1
|
Somay E, Yilmaz B, Topkan E, Ozdemir BS, Ozturk D, Besen AA, Mertsoylu H, Selek U. Worth of pan-immune-inflammation value in trismus prediction after concurrent chemoradiotherapy for nasopharyngeal carcinomas. Int J Biol Markers 2024; 39:80-88. [PMID: 38192114 DOI: 10.1177/03936155231223198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
OBJECTIVE Radiation-induced trismus (RIT), one of the rare but serious side effects of concurrent chemoradiotherapy (C-CRT), is difficult to predict with high accuracy. We aimed to examine whether the pretreatment pan-immune-inflammation value (PIV) measures predict RIT in patients with locally advanced nasopharyngeal carcinoma (LA-NPC) receiving C-CRT. METHODS Data of patients with LA-NPC who underwent C-CRT and had maximum mouth openings (MMO) > 35 mm were reviewed. Any MMO of 35 mm or less after C-CRT was considered RIT. All PIV values were computed using the complete blood count test results: PIV = (Platelets × Monocytes × Neutrophils) ÷ Lymphocytes. The receiver operating characteristic analysis was employed to dissect a possible association between pre-treatment PIV readings and RIT status. Confounding variables were tested for their independent relationship with the RIT rates using logistic regression analysis. RESULTS The research comprised 223 participants, and RIT was diagnosed in 46 (20.6%) at a median time from C-CRT to RIT of 10 months (range: 5-18 months). Pre-C-CRT PIV levels and RIT rates were analyzed using receiver operating characteristic curve analysis, with 830 being the optimal cutoff (area under the curve: 92.1%; sensitivity: 87.5%; specificity: 85.5%; Youden index: 0.730). RIT was significantly more prevalent in the PIV > 830 cohort than its PIV ≤ 830 counterpart (60.3% vs. 5%; hazard ratio 5.79; P < 0.001). Multivariate logistic regression analysis revealed that advanced T-stage (P = 0.004), masticatory apparatus dose V58Gy≥%32 (P = 0.003), and PIV > 830 (P < 0.001) were independently linked with significantly elevated rates of RIT. CONCLUSION The presence of elevated pre-C-CRT PIV is a unique biological marker that independently predicts increased RIT rates in LA-NPC undergoing C-CRT.
Collapse
Affiliation(s)
- Efsun Somay
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Baskent University, Ankara, Turkey
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Kyrenia, Kyrenia, North Cyprus
| | - Busra Yilmaz
- Department of Oral and Maxillofacial Radiology, School of Dental Medicine, Bahcesehir University, Istanbul, Turkey
| | - Erkan Topkan
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, Adana, Turkey
| | | | - Duriye Ozturk
- Department of Radiation Oncology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Ali Ayberk Besen
- Clinics of Medical Oncology, Adana Medical Park Hospital, Adana, Turkey
| | - Huseyin Mertsoylu
- Clinics of Medical Oncology, Istinye University, Adana Medical Park Hospital, Istanbul, Turkey
| | - Ugur Selek
- Department of Radiation Oncology, School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
2
|
Ku E, Del Vecchio L, Eckardt KU, Haase VH, Johansen KL, Nangaku M, Tangri N, Waikar SS, Więcek A, Cheung M, Jadoul M, Winkelmayer WC, Wheeler DC. Novel anemia therapies in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2023; 104:655-680. [PMID: 37236424 DOI: 10.1016/j.kint.2023.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Anemia is common in patients with chronic kidney disease and is associated with a high burden of morbidity and adverse clinical outcomes. In 2012, Kidney Disease: Improving Global Outcomes (KDIGO) published a guideline for the diagnosis and management of anemia in chronic kidney disease. Since then, new data from studies assessing established and emerging therapies for the treatment of anemia and iron deficiency have become available. Beginning in 2019, KDIGO planned 2 Controversies Conferences to review the new evidence and its potential impact on the management of anemia in clinical practice. Here, we report on the second of these conferences held virtually in December 2021, which focused on a new class of agents-the hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs). This report provides a review of the consensus points and controversies from this second conference and highlights areas that warrant prioritization for future research.
Collapse
Affiliation(s)
- Elaine Ku
- Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, California, USA; Division of Pediatric Nephrology, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA.
| | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST Lariana, Como, Italy
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kirsten L Johansen
- Division of Nephrology, Hennepin Healthcare, Minneapolis, Minnesota, USA; Division of Nephrology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Navdeep Tangri
- Chronic Disease Innovation Centre, Seven Oaks General Hospital, Winnipeg, Manitoba, Canada; Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Michael Cheung
- Kidney Disease: Improving Global Outcomes (KDIGO), Brussels, Belgium
| | - Michel Jadoul
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - David C Wheeler
- Department of Renal Medicine, University College London, London, UK.
| |
Collapse
|
3
|
Poe A, Martinez Yus M, Wang H, Santhanam L. Lysyl oxidase like-2 in fibrosis and cardiovascular disease. Am J Physiol Cell Physiol 2023; 325:C694-C707. [PMID: 37458436 PMCID: PMC10635644 DOI: 10.1152/ajpcell.00176.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is an important and essential reparative response to injury that, if left uncontrolled, results in the excessive synthesis, deposition, remodeling, and stiffening of the extracellular matrix, which is deleterious to organ function. Thus, the sustained activation of enzymes that catalyze matrix remodeling and cross linking is a fundamental step in the pathology of fibrotic diseases. Recent studies have implicated the amine oxidase lysyl oxidase like-2 (LOXL2) in this process and established significantly elevated expression of LOXL2 as a key component of profibrotic conditions in several organ systems. Understanding the relationship between LOXL2 and fibrosis as well as the mechanisms behind these relationships can offer significant insights for developing novel therapies. Here, we summarize the key findings that demonstrate the link between LOXL2 and fibrosis and inflammation, examine current therapeutics targeting LOXL2 for the treatment of fibrosis, and discuss future directions for experiments and biomedical engineering.
Collapse
Affiliation(s)
- Alan Poe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Marta Martinez Yus
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| | - Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lakshmi Santhanam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Fang T, Ma C, Zhang Z, Sun L, Zheng N. Roxadustat, a HIF-PHD inhibitor with exploitable potential on diabetes-related complications. Front Pharmacol 2023; 14:1088288. [PMID: 36843948 PMCID: PMC9950780 DOI: 10.3389/fphar.2023.1088288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases caused by absolute or relative deficiency of insulin secretion and characterized by chronic hyperglycemia. Its complications affect almost every tissue of the body, usually leading to blindness, renal failure, amputation, etc. and in the final stage, it mostly develops into cardiac failure, which is the main reason why diabetes mellitus manifests itself as a high clinical lethality. The pathogenesis of diabetes mellitus and its complications involves various pathological processes including excessive production of mitochondrial reactive oxygen species (ROS) and metabolic imbalance. Hypoxia-inducible Factor (HIF) signaling pathway plays an important role in both of the above processes. Roxadustat is an activator of Hypoxia-inducible Factor-1α, which increases the transcriptional activity of Hypoxia-inducible Factor-1α by inhibiting hypoxia-inducible factor prolyl hydroxylase (HIF-PHD). Roxadustat showed regulatory effects on maintaining metabolic stability in the hypoxic state of the body by activating many downstream signaling pathways such as vascular endothelial growth factor (VEGF), glucose transporter protein-1 (GLUT1), lactate dehydrogenase (LDHA), etc. This review summarizes the current research findings of roxadustat on the diseases of cardiomyopathy, nephropathy, retinal damage and impaired wound healing, which also occur at different stages of diabetes and greatly contribute to the damage caused by diabetes to the organism. We attempts to uncover a more comprehensive picture of the therapeutic effects of roxadustat, and inform its expanding research about diabetic complications treatment.
Collapse
Affiliation(s)
- Tingting Fang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Congcong Ma
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Zhanming Zhang
- Pharmaceutical Sciences, China Medical University-The Queen’s University of Belfast Joint College, Shenyang, Liaoning, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China,*Correspondence: Ningning Zheng,
| |
Collapse
|
5
|
Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci 2023; 24:2576. [PMID: 36768899 PMCID: PMC9916612 DOI: 10.3390/ijms24032576] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as β-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.
Collapse
Affiliation(s)
- Ciara I. Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xinyu Liao
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
6
|
Yuan R, Zhong Y, Zeng Y, Zhang J. Correlation between Tubulointerstitial Lesion and Blood Pressure in Lupus Nephritis Patients: A Pathological, Retrospective Study. Kidney Blood Press Res 2022; 47:391-398. [PMID: 35259751 DOI: 10.1159/000523793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The objective was to study the influence of pathological factors of glomerular lesion (GL), tubulointerstitial lesion (TIL), and arteriosclerotic lesion on the blood pressure (BP) of lupus nephritis (LN). METHODS The pathological data and clinical characteristics of 69 LN patients who underwent their first renal biopsy in Chengdu Second People's Hospital from 2012 to 2018 were retrospectively analyzed. The revised 2018 ISN/RPS classification criteria of LN were used to assess the GL and TIL. The lesion index of interlobar/arcuate artery and arteriolar was calculated. Multiple linear regressions were used to analyze the effects of GL, TIL, and vascular lesion (VL) on estimated glomerular filtration rate, systolic BP (SBP), and proteinuria. RESULTS TIL and VL scores were different between the various grades of BP (p = 0.009, 0.019). After adjusting for gender and age, multiple linear regression showed that only TIL was linearly correlated with SBP (p = 0.022). CONCLUSION After adjusting for gender and age, TIL is related to SBP and has a linear relationship with them.
Collapse
Affiliation(s)
- Ruili Yuan
- Department of Hematology and Rheumatology Chengdu Second People's Hospital, Chengdu, China
| | - Yu Zhong
- Department of the Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zeng
- Department of Hematology and Rheumatology Chengdu Second People's Hospital, Chengdu, China
| | - Jing Zhang
- Department of Hematology and Rheumatology Chengdu Second People's Hospital, Chengdu, China
| |
Collapse
|
7
|
Mao J, Liu J, Zhou M, Wang G, Xiong X, Deng Y. Hypoxia-induced interstitial transformation of microvascular endothelial cells by mediating HIF-1α/VEGF signaling in systemic sclerosis. PLoS One 2022; 17:e0263369. [PMID: 35231032 PMCID: PMC8887755 DOI: 10.1371/journal.pone.0263369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The aim of this research was to systematically investigate the effects of endothelial mesenchymal transition (EndMT) induced by hypoxia on the skin microvascular remodeling of systemic sclerosis (SSc) and the underlying mechanism. METHODS Skin tissues from SSc patients and controls were collected for isobaric tags for the relative and absolute quantification (iTRAQ)-based proteomics and immunohistochemical test. Human microvascular endothelial cell line-1 (HMEC-1) cultured in hypoxic or normal conditions was treated by tamoxifen or bevacizumab. RESULTS The iTRAQ-based proteomics indicated a significantly upregulated hypoxia-inducible factor-1 (HIF-1) signal in SSc samples. The immunohistochemical results demonstrated the significant downregulation of CD31, the positive staining of α-smooth muscle actin (α-SMA), HIF-1α, and vascular endothelial growth factor (VEGF-a) in SSc skin tissues, compared with control samples. Consistent with these observations, HMEC-1 cells cultured under hypoxic conditions exhibited a significant decrease in CD31 and VE-cadherin expression, alongside a marked increase in the expression of α-SMA and fibronectin, as well as a distinct upregulation of HIF-1α and VEGF-a, when compared with those under normal conditions. It is noteworthy that the inhibition of HIF-1α by tamoxifen effectively downregulated the hypoxic induction of VEGF-a and α-SMA while rescuing the hypoxic suppression of CD31. In addition, the VEGF-a inhibitor bevacizumab treatment had the same effect on the hypoxic expression of α-SMA and CD31, as a tamoxifen intervention, but did not reduce HIF-1α. CONCLUSION These results suggest that the HIF-1α/VEGF signaling pathway can have a critical role in mediating the effect of hypoxia-induced EndMT on the skin microvascular remodeling of SSc.
