1
|
Perrone S, Carloni S, Dell'Orto VG, Filonzi L, Beretta V, Petrolini C, Lembo C, Buonocore G, Esposito S, Nonnis Marzano F. Hypoxic ischemic brain injury: animal models reveal new mechanisms of melatonin-mediated neuroprotection. Rev Neurosci 2024; 35:331-339. [PMID: 38153803 DOI: 10.1515/revneuro-2023-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023]
Abstract
Oxidative stress (OS) and inflammation play a key role in the development of hypoxic-ischemic (H-I) induced brain damage. Following H-I, rapid neuronal death occurs during the acute phase of inflammation, and activation of the oxidant-antioxidant system contributes to the brain damage by activated microglia. So far, in an animal model of perinatal H-I, it was showed that neuroprostanes are present in all brain damaged areas, including the cerebral cortex, hippocampus and striatum. Based on the interplay between inflammation and OS, it was demonstrated in the same model that inflammation reduced brain sirtuin-1 expression and affected the expression of specific miRNAs. Moreover, through proteomic approach, an increased expression of genes and proteins in cerebral cortex synaptosomes has been revealed after induction of neonatal H-I. Administration of melatonin in the experimental treatment of brain damage and neurodegenerative diseases has produced promising therapeutic results. Melatonin protects against OS, contributes to reduce the generation of pro-inflammatory factors and promotes tissue regeneration and repair. Starting from the above cited aspects, this educational review aims to discuss the inflammatory and OS main pathways in H-I brain injury, focusing on the role of melatonin as neuroprotectant and providing current and emerging evidence.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Aurelio Saffi 2, 61029 Urbino, Italy
| | - Valentina Giovanna Dell'Orto
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Laura Filonzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Virginia Beretta
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Petrolini
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Lembo
- Department of Neonatology, APHP, Necker-Enfants, Malades Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto 55, 53100 Siena, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Francesco Nonnis Marzano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
2
|
Hafza N, Li N, Luqman A, Götz F. Identification of a serotonin N-acetyltransferase from Staphylococcus pseudintermedius ED99. Front Microbiol 2023; 14:1073539. [PMID: 36910235 PMCID: PMC9992809 DOI: 10.3389/fmicb.2023.1073539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Serotonin N-acetyltransferase (SNAT) catalyzes the biosynthesis of N-acetylserotonin (NAS) and N-acetyltryptamine (NAT), two pleiotropic molecules with neurotransmitter functions. Here, we report the identification of a SNAT protein in the genus Staphylococcus. The SNAT gene identified in Staphylococcus pseudintermedius ED99, namely SPSE_0802, encodes a 140 residues-long cytoplasmic protein. The recombinant protein SPSE_0802 was expressed in E. coli BL21 and found to acetylate serotonin (SER) and tryptamine (TRY) as well as other trace amines in vitro. The production of the neuromodulators NAS and NAT was detected in the cultures of different members of the genus Staphylococcus and the role of SPSE_0802 in this production was confirmed in an ED99 SPSE_0802 deletion mutant. A search for SNAT homologues showed that the enzyme is widely distributed across the genus which correlated with the SNAT activity detected in 22 out of the 40 Staphylococcus strains tested. The N-acetylated products of SNAT are precursors for melatonin synthesis and are known to act as neurotransmitters and activate melatonin receptors, among others, inducing various responses in the human body. The identification of SNAT in staphylococci could contribute to a better understanding of the interaction between those human colonizers and the host peripheral nervous system.
Collapse
Affiliation(s)
- Nourhane Hafza
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Ningna Li
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Kang C, Jeong S, Kim J, Ju S, Im E, Heo G, Park S, Yoo JW, Lee J, Yoon IS, Jung Y. N-Acetylserotonin is an oxidation-responsive activator of Nrf2 ameliorating colitis in rats. J Pineal Res 2023; 74:e12835. [PMID: 36214640 DOI: 10.1111/jpi.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
N-Acetylserotonin (NAS) is an intermediate in the melatonin biosynthetic pathway. We investigated the anti-inflammatory activity of NAS by focusing on its chemical feature oxidizable to an electrophile. NAS was readily oxidized by reaction with HOCl, an oxidant produced in the inflammatory state. HOCl-reacted NAS (Oxi-NAS), but not NAS, activated the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase (HO)-1 pathway in cells. Chromatographic and mass analyses demonstrated that Oxi-NAS was the iminoquinone form of NAS and could react with N-acetylcysteine possessing a nucleophilic thiol to form a covalent adduct. Oxi-NAS bound to Kelch-like ECH-associated protein 1, resulting in Nrf2 dissociation. Moreover, rectally administered NAS increased the levels of nuclear Nrf2 and HO-1 proteins in the inflamed colon of rats. Simultaneously, NAS was converted to Oxi-NAS in the inflamed colon. Rectal NAS mitigated colonic damage and inflammation. The anticolitic effects were significantly compromised by the coadministration of an HO-1 inhibitor.
