1
|
Bokulić E, Medenica T, Bobić-Rasonja M, Milković-Periša M, Jovanov-Milošević N, Judaš M, Sedmak G. The expression of transcription factors in the human fetal subthalamic nucleus suggests its origin from the first hypothalamic prosomere. Brain Struct Funct 2025; 230:33. [PMID: 39831906 DOI: 10.1007/s00429-025-02893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
In this study, we analyzed the spatio-temporal pattern of expression of specific transcription factors (PITX2, FOXA1, BARHL1, FOXP1, FOXP2) in the human fetal subthalamic nucleus and its neighboring structures from 11 postconceptional weeks (PCW) to 3 postnatal months. We found that all analyzed transcription factors are expressed already during the early fetal period (at 11 PCW). Both FOXP1- and FOXP2-immunoreactive cells were found in the subthalamic nucleus as well as in the striatum, thalamus, reticular nucleus, but not in the zona incerta. FOXP2-ir cells were also found in the lateral hypothalamic-supramamillary area (LHA-SMA) and internal pallidal segment.On the other hand, PITX2, FOXA1 and BARHL1 were expressed exclusively in the subthalamic nucleus and LHA-SMA, from 11 PCW until the birth, the only exception being gradual loss of BARHL1 expression in the LHA-SMA during the late fetal period.Our findings present the first evidence in the human fetal brain that neurons of the subthalamic nucleus do not originate in the diencephalon, as was proposed by classical histological studies, but instead share a common hypothalamic (hp1 prosomere) origin with neurons of the LHA-SMA group, as proposed by the prosomeric model of brain development.
Collapse
Grants
- UIP-2017-05-7578 Hrvatska Zaklada za Znanost
- UIP-2017-05-7578 Hrvatska Zaklada za Znanost
- IP-2019-04-3182 Hrvatska Zaklada za Znanost
- IP-2019-04-3182 Hrvatska Zaklada za Znanost
- IP-2019-04-3182 Hrvatska Zaklada za Znanost
- UIP-2017-05-7578 Hrvatska Zaklada za Znanost
- UIP-2017-05-7578 Hrvatska Zaklada za Znanost
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- KK.01.1.1.01.007 European Union through the European Regional Development Fund, Operational Program Competitiveness, and Cohesion
- 10106-22-3115 Sveučilište u Zagrebu
- 10106-22-3115 Sveučilište u Zagrebu
- 10106-22-3115 Sveučilište u Zagrebu
Collapse
Affiliation(s)
- Ema Bokulić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tila Medenica
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mihaela Bobić-Rasonja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Milković-Periša
- Department of Pathology and Cytology, School of Medicine, University of Zagreb, University Hospital Center Zagreb, Zagreb, Croatia
| | - Nataša Jovanov-Milošević
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Scientific Centre of Excellence for Basic, Clinical, and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
2
|
Calixto C, Dorigatti Soldatelli M, Jaimes C, Pierotich L, Warfield SK, Gholipour A, Karimi D. A detailed spatiotemporal atlas of the white matter tracts for the fetal brain. Proc Natl Acad Sci U S A 2025; 122:e2410341121. [PMID: 39793058 PMCID: PMC11725871 DOI: 10.1073/pnas.2410341121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers. We employed advanced fetal dMRI processing techniques and tractography to map and characterize the developmental trajectories of these tracts. Our findings reveal that the development of these tracts is characterized by complex patterns of fractional anisotropy (FA) and mean diffusivity (MD), coinciding with the intensity of histogenic processes such as axonal growth, involution of the radial-glial scaffolding, and synaptic pruning. This atlas can serve as a useful resource for neuroscience research and clinical practice, improving our understanding of the fetal brain and potentially aiding in the early diagnosis of neurodevelopmental disorders. By detailing the normal progression of white matter tract development, the atlas can be used as a benchmark for identifying deviations that may indicate neurological anomalies or predispositions to disorders.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Matheus Dorigatti Soldatelli
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Camilo Jaimes
- Harvard Medical School, Boston, MA02115
- Massachusetts General Hospital, Boston, MA02114
| | - Lana Pierotich
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Simon K. Warfield
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Ali Gholipour
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
- Department of Radiological Sciences, University of California Irvine, Irvine, CA92868
| | - Davood Karimi
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| |
Collapse
|
3
|
