1
|
Kojder K, Jarosz K, Bosiacki M, Andrzejewska A, Zacha S, Solek-Pastuszka J, Jurczak A. Cerebrolysin in Patients with Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:6638. [PMID: 37892776 PMCID: PMC10607250 DOI: 10.3390/jcm12206638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Subarachnoid Hemorrhage (SAH) is one of the acute neurological conditions that is associated with high mortality and recovery failure rates. In recent years, due to the development of endovascular and classical techniques, the mortality rate after SAH has decreased. Currently, more research is focused on understanding the molecular mechanisms underlying SAH. Methods of treatment are investigated in order to obtain the best treatment result, not only survival. One of the drugs used in stroke, including SAH, is Cerebrolysin. It is a mixture of neuropeptides that has similar properties to neurotrophic factors. Its positive impact on strokes has been analyzed; however, there are no meta-analyses concerning only the subpopulation of patients diagnosed with SAH in the current literature. Therefore, we conducted a meta-analysis of available clinical trials to evaluate the effect of Cerebrolysin on the treatment outcome. The data suggest a positive effect of Cerebrolysin on the mortality of SAH patients. However, further randomized clinical trials with larger groups of patients are needed to draw final conclusions.
Collapse
Affiliation(s)
- Klaudyna Kojder
- Anesthesiology and Intensive Care Department, Pomeranian Medical University, 70-210 Szczecin, Poland;
| | - Konrad Jarosz
- Department of Specialist Nursing, Pomeranian Medical University, 70-210 Szczecin, Poland;
| | - Mateusz Bosiacki
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Zołnierska 54 Str., 71-210 Szczecin, Poland; (M.B.); (A.J.)
| | - Agata Andrzejewska
- Anesthesiology and Intensive Care Department, University Hospital 1, 72-252 Szczecin, Poland;
| | - Sławomir Zacha
- Department of Pediatric Orthopedics and Oncology of the Musculoskeletal System, Pomeranian Medical University, 70-210 Szczecin, Poland;
| | - Joanna Solek-Pastuszka
- Anesthesiology and Intensive Care Department, Pomeranian Medical University, 70-210 Szczecin, Poland;
| | - Anna Jurczak
- Department of Specialist Nursing, Pomeranian Medical University, 70-210 Szczecin, Poland;
| |
Collapse
|
2
|
Diaz MD, Kandell RM, Wu JR, Chen A, Christman KL, Kwon EJ. Infusible Extracellular Matrix Biomaterial Promotes Vascular Integrity and Modulates the Inflammatory Response in Acute Traumatic Brain Injury. Adv Healthc Mater 2023; 12:e2300782. [PMID: 37390094 PMCID: PMC10592293 DOI: 10.1002/adhm.202300782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Traumatic brain injury (TBI) affects millions of people each year and, in many cases, results in long-term disabilities. Once a TBI has occurred, there is a significant breakdown of the blood-brain barrier resulting in increased vascular permeability and progression of the injury. In this study, the use of an infusible extracellular matrix-derived biomaterial (iECM) for its ability to reduce vascular permeability and modulate gene expression in the injured brain is investigated. First, the pharmacokinetics of iECM administration in a mouse model of TBI is characterized, and the robust accumulation of iECM at the site of injury is demonstrated. Next, it is shown that iECM administration after injury can reduce the extravasation of molecules into the brain, and in vitro, iECM increases trans-endothelial electrical resistance across a monolayer of TNFα-stimulated endothelial cells. In gene expression analysis of brain tissue, iECM induces changes that are indicative of downregulation of the proinflammatory response 1-day post-injury/treatment and neuroprotection at 5 days post-injury/treatment. Therefore, iECM shows potential as a treatment for TBI.
Collapse
Affiliation(s)
- Miranda D. Diaz
- Shu‐Chien Gene Lay Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| | - Rebecca M. Kandell
- Shu‐Chien Gene Lay Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| | - Jason R. Wu
- Shu‐Chien Gene Lay Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| | - Alexander Chen
- Shu‐Chien Gene Lay Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| | - Karen L. Christman
- Shu‐Chien Gene Lay Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| | - Ester J. Kwon
- Shu‐Chien Gene Lay Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Sanford Consortium for Regenerative MedicineLa JollaCA92037USA
| |
Collapse
|
3
|
Sarode LP, Ghatage T, Mardhekar V, Verma B, Prakash A, Ugale RR. Cerebrolysin reduces excitotoxicity by modulation of cell-death proteins in delayed hours of ischemic reperfusion injury. Metab Brain Dis 2023; 38:2401-2416. [PMID: 37273080 DOI: 10.1007/s11011-023-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
Recent preclinical and clinical reports suggest that cerebrolysin shows neuroprotective properties similar to endogenous neurotrophic factors in neurodegenerative disorders including ischemic stroke. However, little is known about its underlying antiexcitotoxic action. Adult male Wistar rats were intraperitoneally treated with cerebrolysin (0.15 or 0.30 mg/kg) or vehicle at 3, 6 and 12 h after ischemic reperfusion and were assessed 24 h after reperfusion in ischemic rats. We added cerebrolysin (2.5 or 5 mg/ml) or vehicle in primary cortical culture cells at 3, 6 and 12 h of post-glutamate exposure and performed cell viability assays at 24 h. Our in-vivo and in-vitro findings showed that cerebrolysin substantially reduced neuronal cell death in delayed hours of post ischemic- and glutamate-insult conditions respectively. Further, we have assessed the influence of NR-2 A/-2B receptor antagonism on neuroprotective action of cerebrolysin at 6 h in in-vivo as well as in-vitro conditions. Neuroprotective effect of cerebrolysin at 6 h of reperfusion was enhanced by pretreatment of NR2B antagonist RO25-6981.We found that cerebrolysin restrained upregulation of extrasynaptic NR2B responsible for triggering apoptotic pathways. Cerebrolysin reduced expression of important cell death proteins such as, JNK, PTEN, Calpain and Caspase-3 components. Importantly, we also found that cerebrolysin reduced SREBP1 expression, which gets activated only after 6 h of ischemia. These results demonstrate that cerebrolysin reduces excitotoxicity and protect neuronal cells in delayed hours of ischemic reperfusion injuries by decreasing cell death proteins.
Collapse
Affiliation(s)
- Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Trupti Ghatage
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Vishal Mardhekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Bhavesh Verma
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, District- East Champaran, Bihar, 845401, India
| | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India.
| |
Collapse
|
4
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Sjöqvist PO, Wiklund L, Sharma HS. Nanodelivery of histamine H3 receptor inverse agonist BF-2649 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:37-77. [PMID: 37833018 DOI: 10.1016/bs.irn.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Military personnel are often victims of spinal cord injury resulting in lifetime disability and decrease in quality of life. However, no suitable therapeutic measures are still available to restore functional disability or arresting the pathophysiological progression of disease in victims for leading a better quality of life. Thus, further research in spinal cord injury using novel strategies or combination of available neuroprotective drugs is urgently needed for superior neuroprotection. In this regard, our laboratory is engaged in developing TiO2 nanowired delivery of drugs, antibodies and enzymes in combination to attenuate spinal cord injury induced pathophysiology and functional disability in experimental rodent model. Previous observations show that histamine antagonists or antioxidant compounds when given alone in spinal cord injury are able to induce neuroprotection for short periods after trauma. In this investigation we used a combination of histaminergic drugs with antioxidant compound H-290/51 using their nanowired delivery for neuroprotection in spinal cord injury of longer duration. Our observations show that a combination of H3 receptor inverse agonist BF-2549 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. These observations suggests that histamine receptors are involved in the pathophysiology of spinal cord injury and induce superior neuroprotection in combination with an inhibitor of lipid peroxidation H-290/51, not reported earlier. The possible mechanisms and significance of our findings in relation to future clinical approaches in spinal cord injury is discussed.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Per-Ove Sjöqvist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
5
|
Marghani BH, Rezk S, Ateya AI, Alotaibi BS, Othman BH, Sayed SM, Alshehri MA, Shukry M, Mansour MM. The Effect of Cerebrolysin in an Animal Model of Forebrain Ischemic-Reperfusion Injury: New Insights into the Activation of the Keap1/Nrf2/Antioxidant Signaling Pathway. Int J Mol Sci 2023; 24:12080. [PMID: 37569457 PMCID: PMC10418386 DOI: 10.3390/ijms241512080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Forebrain ischemia-reperfusion (IR) injury causes neurological impairments due to decreased cerebral autoregulation, hypoperfusion, and edema in the hours to days following the restoration of spontaneous circulation. This study aimed to examine the protective and/or therapeutic effects of cerebrolysin (CBL) in managing forebrain IR injury and any probable underlying mechanisms. To study the contribution of reperfusion to forebrain injury, we developed a transient dual carotid artery ligation (tDCAL/IR) mouse model. Five equal groups of six BLC57 mice were created: Group 1: control group (no surgery was performed); Group 2: sham surgery (surgery was performed without IR); Group 3: tDCAL/IR (surgery with IR via permanently ligating the left CA and temporarily closing the right CA for 30 min, followed by reperfusion for 72 h); Group 4: CBL + tDCAL/IR (CBL was given intravenously at a 60 mg/kg BW dose 30 min before IR); and Group 5: tDCAL/IR + CBL (CBL was administered i.v. at 60 mg/kg BW three hours after IR). At 72 h following IR, the mice were euthanized. CBL administration 3 h after IR improved neurological functional recovery, enhanced anti-inflammatory and antioxidant activities, alleviated apoptotic neuronal death, and inhibited reactive microglial and astrocyte activation, resulting in neuroprotection after IR injury in the tDCAL/IR + CBL mice group as compared to the other groups. Furthermore, CBL reduced the TLRs/NF-kB/cytokines while activating the Keap1/Nrf2/antioxidant signaling pathway. These results indicate that CBL may improve neurologic function in mice following IR.