Collapse
Affiliation(s)
- Changyu Kang
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Soyeong Park
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Begum R, Mamun-Or-Rashid ANM, Lucy TT, Pramanik MK, Sil BK, Mukerjee N, Tagde P, Yagi M, Yonei Y. Potential Therapeutic Approach of Melatonin against Omicron and Some Other Variants of SARS-CoV-2. Molecules 2022; 27:6934. [PMID: 36296527 PMCID: PMC9609612 DOI: 10.3390/molecules27206934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The Omicron variant (B.529) of COVID-19 caused disease outbreaks worldwide because of its contagious and diverse mutations. To reduce these outbreaks, therapeutic drugs and adjuvant vaccines have been applied for the treatment of the disease. However, these drugs have not shown high efficacy in reducing COVID-19 severity, and even antiviral drugs have not shown to be effective. Researchers thus continue to search for an effective adjuvant therapy with a combination of drugs or vaccines to treat COVID-19 disease. We were motivated to consider melatonin as a defensive agent against SARS-CoV-2 because of its various unique properties. Over 200 scientific publications have shown the significant effects of melatonin in treating diseases, with strong antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has a high safety profile, but it needs further clinical trials and experiments for use as a therapeutic agent against the Omicron variant of COVID-19. It might immediately be able to prevent the development of severe symptoms caused by the coronavirus and can reduce the severity of the infection by improving immunity.
Collapse
Affiliation(s)
- Rahima Begum
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - A. N. M. Mamun-Or-Rashid
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA 15231, USA
| | - Tanzima Tarannum Lucy
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Md. Kamruzzaman Pramanik
- Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar 1349, Bangladesh
| | - Bijon Kumar Sil
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Sydney 37729, Australia
| | - Priti Tagde
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal 462044, India
| | - Masayuki Yagi
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| |
Collapse
|
5
|
Basak S, Gokhale J. Immunity boosting nutraceuticals: Current trends and challenges. J Food Biochem 2021; 46:e13902. [PMID: 34467553 DOI: 10.1111/jfbc.13902] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
The immune function of the human body is highly influenced by the dietary intake of certain nutrients and bioactive compounds present in foods. The preventive effects of these bioactive ingredients against various diseases have been well investigated. Functional foods are consumed across various diverse cultures, in some form or the other, which provide benefits greater than the basic nutritional needs. Novel functional foods are being developed using novel bioactive ingredients such as probiotics, polyunsaturated fatty acids, and various phytoconstituents, which have a range of immunomodulatory properties. Apart from immunomodulation, these ingredients also affect immunity by their antioxidant, antibacterial, and antiviral properties. The global pandemic of Severe Acute Respiratory Syndrome Coronavirus-2 has forced the scientific community to race against time to find a proper and effective drug or a vaccine. In this review, various non-pharmacological interventions using nutraceuticals and functional foods have been discussed. PRACTICAL APPLICATIONS: Despite a plethora of research being undertaken to understand the immunity boosting properties of the various bioactive present in food, the findings are not translating to nutraceutical products in the market. Immunity has proved to be one of the most important factors for the health and well-being of an individual, especially when the world has been under the grip of the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus-2. The anti-inflammatory properties of various nutraceuticals can come out as potential inhibitors of the various inflammatory processes such as cytokine storms, usually being observed in COVID 19. This review gives an insight into how various nutraceuticals can help in the prevention of various diseases through different mechanisms. The lack of awareness and proper clinical trials pose a challenge to the nutraceutical industry. This review will help and encourage researchers to further design and develop various functional foods, which might help in building immunity.