Collapse
Affiliation(s)
- Jing Mao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jiexiong Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Mei Zhou
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Guiqiang Wang
- Department of Infectious Disease, Peking University First Hospital, Beijing, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yongqiong Deng
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
8
|
Naringenin: A Promising Therapeutic Agent against Organ Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1210675. [PMID: 34804359 PMCID: PMC8601819 DOI: 10.1155/2021/1210675] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is the final common pathology of most chronic diseases as seen in the heart, liver, lung, kidney, and skin and contributes to nearly half of death in the developed countries. Fibrosis, or scarring, is mainly characterized by the transdifferentiation of fibroblasts into myofibroblasts and the excessive accumulation of extracellular matrix (ECM) secreted by myofibroblasts. Despite immense efforts made in the field of organ fibrosis over the past decades and considerable understanding of the occurrence and development of fibrosis gained, there is still lack of an effective treatment for fibrotic diseases. Therefore, identifying a new therapeutic strategy against organ fibrosis is an unmet clinical need. Naringenin, a flavonoid that occurs naturally in citrus fruits, has been found to confer a wide range of pharmacological effects including antioxidant, anti-inflammatory, and anticancer benefits and thus potentially exerting preventive and curative effects on numerous diseases. In addition, emerging evidence has revealed that naringenin can prevent the pathogenesis of fibrosis in vivo and in vitro via the regulation of various pathways that involved signaling molecules such as transforming growth factor-β1/small mother against decapentaplegic protein 3 (TGF-β1/Smad3), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), sirtuin1 (SIRT1), nuclear factor-kappa B (NF-κB), or reactive oxygen species (ROS). Targeting these profibrotic pathways by naringenin could potentially become a novel therapeutic approach for the management of fibrotic disorders. In this review, we present a comprehensive summary of the antifibrotic roles of naringenin in vivo and in vitro and their underlying mechanisms of action. As a food derived compound, naringenin may serve as a promising drug candidate for the treatment of fibrotic disorders.
Collapse
|
9
|
Abstract
Hypoxia can be defined as a relative deficiency in the amount of oxygen reaching the tissues. Hypoxia-inducible factors (HIFs) are critical regulators of the mammalian response to hypoxia. In normal circumstances, HIF-1α protein turnover is rapid, and hyperglycemia further destabilizes the protein. In addition to their role in diabetes pathogenesis, HIFs are implicated in development of the microvascular and macrovascular complications of diabetes. Improving glucose control in people with diabetes increases HIF-1α protein and has wide-ranging benefits, some of which are at least partially mediated by HIF-1α. Nevertheless, most strategies to improve diabetes or its complications via regulation of HIF-1α have not currently proven to be clinically useful. The intersection of HIF biology with diabetes is a complex area in which many further questions remain, especially regarding the well-conducted studies clearly describing discrepant effects of different methods of increasing HIF-1α, even within the same tissues. This Review presents a brief overview of HIFs; discusses the range of evidence implicating HIFs in β cell dysfunction, diabetes pathogenesis, and diabetes complications; and examines the differing outcomes of HIF-targeting approaches in these conditions.
Collapse
Affiliation(s)
- Jenny E Gunton
- Centre for Diabetes, Obesity and Endocrinology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Westmead Hospital, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| |
Collapse
|
10
|
Schaub JA, Venkatachalam MA, Weinberg JM. Proximal Tubular Oxidative Metabolism in Acute Kidney Injury and the Transition to CKD. KIDNEY360 2020; 2:355-364. [PMID: 35373028 PMCID: PMC8740982 DOI: 10.34067/kid.0004772020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/22/2020] [Indexed: 02/04/2023]
Abstract
The proximal tubule relies on oxidative mitochondrial metabolism to meet its energy needs and has limited capacity for glycolysis, which makes it uniquely susceptible to damage during AKI, especially after ischemia and anoxia. Under these conditions, mitochondrial ATP production is initially decreased by several mechanisms, including fatty acid-induced uncoupling and inhibition of respiration related to changes in the shape and volume of mitochondria. Glycolysis is initially insufficient as a source of ATP to protect the cells and mitochondrial function, but supplementation of tricarboxylic acid cycle intermediates augments anaerobic ATP production, and improves recovery of mitochondrial oxidative metabolism. Incomplete recovery is characterized by defects of respiratory enzymes and lipid metabolism. During the transition to CKD, tubular cells atrophy but maintain high expression of glycolytic enzymes, and there is decreased fatty acid oxidation. These metabolic changes may be amenable to a number of therapeutic interventions.
Collapse
Affiliation(s)
- Jennifer A. Schaub
- Nephrology Division, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Joel M. Weinberg
- Nephrology Division, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Zou J, Yang J, Zhu X, Zhong J, Elshaer A, Matsusaka T, Pastan I, Haase VH, Yang HC, Fogo AB. Stabilization of hypoxia-inducible factor ameliorates glomerular injury sensitization after tubulointerstitial injury. Kidney Int 2020; 99:620-631. [PMID: 33137336 DOI: 10.1016/j.kint.2020.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Previously, we found that mild tubulointerstitial injury sensitizes glomeruli to subsequent injury. Here, we evaluated whether stabilization of hypoxia-inducible factor-α (HIF-α), a key regulator of tissue response to hypoxia, ameliorates tubulointerstitial injury and impact on subsequent glomerular injury. Nep25 mice, which express the human CD25 receptor on podocytes under control of the nephrin promotor and develop glomerulosclerosis when a specific toxin is administered were used. Tubulointerstitial injury, evident by week two, was induced by folic acid, and mice were treated with an HIF stabilizer, dimethyloxalylglycine or vehicle from week three to six. Uninephrectomy at week six assessed tubulointerstitial fibrosis. Glomerular injury was induced by podocyte toxin at week seven, and mice were sacrificed ten days later. At week six tubular injury markers normalized but with patchy collagen I and interstitial fibrosis. Pimonidazole staining, a hypoxia marker, was increased by folic acid treatment compared to vehicle while dimethyloxalylglycine stimulated HIF-2α expression and attenuated tubulointerstitial hypoxia. The hematocrit was increased by dimethyloxalylglycine along with downstream effectors of HIF. Tubular epithelial cell injury, inflammation and interstitial fibrosis were improved after dimethyloxalylglycine, with further reduced mortality, interstitial fibrosis, and glomerulosclerosis induced by specific podocyte injury. Thus, our findings indicate that hypoxia contributes to tubular injury and consequent sensitization of glomeruli to injury. Hence, restoring HIFs may blunt this adverse crosstalk of tubules to glomeruli.
Collapse
Affiliation(s)
- Jun Zou
- Division of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jaewon Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, South Korea
| | - Xiaoye Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Nephrology, Huashan Hospital, Wudan University, Shanghai, China
| | - Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ahmed Elshaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taiji Matsusaka
- Institute of Medical Science, Tokai University, Isehara, Japan
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Volker H Haase
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
12
|
Sugahara M, Tanaka T, Nangaku M. Hypoxia-Inducible Factor and Oxygen Biology in the Kidney. ACTA ACUST UNITED AC 2020; 1:1021-1031. [DOI: 10.34067/kid.0001302020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
Kidney tissue hypoxia is detected in various kidney diseases and is considered to play an important role in the pathophysiology of both AKI and CKD. Because of the characteristic vascular architecture and high energy demand to drive tubular solute transport, the renal medulla is especially prone to hypoxia. Injured kidneys often present capillary rarefaction, inflammation, and fibrosis, which contribute to sustained kidney hypoxia, forming a vicious cycle promoting progressive CKD. Hypoxia-inducible factor (HIF), a transcription factor responsible for cellular adaptation to hypoxia, is generally considered to protect against AKI. On the contrary, consequences of sustained HIF activation in CKD may be either protective, neutral, or detrimental. The kidney outcomes seem to be affected by various factors, such as cell types in which HIF is activated/inhibited, disease models, balance between two HIF isoforms, and time and methods of intervention. This suggests multifaceted functions of HIF and highlights the importance of understanding its role within each specific context. Prolyl-hydroxylase domain (PHD) inhibitors, which act as HIF stabilizers, have been developed to treat anemia of CKD. Although many preclinical studies demonstrated renoprotective effects of PHD inhibitors in CKD models, there may be some situations in which they lead to deleterious effects. Further studies are needed to identify patients who would gain additional benefits from PHD inhibitors and those who may need to avoid them.
Collapse
|
13
|
Jeny F, Bernaudin JF, Valeyre D, Nunes H, Planès C, Besnard V. [Is hypoxia a factor in the progression of pulmonary sarcoidosis?]. Rev Mal Respir 2020; 37:214-217. [PMID: 32146058 DOI: 10.1016/j.rmr.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 11/15/2022]
Abstract
Sarcoidosis is a systemic granulomatous disease that can reduce life expectancy mainly due to pulmonary fibrosis resulting from granulomatous inflammation The lack of vascularization within pulmonary granulomas suggests that macrophages localized in the center of these structures are hypoxic. Hypoxia signaling pathways are known to be pro-inflammatory and pro-fibrotic in various pathological conditions. Recent data suggest an involvement of the transcription factor hypoxia-inducible factor (HIF) in the pathogenesis of sarcoidosis. This could represent a new research approach for the understanding and therapeutic management of sarcoidosis.