Collapse
Affiliation(s)
- Basma H. Marghani
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Biochemistry, Physiology, and Pharmacology, Faculty of Veterinary Medicine, King Salman International University, El Tor 46612, Egypt
| | - Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I. Ateya
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Basma H. Othman
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Samy M. Sayed
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Department of Science and Technology, Ranyah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammed Ali Alshehri
- Biology Department, College of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed M. Mansour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Cerebrolysin in Patients with TBI: Systematic Review and Meta-Analysis. Brain Sci 2023; 13:brainsci13030507. [PMID: 36979317 PMCID: PMC10046100 DOI: 10.3390/brainsci13030507] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
TBI (traumatic brain injury) is one of the most common causes of deaths and failure to return to society according to the latest statistics. Cerebrolysin is a drug approved for use in patients diagnosed with TBI. It is a mixture of neuropeptides derived from purified porcine brain proteins and multiple experimental studies have proven its neuroprotective and neurorestorative properties both in vitro and in vivo. In our meta-analysis, we analyze the latest clinical study reports on the use of Cerebrolysin in patients with TBI. The authors searched the databases: Pub Med, Cinahl, Web Of Science, and Embase from database inception until 11th July 2022. Ten clinical studies were eligible and included in the final analysis, including both retrospective and prospective studies of 8749 patients. Treatment with Cerebrolysin was associated with a statistically significant change in GCS and GOS. Mortality of any cause and the length of stay was not affected by the treatment. Our findings support and confirm the beneficial effects of Cerebrolysin treatment on the clinical outcome of patients after TBI. Further multi-center studies to optimize dosing and time of administration should be conducted.
Collapse
|
7
|
Elhessy HM, Habotta OA, Eldesoqui M, Elsaed WM, Soliman MFM, Sewilam HM, Elhassan YH, Lashine NH. Comparative neuroprotective effects of Cerebrolysin, dexamethasone, and ascorbic acid on sciatic nerve injury model: Behavioral and histopathological study. Front Neuroanat 2023; 17:1090738. [PMID: 36816518 PMCID: PMC9928760 DOI: 10.3389/fnana.2023.1090738] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Background The majority of the suggested experimental modalities for peripheral nerve injury (PNI) result in varying degrees of recovery in animal models; however, there are not many reliable clinical pharmacological treatment models available. To alleviate PNI complications, research on approaches to accelerate peripheral nerve regeneration is encouraged. Cerebrolysin, dexamethasone, and ascorbic acid (vitamin C) drug models were selected in our study because of their reported curative effects of different mechanisms of action. Methodology A total of 40 adult male albino rats were used in this study. Sciatic nerve crush injury was induced in 32 rats, which were divided equally into four groups (model, Cerebrolysin, dexamethasone, and vitamin C groups) and compared to the sham group (n = 8). The sciatic nerve sensory and motor function regeneration after crushing together with gastrocnemius muscle histopathological changes were evaluated by the sciatic function index, the hot plate test, gastrocnemius muscle mass ratio, and immune expression of S100 and apoptosis cascade (BAX, BCL2, and BAX/BCL2 ratio). Results Significant improvement of the behavioral status and histopathological assessment scores occurred after the use of Cerebrolysin (as a neurotrophic factor), dexamethasone (as an anti-inflammatory), and vitamin C (as an antioxidant). Despite these seemingly concomitant, robust behavioral and pathological changes, vitamin C appeared to have the best results among the three main outcome measures. There was a positive correlation between motor and sensory improvement and also between behavioral and histopathological changes, boosting the effectiveness, and implication of the sciatic function index as a mirror for changes occurring on the tissue level. Conclusion Vitamin C is a promising therapeutic in the treatment of PNI. The sciatic function index (SFI) test is a reliable accurate method for assessing sciatic nerve integrity after both partial disruption and regrowth.
Collapse
Affiliation(s)
- Heba M. Elhessy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,*Correspondence: Heba M. Elhessy,
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mamdouh Eldesoqui
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Wael M. Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona F. M. Soliman
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Haitham M. Sewilam
- Department of Histology and Cell Biology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Y. H. Elhassan
- Department of Anatomy, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Nermeen H. Lashine
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Sharma HS, Muresanu DF, Nozari A, Lafuente JV, Buzoianu AD, Tian ZR, Huang H, Feng L, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma A. Neuroprotective Effects of Nanowired Delivery of Cerebrolysin with Mesenchymal Stem Cells and Monoclonal Antibodies to Neuronal Nitric Oxide Synthase in Brain Pathology Following Alzheimer's Disease Exacerbated by Concussive Head Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:139-192. [PMID: 37480461 DOI: 10.1007/978-3-031-32997-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors in developing Alzheimer's disease (AD) in military personnel at later stages of life. Breakdown of the blood-brain barrier (BBB) in CHI leads to extravasation of plasma amyloid beta protein (ΑβP) into the brain fluid compartments precipitating AD brain pathology. Oxidative stress in CHI or AD is likely to enhance production of nitric oxide indicating a role of its synthesizing enzyme neuronal nitric oxide synthase (NOS) in brain pathology. Thus, exploration of the novel roles of nanomedicine in AD or CHI reducing NOS upregulation for neuroprotection are emerging. Recent research shows that stem cells and neurotrophic factors play key roles in CHI-induced aggravation of AD brain pathologies. Previous studies in our laboratory demonstrated that CHI exacerbates AD brain pathology in model experiments. Accordingly, it is quite likely that nanodelivery of NOS antibodies together with cerebrolysin and mesenchymal stem cells (MSCs) will induce superior neuroprotection in AD associated with CHI. In this review, co-administration of TiO2 nanowired cerebrolysin - a balanced composition of several neurotrophic factors and active peptide fragments, together with MSCs and monoclonal antibodies (mAb) to neuronal NOS is investigated for superior neuroprotection following exacerbation of brain pathology in AD exacerbated by CHI based on our own investigations. Our observations show that nanowired delivery of cerebrolysin, MSCs and neuronal NOS in combination induces superior neuroprotective in brain pathology in AD exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Wiklund L, Sharma A, Muresanu DF, Zhang Z, Li C, Tian ZR, Buzoianu AD, Lafuente JV, Nozari A, Feng L, Sharma HS. TiO 2-Nanowired Delivery of Chinese Extract of Ginkgo biloba EGb-761 and Bilobalide BN-52021 Enhanced Neuroprotective Effects of Cerebrolysin Following Spinal Cord Injury at Cold Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:353-384. [PMID: 37480466 DOI: 10.1007/978-3-031-32997-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel during combat or peacekeeping operations are exposed to extreme climates of hot or cold environments for longer durations. Spinal cord injury is quite common in military personnel following central nervous system (CNS) trauma indicating a possibility of altered pathophysiological responses at different ambient temperatures. Our previous studies show that the pathophysiology of brain injury is exacerbated in animals acclimated to cold (5 °C) or hot (30 °C) environments. In these diverse ambient temperature zones, trauma exacerbated oxidative stress generation inducing greater blood-brain barrier (BBB) permeability and cell damage. Extracts of Ginkgo biloba EGb-761 and BN-52021 treatment reduces brain pathology following heat stress. This effect is further improved following TiO2 nanowired delivery in heat stress in animal models. Several studies indicate the role of EGb-761 in attenuating spinal cord induced neuronal damages and improved functional deficit. This is quite likely that these effects are further improved following nanowired delivery of EGb-761 and BN-52021 with cerebrolysin-a balanced composition of several neurotrophic factors and peptide fragments in spinal cord trauma. In this review, TiO2 nanowired delivery of EGb-761 and BN-52021 with nanowired cerebrolysin is examined in a rat model of spinal cord injury at cold environment. Our results show that spinal cord injury aggravates cord pathology in cold-acclimated rats and nanowired delivery of EGb-761 and BN-52021 with cerebrolysin significantly induced superior neuroprotection, not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Hari Shanker Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Ayeni EA, Aldossary AM, Ayejoto DA, Gbadegesin LA, Alshehri AA, Alfassam HA, Afewerky HK, Almughem FA, Bello SM, Tawfik EA. Neurodegenerative Diseases: Implications of Environmental and Climatic Influences on Neurotransmitters and Neuronal Hormones Activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912495. [PMID: 36231792 PMCID: PMC9564880 DOI: 10.3390/ijerph191912495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 05/23/2023]
Abstract
Neurodegenerative and neuronal-related diseases are major public health concerns. Human vulnerability to neurodegenerative diseases (NDDs) increases with age. Neuronal hormones and neurotransmitters are major determinant factors regulating brain structure and functions. The implications of environmental and climatic changes emerged recently as influence factors on numerous diseases. However, the complex interaction of neurotransmitters and neuronal hormones and their depletion under environmental and climatic influences on NDDs are not well established in the literature. In this review, we aim to explore the connection between the environmental and climatic factors to NDDs and to highlight the available and potential therapeutic interventions that could use to improve the quality of life and reduce susceptibility to NDDs.