Banovac I, Prkačin MV, Kirchbaum I, Trnski-Levak S, Bobić-Rasonja M, Sedmak G, Petanjek Z, Jovanov-Milosevic N. Morphological and Molecular Characteristics of Perineuronal Nets in the Human Prefrontal Cortex-A Possible Link to Microcircuitry Specialization. Mol Neurobiol 2025; 62:1094-1111. [PMID: 38958887 PMCID: PMC11711633 DOI: 10.1007/s12035-024-04306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Perineuronal nets (PNNs) are a type of extracellular matrix (ECM) that play a significant role in synaptic activity and plasticity of interneurons in health and disease. We researched PNNs' regional and laminar representation and molecular composition using immunohistochemistry and transcriptome analysis of Brodmann areas (BA) 9, 14r, and 24 in 25 human postmortem brains aged 13-82 years. The numbers of VCAN- and NCAN-expressing PNNs, relative to the total number of neurons, were highest in cortical layers I and VI while WFA-binding (WFA+) PNNs were most abundant in layers III-V. The ECM glycosylation pattern was the most pronounced regional difference, shown by a significantly lower proportion of WFA+ PNNs in BA24 (3.27 ± 0.69%) compared to BA9 (6.32 ± 1.73%; P = 0.0449) and BA14 (5.64 ± 0.71%; P = 0.0278). The transcriptome of late developmental and mature stages revealed a relatively stable expression of PNN-related transcripts (log2-transformed expression values: 6.5-8.5 for VCAN and 8.0-9.5 for NCAN). Finally, we propose a classification of PNNs that envelop GABAergic neurons in the human cortex. The significant differences in PNNs' morphology, distribution, and molecular composition strongly suggest an involvement of PNNs in specifying distinct microcircuits in particular cortical regions and layers.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Matija Vid Prkačin
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Ivona Kirchbaum
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Sara Trnski-Levak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Mihaela Bobić-Rasonja
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Department of Biology, University of Zagreb School of Medicine, Šalata 3, HR-10000, Zagreb, Croatia
| | - Goran Sedmak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia.
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia.
- Department of Biology, University of Zagreb School of Medicine, Šalata 3, HR-10000, Zagreb, Croatia.
| |
Collapse
|
4
|
Prkačin MV, Petanjek Z, Banovac I. A novel approach to cytoarchitectonics: developing an objective framework for the morphological analysis of the cerebral cortex. Front Neuroanat 2024; 18:1441645. [PMID: 39188851 PMCID: PMC11345133 DOI: 10.3389/fnana.2024.1441645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction The cytoarchitectonic boundaries between cortical regions and layers are usually defined by the presence or absence of certain cell types. However, these cell types are often not clearly defined and determining the exact boundaries of regions and layers can be challenging. Therefore, in our research, we attempted to define cortical regions and layers based on clear quantitative criteria. Methods We performed immunofluorescent anti-NeuN labelling on five adult human brains in three cortical regions-Brodmann areas (BA) 9, 14r, and 24. We reconstructed the cell bodies of 90,723 NeuN-positive cells and analyzed their morphometric characteristics by cortical region and layer. We used a supervised neural network prediction algorithm to classify the reconstructions into morphological cell types. We used the results of the prediction algorithm to determine the proportions of different cell types in BA9, BA14r and BA24. Results Our analysis revealed that the cytoarchitectonic descriptions of BA9, BA14r and BA24 were reflected in the morphometric measures and cell classifications obtained by the prediction algorithm. BA9 was characterized by the abundance of large pyramidal cells in layer III, BA14r was characterized by relatively smaller and more elongated cells compared to BA9, and BA24 was characterized by the presence of extremely elongated cells in layer V as well as relatively higher proportions of irregularly shaped cells. Discussion The results of the prediction model agreed well with the qualitative expected cytoarchitectonic descriptions. This suggests that supervised machine learning could aid in defining the morphological characteristics of the cerebral cortex.
Collapse
Affiliation(s)
- Matija Vid Prkačin
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
5
|
Štajduhar A, Lipić T, Lončarić S, Judaš M, Sedmak G. Interpretable machine learning approach for neuron-centric analysis of human cortical cytoarchitecture. Sci Rep 2023; 13:5567. [PMID: 37019971 PMCID: PMC10076420 DOI: 10.1038/s41598-023-32154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology for quantitative histology that shifts focus from image-level investigations towards neuron-level representations of cortical regions, with the neurons in the image as a subject of study, rather than pixel-wise image content. Our methodology relies on the automatic segmentation of neurons across whole histological sections and an extensive set of engineered features, which reflect the neuronal phenotype of individual neurons and the properties of neurons' neighborhoods. The neuron-level representations are used in an interpretable machine learning pipeline for mapping the phenotype to cortical layers. To validate our approach, we created a unique dataset of cortical layers manually annotated by three experts in neuroanatomy and histology. The presented methodology offers high interpretability of the results, providing a deeper understanding of human cortex organization, which may help formulate new scientific hypotheses, as well as to cope with systematic uncertainty in data and model predictions.