Collapse
Affiliation(s)
- F Jeny
- UMR 1272 hypoxie & poumon, Inserm-université Paris 13, SMBH, Bobigny, France; Service de pneumologie, hôpital Avicenne AP-HP, Bobigny, France.
| | - J-F Bernaudin
- UMR 1272 hypoxie & poumon, Inserm-université Paris 13, SMBH, Bobigny, France; Service de pneumologie, hôpital Avicenne AP-HP, Bobigny, France; Faculté de médecine, Sorbonne université, Paris, France
| | - D Valeyre
- UMR 1272 hypoxie & poumon, Inserm-université Paris 13, SMBH, Bobigny, France; Service de pneumologie, hôpital Avicenne AP-HP, Bobigny, France
| | - H Nunes
- UMR 1272 hypoxie & poumon, Inserm-université Paris 13, SMBH, Bobigny, France; Service de pneumologie, hôpital Avicenne AP-HP, Bobigny, France
| | - C Planès
- UMR 1272 hypoxie & poumon, Inserm-université Paris 13, SMBH, Bobigny, France; Service d'explorations fonctionnelles, hôpital Avicenne AP-HP, Bobigny, France
| | - V Besnard
- UMR 1272 hypoxie & poumon, Inserm-université Paris 13, SMBH, Bobigny, France
| |
Collapse
|
14
|
Ota Y, Kuwana M. Endothelial cells and endothelial progenitor cells in the pathogenesis of systemic sclerosis. Eur J Rheumatol 2019; 7:S139-S146. [PMID: 31922471 DOI: 10.5152/eurjrheum.2019.19158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/25/2019] [Indexed: 12/27/2022] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by excessive fibrosis, microvasculopathy, and autoimmunity. Endothelial cell (EC) injury and subsequent endothelial cell dysfunction is believed to be an initial event that eventually leads to a vicious pathogenic cycle. This process is further enhanced by defective angiogenesis and vasculogenesis, as the vascular repair machinery does not work properly. Endothelial progenitor cells (EPCs) are functionally and quantitatively insufficient to recover the endothelium in SSc patients. The dysfunctional ECs and EPCs not only trigger the formation of typical vascular lesions, such as progressive intimal fibrosis in small arteries and the loss of capillaries, but also promote a series of inflammatory and profibrotic processes, such as endothelial-mesenchymal transition and recruitment and accumulation of monocytic EPCs with profibrotic properties. These processes together contribute to the accumulation of extracellular matrix in the affected tissue. This review features current insights into the roles of ECs and EPCs in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Yuko Ota
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Perry HM, Görldt N, Sung SSJ, Huang L, Rudnicka KP, Encarnacion IM, Bajwa A, Tanaka S, Poudel N, Yao J, Rosin DL, Schrader J, Okusa MD. Perivascular CD73 + cells attenuate inflammation and interstitial fibrosis in the kidney microenvironment. Am J Physiol Renal Physiol 2019; 317:F658-F669. [PMID: 31364375 PMCID: PMC6766625 DOI: 10.1152/ajprenal.00243.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Progressive tubulointerstitial fibrosis may occur after acute kidney injury due to persistent inflammation. Purinergic signaling by 5'-ectonucleotidase, CD73, an enzyme that converts AMP to adenosine on the extracellular surface, can suppress inflammation. The role of CD73 in progressive kidney fibrosis has not been elucidated. We evaluated the effect of deletion of CD73 from kidney perivascular cells (including pericytes and/or fibroblasts of the Foxd1+ lineage) on fibrosis. Perivascular cell expression of CD73 was necessary to suppress inflammation and prevent kidney fibrosis in Foxd1CreCD73fl/fl mice evaluated 14 days after unilateral ischemia-reperfusion injury or folic acid treatment (250 mg/kg). Kidneys of Foxd1CreCD73fl/fl mice had greater collagen deposition, expression of proinflammatory markers (including various macrophage markers), and platelet-derived growth factor recepetor-β immunoreactivity than CD73fl/fl mice. Kidney dysfunction and fibrosis were rescued by administration of soluble CD73 or by macrophage deletion. Isolated CD73-/- kidney pericytes displayed an activated phenotype (increased proliferation and α-smooth muscle actin mRNA expression) compared with wild-type controls. In conclusion, CD73 in perivascular cells may act to suppress myofibroblast transformation and influence macrophages to promote a wound healing response. These results suggest that the purinergic signaling pathway in the kidney interstitial microenvironment orchestrates perivascular cells and macrophages to suppress inflammation and prevent progressive fibrosis.
Collapse
MESH Headings
- 5'-Nucleotidase/deficiency
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/metabolism
- Actins/metabolism
- Animals
- Cell Proliferation
- Cells, Cultured
- Cellular Microenvironment
- Collagen/metabolism
- Disease Models, Animal
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibrosis
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- GPI-Linked Proteins/deficiency
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Inflammation Mediators/metabolism
- Kidney/immunology
- Kidney/metabolism
- Kidney/pathology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Nephritis, Interstitial/genetics
- Nephritis, Interstitial/immunology
- Nephritis, Interstitial/metabolism
- Nephritis, Interstitial/pathology
- Pericytes/metabolism
- Pericytes/pathology
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Reperfusion Injury/genetics
- Reperfusion Injury/immunology
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Signal Transduction
- Wound Healing
Collapse
Affiliation(s)
- Heather M Perry
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Nicole Görldt
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
- Institute of Molecular Cardiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sun-Sang J Sung
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Liping Huang
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Kinga P Rudnicka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Iain M Encarnacion
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Amandeep Bajwa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Diane L Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Jürgen Schrader
- Institute of Molecular Cardiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
16
|
Sanghani NS, Haase VH. Hypoxia-Inducible Factor Activators in Renal Anemia: Current Clinical Experience. Adv Chronic Kidney Dis 2019; 26:253-266. [PMID: 31477256 PMCID: PMC7318915 DOI: 10.1053/j.ackd.2019.04.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Prolyl hydroxylase domain oxygen sensors are dioxygenases that regulate the activity of hypoxia-inducible factor (HIF), which controls renal and hepatic erythropoietin production and coordinates erythropoiesis with iron metabolism. Small molecule inhibitors of prolyl hydroxylase domain dioxygenases (HIF-PHI [prolyl hydroxylase inhibitor]) stimulate the production of endogenous erythropoietin and improve iron metabolism resulting in efficacious anemia management in patients with CKD. Three oral HIF-PHIs-daprodustat, roxadustat, and vadadustat-have now advanced to global phase III clinical development culminating in the recent licensing of roxadustat for oral anemia therapy in China. Here, we survey current clinical experience with HIF-PHIs, discuss potential therapeutic advantages, and deliberate over safety concerns regarding long-term administration in patients with renal anemia.
Collapse
Affiliation(s)
- Neil S Sanghani
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Medical Cell Biology, Uppsala Universitet, Uppsala, Sweden; Department of Molecular Physiology & Biophysics and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
17
|
Ostrowski RP, Zhang JH. The insights into molecular pathways of hypoxia-inducible factor in the brain. J Neurosci Res 2018; 98:57-76. [PMID: 30548473 DOI: 10.1002/jnr.24366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
The objectives of this present work were to review recent developments on the role of hypoxia-inducible factor (HIF) in the survival of cells under normoxic versus hypoxic and inflammatory brain conditions. The dual nature of HIF effects appears well established, based on the accumulated evidence of HIF playing both the role of adaptive factor and mediator of cell demise. Cellular HIF responses depend on pathophysiological conditions, developmental phase, comorbidities, and administered medications. In addition, HIF-1α and HIF-2α actions may vary in the same tissues. The multiple roles of HIF in stem cells are emerging. HIF not only regulates expression of target genes and thereby influences resultant protein levels but also contributes to epigenetic changes that may reciprocally provide feedback regulations loops. These HIF-dependent alterations in neurological diseases and its responses to treatments in vivo need to be examined alongside with a functional status of subjects involved in such studies. The knowledge of HIF pathways might be helpful in devising HIF-mimetics and modulating drugs, acting on the molecular level to improve clinical outcomes, as exemplified here by clinical and experimental data of selected brain diseases, occasionally corroborated by the data from disorders of other organs. Because of complex role of HIF in brain injuries, prospective therapeutic interventions need to differentially target HIF responses depending on their roles in the molecular mechanisms of neurologic diseases.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - John H Zhang
- Departments of Anesthesiology and Physiology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
18
|
Urakami-Takebayashi Y, Kuroda Y, Murata T, Miyazaki M, Nagai J. Pioglitazone induces hypoxia-inducible factor 1 activation in human renal proximal tubular epithelial cell line HK-2. Biochem Biophys Res Commun 2018; 503:1682-1688. [DOI: 10.1016/j.bbrc.2018.07.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/02/2023]
|
19
|
Abstract
Tubular injury sensitizes glomeruli to injury. We review potential mechanisms of this tubuloglomerular cross talk. In the same nephron, tubular injury can cause stenosis of the glomerulotubular junction and finally result in atubular glomeruli. Tubular injury also affects glomerular filtration function through tubuloglomerular feedback. Progenitor cells, that is, parietal epithelial cells and renin positive cells, can be involved in repair of injured glomeruli and also may be modulated by tubular injury. Loss of nephrons induces additional workload and stress on remaining nephrons. Hypoxia and activation of the renin-angiotensin-aldosterone system induced by tubular injury also modulate tubuloglomerular cross talk. Therefore, effective therapies in chronic kidney disease may need to aim to interrupt this deleterious tubuloglomerular cross talk.
Collapse
Affiliation(s)
- Jiayi Wang
- 1 Division of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China.,2 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jianyong Zhong
- 2 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,3 Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- 2 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,3 Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- 2 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,3 Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Chen J, Ren J, Loo WTY, Hao L, Wang M. Lysyl oxidases expression and histopathological changes of the diabetic rat nephron. Mol Med Rep 2017; 17:2431-2441. [PMID: 29207131 PMCID: PMC5783488 DOI: 10.3892/mmr.2017.8182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 11/06/2017] [Indexed: 02/05/2023] Open
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes, the accumulation of extracellular matrix (ECM) is considered an indication of nephropathological changes. Lysyl oxidases (LOXs) are also associated with ECM. However, the majority of studies on LOXs have focused on their potential role in renal fibrogenesis and there has no examination of LOXs expression or the correlation with histopathological changes of DN, including glomerular basement membrane (GBM) thickening and glomerulosclerosis. In this study, the association between histological changes and LOXs was explored using a type 2 diabetes model of male Zucker diabetic fatty rats. The expression of LOX and lysyl oxidase-like 1 to 3 (LOXL1 to 3) levels were evaluated by immunohistochemical staining. The expression levels of LOX and LOXL2 in the kidney tissue in the diabetic group were significantly higher compared with those of the control group, but LOXL1 and LOXL3 expression levels were not significantly different between the two groups. These results indicated that LOXL2 and LOX may be critical factors involved in the progression of DN.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wings T Y Loo
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, P.R. China
| | - Liang Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
21
|
Hu J, Wang W, Zhang F, Li PL, Boini KM, Yi F, Li N. Hypoxia inducible factor-1α mediates the profibrotic effect of albumin in renal tubular cells. Sci Rep 2017; 7:15878. [PMID: 29158549 PMCID: PMC5696482 DOI: 10.1038/s41598-017-15972-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/06/2017] [Indexed: 12/30/2022] Open
Abstract
Proteinuria is closely associated with the progression of chronic kidney diseases (CKD) by producing renal tubulointerstitial fibrosis. Over-activation of hypoxia inducible factor (HIF)-1α has been implicated in the progression of CKD. The present study tested the hypothesis that HIF-1α mediates albumin-induced profibrotic effect in cultured renal proximal tubular cells. Incubation of the cells with albumin (40 μg/ml) for 72 hrs significantly increased the protein levels of HIF-1α, tissue inhibitor of metalloproteinase (TIMP)-1 and collagen-I, which were blocked by HIF-1α shRNA. Albumin also stimulated an epithelial-mesenchymal transition (EMT) as indicated by the decrease in epithelial marker E-cadherin, and the increase in mesenchymal markers α-smooth muscle actin and fibroblast-specific protein 1. HIF-1α shRNA blocked albumin-induced changes in these EMT markers as well. Furthermore, albumin reduced the level of hydroxylated HIF-1α, indicating an inhibition of the activity of prolyl-hydroxylases, enzymes promoting the degradation of HIF-1α. An anti-oxidant ascorbate reversed albumin-induced inhibition of prolyl-hydroxylase activity. Overexpression of prolyl-hydroxylase 2 (PHD2) transgene, a predominant isoform of PHDs in renal tubules, to reduce HIF-1α level significantly attenuated albumin-induced increases in TIMP-1 and collagen-I levels. These results suggest that albumin-induced oxidative stress inhibits PHD activity to accumulate HIF-1α, which mediates albumin-induced profibrotic effects in renal tubular cells.