Collapse
Affiliation(s)
- Emmanuel A. Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ahmad M. Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Daniel A. Ayejoto
- Department of Industrial Chemistry, University of Ilorin, Ilorin 240003, Nigeria
| | - Lanre A. Gbadegesin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Abdullah A. Alshehri
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Haya A. Alfassam
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Henok K. Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Allied Health Professions, Asmara College of Health Sciences, Asmara P.O. Box 1220, Eritrea
| | - Fahad A. Almughem
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Saidu M. Bello
- Institute of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary
| | - Essam A. Tawfik
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| |
Collapse
|
11
|
Staszewski J, Stȩpień A, Piusińska-Macoch R, Dȩbiec A, Gniadek-Olejniczak K, Frankowska E, Maliborski A, Chadaide Z, Balo D, Król B, Namias R, Harston G, Mróz J, Piasecki P. Efficacy of Cerebrolysin Treatment as an Add-On Therapy to Mechanical Thrombectomy in Patients With Acute Ischemic Stroke Due to Large Vessel Occlusion: Study Protocol for a Prospective, Open Label, Single-Center Study With 12 Months of Follow-Up. Front Neurol 2022; 13:910697. [PMID: 35860483 PMCID: PMC9289167 DOI: 10.3389/fneur.2022.910697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022] Open
Abstract
This study is designed to determine the efficacy of Cerebrolysin treatment as an add-on therapy to mechanical thrombectomy (MT) in reducing global disability in subjects with acute ischemic stroke (AIS). We have planned a single center, prospective, open-label, single-arm study with a 12-month follow-up of 50 patients with moderate to severe AIS, with a small established infarct core and with good collateral circulation who achieve significant reperfusion following MT and who receive additional Cerebrolysin within 8 h of stroke onset compared to 50 historical controls treated with MT alone, matched for age, clinical severity, occlusion location, baseline perfusion lesion volume, onset to reperfusion time, and use of iv thrombolytic therapy. The primary outcome measure will be the overall proportion of subjects receiving Cerebrolysin compared to the control group experiencing a favorable functional outcome (by modified Rankin Scale 0-2) at 90 days, following stroke onset. The secondary objectives are to determine the efficacy of Cerebrolysin as compared to the control group in reducing the risk of symptomatic secondary hemorrhagic transformation, improving neurological outcomes (NIHSS 0-2 at day 7, day 30, and 90), reducing mortality rates (over the 90-day and 12 months study period), and improving: activities of daily living (by Barthel Index), health-related quality of life (EQ-5D-5L) assessed at day 30, 90, and at 12 months. The other measures of efficacy in the Cerebrolysin group will include: assessment of final stroke volume and penumbral salvage (measured by CT/CTP at 30 days) and its change compared to baseline volume, changes over time in language function (by the 15-item Boston Naming Test), hemispatial neglect (by line bisection test), global cognitive function (by The Montreal Cognitive Assessment), and depression (by Hamilton Depression Rating Scale) between day 30 and day 90 assessments). The patients will receive 30 ml of Cerebrolysin within 8 h of AIS stroke onset and continue treatment once daily until day 21 (first cycle) and they will receive a second cycle of treatment (30 ml/d for 21 days given in the Outpatient Department or Neurorehabilitation Clinic) from day 69 to 90.
Collapse
Affiliation(s)
- Jacek Staszewski
- Clinic of Neurology, Military Institute of Medicine, Warsaw, Poland
| | - Adam Stȩpień
- Clinic of Neurology, Military Institute of Medicine, Warsaw, Poland
| | | | | | | | - Emilia Frankowska
- Department of Radiology, Military Institute of Medicine, Warsaw, Poland
| | - Artur Maliborski
- Department of Radiology, Military Institute of Medicine, Warsaw, Poland
| | - Zoltan Chadaide
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - David Balo
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - Beata Król
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - Rafael Namias
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - George Harston
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - Józef Mróz
- Neurorehabilitation Clinic, Military Institute of Medicine, Warsaw, Poland
| | - Piotr Piasecki
- Department of Radiology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
12
|
Lucena LLN, Briones MVA. Effect of Cerebrolysin in severe traumatic brain injury: A multi-center, retrospective cohort study. Clin Neurol Neurosurg 2022; 216:107216. [PMID: 35344761 DOI: 10.1016/j.clineuro.2022.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Severe traumatic brain injury (TBI) patients with nonoperative lesions are known to have a poorer prognosis. Recent and ongoing clinical studies have been exploring the utility of Cerebrolysin in improving patient outcomes among TBI patients; however, few studies are available on the effect of Cerebrolysin among nonoperative severe TBI patients. OBJECTIVES To determine the effects of Cerebrolysin as add-on therapy to the standard medical decompression protocol for nonoperative severe TBI patients. METHODS The study employed a retrospective cohort design and included 87 severe TBI patients on admission. In addition to the current medical decompression protocol, 42 patients received 30 ml/day Cerebrolysin for 14 days, followed by a subsequent 10 ml/day dosage for another 14 days. The control group included 45 patients who received the standard decompression protocol only. Stata MP version 16 was used for data analysis. RESULTS Compared to the control group, a significantly higher proportion of patients who received Cerebrolysin treatment achieved a favourable outcome at Day 21 post-TBI (50% vs. 87%; p < 0.00001) and GOS ≥ 4 (18% vs. 39%; p = 0.043). The mean length of hospital stay was approximately seven days shorter in the Cerebrolysin group (25.61 days vs. 31.92 days; p < 0.00001), and a significantly lower proportion of Cerebrolysin patients had a LOS ≥ 30 days (Cerebrolysin: 13%; Control: 51%; p < 0.0001). No significant group differences were seen in the 28-day mortality rate. CONCLUSION Cerebrolysin is beneficial for severe TBI patients with nonoperative lesions as evidenced by stronger improvement in GCS/GOS and shorter length of hospital stay than standard treatment alone.
Collapse
|
13
|
Sharma HS, Muresanu DF, Ozkizilcik A, Sahib S, Tian ZR, Lafuente JV, Castellani RJ, Nozari A, Feng L, Buzoianu AD, Menon PK, Patnaik R, Wiklund L, Sharma A. Superior antioxidant and anti-ischemic neuroprotective effects of cerebrolysin in heat stroke following intoxication of engineered metal Ag and Cu nanoparticles: A comparative biochemical and physiological study with other stroke therapies. PROGRESS IN BRAIN RESEARCH 2021; 266:301-348. [PMID: 34689862 DOI: 10.1016/bs.pbr.2021.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Military personnel are often exposed to high environmental heat associated with industrial or ambient abundance of nanoparticles (NPs) affecting brain function. We have shown that engineered metal NPs Ag and Cu exacerbate hyperthermia induced brain pathology. Thus, exploration of novel drug therapy is needed for effective neuroprotection in heat stroke intoxicated with NPs. In this investigation neuroprotective effects of cerebrolysin, a balanced composition of several neurotrophic factors and active peptides fragments exhibiting powerful antioxidant and anti-ischemic effects was examined in heat stroke after NPs intoxication. In addition, its efficacy is compared to currently used drugs in post-stroke therapies in clinics. Thus, levertiracetam, pregabalin, topiramat and valproate were compared in standard doses with cerebrolysin in heat stroke intoxicated with Cu or Ag NPs (50-60nm, 50mg/kg, i.p./day for 7 days). Rats were subjected to 4h heat stress (HS) in a biological oxygen demand incubator at 38°C (Relative Humidity 45-47%; Wind velocity 22.4-25.6cm/s) that resulted in profound increase in oxidants Luminol, Lucigenin, Malondialdehyde and Myeloperoxidase, and a marked decrease in antioxidant Glutathione. At this time severe reductions in the cerebral blood flow (CBF) was seen together with increased blood-brain barrier (BBB) breakdown and brain edema formation. These pathophysiological responses were exacerbated in NPs treated heat-stressed animals. Pretreatment with cerebrolysin (2.5mL/kg, i.v.) once daily for 3 days significantly attenuated the oxidative stress, BBB breakdown and brain edema and improved CBF in the heat stressed group. The other drugs were least effective on brain pathology following heat stroke. However, in NPs treated heat stressed animals 5mL/kg conventional cerebrolysin and 2.5mL/kg nanowired cerebrolysin is needed to attenuate oxidative stress, BBB breakdown, brain edema and to improve CBF. Interestingly, the other drugs even in higher doses used are unable to alter brain pathologies in NPs and heat stress. These observations are the first to demonstrate that cerebrolysin is the most superior antioxidant and anti-ischemic drug in NPs exposed heat stroke, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Bongioanni P, Del Carratore R, Corbianco S, Diana A, Cavallini G, Masciandaro SM, Dini M, Buizza R. Climate change and neurodegenerative diseases. ENVIRONMENTAL RESEARCH 2021; 201:111511. [PMID: 34126048 DOI: 10.1016/j.envres.2021.111511] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The climate change induced global warming, and in particular the increased frequency and intensity of heat waves, have been linked to health problems. Among them, scientific works have been reporting an increased incidence of neurological diseases, encompassing also neurodegenerative ones, such as Dementia of Alzheimer's type, Parkinson's Disease, and Motor Neuron Diseases. Although the increase in prevalence of neurodegenerative diseases is well documented by literature reports, the link between global warming and the enhanced prevalence of such diseases remains elusive. This is the main theme of our work, which aims to examine the connection between high temperature exposure and neurodegenerative diseases. Firstly, we evaluate the influence of high temperatures exposure on the pathophysiology of these disorders. Secondly, we discuss its effects on the thermoregulation, already compromised in affected patients, and its interference with processes of excitotoxicity, oxidative stress and neuroinflammation, all of them related with neurodegeneration. Finally, we investigate chronic versus acute stressors on body warming, and put forward a possible interpretation of the beneficial or detrimental effects on the brain, which is responsible for the incidence or progression of neurological disorders.