Collapse
Affiliation(s)
- Somnath Basak
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Jyoti Gokhale
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
6
|
Munmun F, Witt-Enderby PA. Melatonin effects on bone: Implications for use as a therapy for managing bone loss. J Pineal Res 2021; 71:e12749. [PMID: 34085304 DOI: 10.1111/jpi.12749] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
Melatonin is the primary circadian output signal from the brain and is mainly synthesized in pinealocytes. The rhythm and secretion of melatonin are under the control of an endogenous oscillator located in the SCN or the master biological clock. Disruptions in circadian rhythms by shift work, aging, or light at night are associated with bone loss and increased fracture risk. Restoration of nocturnal melatonin peaks to normal levels or therapeutic levels through timed melatonin supplementation has been demonstrated to provide bone-protective actions in various models. Melatonin is a unique molecule with diverse molecular actions targeting melatonin receptors located on the plasma membrane or mitochondria or acting independently of receptors through its actions as an antioxidant or free radical scavenger to stimulate osteoblastogenesis, inhibit osteoclastogenesis, and improve bone density. Its additional actions on entraining circadian rhythms and improving quality of life in an aging population coupled with its safety profile make it an ideal therapeutic candidate for protecting against bone loss in susceptible populations. The intent of this review is to provide a focused discussion on bone loss and disorders of the bone as it relates to melatonin and conditions that modify melatonin levels with the hope that future therapies include those that include melatonin and correct those factors that modify melatonin levels like circadian disruption.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Lan W, Ren Y, Wang Z, Liu J, Liu H. Metabolic Profile Reveals the Immunosuppressive Mechanisms of Methionyl-Methionine in Lipopolysaccharide-Induced Inflammation in Bovine Mammary Epithelial Cell. Animals (Basel) 2021; 11:833. [PMID: 33809487 PMCID: PMC8000761 DOI: 10.3390/ani11030833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/22/2023] Open
Abstract
Our previous transcriptomic study found that methionyl-methionine (Met-Met) exerts an anti-inflammatory effect in the bovine mammary epithelial cell (MAC-T) at a molecular level. However, evidence of whether the metabolic production of Met-Met confers protection was scarce. To investigate the inflammatory response and metabolite changes of Met-Met in lipopolysaccharide (LPS)-induced inflammation of MAC-T, mass spectrometry-based metabolomics and qPCR were conducted. The increased levels of IL-8, TNF-α, AP-1, and MCP-1 were reduced by pretreating with 2 mM Met-Met after LPS exposure. Metabolomics profiling analysis demonstrated that LPS induced significant alteration of metabolites, including decreased tryptophan, phenylalanine, and histidine levels and increased palmitic acid and stearic acid levels as well as purine metabolism disorder, whereas Met-Met reversed these changes significantly. Pathways analysis revealed that overlapping metabolites were mainly enriched in the cysteine and methionine metabolism, fatty acids biosynthesis, and purines degradation. Correlation networks showed that the metabolic profile was significantly altered under the conditions of inflammation and Met-Met treatment. Collectively, Met-Met might relieve MAC-T cell inflammation via hydrolysate methionine, which further changes the processes of amino acid, purine, and fatty acid metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (W.L.); (Y.R.); (Z.W.); (J.L.)
| |
Collapse
|
8
|
Vašíček O, Lojek A, Číž M. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J Physiol Biochem 2020; 76:49-60. [PMID: 31900806 DOI: 10.1007/s13105-019-00714-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 11/08/2019] [Indexed: 01/02/2023]
Abstract
In this study, we focused on comparing the effects of serotonin and its metabolites on the functions of RAW264.7 cells (emphasis on oxidative burst and production of nitric oxide and cytokines), thereby expanding the scope of existing knowledge with advent of novel findings in this field. Changes in production of reactive oxygen species (ROS) by RAW264.7 cells after treatment with serotonin, N-acetylserotonin and melatonin were determined using the chemiluminescence (CL) assay. To exclude the direct scavenging effects of the studied compounds on the CL response, the antioxidant properties of all respective compounds were measured using TRAP and amperometrical method. Nitric oxide (NO) production was measured by Griess reagent and inducible NO synthase (iNOS) expression by Western blot. Cytokine production was assessed using the Mouse Cytokine Panel A Array kit and ELISA. We showed that all tested compounds were able to reduce oxidative stress, as well as inhibit production of inflammatory cytokines by macrophages. Of the tested compounds, serotonin and N-acetylserotonin were markedly better antioxidants than melatonin. In comparison, other effects of tested compounds were very similar. It can be concluded that antioxidant capacity of tested compounds is a major advantage in the early stages of inflammation. Since plasma concentrations of N-acetylserotonin and melatonin are lower than serotonin, it can be deduced that serotonin plays a key role in modulation of inflammation and the regulatory functions of immune cells, while also protecting cells against oxidative stress.