Collapse
Affiliation(s)
- Junping Hu
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Weili Wang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Fan Zhang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, P.R. China
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
22
|
Liu ZZ, Bullen A, Li Y, Singh P. Renal Oxygenation in the Pathophysiology of Chronic Kidney Disease. Front Physiol 2017; 8:385. [PMID: 28701959 PMCID: PMC5487476 DOI: 10.3389/fphys.2017.00385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic kidney disease (CKD) is a significant health problem associated with high morbidity and mortality. Despite significant research into various pathways involved in the pathophysiology of CKD, the therapeutic options are limited in diabetes and hypertension induced CKD to blood pressure control, hyperglycemia management (in diabetic nephropathy) and reduction of proteinuria, mainly with renin-angiotensin blockade therapy. Recently, renal oxygenation in pathophysiology of CKD progression has received a lot of interest. Several advances have been made in our understanding of the determinants and regulators of renal oxygenation in normal and diseased kidneys. The goal of this review is to discuss the alterations in renal oxygenation (delivery, consumption and tissue oxygen tension) in pre-clinical and clinical studies in diabetic and hypertensive CKD along with the underlying mechanisms and potential therapeutic options.
Collapse
Affiliation(s)
- Zhi Zhao Liu
- Division of Nephrology-Hypertension, University of California San Diego School of Medicine, VA San Diego Healthcare SystemSan Diego, CA, United States
| | - Alexander Bullen
- Division of Nephrology-Hypertension, University of California San Diego School of Medicine, VA San Diego Healthcare SystemSan Diego, CA, United States
| | - Ying Li
- Division of Nephrology-Hypertension, University of California San Diego School of Medicine, VA San Diego Healthcare SystemSan Diego, CA, United States
| | - Prabhleen Singh
- Division of Nephrology-Hypertension, University of California San Diego School of Medicine, VA San Diego Healthcare SystemSan Diego, CA, United States
| |
Collapse
|
23
|
Li X, Ma M, Zhang X, Deng L, Wang Y, Bian Z, Cai S, Peng B, Yang J, Chen Y. Ethanol extract of gardenia fruit alleviates renal interstitial fibrosis induced by unilateral ureteral obstruction in rats. Exp Ther Med 2017; 14:1381-1388. [PMID: 28810600 PMCID: PMC5526097 DOI: 10.3892/etm.2017.4662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
Gardenia fruit has been used in traditional Chinese medicine for thousands of years. A previous study by the present authors indicated that the ethanol extract of gardenia fruits (EEG) primarily contains eight constituents. In the present study, the potential effects of EEG on unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis were observed in rats. A total of 30 rats were randomly divided into three groups (n=10 each): Sham group, UUO group, and EEG group, which were administered with EEG (200 mg/kg/day) or the same volume of distilled water as a vehicle. UUO were established by ligating left ureter at two points and cut between the ligatures. All rats were sacrificed at 14 days after UUO operation. the present results demonstrated that EEG significantly elevated the expressions of vascular endothelial growth factor and E-cadherin induced by UUO (both P<0.05), and reduced levels of hypoxia-inducible factor-1α, transforming growth factor-β1, connective tissue growth factor and α-smooth muscle actin (all P<0.05). The present findings suggest that EEG is a potential novel renoprotective compound for renal fibrosis through inhibiting epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Xiaobo Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Department of Diagnostics, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Min Ma
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xianggui Zhang
- Department of Diagnostics, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Liang Deng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yarong Wang
- Department of Pharmaceutical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Zhuang Bian
- Department of Gastroenterology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Shining Cai
- Department of Pharmaceutical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Bangya Peng
- Department of Pharmaceutical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Jiangquan Yang
- Department of Pharmaceutical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Yang Chen
- Department of Pharmaceutical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| |
Collapse
|
24
|
Liu M, Ning X, Li R, Yang Z, Yang X, Sun S, Qian Q. Signalling pathways involved in hypoxia-induced renal fibrosis. J Cell Mol Med 2017; 21:1248-1259. [PMID: 28097825 PMCID: PMC5487923 DOI: 10.1111/jcmm.13060] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/18/2016] [Indexed: 12/23/2022] Open
Abstract
Renal fibrosis is the common pathological hallmark of progressive chronic kidney disease (CKD) with diverse aetiologies. Recent researches have highlighted the critical role of hypoxia during the development of renal fibrosis as a final common pathway in end‐stage kidney disease (ESKD), which joints the scientist's attention recently to exploit the molecular mechanism underlying hypoxia‐induced renal fibrogenesis. The scaring formation is a multilayered cellular response and involves the regulation of multiple hypoxia‐inducible signalling pathways and complex interactive networks. Therefore, this review will focus on the signalling pathways involved in hypoxia‐induced pathogenesis of interstitial fibrosis, including pathways mediated by HIF, TGF‐β, Notch, PKC/ERK, PI3K/Akt, NF‐κB, Ang II/ROS and microRNAs. Roles of molecules such as IL‐6, IL‐18, KIM‐1 and ADO are also reviewed. A comprehensive understanding of the roles that these hypoxia‐responsive signalling pathways and molecules play in the context of renal fibrosis will provide a foundation towards revealing the underlying mechanisms of progression of CKD and identifying novel therapeutic targets. In the future, promising new effective therapy against hypoxic effects may be successfully translated into the clinic to alleviate renal fibrosis and inhibit the progression of CKD.
Collapse
Affiliation(s)
- Minna Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rong Li
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhen Yang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxia Yang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qi Qian
- Department of Medicine, Division of Nephrology and hypertension, Mayo Clinic College of Medicine, Mayo Graduate School, Rochester, MN, USA
| |
Collapse
|
25
|
Kondo Y, Ishigami A. Involvement of senescence marker protein-30 in glucose metabolism disorder and non-alcoholic fatty liver disease. Geriatr Gerontol Int 2017; 16 Suppl 1:4-16. [PMID: 27018279 DOI: 10.1111/ggi.12722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2015] [Indexed: 12/16/2022]
Abstract
Senescence marker protein-30 (SMP30) was found to decrease in the liver, kidneys and lungs of mice during aging. SMP30 is a pleiotropic protein that acts to protect cells from apoptosis by enhancing plasma membrane Ca(2+) -pump activity and is bona fide gluconolactonase (EC 3.1.1.17) that participates in the penultimate step of the vitamin C biosynthetic pathway. For the past several years, we have obtained strong evidence showing the close relationship between SMP30, glucose metabolism disorder and non-alchoholic fatty liver disease in experiments with SMP30 knockout mice. Emerging proof links the following abnormalities: (i) the reduction of SMP30 by aging and/or excessive dietary fat or genetic deficiency causes a loss of Ca(2+) pumping activity, which impairs acute insulin release in pancreatic β-cells, initiates inflammatory responses with oxidative stress and endoplasmic reticulum stress in non-alchoholic steatohepatitis, exacerbates renal tubule damage, and introduces tubulointerstitial inflammation and fibrosis in diabetic nephropathy; (ii) vitamin C insufficiency also impairs acute insulin secretion in pancreatic β-cells by a mechanism distinct from that of the SMP30 deficiency; and (iii) the increased oxidative stress by concomitant deficiencies of SMP30, superoxide dismutase 1 and vitamin C similarly causes hepatic steatosis. Here, we review recent advances in our understanding of SMP30 in glucose metabolism disorder and non-alchoholic fatty liver disease.
Collapse
Affiliation(s)
- Yoshitaka Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
26
|
Rosenbloom J, Macarak E, Piera-Velazquez S, Jimenez SA. Human Fibrotic Diseases: Current Challenges in Fibrosis Research. Methods Mol Biol 2017; 1627:1-23. [PMID: 28836191 DOI: 10.1007/978-1-4939-7113-8_1] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human fibrotic diseases constitute a major health problem worldwide owing to the large number of affected individuals, the incomplete knowledge of the fibrotic process pathogenesis, the marked heterogeneity in their etiology and clinical manifestations, the absence of appropriate and fully validated biomarkers, and, most importantly, the current void of effective disease-modifying therapeutic agents. The fibrotic disorders encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis (SSc), sclerodermatous graft vs. host disease, and nephrogenic systemic fibrosis, as well as numerous organ-specific disorders including radiation-induced fibrosis and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse and in several instances have remained elusive, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrotic tissue in affected organs causing their dysfunction and ultimate failure. Despite the remarkable heterogeneity in the etiologic mechanisms responsible for the development of fibrotic diseases and in their clinical manifestations, numerous studies have identified activated myofibroblasts as the common cellular element ultimately responsible for the replacement of normal tissues with nonfunctional fibrotic tissue. Critical signaling cascades, initiated primarily by transforming growth factor-β (TGF-β), but also involving numerous cytokines and signaling molecules which stimulate profibrotic reactions in myofibroblasts, offer potential therapeutic targets. Here, we briefly review the current knowledge of the molecular mechanisms involved in the development of tissue fibrosis and point out some of the most important challenges to research in the fibrotic diseases and to the development of effective therapeutic approaches for this often fatal group of disorders. Efforts to further clarify the complex pathogenetic mechanisms of the fibrotic process should be encouraged to attain the elusive goal of developing effective therapies for these serious, untreatable, and often fatal disorders.
Collapse
Affiliation(s)
- Joel Rosenbloom
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edward Macarak
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sergio A Jimenez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Bajwa A, Huang L, Kurmaeva E, Ye H, Dondeti KR, Chroscicki P, Foley LS, Balogun ZA, Alexander KJ, Park H, Lynch KR, Rosin DL, Okusa MD. Sphingosine Kinase 2 Deficiency Attenuates Kidney Fibrosis via IFN- γ. J Am Soc Nephrol 2016; 28:1145-1161. [PMID: 27799486 DOI: 10.1681/asn.2016030306] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/11/2016] [Indexed: 12/17/2022] Open
Abstract
Maladaptive repair after AKI may lead to progressive fibrosis and decline in kidney function. Sphingosine 1-phosphate has an important role in kidney injury and pleiotropic effects in fibrosis. We investigated the involvement of sphingosine kinase 1 and 2 (SphK1 and SphK2), which phosphorylate sphingosine to produce sphingosine 1-phosphate, in kidney fibrosis induced by folic acid (FA) or unilateral ischemia-reperfusion injury. Analysis of Masson trichrome staining and fibrotic marker protein and mRNA expression 14 days after AKI revealed that wild-type (WT) and Sphk1-/- mice exhibited more kidney fibrosis than Sphk2-/- mice. Furthermore, kidneys of FA-treated WT and Sphk1-/- mice had greater immune cell infiltration and expression of fibrotic and inflammatory markers than kidneys of FA-treated Sphk2-/- mice. In contrast, kidneys of Sphk2-/- mice exhibited greater expression of Ifng and IFN-γ-responsive genes (Cxcl9 and Cxcl10) than kidneys of WT or Sphk1-/- mice did at this time point. Splenic T cells from untreated Sphk2-/- mice were hyperproliferative and produced more IFN-γ than did those of WT or Sphk1-/- mice. IFN-γ blocking antibody administered to Sphk2-/- mice or deletion of Ifng (Sphk2-/-Ifng-/- mice) blocked the protective effect of SphK2 deficiency in fibrosis. Moreover, adoptive transfer of Sphk2-/- (but not Sphk2-/-Ifng-/- ) CD4 T cells into WT mice blocked FA-induced fibrosis. Finally, a selective SphK2 inhibitor blocked FA-induced kidney fibrosis in WT mice. These studies demonstrate that SphK2 inhibition may serve as a novel therapeutic approach for attenuating kidney fibrosis.