Collapse
Affiliation(s)
- Andrija Štajduhar
- School of Public Health "Andrija Štampar", School of Medicine, University of Zagreb, 10000, Zagreb, Croatia.
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia.
| | - Tomislav Lipić
- Laboratory for Machine Learning and Knowledge Representation, Ruder Bošković Institute, 10000, Zagreb, Croatia
| | - Sven Lončarić
- Faculty of Electrical Engineering and Computing, University of Zagreb, 10000, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| |
Collapse
|
6
|
Petanjek Z, Banovac I, Sedmak D, Hladnik A. Dendritic Spines: Synaptogenesis and Synaptic Pruning for the Developmental Organization of Brain Circuits. ADVANCES IN NEUROBIOLOGY 2023; 34:143-221. [PMID: 37962796 DOI: 10.1007/978-3-031-36159-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synaptic overproduction and elimination is a regular developmental event in the mammalian brain. In the cerebral cortex, synaptic overproduction is almost exclusively correlated with glutamatergic synapses located on dendritic spines. Therefore, analysis of changes in spine density on different parts of the dendritic tree in identified classes of principal neurons could provide insight into developmental reorganization of specific microcircuits.The activity-dependent stabilization and selective elimination of the initially overproduced synapses is a major mechanism for generating diversity of neural connections beyond their genetic determination. The largest number of overproduced synapses was found in the monkey and human cerebral cortex. The highest (exceeding adult values by two- to threefold) and most protracted overproduction (up to third decade of life) was described for associative layer IIIC pyramidal neurons in the human dorsolateral prefrontal cortex.Therefore, the highest proportion and extraordinarily extended phase of synaptic spine overproduction is a hallmark of neural circuitry in human higher-order associative areas. This indicates that microcircuits processing the most complex human cognitive functions have the highest level of developmental plasticity. This finding is the backbone for understanding the effect of environmental impact on the development of the most complex, human-specific cognitive and emotional capacities, and on the late onset of human-specific neuropsychiatric disorders, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Ivan Banovac
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Tsujimura K, Shiohama T, Takahashi E. microRNA Biology on Brain Development and Neuroimaging Approach. Brain Sci 2022; 12:brainsci12101366. [PMID: 36291300 PMCID: PMC9599180 DOI: 10.3390/brainsci12101366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Proper brain development requires the precise coordination and orchestration of various molecular and cellular processes and dysregulation of these processes can lead to neurological diseases. In the past decades, post-transcriptional regulation of gene expression has been shown to contribute to various aspects of brain development and function in the central nervous system. MicroRNAs (miRNAs), short non-coding RNAs, are emerging as crucial players in post-transcriptional gene regulation in a variety of tissues, such as the nervous system. In recent years, miRNAs have been implicated in multiple aspects of brain development, including neurogenesis, migration, axon and dendrite formation, and synaptogenesis. Moreover, altered expression and dysregulation of miRNAs have been linked to neurodevelopmental and psychiatric disorders. Magnetic resonance imaging (MRI) is a powerful imaging technology to obtain high-quality, detailed structural and functional information from the brains of human and animal models in a non-invasive manner. Because the spatial expression patterns of miRNAs in the brain, unlike those of DNA and RNA, remain largely unknown, a whole-brain imaging approach using MRI may be useful in revealing biological and pathological information about the brain affected by miRNAs. In this review, we highlight recent advancements in the research of miRNA-mediated modulation of neuronal processes that are important for brain development and their involvement in disease pathogenesis. Also, we overview each MRI technique, and its technological considerations, and discuss the applications of MRI techniques in miRNA research. This review aims to link miRNA biological study with MRI analytical technology and deepen our understanding of how miRNAs impact brain development and pathology of neurological diseases.
Collapse
Affiliation(s)
- Keita Tsujimura
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya 4648602, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 4648602, Japan
- Correspondence: (K.T.); (E.T.)