Collapse
Affiliation(s)
- Ondřej Vašíček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Antonín Lojek
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Milan Číž
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic. .,Department of Animal Physiology and Immunology, Institute of Experimental Biology, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic.
| |
Collapse
|
9
|
Tan HY, Ng KY, Koh RY, Chye SM. Pharmacological Effects of Melatonin as Neuroprotectant in Rodent Model: A Review on the Current Biological Evidence. Cell Mol Neurobiol 2020; 40:25-51. [PMID: 31435851 PMCID: PMC11448813 DOI: 10.1007/s10571-019-00724-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
The progressive loss of structure and functions of neurons, including neuronal death, is one of the main factors leading to poor quality of life. Promotion of functional recovery of neuron after injury is a great challenge in neuroregenerative studies. Melatonin, a hormone is secreted by pineal gland and has antioxidative, anti-inflammatory, and anti-apoptotic properties. Besides that, melatonin has high cell permeability and is able to cross the blood-brain barrier. Apart from that, there are no reported side effects associated with long-term usage of melatonin at both physiological and pharmacological doses. Thus, in this review article, we summarize the pharmacological effects of melatonin as neuroprotectant in central nervous system injury, ischemic-reperfusion injury, optic nerve injury, peripheral nerve injury, neurotmesis, axonotmesis, scar formation, cell degeneration, and apoptosis in rodent models.
Collapse
Affiliation(s)
- Hui Ying Tan
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia.
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Machado M, Azeredo R, Domingues A, Fernandez-Boo S, Dias J, Conceição LEC, Costas B. Dietary tryptophan deficiency and its supplementation compromises inflammatory mechanisms and disease resistance in a teleost fish. Sci Rep 2019; 9:7689. [PMID: 31118462 PMCID: PMC6531542 DOI: 10.1038/s41598-019-44205-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Tryptophan participates on several physiological mechanisms of the neuroendocrine-immune network and plays a critical role in macrophages and lymphocytes function. This study intended to evaluate the modulatory effects of dietary tryptophan on the European seabass (Dicentrarchus labrax) immune status, inflammatory response and disease resistance to Photobacterium damselae piscicida. A tryptophan deficient diet (NTRP); a control diet (CTRL); and two other diets supplemented with tryptophan at 0.13% (TRP13) and 0.17% (TRP17) of feed weight were formulated. Fish were sampled at 2 and 4 weeks of feeding and the remaining were i.p. injected with Phdp (3 × 106 cfu/fish) at 4 weeks and the inflammatory response (at 4, 24, 48 and 72 hours post-infection) as well as survival were evaluated. Results suggest that fish immune status was not altered in a tryptophan deficient scenario whereas in response to an inflammatory insult, plasma cortisol levels increased and the immune cell response was compromised, which translated in a lower disease resistance. When dietary tryptophan was offered 30% above its requirement level, plasma cortisol increased and, in response to bacterial infection, a decrease in lymphocytes, monocytes/macrophages and several immune-related genes was observed, also compromising at some degree fish disease resistance.
Collapse
Affiliation(s)
- M Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal. .,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal. .,Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| | - R Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - A Domingues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - S Fernandez-Boo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - J Dias
- Sparos Lda, Area Empresarial de Marim, Lote C, Olhão, Portugal
| | - L E C Conceição
- Sparos Lda, Area Empresarial de Marim, Lote C, Olhão, Portugal
| | - B Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal. .,Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
11
|
Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y, Wang W, Hardeland R, Ren W. Melatonin in macrophage biology: Current understanding and future perspectives. J Pineal Res 2019; 66:e12547. [PMID: 30597604 DOI: 10.1111/jpi.12547] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is a ubiquitous hormone found in various organisms and highly affects the function of immune cells. In this review, we summarize the current understanding of the significance of melatonin in macrophage biology and the beneficial effects of melatonin in macrophage-associated diseases. Enzymes associated with synthesis of melatonin, as well as membrane receptors for melatonin, are found in macrophages. Indeed, melatonin influences the phenotype polarization of macrophages. Mechanistically, the roles of melatonin in macrophages are related to several cellular signaling pathways, such as NF-κB, STATs, and NLRP3/caspase-1. Notably, miRNAs (eg, miR-155/-34a/-23a), cellular metabolic pathways (eg, α-KG, HIF-1α, and ROS), and mitochondrial dynamics and mitophagy are also involved. Thus, melatonin modulates the development and progression of various macrophage-associated diseases, such as cancer and rheumatoid arthritis. This review provides a better understanding about the importance of melatonin in macrophage biology and macrophage-associated diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sijing Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuanyuan Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Congrui Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Effect of plant growth promoting Bacillus spp. on nutritional properties of Amaranthus hypochondriacus grains. Saudi J Biol Sci 2018; 25:1066-1071. [PMID: 30174503 PMCID: PMC6117431 DOI: 10.1016/j.sjbs.2018.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/19/2018] [Accepted: 03/05/2018] [Indexed: 11/23/2022] Open