Collapse
Affiliation(s)
- Amandeep Bajwa
- Division of Nephrology, .,Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, and
| | - Liping Huang
- Division of Nephrology.,Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, and
| | - Elvira Kurmaeva
- Division of Nephrology.,Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, and
| | - Hong Ye
- Division of Nephrology.,Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, and
| | - Krishna R Dondeti
- Division of Nephrology.,Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, and
| | - Piotr Chroscicki
- Division of Nephrology.,Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, and
| | - Leah S Foley
- Division of Nephrology.,Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, and
| | - Z Ayoade Balogun
- Division of Nephrology.,Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, and
| | - Kyle J Alexander
- Division of Nephrology.,Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, and
| | - Hojung Park
- Division of Nephrology.,Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, and
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Diane L Rosin
- Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, and .,Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Mark D Okusa
- Division of Nephrology.,Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, and
| |
Collapse
|
28
|
Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to Mesenchymal Transition (EndoMT) in the Pathogenesis of Human Fibrotic Diseases. J Clin Med 2016; 5:jcm5040045. [PMID: 27077889 PMCID: PMC4850468 DOI: 10.3390/jcm5040045] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 04/06/2016] [Indexed: 02/08/2023] Open
Abstract
Fibrotic diseases encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis, sclerodermatous graft versus host disease, nephrogenic systemic fibrosis, and IgG₄-associated sclerosing disease, as well as numerous organ-specific disorders including radiation-induced fibrosis, and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrous tissue macromolecules in affected organs leading to their dysfunction and ultimate failure. The pathogenesis of fibrotic diseases is complex and despite extensive investigation has remained elusive. Numerous studies have identified myofibroblasts as the cells responsible for the establishment and progression of the fibrotic process. Tissue myofibroblasts in fibrotic diseases originate from several sources including quiescent tissue fibroblasts, circulating CD34+ fibrocytes, and the phenotypic conversion of various cell types including epithelial and endothelial cells into activated myofibroblasts. However, the role of the phenotypic transition of endothelial cells into mesenchymal cells (Endothelial to Mesenchymal Transition or EndoMT) in the pathogenesis of fibrotic disorders has not been fully elucidated. Here, we review the evidence supporting EndoMT's contribution to human fibrotic disease pathogenesis.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| | - Fabian A Mendoza
- Rheumatology Division, Department of Medicine, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| |
Collapse
|
29
|
Uzunhan Y, Bernard O, Marchant D, Dard N, Vanneaux V, Larghero J, Gille T, Clerici C, Valeyre D, Nunes H, Boncoeur E, Planès C. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 2016; 310:L439-51. [DOI: 10.1152/ajplung.00117.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 12/22/2015] [Indexed: 01/13/2023] Open
Abstract
Administration of bone marrow-derived human mesenchymal stem cells (hMSC) reduces lung inflammation, fibrosis, and mortality in animal models of lung injury, by a mechanism not completely understood. We investigated whether hMSC would prevent epithelial-mesenchymal transition (EMT) induced by hypoxia in primary rat alveolar epithelial cell (AEC). In AEC cultured on semipermeable filters, prolonged hypoxic exposure (1.5% O2 for up to 12 days) induced phenotypic changes consistent with EMT, i.e., a change in cell morphology, a decrease in transepithelial resistance (Rte) and in the expression of epithelial markers [zonula occludens-1 (ZO-1), E-cadherin, AQP-5, TTF-1], together with an increase in mesenchymal markers [vimentin, α-smooth muscle actin (α-SMA)]. Expression of transcription factors driving EMT such as SNAIL1, ZEB1, and TWIST1 increased after 2, 24, and 48 h of hypoxia, respectively. Hypoxia also induced TGF-β1 mRNA expression and the secretion of active TGF-β1 in apical medium, and the expression of connective tissue growth factor (CTGF), two inducers of EMT. Coculture of AEC with hMSC partially prevented the decrease in Rte and in ZO-1, E-cadherin, and TTF-1 expression, and the increase in vimentin expression induced by hypoxia. It also abolished the increase in TGF-β1 expression and in TGF-β1-induced genes ZEB1, TWIST1, and CTGF. Finally, incubation with human recombinant KGF at a concentration similar to what was measured in hMSC-conditioned media restored the expression of TTF-1 and prevented the increase in TWIST1, TGF-β1, and CTGF in hypoxic AEC. Our results indicate that hMSC prevent hypoxia-induced alveolar EMT through the paracrine modulation of EMT signaling pathways and suggest that this effect is partly mediated by KGF.
Collapse
Affiliation(s)
- Yurdagül Uzunhan
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
- AP-HP, Hôpital Avicenne, Bobigny, France
| | - Olivier Bernard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
| | - Dominique Marchant
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
| | - Nicolas Dard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
| | - Valérie Vanneaux
- AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et CIC de Biothérapies, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jérôme Larghero
- AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et CIC de Biothérapies, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Thomas Gille
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
- AP-HP, Hôpital Avicenne, Bobigny, France
| | - Christine Clerici
- Université Paris Diderot, Sorbonne Paris Cité, Inserm U1152, Paris, France; and
- AP-HP, Hôpital Bichat, Paris, France
| | - Dominique Valeyre
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
- AP-HP, Hôpital Avicenne, Bobigny, France
| | - Hilario Nunes
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
- AP-HP, Hôpital Avicenne, Bobigny, France
| | - Emilie Boncoeur
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
| | - Carole Planès
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
- AP-HP, Hôpital Avicenne, Bobigny, France
| |
Collapse
|
30
|
Jimenez SA, Piera-Velazquez S. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of Systemic Sclerosis-associated pulmonary fibrosis and pulmonary arterial hypertension. Myth or reality? Matrix Biol 2016; 51:26-36. [PMID: 26807760 DOI: 10.1016/j.matbio.2016.01.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic Sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and multiple internal organs and severe functional and structural microvascular alterations. SSc is considered to be the prototypic systemic fibrotic disorder. Despite currently available therapeutic approaches SSc has a high mortality rate owing to the development of SSc-associated interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH), complications that have emerged as the most frequent causes of disability and mortality in SSc. The pathogenesis of the fibrotic process in SSc is complex and despite extensive investigation the exact mechanisms have remained elusive. Myofibroblasts are the cells ultimately responsible for tissue fibrosis and fibroproliferative vasculopathy in SSc. Tissue myofibroblasts in SSc originate from several sources including expansion of quiescent tissue fibroblasts and tissue accumulation of CD34+ fibrocytes. Besides these sources, myofibroblasts in SSc may result from the phenotypic conversion of endothelial cells into activated myofibroblasts, a process known as endothelial to mesenchymal transition (EndoMT). Recently, it has been postulated that EndoMT may play a role in the development of SSc-associated ILD and PAH. However, although several studies have described the occurrence of EndoMT in experimentally induced cardiac, renal, and pulmonary fibrosis and in several human disorders, the contribution of EndoMT to SSc-associated ILD and PAH has not been generally accepted. Here, the experimental evidence supporting the concept that EndoMT plays a role in the pathogenesis of SSc-associated ILD and PAH will be reviewed.
Collapse
Affiliation(s)
- Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA; Scleroderma Center, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA; Scleroderma Center, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA
| |
Collapse
|
31
|
Zeitouni NE, Dersch P, Naim HY, von Köckritz-Blickwede M. Hypoxia Decreases Invasin-Mediated Yersinia enterocolitica Internalization into Caco-2 Cells. PLoS One 2016; 11:e0146103. [PMID: 26731748 PMCID: PMC4701670 DOI: 10.1371/journal.pone.0146103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022] Open
Abstract
Yersinia enterocolitica is a major cause of human yersiniosis, with enterocolitis being a typical manifestation. These bacteria can cross the intestinal mucosa, and invade eukaryotic cells by binding to host β1 integrins, a process mediated by the bacterial effector protein invasin. This study examines the role of hypoxia on the internalization of Y. enterocolitica into intestinal epithelial cells, since the gastrointestinal tract has been shown to be physiologically deficient in oxygen levels (hypoxic), especially in cases of infection and inflammation. We show that hypoxic pre-incubation of Caco-2 cells resulted in significantly decreased bacterial internalization compared to cells grown under normoxia. This phenotype was absent after functionally blocking host β1 integrins as well as upon infection with an invasin-deficient Y. enterocolitica strain. Furthermore, downstream phosphorylation of the focal adhesion kinase was also reduced under hypoxia after infection. In good correlation to these data, cells grown under hypoxia showed decreased protein levels of β1 integrins at the apical cell surface whereas the total protein level of the hypoxia inducible factor (HIF-1) alpha was elevated. Furthermore, treatment of cells with the HIF-1 α stabilizer dimethyloxalylglycine (DMOG) also reduced invasion and decreased β1 integrin protein levels compared to control cells, indicating a potential role for HIF-1α in this process. These results suggest that hypoxia decreases invasin-integrin-mediated internalization of Y. enterocolitica into intestinal epithelial cells by reducing cell surface localization of host β1 integrins.
Collapse
Affiliation(s)
- Nathalie E. Zeitouni
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Petra Dersch
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Hassan Y. Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
32
|
Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression. J Am Soc Nephrol 2015; 26:1765-76. [PMID: 25810494 PMCID: PMC4520181 DOI: 10.1681/asn.2015010006] [Citation(s) in RCA: 505] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transition of AKI to CKD has major clinical significance. As reviewed here, recent studies show that a subpopulation of dedifferentiated, proliferating tubules recovering from AKI undergo pathologic growth arrest, fail to redifferentiate, and become atrophic. These abnormal tubules exhibit persistent, unregulated, and progressively increasing profibrotic signaling along multiple pathways. Paracrine products derived therefrom perturb normal interactions between peritubular capillary endothelium and pericyte-like fibroblasts, leading to myofibroblast transformation, proliferation, and fibrosis as well as capillary disintegration and rarefaction. Although signals from injured endothelium and inflammatory/immune cells also contribute, tubule injury alone is sufficient to produce the interstitial pathology required for fibrosis. Localized hypoxia produced by microvascular pathology may also prevent tubule recovery. However, fibrosis is not intrinsically progressive, and microvascular pathology develops strictly around damaged tubules; thus, additional deterioration of kidney structure after the transition of AKI to CKD requires new acute injury or other mechanisms of progression. Indeed, experiments using an acute-on-chronic injury model suggest that additional loss of parenchyma caused by failed repair of AKI in kidneys with prior renal mass reduction triggers hemodynamically mediated processes that damage glomeruli to cause progression. Continued investigation of these pathologic mechanisms should reveal options for preventing renal disease progression after AKI.