Collapse
Affiliation(s)
- Paolo Bongioanni
- Severe Acquired Brain Injuries Dpt Section, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; NeuroCare Onlus, Pisa, Italy
| | | | - Silvia Corbianco
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Italy; Human Movement and Rehabilitation Research Laboratory, Pisa, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gabriella Cavallini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Italy
| | - Silvia M Masciandaro
- NeuroCare Onlus, Pisa, Italy; Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Marco Dini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Italy; Human Movement and Rehabilitation Research Laboratory, Pisa, Italy
| | - Roberto Buizza
- Scuola Superiore Sant'Anna and Centre for Climate Change Studies and Sustainable Actions (3CSA), Pisa, Italy
| |
Collapse
|
16
|
Topical application of CNTF, GDNF and BDNF in combination attenuates blood-spinal cord barrier permeability, edema formation, hemeoxygenase-2 upregulation, and cord pathology. PROGRESS IN BRAIN RESEARCH 2021; 266:357-376. [PMID: 34689864 DOI: 10.1016/bs.pbr.2021.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) is one of the leading causes of disability in Military personnel for which no suitable therapeutic strategies are available till today. Thus, exploration of novel therapeutic measures is highly needed to enhance the quality of life of SCI victims. Previously, topical application of BDNF and GDNF in combination over the injured spinal cord after 90min induced marked neuroprotection. In present investigation, we added CNTF in combination with BDNF and/or GDNF treatment to examine weather the triple combination applied over the traumatic cord after 90 or 120min could thwart cord pathology. Since neurotrophins attenuate nitric oxide (NO) production in SCI, the role of carbon monoxide (CO) production that is similar to NO in inducing cell injury was explored using immunohistochemistry of the constitutive isoform of enzyme hemeoxygenase-2 (HO-2). SCI inflicted over the right dorsal horn of the T10-11 segments by making an incision of 2mm deep and 5mm long upregulated the HO-2 immunostaining in the T9 and T12 segments after 5h injury. These perifocal segments are associated with breakdown of the blood-spinal cord barrier (BSCB), edema development and cell injuries. Topical application of CNTF with BDNF and GDNF in combination (10ng each) after 90 and 120min over the injured spinal cord significantly attenuated the BSCB breakdown, edema formation, cell injury and overexpression of HO-2. These observations are the first to show that CNTF with BDNF and GDNF induced superior neuroprotection in SCI probably by downregulation of CO production, not reported earlier.
Collapse
|
17
|
Cerebrolysin for stroke, neurodegeneration, and traumatic brain injury: review of the literature and outcomes. Neurol Sci 2021; 42:1345-1353. [PMID: 33515100 DOI: 10.1007/s10072-021-05089-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
Cerebrolysin therapy has the potential to significantly aid in the treatment of a wide variety of debilitating neurological diseases including ischemic strokes, neurodegenerative disorders, and traumatic brain injuries. Although Cerebrolysin is not approved for use in the USA, it is used clinically in over 50 countries worldwide. In this review, we focus on outlining the role that Cerebrolysin has in stimulating the molecular signaling pathways that are critical for neurological regeneration and support. An extensive evaluation of these signaling pathways reveals that Cerebrolysin has the potential to intervene in a diverse array of pathophysiological causes of neurological diseases. In the clinical setting, Cerebrolysin is generally safe for human use and has provided functional improvement when used as an adjunct treatment. However, our literature review revealed inconsistent results, as several clinical studies suggested that Cerebrolysin treatment has minor clinical relevance and did not have significant advantages over a placebo. In conclusion, we found that Cerebrolysin therapy can potentially play a major role in the treatment of many neurological diseases. Nevertheless, there remains much to be elucidated about the efficacy of this treatment for specific neurological conditions, and more robust clinical data is needed to reach a consensus and properly define the therapeutic role of Cerebrolysin.
Collapse
|
18
|
Sahib S, Sharma A, Menon PK, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Bryukhovetskiy I, Tian ZR, Patnaik R, Buzoianu AD, Wiklund L, Sharma HS. Cerebrolysin enhances spinal cord conduction and reduces blood-spinal cord barrier breakdown, edema formation, immediate early gene expression and cord pathology after injury. PROGRESS IN BRAIN RESEARCH 2020; 258:397-438. [PMID: 33223040 DOI: 10.1016/bs.pbr.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Spinal cord evoked potentials (SCEP) are good indicators of spinal cord function in health and disease. Disturbances in SCEP amplitudes and latencies during spinal cord monitoring predict spinal cord pathology following trauma. Treatment with neuroprotective agents preserves SCEP and reduces cord pathology after injury. The possibility that cerebrolysin, a balanced composition of neurotrophic factors improves spinal cord conduction, attenuates blood-spinal cord barrier (BSCB) disruption, edema formation, and cord pathology was examined in spinal cord injury (SCI). SCEP is recorded from epidural space over rat spinal cord T9 and T12 segments after peripheral nerves stimulation. SCEP consists of a small positive peak (MPP), followed by a prominent negative peak (MNP) that is stable before SCI. A longitudinal incision (2mm deep and 5mm long) into the right dorsal horn (T10 and T11 segments) resulted in an immediate long-lasting depression of the rostral MNP with an increase in the latencies. Pretreatment with either cerebrolysin (CBL 5mL/kg, i.v. 30min before) alone or TiO2 nanowired delivery of cerebrolysin (NWCBL 2.5mL/kg, i.v.) prevented the loss of MNP amplitude and even enhanced further from the pre-injury level after SCI without affecting latencies. At 5h, SCI induced edema, BSCB breakdown, and cell injuries were significantly reduced by CBL and NWCBL pretreatment. Interestingly this effect on SCEP and cord pathology was still prominent when the NWCBL was delivered 2min after SCI. Moreover, expressions of c-fos and c-jun genes that are prominent at 5h in untreated SCI are also considerably reduced by CBL and NWCBL treatment. These results are the first to show that CBL and NWCBL enhanced SCEP activity and thwarted the development of cord pathology after SCI. Furthermore, NWCBL in low doses has superior neuroprotective effects on SCEP and cord pathology, not reported earlier. The functional significance and future clinical potential of CBL and NWCBL in SCI are discussed.
Collapse
Affiliation(s)
- Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Preeti K Menon
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Muresanu DF, Sharma A, Sahib S, Tian ZR, Feng L, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma HS. Diabetes exacerbates brain pathology following a focal blast brain injury: New role of a multimodal drug cerebrolysin and nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:285-367. [PMID: 33223037 DOI: 10.1016/bs.pbr.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blast brain injury (bBI) is a combination of several forces of pressure, rotation, penetration of sharp objects and chemical exposure causing laceration, perforation and tissue losses in the brain. The bBI is quite prevalent in military personnel during combat operations. However, no suitable therapeutic strategies are available so far to minimize bBI pathology. Combat stress induces profound cardiovascular and endocrine dysfunction leading to psychosomatic disorders including diabetes mellitus (DM). This is still unclear whether brain pathology in bBI could exacerbate in DM. In present review influence of DM on pathophysiology of bBI is discussed based on our own investigations. In addition, treatment with cerebrolysin (a multimodal drug comprising neurotrophic factors and active peptide fragments) or H-290/51 (a chain-breaking antioxidant) using nanowired delivery of for superior neuroprotection on brain pathology in bBI in DM is explored. Our observations are the first to show that pathophysiology of bBI is exacerbated in DM and TiO2-nanowired delivery of cerebrolysin induces profound neuroprotection in bBI in DM, not reported earlier. The clinical significance of our findings with regard to military medicine is discussed.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Sharma A, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Bryukhovetskiy I, Manzhulo I, Patnaik R, Wiklund L, Sharma HS. Concussive head injury exacerbates neuropathology of sleep deprivation: Superior neuroprotection by co-administration of TiO 2-nanowired cerebrolysin, alpha-melanocyte-stimulating hormone, and mesenchymal stem cells. PROGRESS IN BRAIN RESEARCH 2020; 258:1-77. [PMID: 33223033 DOI: 10.1016/bs.pbr.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep deprivation (SD) is common in military personnel engaged in combat operations leading to brain dysfunction. Military personnel during acute or chronic SD often prone to traumatic brain injury (TBI) indicating the possibility of further exacerbating brain pathology. Several lines of evidence suggest that in both TBI and SD alpha-melanocyte-stimulating hormone (α-MSH) and brain-derived neurotrophic factor (BDNF) levels decreases in plasma and brain. Thus, a possibility exists that exogenous supplement of α-MSH and/or BDNF induces neuroprotection in SD compounded with TBI. In addition, mesenchymal stem cells (MSCs) are very portent in inducing neuroprotection in TBI. We examined the effects of concussive head injury (CHI) in SD on brain pathology. Furthermore, possible neuroprotective effects of α-MSH, MSCs and neurotrophic factors treatment were explored in a rat model of SD and CHI. Rats subjected to 48h SD with CHI exhibited higher leakage of BBB to Evans blue and radioiodine compared to identical SD or CHI alone. Brain pathology was also exacerbated in SD with CHI group as compared to SD or CHI alone together with a significant reduction in α-MSH and BDNF levels in plasma and brain and enhanced level of tumor necrosis factor-alpha (TNF-α). Exogenous administration of α-MSH (250μg/kg) together with MSCs (1×106) and cerebrolysin (a balanced composition of several neurotrophic factors and active peptide fragments) (5mL/kg) significantly induced neuroprotection in SD with CHI. Interestingly, TiO2 nanowired delivery of α-MSH (100μg), MSCs, and cerebrolysin (2.5mL/kg) induced enhanced neuroprotection with higher levels of α-MSH and BDNF and decreased the TNF-α in SD with CHI. These observations are the first to show that TiO2 nanowired administration of α-MSH, MSCs and cerebrolysin induces superior neuroprotection following SD in CHI, not reported earlier. The clinical significance of our findings in light of the current literature is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 2020; 17:35. [PMID: 32375819 PMCID: PMC7201396 DOI: 10.1186/s12987-020-00196-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
The choroid plexus (CP) forming the blood-cerebrospinal fluid (B-CSF) barrier is among the least studied structures of the central nervous system (CNS) despite its clinical importance. The CP is an epithelio-endothelial convolute comprising a highly vascularized stroma with fenestrated capillaries and a continuous lining of epithelial cells joined by apical tight junctions (TJs) that are crucial in forming the B-CSF barrier. Integrity of the CP is critical for maintaining brain homeostasis and B-CSF barrier permeability. Recent experimental and clinical research has uncovered the significance of the CP in the pathophysiology of various diseases affecting the CNS. The CP is involved in penetration of various pathogens into the CNS, as well as the development of neurodegenerative (e.g., Alzheimer´s disease) and autoimmune diseases (e.g., multiple sclerosis). Moreover, the CP was shown to be important for restoring brain homeostasis following stroke and trauma. In addition, new diagnostic methods and treatment of CP papilloma and carcinoma have recently been developed. This review describes and summarizes the current state of knowledge with regard to the roles of the CP and B-CSF barrier in the pathophysiology of various types of CNS diseases and sets up the foundation for further avenues of research.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital Brno, Pekařská 53, CZ-656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Lucie Kubíčková
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic.