Abstract
Amaranth (Amaranthus hypochondriacus Linn.) is an important pseudocereal crop having important nutrients along with the indispensable amino-acids. The present study was aimed to study the effect of plant growth promoting bacilli on proximate constituents of amaranth grains, including three of the essential amino acids (methionine, lysine and, tryptophan). The combination of Bacillus pumilus and Bacillus subtilis showed a significant increase in different proximate constituents, including crude protein (22.13%), dry matter (32.25%), fat (30.77%), and carbohydrate (49.08%) in amaranth grains. Similarly, a significant increase in essential amino-acids (methionine 47.68%, lysine 59.41% and, tryptophan 38.05%) was recorded. This study suggests that the combination of Bacillus pumilus BS-27 and Bacillus subtilis BS-58 provides the natural, persistent and durable potential to enhance the nutritive value of the crop. Therefore, present study was designed to explore the enhancement of most desirable amino acid synthesis in amaranth due to application of plant growth promoting Bacillus spp.
Collapse
|
13
|
Heritability of the melatonin synthesis variability in autism spectrum disorders. Sci Rep 2017; 7:17746. [PMID: 29255243 PMCID: PMC5735101 DOI: 10.1038/s41598-017-18016-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
Autism Spectrum Disorders (ASD) are heterogeneous neurodevelopmental disorders with a complex genetic architecture. They are characterized by impaired social communication, stereotyped behaviors and restricted interests and are frequently associated with comorbidities such as intellectual disability, epilepsy and severe sleep disorders. Hyperserotonemia and low melatonin levels are among the most replicated endophenotypes reported in ASD, but their genetic causes remain largely unknown. Based on the biochemical profile of 717 individuals including 213 children with ASD, 128 unaffected siblings and 376 parents and other relatives, we estimated the heritability of whole-blood serotonin, platelet N-acetylserotonin (NAS) and plasma melatonin levels, as well as the two enzymes arylalkylamine N-acetyltransferase (AANAT) and acetylserotonin O-methyltransferase (ASMT) activities measured in platelets. Overall, heritability was higher for NAS (0.72 ± 0.091) and ASMT (0.59 ± 0.097) compared with serotonin (0.31 ± 0.078), AANAT (0.34 ± 0.077) and melatonin (0.22 ± 0.071). Bivariate analyses showed high phenotypic and genetic correlations between traits of the second step of the metabolic pathway (NAS, ASMT and melatonin) indicating the contribution of shared genetic factors. A better knowledge of the heritability of the melatonin synthesis variability constitutes an important step to identify the factors that perturb this pathway in individuals with ASD.
Collapse
|
14
|
Zarei I, Brown DG, Nealon NJ, Ryan EP. Rice Bran Metabolome Contains Amino Acids, Vitamins & Cofactors, and Phytochemicals with Medicinal and Nutritional Properties. RICE (NEW YORK, N.Y.) 2017; 10:24. [PMID: 28547736 PMCID: PMC5453916 DOI: 10.1186/s12284-017-0157-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/21/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rice bran is a functional food that has shown protection against major chronic diseases (e.g. obesity, diabetes, cardiovascular disease and cancer) in animals and humans, and these health effects have been associated with the presence of bioactive phytochemicals. Food metabolomics uses multiple chromatography and mass spectrometry platforms to detect and identify a diverse range of small molecules with high sensitivity and precision, and has not been completed for rice bran. RESULTS This study utilized global, non-targeted metabolomics to identify small molecules in rice bran, and conducted a comprehensive search of peer-reviewed literature to determine bioactive compounds. Three U.S. rice varieties (Calrose, Dixiebelle, and Neptune), that have been used for human dietary intervention trials, were assessed herein for bioactive compounds that have disease control and prevention properties. The profiling of rice bran by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) identified 453 distinct phytochemicals, 209 of which were classified as amino acids, cofactors & vitamins, and secondary metabolites, and were further assessed for bioactivity. A scientific literature search revealed 65 compounds with health properties, 16 of which had not been previously identified in rice bran. This suite of amino acids, cofactors & vitamins, and secondary metabolites comprised 46% of the identified rice bran metabolome, which substantially enhanced our knowledge of health-promoting rice bran compounds provided during dietary supplementation. CONCLUSION Rice bran metabolite profiling revealed a suite of biochemical molecules that can be further investigated and exploited for multiple nutritional therapies and medical food applications. These bioactive compounds may also be biomarkers of dietary rice bran intake. The medicinal compounds associated with rice bran can function as a network across metabolic pathways and this metabolite network may occur via additive and synergistic effects between compounds in the food matrix.