Collapse
Affiliation(s)
| | - Joel M Weinberg
- Department of Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan Medical Center, Ann Arbor, Michigan
| | - Wilhelm Kriz
- Medical Fakultät Mannheim, Abteilung Anatomie und Entwicklungsbiologie Mannheim, University of Heidelberg, Baden-Wuerttemberg, Germany; and
| | - Anil K Bidani
- Department of Medicine, Loyola University and Hines Veterans Affairs Hospital, Maywood, Illinois
| |
Collapse
|
33
|
Abstract
Improved understanding of the oxygen-dependent regulation of erythropoiesis has provided new insights into the pathogenesis of anaemia associated with renal failure and has led to the development of novel therapeutic agents for its treatment. Hypoxia-inducible factor (HIF)-2 is a key regulator of erythropoiesis and iron metabolism. HIF-2 is activated by hypoxic conditions and controls the production of erythropoietin by renal peritubular interstitial fibroblast-like cells and hepatocytes. In anaemia associated with renal disease, erythropoiesis is suppressed due to inadequate erythropoietin production in the kidney, inflammation and iron deficiency; however, pharmacologic agents that activate the HIF axis could provide a physiologic approach to the treatment of renal anaemia by mimicking hypoxia responses that coordinate erythropoiesis with iron metabolism. This Review discusses the functional inter-relationships between erythropoietin, iron and inflammatory mediators under physiologic conditions and in relation to the pathogenesis of renal anaemia, as well as recent insights into the molecular and cellular basis of erythropoietin production in the kidney. It furthermore provides a detailed overview of current clinical experience with pharmacologic activators of HIF signalling as a novel comprehensive and physiologic approach to the treatment of anaemia.
Collapse
|
34
|
Chen H, Wan D, Wang L, Peng A, Xiao H, Petersen RB, Liu C, Zheng L, Huang K. Apelin protects against acute renal injury by inhibiting TGF-β1. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1278-87. [PMID: 25748499 DOI: 10.1016/j.bbadis.2015.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/12/2015] [Accepted: 02/27/2015] [Indexed: 12/29/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is the most common cause of acute kidney injury, having a high rate of mortality and no effective therapy currently available. Apelin-13, a bioactive peptide, has been shown to inhibit the early lesions of diabetic nephropathy in several mouse models by us and others. To test whether apelin-13 protects against renal I/R induced injury, male rats were exposed to renal I/R injury with or without apelin-13 treatment for 3 days. Apelin-13 treatment markedly reduced the injury-induced tubular lesions, renal cell apoptosis, and normalized the injury induced renal dysfunction. Apelin-13 treatment inhibited the injury-induced elevation of inflammatory factors and Tgf-β1, as well as apoptosis. Apelin-13 treatment also inhibited the injury-induced elevation of histone methylation and Kmt2d, a histone methyltransferase of H3K4me2, following renal I/R injury. Furthermore, in cultured renal mesangial and tubular cells, apelin-13 suppressed the injury-induced elevation of Tgf-β1, apoptosis, H3K4me2 and Kmt2d under the in vitro hypoxia/reperfusion (H/R) conditions. Consistently, over-expression of apelin significantly inhibited H/R-induced elevation of TGF-β1, apoptosis, H3K4me2 and Kmt2d. The present study therefore suggests apelin-13 may be a therapeutic candidate for treating acute kidney injury.
Collapse
Affiliation(s)
- Hong Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China, 430074
| | - Danyang Wan
- College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Lin Wang
- College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Anlin Peng
- Wuhan the Third Hospital, Wuhan, China, 430060
| | - Hongdou Xiao
- College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Robert B Petersen
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA, 44106; Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA, 44106; Department of Neurology, Case Western Reserve University, Cleveland, OH, USA, 44106
| | - Chengyu Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China, 430074
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan, China, 430072.
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China, 430074.
| |
Collapse
|
35
|
Rana MK, Srivastava J, Yang M, Chen CS, Barber DL. Hypoxia increases the abundance but not the assembly of extracellular fibronectin during epithelial cell transdifferentiation. J Cell Sci 2015; 128:1083-9. [PMID: 25616899 DOI: 10.1242/jcs.155036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increased production and assembly of extracellular matrix proteins during transdifferentiation of epithelial cells to a mesenchymal phenotype contributes to diseases such as renal and pulmonary fibrosis. TGF-β and hypoxia, two cues that initiate injury-induced fibrosis, caused human kidney cells to develop a mesenchymal phenotype, including increased fibronectin expression and secretion. However, upon hypoxia, assembled extracellular fibronectin fibrils were mostly absent, whereas treatment with TGF-β led to abundant fibrils. Fibrillogenesis required cell-generated force and tension. TGF-β, but not hypoxia, increased cell contractility, as determined by phosphorylation of myosin light chain and quantifying force and tension generated by cells plated on engineered elastomeric microposts. Additionally, TGF-β, but not hypoxia, increased the activation of integrins. However, experimentally activating integrins markedly increased the levels of phosphorylated myosin light chain and fibronectin fibril assembly upon hypoxia. Our findings show that deficient integrin activation and subsequent lack of cell contractility are mechanisms that mediate a lack of fibrillogenesis upon hypoxia and they challenge current views on oxygen deprivation being sufficient for fibrosis.
Collapse
Affiliation(s)
- Manish K Rana
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA Department of Biomedical Engineering, Boston University and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Jyoti Srivastava
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Michael Yang
- Department of Biomedical Engineering, Boston University and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
36
|
Ali A, Akhter MA, Haneef K, Khan I, Naeem N, Habib R, Kabir N, Salim A. Dinitrophenol modulates gene expression levels of angiogenic, cell survival and cardiomyogenic factors in bone marrow derived mesenchymal stem cells. Gene 2015; 555:448-57. [PMID: 25445267 DOI: 10.1016/j.gene.2014.10.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 08/29/2014] [Accepted: 10/26/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Anwar Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Muhammad Aleem Akhter
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Kanwal Haneef
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Nadia Naeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Rakhshinda Habib
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Nurul Kabir
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
37
|
Huang KT, Wu CT, Huang KH, Lin WC, Chen CM, Guan SS, Chiang CK, Liu SH. Titanium nanoparticle inhalation induces renal fibrosis in mice via an oxidative stress upregulated transforming growth factor-β pathway. Chem Res Toxicol 2014; 28:354-64. [PMID: 25406100 DOI: 10.1021/tx500287f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Titanium dioxide nanoparticles (Nano-TiO2) are gradually being used extensively in clinical settings, industry, and daily life. Accumulation studies showed that Nano-TiO2 exposure is able to cause injuries in various animal organs, including the lung, liver, spleen, and kidney. However, it remains unclear whether exposure of Nano-TiO2 by inhalation causes renal fibrosis. Here, we investigated the role of reactive oxygen species (ROS)/reactive nitrogen species (RNS) related signaling molecules in chronic renal damage after Nano-TiO2 inhalation in mice. Mice were treated with Nano-TiO2 (0.1, 0.25, and 0.5 mg/week) or microparticle-TiO2 (0.5 mg/week) by nonsurgical intratracheal instillation for 4 weeks. The results showed that Nano-TiO2 inhalation increased renal pathological changes in a dose-dependent manner. No renal pathological changes were observed in microparticle-TiO2-instilled mice. Nano-TiO2 (0.5 mg/week) possessed the ability to precipitate in the kidneys, determined by transmission electron microscopy and increased serum levels of blood urea nitrogen. The expressions of markers of ROS/RNS and renal fibrosis markers, including nitrotyrosine, inducible nitric oxide synthase, hypoxia inducible factor-1α (HIF-1α), heme oxygenase 1, transforming growth factor-β (TGFβ), and collagen I, determined by immunohistochemical staining were increased in the kidneys. Furthermore, Nano-TiO2-induced renal injury could be mitigated by iNOS inhibitor aminoguanidine and ROS scavenger N-acetylcysteine treatment in transcription level. The in vitro experiments showed that Nano-TiO2 significantly and dose-dependently increased the ROS production and the expressions of HIF-1α and TGFβ in human renal proximal tubular cells, which could be reversed by N-acetylcysteine treatment. Taken together, these results suggest Nano-TiO2 inhalation might induce renal fibrosis through a ROS/RNS-related HIF-1α-upregulated TGF-β signaling pathway.
Collapse
Affiliation(s)
- Kuo-Tong Huang
- Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Chronic progressive renal fibrosis leads to end-stage renal failure many patients with chronic kidney disease (CKD). Loss of the rich peritubular capillary network is a prominent feature, and seems independent of the specific underlying disease. The mechanisms that contribute to peritubular capillary regression include the loss of glomerular perfusion, as flow-dependent shear forces are required to provide the survival signal for endothelial cells. Also, reduced endothelial cell survival signals from sclerotic glomeruli and atrophic or injured tubule epithelial cells contribute to peritubular capillary regression. In response to direct tubular epithelial cell injury, and the inflammatory reaction that ensues, capillary pericytes dissociate from their blood vessels, also reducing endothelial cell survival. In addition, direct inflammatory injury of capillary endothelial cells, for instance in chronic allograft nephropathy, also contributes to capillary dropout. Chronic tissue hypoxia, which ensues from the rarefaction of the peritubular capillary network, can generate both an angiogenic and a fibrogenic response. However, in CKD, the balance is strongly tipped toward fibrogenesis. Understanding the underlying mechanisms for failed angiogenesis in CKD and harnessing endothelial-specific survival and pro-angiogenic mechanisms for therapy should be our goal if we are to reduce the disease burden from CKD.