| |
Collapse
|
23
|
Efficacy and safety of cerebrolysin in neurorecovery after moderate-severe traumatic brain injury: results from the CAPTAIN II trial. Neurol Sci 2020; 41:1171-1181. [PMID: 31897941 DOI: 10.1007/s10072-019-04181-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The objective of this trial was to evaluate the efficacy and safety of Cerebrolysin in treating patients after moderate to severe traumatic brain injury (TBI) as an adjunct to standard care protocols. The trial was designed to investigate the clinical effects of Cerebrolysin in the acute (neuroprotective) stage and during early and long-term recovery as part of a neurorestorative strategy. MATERIALS AND METHODS The study was a phase IIIb/IV single-center, prospective, randomized, double-blind, placebo-controlled clinical trial. Eligible patients with a Glasgow Coma Score (GCS) between 7 and 12 received study medication (50 ml of Cerebrolysin or physiological saline solution per day for 10 days, followed by two additional treatment cycles with 10 ml per day for 10 days) in addition to standard care. We tested ensembles of efficacy criteria for 90, 30, and 10 days after TBI with a priori ordered hypotheses using a multivariate, directional test, to reflect the global status of patients after TBI. RESULTS The study enrolled 142 patients, of which 139 underwent formal analysis (mean age = 47.4, mean admission GCS = 10.4, and mean Baseline Prognostic Risk Score = 2.6). The primary endpoint, a multidimensional ensemble of 13 outcome scales, indicated a "small-to-medium"-sized effect in favor of Cerebrolysin, statistically significant at day 90 (MWcombined = 0.59, 95% CI 0.52 to 0.66, P = 0.0119). Safety and tolerability observations were comparable between treatment groups. CONCLUSION Our trial confirms previous beneficial effects of the multimodal, biological agent Cerebrolysin for overall outcome after moderate to severe TBI, as measured by a multidimensional approach. Study findings must be appraised and aggregated in conjunction with existing literature, as to improve the overall level of insight regarding therapeutic options for TBI patients. The widely used pharmacologic intervention may benefit from a large-scale observational study to map its use and to establish comparative effectiveness in real-world clinical settings.
Collapse
|
24
|
Ruszkiewicz JA, Tinkov AA, Skalny AV, Siokas V, Dardiotis E, Tsatsakis A, Bowman AB, da Rocha JBT, Aschner M. Brain diseases in changing climate. ENVIRONMENTAL RESEARCH 2019; 177:108637. [PMID: 31416010 PMCID: PMC6717544 DOI: 10.1016/j.envres.2019.108637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Climate change is one of the biggest and most urgent challenges for the 21st century. Rising average temperatures and ocean levels, altered precipitation patterns and increased occurrence of extreme weather events affect not only the global landscape and ecosystem, but also human health. Multiple environmental factors influence the onset and severity of human diseases and changing climate may have a great impact on these factors. Climate shifts disrupt the quantity and quality of water, increase environmental pollution, change the distribution of pathogens and severely impacts food production - all of which are important regarding public health. This paper focuses on brain health and provides an overview of climate change impacts on risk factors specific to brain diseases and disorders. We also discuss emerging hazards in brain health due to mitigation and adaptation strategies in response to climate changes.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Trace Element Institute for UNESCO, Lyon, France
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - João B T da Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
25
|
Liu Z, Wang W, Huang T, Wang C, Huang Y, Tang Y, Huang J. CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer's disease. PLoS One 2019; 14:e0222757. [PMID: 31545823 PMCID: PMC6756745 DOI: 10.1371/journal.pone.0222757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/07/2019] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and is the most common type of cognitive impairment and dementia. There is a pressing need to improve the clinical efficacy and quality of life for AD patients, as limited treatments options for AD patients have been developed until now. In this study, we aim to investigate the protective effect of CH(II), a cerebroprotein hydrolysate consisted of abundant biological peptides, on preclinical model of AD. We found that CH(II) treatment effectively protects oxygen glucose deprivation (OGD)-induced N2A cell viability impairment and cell apoptosis. In addition, CH(II) significantly reduces H2O2-induced ROS accumulation and exhibits the protective activities against H2O2-induced oxidative injury. Intriguingly, we found that CH(II) treatment can effectively promote neurite outgrowth of N2A cells. Moreover, CH(II) obviously improve the cognitive and memorial function in scopolamine-induced amnesia mice model. Taken together, this study provides evidences of the neuroprotective activities of CH(II) and offers a potential therapeutic strategy for AD patients.
Collapse
Affiliation(s)
- Zehui Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wanyan Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tingyu Huang
- Guangdong Long Fu Pharmaceutical Co., Ltd, Guangdong, China
| | - Cunfang Wang
- Guangdong Long Fu Pharmaceutical Co., Ltd, Guangdong, China
| | - Ying Huang
- Guangdong Institute for Drug Control, Guangdong, China
| | - Yong Tang
- Department of Urology, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Jin Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
26
|
Poon W, Matula C, Vos PE, Muresanu DF, von Steinbüchel N, von Wild K, Hömberg V, Wang E, Lee TMC, Strilciuc S, Vester JC. Safety and efficacy of Cerebrolysin in acute brain injury and neurorecovery: CAPTAIN I-a randomized, placebo-controlled, double-blind, Asian-Pacific trial. Neurol Sci 2019; 41:281-293. [PMID: 31494820 DOI: 10.1007/s10072-019-04053-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the safety and efficacy of Cerebrolysin as an add-on therapy to local standard treatment protocol in patients after moderate-to-severe traumatic brain injury. METHODS The patients received the study medication in addition to standard care (50 mL of Cerebrolysin or physiological saline solution daily for 10 days, followed by two additional treatment cycles with 10 mL daily for 10 days) in a prospective, randomized, double-blind, placebo-controlled, parallel-group, multi-centre phase IIIb/IV trial. The primary endpoint was a multidimensional ensemble of 14 outcome scales pooled to be analyzed by means of the multivariate, correlation-sensitive Wei-Lachin procedure. RESULTS In 46 enrolled TBI patients (Cerebrolysin 22, placebo 24), three single outcomes showed stand-alone statistically significant superiority of Cerebrolysin [Stroop Word/Dots Interference (p = 0.0415, Mann-Whitney(MW) = 0.6816, 95% CI 0.51-0.86); Color Trails Tests 1 and 2 (p = 0.0223/0.0170, MW = 0.72/0.73, 95% CI 0.53-0.90/0.54-0.91), both effect sizes lying above the benchmark for "large" superiority (MW > 0.71)]. While for the primary multivariate ensemble, statistical significance was just missed in the intention-to-treat population (pWei-Lachin < 0.1, MWcombined = 0.63, 95% CI 0.48-0.77, derived standardized mean difference (SMD) 0.45, 95% CI -0.07 to 1.04, derived OR 2.1, 95% CI 0.89-5.95), the per-protocol analysis showed a statistical significant superiority of Cerebrolysin (pWei-Lachin = 0.0240, MWcombined = 0.69, 95% CI 0.53 to 0.85, derived SMD 0.69, 95% CI 0.09 to 1.47, derived OR 3.2, 95% CI 1.16 to 12.8), with effect sizes of six single outcomes lying above the benchmark for "large" superiority. Safety aspects were comparable to placebo. CONCLUSION Our trial suggests beneficial effects of Cerebrolysin on outcome after TBI. Results should be confirmed by a larger RCT with a comparable multidimensional approach.