Collapse
Affiliation(s)
- Iman Zarei
- Department of Environmental & Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523 USA
- Institute of Human Nutrition and Food, College of Human Ecology, University of the Philippines Los Baños, Los Baños, 4031 Laguna Philippines
| | - Dustin G. Brown
- Department of Environmental & Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523 USA
| | - Nora Jean Nealon
- Department of Environmental & Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523 USA
| | - Elizabeth P. Ryan
- Department of Environmental & Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523 USA
| |
Collapse
|
15
|
Hendaus MA, Jomha FA, Alhammadi AH. Melatonin in the management of perinatal hypoxic-ischemic encephalopathy: light at the end of the tunnel? Neuropsychiatr Dis Treat 2016; 12:2473-2479. [PMID: 27729791 PMCID: PMC5045913 DOI: 10.2147/ndt.s115533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) affects one to three per 1,000 live full-term births and can lead to severe and permanent neuropsychological sequelae, such as cerebral palsy, epilepsy, mental retardation, and visual motor or visual perceptive dysfunction. Melatonin has begun to be contemplated as a good choice in order to diminish the neurological sequelae from hypoxic-ischemic brain injury. Melatonin emerges as a very interesting medication, because of its capacity to cross all physiological barriers extending to subcellular compartments and its safety and effectiveness. The purpose of this commentary is to detail the evidence on the use of melatonin as a neuroprotection agent. The pharmacologic aspects of the drug as well as its potential neuroprotective characteristics in human and animal studies are described in this study. Melatonin seems to be safe and beneficial in protecting neonatal brains from perinatal HIE. Larger randomized controlled trials in humans are required, to implement a long-awaited feasible treatment in order to avoid the dreaded sequelae of HIE.
Collapse
Affiliation(s)
- Mohamed A Hendaus
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation
- Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar
| | - Fatima A Jomha
- School of Pharmacy, Lebanese International University, Khiara, Lebanon
| | - Ahmed H Alhammadi
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation
- Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar
| |
Collapse
|
16
|
Paulin CH, Cazaméa-Catalan D, Zilberman-Peled B, Herrera-Perez P, Sauzet S, Magnanou E, Fuentès M, Gothilf Y, Muñoz-Cueto JA, Falcón J, Besseau L. Subfunctionalization of arylalkylamine N-acetyltransferases in the sea bass Dicentrarchus labrax: two-ones for one two. J Pineal Res 2015; 59:354-64. [PMID: 26267754 DOI: 10.1111/jpi.12266] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 01/16/2023]
Abstract
Melatonin is an important component of the vertebrates circadian system, synthetized from serotonin by the successive action of the arylalkylamine N-acetyltransferase (Aanat: serotonin→N-acetylserotonin) and acetylserotonin-O-methyltransferase (Asmt: N-acetylserotonin→melatonin). Aanat is responsible for the daily rhythm in melatonin production. Teleost fish are unique because they express two Aanat genes, aanat1 and aanat2, mainly expressed in the retina and pineal gland, respectively. In silico analysis indicated that the teleost-specific whole-genome duplication generated Aanat1 duplicates (aanat1a and aanat1b); some fish express both of them, while others express either one of the isoforms. Here, we bring the first information on the structure, function, and distribution of Aanat1a and Aanat1b in a teleost, the sea bass Dicentrarchus labrax. Aanat1a and Aanat1b displayed a wide and distinct distribution in the nervous system and peripheral tissues, while Aanat2 appeared as a pineal enzyme. Co-expression of Aanats with asmt was found in the pineal gland and the three retinal nuclear layers. Enzyme kinetics indicated subtle differences in the affinity and catalytic efficiency of Aanat1a and Aanat1b for indolethylamines and phenylethylamines, respectively. Our data are consistent with the idea that Aanat2 is a pineal enzyme involved in melatonin production, while Aanat1 enzymes have a broader range of functions including melatonin synthesis in the retina, and catabolism of serotonin and dopamine in the retina and other tissues. The data are discussed in light of the recently uncovered roles of N-acetylserotonin and N-acetyldopamine as antioxidants, neuroprotectants, and modulators of cell proliferation and enzyme activities.