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Hospital, Chiba 2608677, Japan
| | - Emi Takahashi
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Correspondence: (K.T.); (E.T.)
| |
Collapse
|
8
|
Šimić G, Krsnik Ž, Knezović V, Kelović Z, Mathiasen ML, Junaković A, Radoš M, Mulc D, Španić E, Quattrocolo G, Hall VJ, Zaborszky L, Vukšić M, Olucha Bordonau F, Kostović I, Witter MP, Hof PR. Prenatal development of the human entorhinal cortex. J Comp Neurol 2022; 530:2711-2748. [DOI: 10.1002/cne.25344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Goran Šimić
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Željka Krsnik
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Vinka Knezović
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Zlatko Kelović
- Department of Anatomy University of Zagreb Medical School, Zagreb, HR Croatia
| | - Mathias Lysholt Mathiasen
- Department of Veterinary and Animal Sciences Faculty of Health Sciences University of Copenhagen, Frederiksberg C, DK Denmark
| | - Alisa Junaković
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Milan Radoš
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Damir Mulc
- Psychiatric Hospital Vrapče University of Zagreb Medical School, Zagreb, HR Croatia
| | - Ena Španić
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Giulia Quattrocolo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation Norwegian University of Science and Technology Trondheim NO Norway
| | - Vanessa Jane Hall
- Department of Veterinary and Animal Sciences Faculty of Health Sciences University of Copenhagen, Frederiksberg C, DK Denmark
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience Rutgers, The State University of New Jersey Newark New Jersey USA
| | - Mario Vukšić
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Francisco Olucha Bordonau
- Department of Medicine School of Medical Sciences Universitat Jaume I Castellón de la Plana ES Spain
| | - Ivica Kostović
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Menno P. Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation Norwegian University of Science and Technology Trondheim NO Norway
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute Icahn School of Medicine at Mount Sinai New York New York USA
| |
Collapse
|
9
|
Bokulić E, Medenica T, Knezović V, Štajduhar A, Almahariq F, Baković M, Judaš M, Sedmak G. The Stereological Analysis and Spatial Distribution of Neurons in the Human Subthalamic Nucleus. Front Neuroanat 2022; 15:749390. [PMID: 34970124 PMCID: PMC8712451 DOI: 10.3389/fnana.2021.749390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The subthalamic nucleus (STN) is a small, ovoid structure, and an important site of deep brain stimulation (DBS) for the treatment of Parkinson’s disease. Although the STN is a clinically important structure, there are many unresolved issues with regard to it. These issues are especially related to the anatomical subdivision, neuronal phenotype, neuronal composition, and spatial distribution. In this study, we have examined the expression pattern of 8 neuronal markers [nNOS, NeuN, parvalbumin (PV), calbindin (CB), calretinin (CR), FOXP2, NKX2.1, and PAX6] in the adult human STN. All of the examined markers, except CB, were present in the STN. To determine the neuronal density, we have performed stereological analysis on Nissl-stained and immunohistochemical slides of positive markers. The stereology data were also used to develop a three-dimensional map of the spatial distribution of neurons within the STN. The nNOS population exhibited the largest neuronal density. The estimated total number of nNOS STN neurons is 281,308 ± 38,967 (± 13.85%). The STN neuronal subpopulations can be divided into two groups: one with a neuronal density of approximately 3,300 neurons/mm3 and the other with a neuronal density of approximately 2,200 neurons/mm3. The largest density of STN neurons was observed along the ventromedial border of the STN and the density gradually decreased toward the dorsolateral border. In this study, we have demonstrated the presence of 7 neuronal markers in the STN, three of which were not previously described in the human STN. The human STN is a collection of diverse, intermixed neuronal subpopulations, and our data, as far as the cytoarchitectonics is concerned, did not support the tripartite STN subdivision.
Collapse
Affiliation(s)
- Ema Bokulić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Tila Medenica
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Vinka Knezović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Andrija Štajduhar
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,School of Public Health "Andrija Štampar," University of Zagreb School of Medicine, Zagreb, Croatia
| | - Fadi Almahariq
- Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,Department of Neurosurgery, Clinical Hospital "Dubrava," Zagreb, Croatia
| | - Marija Baković
- Department of Forensic Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
10
|
Tokariev A, Breakspear M, Videman M, Stjerna S, Scholtens LH, van den Heuvel MP, Cocchi L, Vanhatalo S. Impact of In Utero Exposure to Antiepileptic Drugs on Neonatal Brain Function. Cereb Cortex 2021; 32:2385-2397. [PMID: 34585721 PMCID: PMC9157298 DOI: 10.1093/cercor/bhab338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
In utero brain development underpins brain health across the lifespan but is vulnerable to physiological and pharmacological perturbation. Here, we show that antiepileptic medication during pregnancy impacts on cortical activity during neonatal sleep, a potent indicator of newborn brain health. These effects are evident in frequency-specific functional brain networks and carry prognostic information for later neurodevelopment. Notably, such effects differ between different antiepileptic drugs that suggest neurodevelopmental adversity from exposure to antiepileptic drugs and not maternal epilepsy per se. This work provides translatable bedside metrics of brain health that are sensitive to the effects of antiepileptic drugs on postnatal neurodevelopment and carry direct prognostic value.