Collapse
Affiliation(s)
- W Poon
- Division of Neurosurgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - C Matula
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - P E Vos
- Department of Neurology, Slingeland Hospital, Doetinchem, The Netherlands
| | - D F Muresanu
- Department of Clinical Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania. .,RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400364, Cluj-Napoca, Romania.
| | - N von Steinbüchel
- Institute of Medical Psychology and Medical Sociology, University Medical Centre Göttingen, Göttingen, Germany
| | - K von Wild
- Medical Faculty, Westphalia Wilhelm's University, Münster, Germany
| | - V Hömberg
- Department of Neurology, SRH Gesundheitszentrum Bad Wimpfen GmbH, Bad Wimpfen, Germany
| | - E Wang
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - T M C Lee
- State Key Laboratory of Brain and Cognitive Sciences and Laboratory of Neuropsychology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - S Strilciuc
- Department of Clinical Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400364, Cluj-Napoca, Romania
| | - J C Vester
- Department of Biometry and Clinical Research, idv Data Analysis and Study Planning, Krailling, Germany
| |
Collapse
|
27
|
Jin W, Xu X, Chen X, Qi W, Lu J, Yan X, Zhao D, Cong D, Li X, Sun L. Protective effect of pig brain polypeptides against corticosterone-induced oxidative stress, inflammatory response, and apoptosis in PC12 cells. Biomed Pharmacother 2019; 115:108890. [PMID: 31022597 DOI: 10.1016/j.biopha.2019.108890] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Pig brain polypeptides (PBP), active polypeptides hydrolysate extracted from fresh porcine brain tissue, has been shown to have neuroprotective effects in both in vitro and in vivo studies. The present study aimed to explore the molecular mechanisms underlying the neuroprotective effects of PBP in corticosterone (CORT)-induced rat adrenal pheochromocytoma PC12 cells. METHODS Cell viability and lactate dehydrogenase (LDH) release were measured in PC12 cells induced with 200 μM CORT in the presence or absence of various concentrations of PBP for 48 h. Intracellular reactive oxygen species (ROS) generation, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and glutathione (GSH) content were examined to analyze the effect of PBP on CORT-induced oxidative stress. The levels of pro-inflammatory factors, the percentage of apoptotic cells, and apoptosis-related protein expression in PC12 cells were determined. RESULTS PBP is mainly composed of protein subunits with molecular weights ranging from 1000 to 10,000 Da. PBP treatment increased cell viability and decreased the release of LDH in CORT-stimulated PC12 cells. Moreover, PBP reduced the level of CORT-induced oxidative stress by decreasing ROS levels and increasing SOD, GSH-Px activities and GSH content. PBP had an inhibitory effect on the CORT-induced inflammatory response through inhibition of the NF-κB signaling pathway. PBP also inhibited CORT-induced apoptosis by downregulating the mitochondrial apoptotic signaling pathway. CONCLUSION These results suggest that PBP exerts a neuroprotective effect against CORT-induced cell injury by inhibiting oxidative stress, inflammation, and apoptosis. PBP could act as a neuroprotective agent against nerve injury induced by CORT.
Collapse
Affiliation(s)
- Wenqi Jin
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Wenxiu Qi
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Xiuci Yan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, China
| | - Deyu Cong
- Department of Tuina, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiangyan Li
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|
28
|
Sharma A, Muresanu DF, Ozkizilcik A, Tian ZR, Lafuente JV, Manzhulo I, Mössler H, Sharma HS. Sleep deprivation exacerbates concussive head injury induced brain pathology: Neuroprotective effects of nanowired delivery of cerebrolysin with α-melanocyte-stimulating hormone. PROGRESS IN BRAIN RESEARCH 2019; 245:1-55. [DOI: 10.1016/bs.pbr.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Nanowired delivery of cerebrolysin with neprilysin and p-Tau antibodies induces superior neuroprotection in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:145-200. [DOI: 10.1016/bs.pbr.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Muresanu DF, Sharma A, Patnaik R, Menon PK, Mössler H, Sharma HS. Exacerbation of blood-brain barrier breakdown, edema formation, nitric oxide synthase upregulation and brain pathology after heat stroke in diabetic and hypertensive rats. Potential neuroprotection with cerebrolysin treatment. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:83-102. [DOI: 10.1016/bs.irn.2019.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Zhang Y, Chopp M, Zhang ZG, Zhang Y, Zhang L, Lu M, Zhang T, Winter S, Doppler E, Brandstäetter H, Mahmood A, Xiong Y. Cerebrolysin Reduces Astrogliosis and Axonal Injury and Enhances Neurogenesis in Rats After Closed Head Injury. Neurorehabil Neural Repair 2019; 33:15-26. [PMID: 30499355 DOI: 10.1177/1545968318809916] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cerebrolysin is a neuropeptide preparation with neuroprotective and neurotrophic properties. Our previous study demonstrates that cerebrolysin significantly improves functional recovery in rats after mild traumatic brain injury (mTBI). OBJECTIVE To determine histological outcomes associated with therapeutic effects of cerebrolysin on functional recovery after TBI. METHODS In this prospective, randomized, blinded, and placebo-controlled study, adult Wistar rats with mild TBI induced by a closed head impact were randomly assigned to one of the cerebrolysin dose groups (0.8, 2.5, 7.5 mL/kg) or placebo, which were administered 4 hours after TBI and then daily for 10 consecutive days. Functional tests assessed cognitive, behavioral, motor, and neurological performance. Study end point was day 90 after TBI. Brains were processed for histological tissue analyses of astrogliosis, axonal injury, and neurogenesis. RESULTS Compared with placebo, cerebrolysin significantly reduced amyloid precursor protein accumulation, astrogliosis, and axonal damage in various brain regions and increased the number of neuroblasts and neurogenesis in the dentate gyrus. There was a significant dose effect of cerebrolysin on functional outcomes at 3 months after injury compared with saline treatment. Cerebrolysin at a dose of ⩾0.8 mL/kg significantly improved cognitive function, whereas at a dose of ⩾2.5 mL/kg, cerebrolysin also significantly improved sensorimotor function at various time points. There were significant correlations between multiple histological and functional outcomes 90 days after mTBI. CONCLUSIONS Our findings demonstrate that cerebrolysin reduces astrogliosis and axonal injury and promotes neurogenesis, which may contribute to improved functional recovery in rats with mTBI.
Collapse
Affiliation(s)
| | - Michael Chopp
- 1 Henry Ford Hospital, Detroit, MI, USA
- 2 Oakland University, Rochester, MI, USA
| | | | - Yi Zhang
- 1 Henry Ford Hospital, Detroit, MI, USA
| | - Li Zhang
- 1 Henry Ford Hospital, Detroit, MI, USA
| | - Mei Lu
- 1 Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | - Ye Xiong
- 1 Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
32
|
Ghaffarpasand F, Torabi S, Rasti A, Niakan MH, Aghabaklou S, Pakzad F, Beheshtian MS, Tabrizi R. Effects of cerebrolysin on functional outcome of patients with traumatic brain injury: a systematic review and meta-analysis. Neuropsychiatr Dis Treat 2018; 15:127-135. [PMID: 30643411 PMCID: PMC6311329 DOI: 10.2147/ndt.s186865] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) remains a main public health problem being associated with high mortality and morbidity. The functional outcome of TBI remains unfavorable despite several surgical and medical therapies. Cerebrolysin is a neuropeptide with potential neuroregenerative entities. OBJECTIVE The aim of the current systematic review and meta-analysis was to investigate the effects of cerebrolysin on functional outcome in patients with moderate and severe TBI. DATA SOURCES Online databases used included Medline, Scopus, EMBASE, Google Scholar, Web of Science, and Cochrane Library. STUDY ELIGIBILITY CRITERIA All the relevant studies with randomized clinical trial and cohort design evaluating the effects of intravenous cerebrolysin vs placebo on functional outcome of patients with TBI within the English literature up to October 2018 were included. STUDY APPRAISAL AND SYNTHESIS METHODS The articles were reviewed by two independent authors and the data were extracted to a data sheet. I 2 and Cochran's Q-statistics were used to assess heterogeneity. Based on the presence of significant heterogeneity across included studies, data were pooled using random-effects model with Dersimonian-Laird method and presented as standardized mean differences (SMDs) and corresponding 95% CI. RESULTS Five articles (5,685 participants) were included in the current meta-analysis. The overall pooled findings using random-effects models among patients with TBI indicated that intravenous administration of cerebrolysin significantly increased Glasgow Outcome Scale score (SMD =0.30; 95% CI: 0.18 to 0.42; P<0.001; I 2: 87.8%) and decreased modified Rankin Scale score (SMD =-0.29; 95% CI: -0.42 to 0.16; P=0.05; I 2: 89.6%). LIMITATIONS The results are mainly based on cohort studies and there is a lack of clinical trials in the literature. There is also heterogeneity among the studies regarding the dosage and duration of administration and the measurement of functional outcome. CONCLUSION The results of the current study revealed that intravenous administration of cerebrolysin is associated with improved functional outcome in patients with TBI measured by the Glasgow Outcome Scale and the modified Rankin Scale scores.