Collapse
Affiliation(s)
| | - Marya Obeidat
- Department of Medicine, University of Alberta , Edmonton, Alberta, Canada
| |
Collapse
|
39
|
Kellenberger T, Marcussen N, Nyengaard JR, Wogensen L, Jespersen B. Expression of hypoxia-inducible factor-1α and hepatocyte growth factor in development of fibrosis in the transplanted kidney. Transpl Int 2014; 28:180-90. [DOI: 10.1111/tri.12475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/21/2014] [Accepted: 10/02/2014] [Indexed: 01/30/2023]
Affiliation(s)
- Terese Kellenberger
- Research Laboratory for Biochemical Pathology; Department of Clinical Medicine; Aarhus University; Aarhus C Denmark
| | - Niels Marcussen
- Department of Pathology; Odense University Hospital; Odense C Denmark
| | - Jens R. Nyengaard
- Stereology and Electron Microscopy Laboratory; Centre for Stochastic Geometry and Advanced Bioimaging; Department of Clinical Medicine; Aarhus University; Aarhus C Denmark
| | - Lise Wogensen
- Research Laboratory for Biochemical Pathology; Department of Clinical Medicine; Aarhus University; Aarhus C Denmark
| | - Bente Jespersen
- Department of Renal Medicine; Aarhus University Hospital; Skejby Denmark
| |
Collapse
|
40
|
Affiliation(s)
- Volker H Haase
- Division of Nephrology and Hypertension, Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, and Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
41
|
Wang Z, Zhu Q, Li PL, Dhaduk R, Zhang F, Gehr TW, Li N. Silencing of hypoxia-inducible factor-1α gene attenuates chronic ischemic renal injury in two-kidney, one-clip rats. Am J Physiol Renal Physiol 2014; 306:F1236-42. [PMID: 24623146 DOI: 10.1152/ajprenal.00673.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Overactivation of hypoxia-inducible factor (HIF)-1α is implicated as a pathogenic factor in chronic kidney diseases (CKD). However, controversy exists regarding the roles of HIF-1α in CKD. Additionally, although hypoxia and HIF-1α activation are observed in various CKD and HIF-1α has been shown to stimulate fibrogenic factors, there is no direct evidence whether HIF-1α is an injurious or protective factor in chronic renal hypoxic injury. The present study determined whether knocking down the HIF-1α gene can attenuate or exaggerate kidney damage using a chronic renal ischemic model. Chronic renal ischemia was induced by unilaterally clamping the left renal artery for 3 wk in Sprague-Dawley rats. HIF-1α short hairpin (sh) RNA or control vectors were transfected into the left kidneys. Experimental groups were sham+control vector, clip+control vector, and clip+HIF-1α shRNA. Enalapril was used to normalize blood pressure 1 wk after clamping the renal artery. HIF-1α protein levels were remarkably increased in clipped kidneys, and this increase was blocked by shRNA. Morphological examination showed that HIF-1α shRNA significantly attenuated injury in clipped kidneys: glomerular injury indices were 0.71 ± 0.04, 2.50 ± 0.12, and 1.34 ± 0.11, and the percentage of globally damaged glomeruli was 0.02, 34.3 ± 5.0, and 6.3 ± 1.6 in sham, clip, and clip+shRNA groups, respectively. The protein levels of collagen and α-smooth muscle actin also dramatically increased in clipped kidneys, but this effect was blocked by HIF-1α shRNA. In conclusion, long-term overactivation of HIF-1α is a pathogenic factor in chronic renal injury associated with ischemia/hypoxia.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia; Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, People's Republic of China; and
| | - Qing Zhu
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Romesh Dhaduk
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Todd W Gehr
- Department of Medicine, Division of Nephrology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia;
| |
Collapse
|
42
|
Lim JH, Youn DY, Yoo HJ, Yoon HH, Kim MY, Chung S, Kim YS, Chang YS, Park CW, Lee JH. Aggravation of diabetic nephropathy in BCL-2 interacting cell death suppressor (BIS)-haploinsufficient mice together with impaired induction of superoxide dismutase (SOD) activity. Diabetologia 2014; 57:214-23. [PMID: 24078136 DOI: 10.1007/s00125-013-3064-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/05/2013] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS B cell CLL/lymphoma 2 (BCL-2)-interacting cell death suppressor (BIS), known as an anti-stress and anti-apoptotic protein, has been reported to modulate susceptibility to oxidative stress. This study investigated the potential role of BIS as an antioxidant protein in diabetic nephropathy. METHODS Diabetes was induced in BIS-heterozygote (BIS-HT) mice via streptozotocin injections and the resulting phenotypes were compared with those of BIS-wild-type (BIS-WT) mice over the 20 weeks following diabetes induction. RESULTS Renal injuries, represented by increased plasma creatinine levels and increased albuminuria, were greater in diabetic BIS-HT mice than in diabetic BIS-WT mice, and were accompanied by a significant increase in reactive oxygen species (ROS) and oxidative stress markers. Moreover, renal pathological changes and the apoptotic process were accelerated in diabetic BIS-HT mice compared with diabetic BIS-WT mice with the same degree of hyperglycaemia; all were restored by 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) treatment. The levels of NADPH oxidase and related proteins were not significantly higher in diabetic BIS-HT mice compared with diabetic BIS-WT mice. However, levels of superoxide dismutase (SOD)1 and SOD2 increased on the induction of diabetes in BIS-WT mice but not in BIS-HT mice, correlating with the total SOD activity. An in vitro study showed that knockdown of BIS production also resulted in impaired induction of SOD activity as well as SOD levels in HK-2 and NMS cells, concomitant with significant ROS accumulation. CONCLUSION/INTERPRETATION Our results suggest that the decreased antioxidant capacity of BIS aggravates diabetic nephropathy in diabetic BIS-HT mice, possibly as a result of the disruption in the regulation of SOD protein quality under oxidative stress.
Collapse
|
43
|
Xie H, Tan JT, Wang RL, Meng XX, Tang X, Gao S. Expression and significance of HIF-1α in pulmonary fibrosis induced by paraquat. Exp Biol Med (Maywood) 2013; 238:1062-8. [PMID: 24048193 DOI: 10.1177/1535370213498978] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
It is commonly accepted that epithelial–mesenchymal transition contributes to fibrotic remodeling, but the molecular pathways involved in paraquat (PQ)-induced epithelial–mesenchymal transition remain uncharacterized. The objective of this study was to evaluate the potential involvement of HIF-1α in TGF-β1/β-Catenin and Snail pathway after PQ poisoning. In our study, 86 Spragne-Dawley rats were randomly divided into control group and PQ group, which received intragastric infusion of 20% PQ solution 50 mg/kg. Rats in the PQ group were subsequently divided into eight subgroups (10 for each subgroup) and samples were collected at different predetermined time points (2, 6, 12, 24, 48, 72, 96 h and 7 d). Fibrosis markers, including β-catenin, snail and α-SMA, were measured by western blot. The activity of HIF-1α was determined by western blot and immunofluorescence. We found that in PQ-induced pulmonary fibrosis, the level of PaO2 was significantly reduced in the 6-h subgroup, when compared to the control group ( P < 0.01). Interestingly, between 6 and 72 h, there was no significant difference in PaO2. On the other hand, the level of PaCO2 started to increase from 72-h subgroup ( P < 0.01). Fibrosis markers including β-catenin, snail and α-SMA, measured by western blot, were significantly increased at 2 h, while the level of p-GSK-3β was increased at 6 h. And the level of GSK-3β showed significant reduction beginning at 24 h. The activity of HIF-1α measured by western blot assays was significantly increased starting from 2 h with sustained expression. The result of Pearson coefficient analysis showed that HIF-1α was positively correlated with Snail ( r = 0.935, P < 0.01) and β-catenin ( r = 0.761, P < 0.05). Meanwhile, immunofluorescent analysis of HIF-1α revealed partial staining appearing from 2 h. Our data illustrated a positive correlation between Snail, β-catenin signaling and HIF-1α, suggesting a potential synergistic role of HIF-1α in PQ-induced pulmonary fibrosis, which may be independent of GSK-3β. It might also represent a potential therapeutic window for treatment of paraquat poisoning.
Collapse
Affiliation(s)
- Hui Xie
- Intensive Care Unit, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 0086 201620, China
| | - Jiu-ting Tan
- Intensive Care Unit, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 0086 201620, China
| | - Rui-lan Wang
- Intensive Care Unit, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 0086 201620, China
| | - Xiao-Xiao Meng
- Intensive Care Unit, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 0086 201620, China
| | - Xue Tang
- Intensive Care Unit, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 0086 201620, China
| | - Shan Gao
- Intensive Care Unit, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 0086 201620, China
| |
Collapse
|
44
|
Abstract
BACKGROUND AND PURPOSE Dupuytren's disease (DD) is a benign fibroproliferative process that affects the palmar fascia. The pathology of DD shows similarities with wound healing and tumor growth; hypoxia and angiogenesis play important roles in both. We investigated the role of angiogenic proteins in DD. PATIENTS AND METHODS The expression of vascular endothelial growth factor (VEGF), its receptors vascular endothelial growth factor receptor 1 (VEGFR1) and vascular endothelial growth factor receptor 2 (VEGFR2), hypoxia-inducible factor alfa (HIF-1α), and alfa-smooth muscle actin (α-SMA) were analyzed immunohistochemically in fragments of excised Dupuytren's tissue from 32 patients. We compared these values to values for expression in a control group. RESULTS 15 of 32 samples could be attributed to the involutional phase (α-SMA positive), whereas 17 samples were considered to be cords at the residual phase (α-SMA negative). In the involutional phase, the HIF-1α and VEGFR2 expression was statistically significantly higher than in the residual phase and in the controls. INTERPRETATION Both the VEGFR2 receptor and HIF-1α were expressed in α-SMA positive myofibroblast-rich nodules with characteristics of DD in the active involutional phase. Thus, hypoxia and (subsequently) angiogenesis may have a role in the pathophysiology of DD.
Collapse
Affiliation(s)
- Lukas A Holzer
- Department of Orthopaedic Surgery, Medical University of Graz, Graz, Austria
| | - Andrej Cör
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Gerhard Pfandlsteiner
- Department of Plastic and Reconstructive Surgery, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Gerold Holzer
- Department of Orthopaedics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
45
|
Ivanova V, Garbuzenko OB, Reuhl KR, Reimer DC, Pozharov VP, Minko T. Inhalation treatment of pulmonary fibrosis by liposomal prostaglandin E2. Eur J Pharm Biopharm 2013; 84:335-44. [PMID: 23228437 PMCID: PMC3660419 DOI: 10.1016/j.ejpb.2012.11.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/10/2012] [Accepted: 11/16/2012] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal form of interstitial lung disease. We hypothesized that the local pulmonary delivery of prostaglandin E2 (PGE2) by liposomes can be used for the effective treatment of IPF. To test this hypothesis, we used a murine model of bleomycin-induced IPF to evaluate liposomal delivery of PGE2 topically to the lungs. Animal survival, body weight, hydroxyproline content in the lungs, lung histology, mRNA, and protein expression were studied. After inhalation delivery, liposomes accumulated predominately in the lungs. In contrast, intravenous administration led to the accumulation of liposomes mainly in kidney, liver, and spleen. Liposomal PGE2 prevented the disturbances in the expression of many genes associated with the development of IPF, substantially restricted inflammation and fibrotic injury in the lung tissues, prevented decrease in body weight, limited hydroxyproline accumulation in the lungs, and virtually eliminated mortality of animals after intratracheal instillation of bleomycin. In summary, our data provide evidence that pulmonary fibrosis can be effectively treated by the inhalation administration of liposomal form of PGE2 into the lungs. The results of the present investigations make the liposomal form of PGE2 an attractive drug for the effective inhalation treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Vera Ivanova
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, USA
| | - Olga B. Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, USA
| | - Kenneth R. Reuhl
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ, USA
| | - David C. Reimer
- Laboratory Animal Services, Rutgers, The State University of new Jersey, D 108 Nelson Biological Labs, Busch Campus, Piscataway, NJ, USA
| | - Vitaly P. Pozharov
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ, USA
| |
Collapse
|
46
|
Zhang W, Zhang Y, Wang W, Dai Y, Ning C, Luo R, Sun K, Glover L, Grenz A, Sun H, Tao L, Zhang W, Colgan SP, Blackburn MR, Eltzschig HK, Kellems RE, Xia Y. Elevated ecto-5'-nucleotidase-mediated increased renal adenosine signaling via A2B adenosine receptor contributes to chronic hypertension. Circ Res 2013; 112:1466-78. [PMID: 23584256 DOI: 10.1161/circresaha.111.300166] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
RATIONALE Hypertension is the most prevalent life-threatening disease worldwide and is frequently associated with chronic kidney disease (CKD). However, the molecular basis underlying hypertensive CKD is not fully understood. OBJECTIVE We sought to identify specific factors and signaling pathways that contribute to hypertensive CKD and thereby exacerbate disease progression. METHODS AND RESULTS Using high-throughput quantitative reverse-transcription polymerase chain reaction profiling, we discovered that the expression level of 5'-ectonucleotidase (CD73), a key enzyme that produces extracellular adenosine, was significantly increased in the kidneys of angiotensin II-infused mice, an animal model of hypertensive nephropathy. Genetic and pharmacological studies in mice revealed that elevated CD73-mediated excess renal adenosine preferentially induced A2B adenosine receptor (ADORA2B) production and that enhanced kidney ADORA2B signaling contributes to angiotensin II-induced hypertension. Similarly, in humans, we found that CD73 and ADORA2B levels were significantly elevated in the kidneys of CKD patients compared with normal individuals and were further elevated in hypertensive CKD patients. These findings led us to further discover that elevated renal CD73 contributes to excess adenosine signaling via ADORA2B activation that directly stimulates endothelin-1 production in a hypoxia-inducible factor-α-dependent manner and underlies the pathogenesis of the disease. Finally, we revealed that hypoxia-inducible factor-α is an important factor responsible for angiotensin II-induced CD73 and ADORA2B expression at the transcriptional level. CONCLUSIONS Overall, our studies reveal that angiotensin II-induced renal CD73 promotes the production of renal adenosine that is a prominent driver of hypertensive CKD by enhanced ADORA2B signaling-mediated endothelin-1 induction in a hypoxia-inducible factor-α-dependent manner. The inhibition of excess adenosine-mediated ADORA2B signaling represents a novel therapeutic target for the disease.
