium), a dopaminergic neurotoxin that induces Parkinsonism in vivo. The peptide p-BTX-I induced neuritogenesis, which was reduced by (i) k252a, antagonist of the NGF-selective receptor, trkA (tropomyosin receptor kinase A); (ii) LY294002, inhibitor of the PI3 K/AKT pathway and (iii) U0126, inhibitor of the MAPK-ERK pathway. Besides that, p-BTX-I also increased the expression of GAP-43 and synapsin, which are molecular markers of axonal growth and synaptic communication. In addition, the peptide increased the viability and differentiation of cells exposed to MPP+, known to inhibit neuritogenesis. Altogether, our findings suggest that the synthetic peptide p-BTX-I protects PC12 cells from MPP+ toxicity by a mechanism that mimics the neurotrophic action of NGF. Therefore, the molecular structure of p-BTX-I might be relevant in the development of drugs aimed at restoring the axonal connectivity in neurodegenerative processes.
Collapse
Affiliation(s)
- Carolina P Bernardes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil.
| | - Neife A G Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Flavia M Sisti
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Rafaela Scalco Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Norival A Santos-Filho
- Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Química de Araraquara-UNESP, Araraquara, SP, Brazil
| | - Adélia C O Cintra
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Eduardo M Cilli
- Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Química de Araraquara-UNESP, Araraquara, SP, Brazil
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Antonio C Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
47
|
Hain EG, Sparenberg M, Rasińska J, Klein C, Akyüz L, Steiner B. Indomethacin promotes survival of new neurons in the adult murine hippocampus accompanied by anti-inflammatory effects following MPTP-induced dopamine depletion. J Neuroinflammation 2018; 15:162. [PMID: 29803225 PMCID: PMC5970532 DOI: 10.1186/s12974-018-1179-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 04/25/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by dopaminergic cell loss and inflammation in the substantia nigra (SN) leading to motor deficits but also to hippocampus-associated non-motor symptoms such as spatial learning and memory deficits. The cognitive decline is correlated with impaired adult hippocampal neurogenesis resulting from dopamine deficit and inflammation, represented in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) mouse model of PD. In the inflammatory tissue, cyclooxygenase (COX) is upregulated leading to an ongoing inflammatory process such as prostaglandin-mediated increased cytokine levels. Therefore, inhibition of COX by indomethacin may prevent the inflammatory response and the impairment of adult hippocampal neurogenesis. METHODS Wildtype C57Bl/6 and transgenic Nestin-GFP mice were treated with MPTP followed by short-term or long-term indomethacin treatment. Then, aspects of inflammation and neurogenesis were evaluated by cell counts using immunofluorescence and immunohistochemical stainings in the SN and dentate gyrus (DG). Furthermore, hippocampal mRNA expression of neurogenesis-related genes of the Notch, Wnt, and sonic hedgehog signaling pathways and neurogenic factors were assessed, and protein levels of serum cytokines were measured. RESULTS Indomethacin restored the reduction of the survival rate of new mature neurons and reduced the amount of amoeboid CD68+ cells in the DG after MPTP treatment. Indomethacin downregulated genes of the Wnt and Notch signaling pathways and increased neuroD6 expression. In the SN, indomethacin reduced the pro-inflammatory cellular response without reversing dopaminergic cell loss. CONCLUSION Indomethacin has a pro-neurogenic and thereby restorative effect and an anti-inflammatory effect on the cellular level in the DG following MPTP treatment. Therefore, COX inhibitors such as indomethacin may represent a therapeutic option to restore adult neurogenesis in PD.
Collapse
Affiliation(s)
- Elisabeth G Hain
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Maria Sparenberg
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Justyna Rasińska
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Charlotte Klein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Levent Akyüz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Barbara Steiner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
48
|
Tauroursodeoxycholic Acid Improves Motor Symptoms in a Mouse Model of Parkinson’s Disease. Mol Neurobiol 2018; 55:9139-9155. [DOI: 10.1007/s12035-018-1062-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/03/2018] [Indexed: 01/14/2023]
|
49
|
de Souza JM, Goncalves BDC, Gomez MV, Vieira LB, Ribeiro FM. Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases. Front Pharmacol 2018; 9:145. [PMID: 29527170 PMCID: PMC5829052 DOI: 10.3389/fphar.2018.00145] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases affect millions of individuals worldwide. So far, no disease-modifying drug is available to treat patients, making the search for effective drugs an urgent need. Neurodegeneration is triggered by the activation of several cellular processes, including oxidative stress, mitochondrial impairment, neuroinflammation, aging, aggregate formation, glutamatergic excitotoxicity, and apoptosis. Therefore, many research groups aim to identify drugs that may inhibit one or more of these events leading to neuronal cell death. Venoms are fruitful natural sources of new molecules, which have been relentlessly enhanced by evolution through natural selection. Several studies indicate that venom components can exhibit selectivity and affinity for a wide variety of targets in mammalian systems. For instance, an expressive number of natural peptides identified in venoms from animals, such as snakes, scorpions, bees, and spiders, were shown to lessen inflammation, regulate glutamate release, modify neurotransmitter levels, block ion channel activation, decrease the number of protein aggregates, and increase the levels of neuroprotective factors. Thus, these venom components hold potential as therapeutic tools to slow or even halt neurodegeneration. However, there are many technological issues to overcome, as venom peptides are hard to obtain and characterize and the amount obtained from natural sources is insufficient to perform all the necessary experiments and tests. Fortunately, technological improvements regarding heterologous protein expression, as well as peptide chemical synthesis will help to provide enough quantities and allow chemical and pharmacological enhancements of these natural occurring compounds. Thus, the main focus of this review is to highlight the most promising studies evaluating animal toxins as therapeutic tools to treat a wide variety of neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, brain ischemia, glaucoma, amyotrophic lateral sclerosis, and multiple sclerosis.
Collapse
Affiliation(s)
- Jessica M. de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno D. C. Goncalves
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcus V. Gomez
- Department of Neurotransmitters, Instituto de Ensino e Pesquisa Santa Casa, Belo Horizonte, Brazil
| | - Luciene B. Vieira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
50
|
Moreno-Galarza N, Mendieta L, Palafox-Sánchez V, Herrando-Grabulosa M, Gil C, Limón DI, Aguilera J. Peripheral Administration of Tetanus Toxin Hc Fragment Prevents MPP+ Toxicity In Vivo. Neurotox Res 2018; 34:47-61. [DOI: 10.1007/s12640-017-9853-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/13/2023]
|