Collapse
Affiliation(s)
- Charles-Hubert Paulin
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| | - Damien Cazaméa-Catalan
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| | - Bina Zilberman-Peled
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv, Israel
| | - Patricia Herrera-Perez
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Sandrine Sauzet
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| | - Elodie Magnanou
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| | - Michael Fuentès
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv, Israel
| | - Jose Antonio Muñoz-Cueto
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Jack Falcón
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| | - Laurence Besseau
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| |
Collapse
|
17
|
Janjetovic Z, Nahmias ZP, Hanna S, Jarrett SG, Kim TK, Reiter RJ, Slominski AT. Melatonin and its metabolites ameliorate ultraviolet B-induced damage in human epidermal keratinocytes. J Pineal Res 2014; 57:90-102. [PMID: 24867336 PMCID: PMC4106994 DOI: 10.1111/jpi.12146] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/23/2014] [Indexed: 12/15/2022]
Abstract
We investigated the protective effects of melatonin and its metabolites: 6-hydroxymelatonin (6-OHM), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), N-acetylserotonin (NAS), and 5-methoxytryptamine (5-MT) in human keratinocytes against a range of doses (25, 50, and 75 mJ/cm2) of ultraviolet B (UVB) radiation. There was significant reduction in the generation of reactive oxygen species (50-60%) when UVB-exposed keratinocytes were treated with melatonin or its derivatives. Similarly, melatonin and its metabolites reduced the nitrite and hydrogen peroxide levels that were induced by UVB as early as 30 min after the exposure. Moreover, melatonin and its metabolites enhanced levels of reduced glutathione in keratinocytes within 1 hr after UVB exposure in comparison with control cells. Using proliferation assay, we observed a dose-dependent increase in viability of UVB-irradiated keratinocytes that were treated with melatonin or its derivatives after 48 hr. Using the dot-blot technique and immunofluorescent staining we also observed that melatonin and its metabolites enhanced the DNA repair capacity of UVB-induced pyrimidine photoproducts (6-4)or cyclobutane pyrimidine dimers generation in human keratinocytes. Additional evidence for induction of DNA repair in cells exposed to UVB and treated with the indole compounds was shown using the Comet assay. Finally, melatonin and its metabolites further enhanced expression of p53 phosphorylated at Ser-15 but not at Ser-46 or its nonphosphorylated form. In conclusion, melatonin, its precursor NAS, and its metabolites 6-OHM, AFMK, 5-MT, which are endogenously produced in keratinocytes, protect these cells against UVB-induced oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Zorica Janjetovic
- Department of Pathology and Laboratory Medicine, Cancer Research Building, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Oxenkrug G. Serotonin-kynurenine hypothesis of depression: historical overview and recent developments. Curr Drug Targets 2013; 14:514-21. [PMID: 23514379 DOI: 10.2174/1389450111314050002] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 12/17/2022]
Abstract
This mini-review focuses on the studies of late Prof. IP Lapin (1903 - 2012) and his research team on the role of methoxyindole and kynurenine (KYN) pathways of tryptophan (TRP) metabolism in the pathogenesis of depression and action mechanisms of antidepressant effect. In the late 60s of the last century Prof. IP Lapin suggested that "intensification of central serotoninergic processes is a determinant of the thymoleptic (mood elevating) component" while "activation of noradrenergic processes is responsible for psychoenergetic and motor-stimulating component of the clinical antidepressant effect". The cause of serotonin deficiency in depression was attributed to the shunt of TRP "metabolism away from serotonin production towards KYN production" due to cortisol-induced activation of liver enzyme, tryptophan 2,3- dioxygenase, the rate-limiting enzyme of TRP - KYN pathway. Prof. Lapin suggested and discovered that KYN and its metabolites affect brain functions, and proposed the role of neurokynurenines in pathogenesis of depression and action mechanisms of antidepressant effect (kynurenine hypothesis). Further research suggested the antidepressant and cognition- enhancing effects of post-serotonin metabolite, N-acetylserotonin (NAS), an agonist to tyrosine kinase B (TrkB) receptor; and link between depression and chronic inflammation-associated disorders (e.g., insulin resistance, hepatitis C virus) via inflammation-induced activation of indoleamine 2,3- dioxygenase, brain located rate-limiting enzyme of TRY - KYN metabolism. NAS and kynurenines might be the targets for prevention and treatment of depression and associated conditions.