Collapse
Affiliation(s)
- Fariborz Ghaffarpasand
- Research Center for Neuromodulation and Pain, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Torabi
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany
| | - Ali Rasti
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Niakan
- Trauma Research Center, Rajaei Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran,
| | - Sara Aghabaklou
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pakzad
- Department of Anesthesiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Tabrizi
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Cerebrolysin for the Treatment of Aneurysmal Subarachnoid Hemorrhage in Adults: A Retrospective Chart Review. Adv Ther 2018; 35:2224-2235. [PMID: 30414051 PMCID: PMC6822868 DOI: 10.1007/s12325-018-0832-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 11/30/2022]
Abstract
Introduction Cerebrolysin is a neuroprotective drug used in the treatment of acute ischemic stroke. To our knowledge, this drug has never been evaluated in patients with aneurysmal subarachnoid hemorrhage (SAH). The aim of this study was to evaluate the effect of Cerebrolysin in patients with aneurysmal SAH. Methods Aneurysmal SAH patients who had their aneurysm obliterated at our institution from 2007 to 2016 were retrospectively studied. Patients received Cerebrolysin treatment or standard care only (control group). Subgroup analyses were performed according to Hunt and Hess grade (good grade ≤ 2, N = 216; poor grade ≥ 3, N = 246) and treatment procedure (clip or coil). Results In good-grade patients (N = 216), clinical outcomes and mortality did not differ significantly between the control and Cerebrolysin groups. In poor-grade patients (N = 246), the mortality rate was significantly lower in the Cerebrolysin group (8.7%) than in the control group (25.4%, p = 0.006). In patients who received microsurgical clipping (N = 328), the mortality rate was significantly lower in the Cerebrolysin group (7.3%) than in the control group (18.5%, p = 0.016). Conclusion Cerebrolysin injection during the acute period of SAH appeared to reduce the mortality rate, especially in poor-grade patients. This study suggests the potential of Cerebrolysin for treating aneurysmal SAH. Further studies are needed to confirm our results.
Collapse
|
34
|
Zhang Y, Chopp M, Gang Zhang Z, Zhang Y, Zhang L, Lu M, Zhang T, Winter S, Brandstätter H, Mahmood A, Xiong Y. Prospective, randomized, blinded, and placebo-controlled study of Cerebrolysin dose-response effects on long-term functional outcomes in a rat model of mild traumatic brain injury. J Neurosurg 2018; 129:1295-1304. [PMID: 29303438 DOI: 10.3171/2017.6.jns171007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/20/2017] [Indexed: 01/30/2023]
Abstract
Using a prospective, randomized, blinded, placebo-controlled protocol, the authors demonstrated that Cerebrolysin at doses of 0.8-7.5 ml/kg, administered 4 hours after injury and then once daily for a total of 10 consecutive days, improves long-term functional outcomes in a rat model of mild closed head injury; a 2.5-ml/kg dose was identified as optimal. These findings suggest that Cerebrolysin has the potential to treat mild traumatic brain injury, the incidence of which is high without effective treatments.
Collapse
Affiliation(s)
| | - Michael Chopp
- 2Neurology, and
- 3Department of Physics, Oakland University, Rochester, Michigan; and
| | | | | | | | - Mei Lu
- 4Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, Michigan
| | - Talan Zhang
- 4Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, Michigan
| | | | | | | | | |
Collapse
|
35
|
Zhang HL, Wu J. Cerebrospinal Fluid Endothelin-1 in Severe Traumatic Brain Injury. J Neurotrauma 2018; 35:1557. [PMID: 29648980 DOI: 10.1089/neu.2010.1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hong-Liang Zhang
- Department of Neurology, the First Hospital of Jilin University , Changchun, China
| | - Jiang Wu
- Department of Neurology, the First Hospital of Jilin University , Changchun, China
| |
Collapse
|
36
|
Mahmoudi J, Mohaddes G, Erfani M, Sadigh-Eteghad S, Karimi P, Rajabi M, Reyhani-Rad S, Farajdokht F. Cerebrolysin attenuates hyperalgesia, photophobia, and neuroinflammation in a nitroglycerin-induced migraine model in rats. Brain Res Bull 2018; 140:197-204. [DOI: 10.1016/j.brainresbull.2018.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
|
37
|
Ozkizilcik A, Williams R, Tian ZR, Muresanu DF, Sharma A, Sharma HS. Synthesis of Biocompatible Titanate Nanofibers for Effective Delivery of Neuroprotective Agents. Methods Mol Biol 2018; 1727:433-442. [PMID: 29222803 DOI: 10.1007/978-1-4939-7571-6_35] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoscience provides us with new opportunities to develop nanotechnologies for treating, in particular, central nervous system disorders such as Alzheimer disease and multiple sclerosis. From a methodological point of view, it is challenging to deliver drugs effectively across the blood-brain barrier and blood-cerebrospinal fluid barrier. Our 10-year data and reports from both in vivo and in vitro studies, however, have consistently proved that therapeutic drugs of different types can be generally loaded in/on the nanocarriers for targeted and programmable deliveries to the central nervous system with a high degree of efficacy. This chapter presents a protocol for the synthesis of biocompatible titanate nanofibers as low-cost drug delivery cargos. In addition, a procedure for loading the neuroprotective agent Cerebrolysin onto the nanofibers is briefly described. Finally, experimental observations on the use of nanodrug delivery for superior neuroprotective effects of Cerebrolysin in traumatic brain injury are given as a proof of concept as compared to normal drug alone.
Collapse
Affiliation(s)
- Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute of Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Roger Williams
- Institute of Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Z Ryan Tian
- Institute of Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania & "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari S Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
38
|
Rosich K, Hanna BF, Ibrahim RK, Hellenbrand DJ, Hanna A. The Effects of Glial Cell Line-Derived Neurotrophic Factor after Spinal Cord Injury. J Neurotrauma 2017; 34:3311-3325. [DOI: 10.1089/neu.2017.5175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Konstantin Rosich
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Bishoy F. Hanna
- Department of Neurological Surgery, Ross University School of Medicine, Dominica, West Indies
| | - Rami K. Ibrahim
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Daniel J. Hellenbrand
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Amgad Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
39
|
Sherif RN. Effect of cerebrolysin on the cerebellum of diabetic rats: An imunohistochemical study. Tissue Cell 2017; 49:726-733. [DOI: 10.1016/j.tice.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
|
40
|
Rodriguez-Grande B, Ichkova A, Lemarchant S, Badaut J. Early to Long-Term Alterations of CNS Barriers After Traumatic Brain Injury: Considerations for Drug Development. AAPS JOURNAL 2017; 19:1615-1625. [PMID: 28905273 DOI: 10.1208/s12248-017-0123-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability, particularly amongst the young and the elderly. The functions of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) are strongly impaired after TBI, thus affecting brain homeostasis. Following the primary mechanical injury that characterizes TBI, a secondary injury develops over time, including events such as edema formation, oxidative stress, neuroinflammation, and alterations in paracelullar and transcellular transport. To date, most therapeutic interventions for TBI have aimed at direct neuroprotection during the acute phase and have not been successful. Targeting the barriers of the central nervous system (CNS) could be a wider therapeutic approach, given that restoration of brain homeostasis would benefit all brain cells, including neurons. Importantly, BBB disregulation has been observed even years after TBI, concomitantly with neurological and psychosocial sequelae; however, treatments targeting the post-acute phase are scarce. Here, we review the mechanisms of primary and secondary injury of CNS barriers, the accumulating evidence showing long-term damage to these structures and some of the therapies that have targeted these mechanisms. Finally, we discuss how the injury characteristics (hemorrhagic vs non-hemorrhagic, involvement of head rotation, gray vs white matter), the sex, and the age of the patient need to be carefully considered to improve clinical trial design and outcome interpretation, and to improve future drug development.
Collapse
Affiliation(s)
| | - Aleksandra Ichkova
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Sighild Lemarchant
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France. .,Basic Science Departments, Loma Linda University School of Medicine, Loma Linda, California, USA.
| |
Collapse
|
41
|
Timed Release of Cerebrolysin Using Drug-Loaded Titanate Nanospheres Reduces Brain Pathology and Improves Behavioral Functions in Parkinson’s Disease. Mol Neurobiol 2017; 55:359-369. [DOI: 10.1007/s12035-017-0747-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Requejo C, Ruiz-Ortega JA, Cepeda H, Sharma A, Sharma HS, Ozkizilcik A, Tian R, Moessler H, Ugedo L, Lafuente JV. Nanodelivery of Cerebrolysin and Rearing in Enriched Environment Induce Neuroprotective Effects in a Preclinical Rat Model of Parkinson’s Disease. Mol Neurobiol 2017; 55:286-299. [DOI: 10.1007/s12035-017-0741-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Joseph B, Khan M, Rhee P. Non-invasive diagnosis and treatment strategies for traumatic brain injury: an update. J Neurosci Res 2017; 96:589-600. [PMID: 28836292 DOI: 10.1002/jnr.24132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/26/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Traumatic Brain Injury (TBI) remains the leading cause of morbidity and mortality in U.S. Since the last decade, there have been several advances in the understanding and management of TBI that have shown the potential to improve outcomes. The aim of this review is to provide a useful overview of these potential diagnostic and treatment strategies that have yet to be proven, along with an assessment of their impact on outcomes after a TBI. RECENT FINDINGS Recent technical advances in the management of a TBI are grounded in a better understanding of the pathophysiology of primary and secondary insult to the brain after a TBI. Hence, clinical trials on humans should proceed in order to evaluate their efficacy and safety. SUMMARY Mortality associated with TBI remains high. Nonetheless, new diagnostic and therapeutic techniques have the potential to enhance early detection and prevention of secondary brain insult.