Collapse
Affiliation(s)
- Weiru Zhang
- Departments of Biochemistry and Molecular Biology,University of Texas Medical School at Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li C, Xia M, Abais JM, Liu X, Li N, Boini KM, Li PL. Protective role of growth hormone against hyperhomocysteinemia-induced glomerular injury. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:551-61. [PMID: 23529346 DOI: 10.1007/s00210-013-0848-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/05/2013] [Indexed: 02/07/2023]
Abstract
The present study investigated the protective role of growth hormone (GH) against hyperhomocysteinemia (hHcys)-induced activations of reactive oxygen species/hypoxia-inducible factor (HIF)-1α, epithelial-mesenchymal transition (EMT), and consequent glomerular injury. A hHcys model was induced by folate free diet in mice. The urine protein excretion significantly increased while plasma GH levels dramatically decreased in hHcys. Real-time reverse transcription polymerase chain reaction showed that GH receptor (GHR) level increased in the cortex of hHcys mice, which mainly occurred in podocytes as shown by confocal microscopy. Recombinant mouse growth hormone (rmGH) treatment (0.02 mg/kg, once a day for 6 weeks) significantly restored the plasma GH, inhibited GHR upregulation and attenuated proteinuria. Correspondingly, rmGH treatment also blocked hHcys-induced decrease in the expression of podocin, a podocyte slit diaphragm molecule, and inhibited the increases in the expression of desmin, a podocyte injury marker. It was also demonstrated that in hHcys the expression of epithelial markers, p-cadherin and ZO-1, decreased, while the expression of mesenchymal markers, antifibroblast-specific protein 1 (FSP-1) and α-SMA, increased in podocytes, which together suggest the activation of EMT in podocytes. Nicotinamide adenine dinucleotide phosphate oxidase (Nox)-dependent superoxide anion (O2 (.-)) and hypoxia-inducible factor-1α (HIF-1α) level in the hHcys mice cortex was markedly enhanced. These hHcys-induced EMT enhancement and Nox-dependent O2 (.-)/HIF-1α activation were significantly attenuated by rmGH treatment. HIF-1α level increased in Hcys-treated cultured podocytes, which were blocked by rmGH treatment. Meanwhile, homocysteine (Hcys)-induced EMT in cultured podocytes was significantly reversed by HIF-1α siRNA. All these results support the view that GH ameliorates hHcys-induced glomerular injury by reducing Nox-dependent O2 (.-)/HIF-1α signal pathway and EMT.
Collapse
Affiliation(s)
- Caixia Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Commonwealth University, 410 N, 12th Street, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Mirrakhimov AE, Polotsky VY. Obstructive sleep apnea and non-alcoholic Fatty liver disease: is the liver another target? Front Neurol 2012; 3:149. [PMID: 23087670 PMCID: PMC3473309 DOI: 10.3389/fneur.2012.00149] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 10/01/2012] [Indexed: 12/15/2022] Open
Abstract
Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway during sleep leading to intermittent hypoxia (IH). OSA has been associated with all components of the metabolic syndrome as well as with non-alcoholic fatty liver disease (NAFLD). NAFLD is a common condition ranging in severity from uncomplicated hepatic steatosis to steatohepatitis (NASH), liver fibrosis, and cirrhosis. The gold standard for the diagnosis and staging of NAFLD is liver biopsy. Obesity and insulin resistance lead to liver steatosis, but the causes of the progression to NASH are not known. Emerging evidence suggests that OSA may play a role in the progression of hepatic steatosis and the development of NASH. Several cross-sectional studies showed that the severity of IH in patients with OSA predicted the severity of NAFLD on liver biopsy. However, neither prospective nor interventional studies with continuous positive airway pressure treatment have been performed. Studies in a mouse model showed that IH causes triglyceride accumulation in the liver and liver injury as well as hepatic inflammation. The mouse model provided insight in the pathogenesis of liver injury showing that (1) IH accelerates the progression of hepatic steatosis by inducing adipose tissue lipolysis and increasing free fatty acids (FFA) flux into the liver; (2) IH up-regulates lipid biosynthetic pathways in the liver; (3) IH induces oxidative stress in the liver; (4) IH up-regulates hypoxia inducible factor 1 alpha and possibly HIF-2 alpha, which may increase hepatic steatosis and induce liver inflammation and fibrosis. However, the role of FFA and different transcription factors in the pathogenesis of IH-induced NAFLD is yet to be established. Thus, multiple lines of evidence suggest that IH of OSA may contribute to the progression of NAFLD but definitive clinical studies and experiments in the mouse model have yet to be done.
Collapse
|
49
|
Drzewiecki BA, Anumanthan G, Penn HA, Tanaka ST, Thomas JC, Adams MC, Brock JW, Pope JC, Matusik RJ, Hayward S, Clayton DB. Modulation of the hypoxic response following partial bladder outlet obstruction. J Urol 2012; 188:1549-54. [PMID: 22910264 DOI: 10.1016/j.juro.2012.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Indexed: 10/28/2022]
Abstract
PURPOSE Tissue level hypoxia has been noted in animal models of partial bladder outlet obstruction. The key mechanisms linking hypoxia and obstruction induced bladder dysfunction remain unknown. 2-Methoxyestradiol is a natural derivative of 17β-estradiol and is currently used as an oncologic agent for its ability to regulate the hypoxia pathway. We investigated the ability of 2-methoxyestradiol to modulate the hypoxia response in a mouse model of bladder obstruction. MATERIALS AND METHODS A group of 5 to 6-week-old female C57BL/6 mice underwent oophorectomy and partial bladder outlet obstruction. Obstructed animals received a subcutaneous pellet of cholesterol placebo (7) or 2-methoxyestradiol plus cholesterol (7). Age matched controls underwent oophorectomy only (8). After 4 weeks the bladders of mice with partial bladder outlet obstruction and of unobstructed animals were harvested. Bladder sections (5 μm) were immunostained for Hypoxyprobe™-1, glucose transporter 1 and hypoxia inducible factor-1α. Real-time polymerase chain reaction was performed for hypoxia inducible factor-1α and lysyl oxidase. Statistical analysis was performed using 1-way ANOVA and the Wilcoxon rank sum test. RESULTS Immunostaining for glucose transporter 1 and Hypoxyprobe-1 revealed the presence of tissue hypoxia after partial bladder outlet obstruction. Immunostaining and real-time polymerase chain reaction demonstrated the up-regulation of hypoxia inducible factor-1α in mice after partial bladder outlet obstruction compared to controls (p = 0.0394). Although not statistically significant, a trend toward lower gene expression of hypoxia inducible factor-1α was seen in mice receiving 2-methoxyestradiol compared to placebo (p = 0.0625). Compared to placebo, 2-methoxyestradiol treatment increased lysyl oxidase expression (p = 0.007). CONCLUSIONS Murine partial bladder outlet obstruction resulted in hypoxia and up-regulation of the hypoxia inducible factor-1 pathway. Subcutaneous 2-methoxyestradiol administration attenuated this response and may be a viable tool to study the role of hypoxia after partial bladder outlet obstruction.
Collapse
Affiliation(s)
- Beth A Drzewiecki
- Department of Urologic Surgery, Division of Pediatric Urology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tang L, Yi R, Yang B, Li H, Chen H, Liu Z. Valsartan inhibited HIF-1α pathway and attenuated renal interstitial fibrosis in streptozotocin-diabetic rats. Diabetes Res Clin Pract 2012; 97:125-31. [PMID: 22377232 DOI: 10.1016/j.diabres.2012.01.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 11/21/2022]
Abstract
AIM To investigate the effect of angiotensin II AT1 receptor blocker valsartan on hypoxia-inducible factor (HIF)-1α-mediated gene activation and its association with renal interstitial fibrosis (RIF) in diabetic nephropathy rats. METHODS Sprague-Dawley rats were randomly divided into 3 groups: control (C group), streptozocin-induced diabetic nephropathy (D group), and valsartan-treated D rats (T group). At end of the 4th, 8th and 12th week 6 rats from each group were sacrificed and blood, urine and kidneys were collected. Blood glucose, serum creatinine (Scr) and 24-h urinary protein were measured and kidneys were processed for Masson-stain as well as immunohistochemistry and real time-PCR analyses of the expressions of HIF-1α, and its target genes tissue inhibitor of metalloproteinase (TIMP)-1 and endothelin (ET)-1 in the kidney. RESULT (1) At the 4th, 8th and 12th week, the areas of RIF were significantly increased in D and T groups, which was accompanied by higher levels of 24-h urinary protein, Scr, HIF-1α, ET-1 and TIMP-1 compared with C group. (2) At the 8th and 12th week, the above changes were significantly attenuated in T group compared with D group. CONCLUSIONS Valsartan may reduce HIF-1α-mediated gene activation and consequently improve kidney damage in diabetic nephropathy rats.
Collapse
Affiliation(s)
- Lin Tang
- Department of Nephrology, The First Affiliated Hospital, Nephrology Research Institute, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | | | | | | | | | | |
Collapse
|