Collapse
Affiliation(s)
- Gregory Oxenkrug
- Department of Psychiatry, Tufts University School of Medicine, Director, Psychiatry and Inflammation Program, Tufts Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
19
|
Protective effect of N-acetylserotonin against acute hepatic ischemia-reperfusion injury in mice. Int J Mol Sci 2013; 14:17680-93. [PMID: 23994834 PMCID: PMC3794748 DOI: 10.3390/ijms140917680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 07/29/2013] [Accepted: 08/09/2013] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to investigate the possible protective effect of N-acetylserotonin (NAS) against acute hepatic ischemia-reperfusion (I/R) injury in mice. Adult male mice were randomly divided into three groups: sham, I/R, and I/R + NAS. The hepatic I/R injury model was generated by clamping the hepatic artery, portal vein, and common bile duct with a microvascular bulldog clamp for 30 min, and then removing the clamp and allowing reperfusion for 6 h. Morphologic changes and hepatocyte apoptosis were evaluated by hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. Activated caspase-3 expression was evaluated by immunohistochemistry and Western blot. The activation of aspartate aminotransferase (AST), malondialdehyde (MDA), and superoxide dismutase (SOD) was evaluated by enzyme-linked immunosorbent assay (ELISA). The data show that NAS rescued hepatocyte morphological damage and dysfunction, decreased the number of apoptotic hepatocytes, and reduced caspase-3 activation. Our work demonstrates that NAS ameliorates hepatic IR injury.
Collapse
|
20
|
Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia. Int J Mol Sci 2013; 14:9379-95. [PMID: 23629670 PMCID: PMC3676788 DOI: 10.3390/ijms14059379] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/01/2023] Open
Abstract
One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events.
Collapse
|
21
|
Oxenkrug GF. Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J Neural Transm (Vienna) 2011; 118:75-85. [PMID: 20811799 PMCID: PMC3026891 DOI: 10.1007/s00702-010-0475-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/23/2010] [Indexed: 12/20/2022]
Abstract
This review of literature and our data suggests that up-regulated production of interferon-gamma (IFNG) in periphery and brain triggers a merger of tryptophan (TRY)-kynurenine (KYN) and guanine-tetrahydrobiopterin (BH4) metabolic pathways into inflammation cascade involved in aging and aging-associated medical and psychiatric disorders (AAMPD) (metabolic syndrome, depression, vascular cognitive impairment). IFNG-inducible KYN/pteridines inflammation cascade is characterized by up-regulation of nitric oxide synthase (NOS) activity (induced by KYN) and decreased formation of NOS cofactor, BH4, that results in uncoupling of NOS that shifting arginine from NO to superoxide anion production. Superoxide anion and free radicals among KYN derivatives trigger phospholipase A2-arachidonic acid cascade associated with AAMPD. IFNG-induced up-regulation of indoleamine 2,3-dioxygenase (IDO), rate-limiting enzyme of TRY-KYN pathway, decreases TRY conversion into serotonin (substrate of antidepressant effect) and increases production of KYN associated with diabetes [xanthurenic acid (XA)], anxiety (KYN), psychoses and cognitive impairment (kynurenic acid). IFNG-inducible KYN/pteridines inflammation cascade is impacted by IFNG (+874) T/A genotypes, encoding cytokine production. In addition to literature data on KYN/TRY ratio (IDO activity index), we observe neopterin levels (index of activity of rate-limiting enzyme of guanine-BH4 pathway) to be higher in carriers of high (T) than of low (A) producers alleles; and to correlate with AAMPD markers (e.g., insulin resistance, body mass index, mortality risk), and with IFN-alpha-induced depression in hepatitis C patients. IFNG-inducible cascade is influenced by environmental factors (e.g., vitamin B6 deficiency increases XA formation) and by pharmacological agents; and might offer new approaches for anti-aging and anti-AAMPD interventions.
Collapse
Affiliation(s)
- Gregory F Oxenkrug
- Psychiatry and Inflammation Program, Department of Psychiatry, Tufts University/Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|