Collapse
Affiliation(s)
- Bellal Joseph
- Division of Trauma, Critical Care, Emergency Surgery, and Burns, Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - Muhammad Khan
- Division of Trauma, Critical Care, Emergency Surgery, and Burns, Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - Peter Rhee
- Division of Acute Care Surgery, Department of Surgery, Grady Memorial Hospital, Atlanta, Georgia, USA
| |
Collapse
|
44
|
T Lymphocytes and Inflammatory Mediators in the Interplay between Brain and Blood in Alzheimer's Disease: Potential Pools of New Biomarkers. J Immunol Res 2017; 2017:4626540. [PMID: 28293644 PMCID: PMC5331319 DOI: 10.1155/2017/4626540] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the main cause of dementia. The disease is among the leading medical concerns of the modern world, because only symptomatic therapies are available, and no reliable, easily accessible biomarkers exist for AD detection and monitoring. Therefore extensive research is conducted to elucidate the mechanisms of AD pathogenesis, which seems to be heterogeneous and multifactorial. Recently much attention has been given to the neuroinflammation and activation of glial cells in the AD brain. Reports also highlighted the proinflammatory role of T lymphocytes infiltrating the AD brain. However, in AD molecular and cellular alterations involving T cells and immune mediators occur not only in the brain, but also in the blood and the cerebrospinal fluid (CSF). Here we review alterations concerning T lymphocytes and related immune mediators in the AD brain, CSF, and blood and the mechanisms by which peripheral T cells cross the blood brain barrier and the blood-CSF barrier. This knowledge is relevant for better AD therapies and for identification of novel biomarkers for improved AD diagnostics in the blood and the CSF. The data will be reviewed with the special emphasis on possibilities for development of AD biomarkers.
Collapse
|
45
|
Khalili H, Niakan A, Ghaffarpasand F. Effects of cerebrolysin on functional recovery in patients with severe disability after traumatic brain injury: A historical cohort study. Clin Neurol Neurosurg 2017; 152:34-38. [DOI: 10.1016/j.clineuro.2016.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 11/29/2022]
|
46
|
Ruozi B, Belletti D, Sharma HS, Sharma A, Muresanu DF, Mössler H, Forni F, Vandelli MA, Tosi G. PLGA Nanoparticles Loaded Cerebrolysin: Studies on Their Preparation and Investigation of the Effect of Storage and Serum Stability with Reference to Traumatic Brain Injury. Mol Neurobiol 2016; 52:899-912. [PMID: 26108180 DOI: 10.1007/s12035-015-9235-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cerebrolysin is a peptide mixture able to ameliorate symptomatology and delay progression of neurological disorders such as Alzheimer's disease and dementia. The administration of this drug in humans presents several criticisms due to its short half-life, poor stability, and high doses needed to achieve the effect. This paper investigates the potential of polylactic-co-glycolide (PLGA) nanoparticles (NPs) as sustained release systems for iv administration of cerebrolysin in normal and brain injured rats. NPs were prepared by water-in-oil-in-water (w/o/w) double emulsion technique and characterized by light scattering for mean size and zeta potential and by scanning electron microscopy (SEM) for surface morphology. The NPs produced by double sonication under cooling at 60 W for 45 s, 12 mL of 1 % w:v of PVA, and 1:0.6 w:w drug/PLGA ratio (C-NPs4) displayed an adequate loading of drug (24 ± 1 mg/100 mg of NPs), zeta potential value (-13 mV), and average diameters (ranged from 250 to 330 nm) suitable to iv administration. SEM images suggested that cerebrolysin was molecularly dispersed into matricial systems and partially adhered to the NP surface. A biphasic release with an initial burst effect followed by sustained release over 24 h was observed. Long-term stability both at room and at low temperature of freeze-dried NPs was investigated. To gain deeper insight into NP stability after in vivo administration, the stability of the best NP formulation was also tested in serum. These PLGA NPs loaded with cerebrolysin were able to reduce brain pathology following traumatic brain injury. However, the size, the polydispersivity, and the surface properties of sample were significantly affected by the incubation time and the serum concentration.
Collapse
Affiliation(s)
- Barbara Ruozi
- Laboratory of Pharmaceutical Technology, Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 183, I-41125, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
A promising therapeutic potential of cerebrolysin in 6-OHDA rat model of Parkinson's disease. Life Sci 2016; 155:174-9. [DOI: 10.1016/j.lfs.2016.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/05/2016] [Accepted: 05/16/2016] [Indexed: 11/20/2022]
|
48
|
Dong HY, Jiang XM, Niu CB, Du L, Feng JY, Jia FY. Cerebrolysin improves sciatic nerve dysfunction in a mouse model of diabetic peripheral neuropathy. Neural Regen Res 2016; 11:156-62. [PMID: 26981106 PMCID: PMC4774211 DOI: 10.4103/1673-5374.175063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
To examine the effects of Cerebrolysin on the treatment of diabetic peripheral neuropathy, we first established a mouse model of type 2 diabetes mellitus by administering a high-glucose, high-fat diet and a single intraperitoneal injection of streptozotocin. Mice defined as diabetic in this model were then treated with 1.80, 5.39 or 8.98 mL/kg of Cerebrolysin via intraperitoneal injections for 10 consecutive days. Our results demonstrated that the number, diameter and area of myelinated nerve fibers increased in the sciatic nerves of these mice after administration of Cerebrolysin. The results of several behavioral tests showed that Cerebrolysin dose-dependently increased the slope angle in the inclined plane test (indicating an improved ability to maintain body position), prolonged tail-flick latency and foot-licking time (indicating enhanced sensitivity to thermal and chemical pain, respectively, and reduced pain thresholds), and increased an index of sciatic nerve function in diabetic mice compared with those behavioral results in untreated diabetic mice. Taken together, the anatomical and functional results suggest that Cerebrolysin ameliorated peripheral neuropathy in a mouse model of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Han-Yu Dong
- Department of Pediatric Neurology and Rehabilitation, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xin-Mei Jiang
- Institute of Jilin Neurological Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chun-Bo Niu
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lin Du
- Department of Pediatric Neurology and Rehabilitation, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jun-Yan Feng
- Department of Pediatric Neurology and Rehabilitation, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Fei-Yong Jia
- Department of Pediatric Neurology and Rehabilitation, First Hospital of Jilin University, Changchun, Jilin Province, China; Institute of Jilin Neurological Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
49
|
Amyloid β Oligomers Disrupt Blood-CSF Barrier Integrity by Activating Matrix Metalloproteinases. J Neurosci 2016; 35:12766-78. [PMID: 26377465 DOI: 10.1523/jneurosci.0006-15.2015] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The blood-CSF barrier (BCSFB) consists of a monolayer of choroid plexus epithelial (CPE) cells that maintain CNS homeostasis by producing CSF and restricting the passage of undesirable molecules and pathogens into the brain. Alzheimer's disease is the most common progressive neurodegenerative disorder and is characterized by the presence of amyloid β (Aβ) plaques and neurofibrillary tangles in the brain. Recent research shows that Alzheimer's disease is associated with morphological changes in CPE cells and compromised production of CSF. Here, we studied the direct effects of Aβ on the functionality of the BCSFB. Intracerebroventricular injection of Aβ1-42 oligomers into the cerebral ventricles of mice, a validated Alzheimer's disease model, caused induction of a cascade of detrimental events, including increased inflammatory gene expression in CPE cells and increased levels of proinflammatory cytokines and chemokines in the CSF. It also rapidly affected CPE cell morphology and tight junction protein levels. These changes were associated with loss of BCSFB integrity, as shown by an increase in BCSFB leakage. Aβ1-42 oligomers also increased matrix metalloproteinase (MMP) gene expression in the CPE and its activity in CSF. Interestingly, BCSFB disruption induced by Aβ1-42 oligomers did not occur in the presence of a broad-spectrum MMP inhibitor or in MMP3-deficient mice. These data provide evidence that MMPs are essential for the BCSFB leakage induced by Aβ1-42 oligomers. Our results reveal that Alzheimer's disease-associated soluble Aβ1-42 oligomers induce BCSFB dysfunction and suggest MMPs as a possible therapeutic target. SIGNIFICANCE STATEMENT No treatments are yet available to cure Alzheimer's disease; however, soluble Aβ oligomers are believed to play a crucial role in the neuroinflammation that is observed in this disease. Here, we studied the effect of Aβ oligomers on the often neglected barrier between blood and brain, called the blood-CSF barrier (BCSFB). This BCSFB is formed by the choroid plexus epithelial cells and is important in maintaining brain homeostasis. We observed Aβ oligomer-induced changes in morphology and loss of BCSFB integrity that might play a role in Alzheimer's disease progression. Strikingly, both inhibition of matrix metalloproteinase (MMP) activity and MMP3 deficiency could protect against the detrimental effects of Aβ oligomer. Clearly, our results suggest that MMP inhibition might have therapeutic potential.
Collapse
|
50
|
Yang Y, Zhang Y, Wang Z, Wang S, Gao M, Xu R, Liang C, Zhang H. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response. Neurochem Res 2015; 41:748-57. [DOI: 10.1007/s11064-015-1745-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/18/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022]
|