Collapse
Affiliation(s)
- Anton Tokariev
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Michael Breakspear
- School of Psychology, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia.,School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mari Videman
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Department of Pediatric Neurology, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Susanna Stjerna
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lianne H Scholtens
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Luca Cocchi
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sampsa Vanhatalo
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Banovac I, Sedmak D, Judaš M, Petanjek Z. Von Economo Neurons - Primate-Specific or Commonplace in the Mammalian Brain? Front Neural Circuits 2021; 15:714611. [PMID: 34539353 PMCID: PMC8440978 DOI: 10.3389/fncir.2021.714611] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
The pioneering work by von Economo in 1925 on the cytoarchitectonics of the cerebral cortex revealed a specialized and unique cell type in the adult human fronto-insular (FI) and anterior cingulate cortex (ACC). In modern studies, these neurons are termed von Economo neurons (VENs). In his work, von Economo described them as stick, rod or corkscrew cells because of their extremely elongated and relatively thin cell body clearly distinguishable from common oval or spindle-shaped infragranular principal neurons. Before von Economo, in 1899 Cajal depicted the unique somato-dendritic morphology of such cells with extremely elongated soma in the FI. However, although VENs are increasingly investigated, Cajal’s observation is still mainly being neglected. On Golgi staining in humans, VENs have a thick and long basal trunk with horizontally oriented terminal branching (basilar skirt) from where the axon arises. They are clearly distinguishable from a spectrum of modified pyramidal neurons found in infragranular layers, including oval or spindle-shaped principal neurons. Spindle-shaped cells with highly elongated cell body were also observed in the ACC of great apes, but despite similarities in soma shape, their dendritic and axonal morphology has still not been described in sufficient detail. Studies identifying VENs in non-human species are predominantly done on Nissl or anti-NeuN staining. In most of these studies, the dendritic and axonal morphology of the analyzed cells was not demonstrated and many of the cells found on Nissl or anti-NeuN staining had a cell body shape characteristic for common oval or spindle-shaped cells. Here we present an extensive literature overview on VENs, which demonstrates that human VENs are specialized elongated principal cells with unique somato-dendritic morphology found abundantly in the FI and ACC of the human brain. More research is needed to properly evaluate the presence of such specialized cells in other primates and non-primate species.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
12
|
White Matter Interstitial Neurons in the Adult Human Brain: 3% of Cortical Neurons in Quest for Recognition. Cells 2021; 10:cells10010190. [PMID: 33477896 PMCID: PMC7833373 DOI: 10.3390/cells10010190] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/03/2023] Open
Abstract
White matter interstitial neurons (WMIN) are a subset of cortical neurons located in the subcortical white matter. Although they were fist described over 150 years ago, they are still largely unexplored and often considered a small, functionally insignificant neuronal population. WMIN are adult remnants of neurons located in the transient fetal subplate zone (SP). Following development, some of the SP neurons undergo apoptosis, and the remaining neurons are incorporated in the adult white matter as WMIN. In the adult human brain, WMIN are quite a large population of neurons comprising at least 3% of all cortical neurons (between 600 and 1100 million neurons). They include many of the morphological neuronal types that can be found in the overlying cerebral cortex. Furthermore, the phenotypic and molecular diversity of WMIN is similar to that of the overlying cortical neurons, expressing many glutamatergic and GABAergic biomarkers. WMIN are often considered a functionally unimportant subset of neurons. However, upon closer inspection of the scientific literature, it has been shown that WMIN are integrated in the cortical circuitry and that they exhibit diverse electrophysiological properties, send and receive axons from the cortex, and have active synaptic contacts. Based on these data, we are able to enumerate some of the potential WMIN roles, such as the control of the cerebral blood flow, sleep regulation, and the control of information flow through the cerebral cortex. Also, there is a number of studies indicating the involvement of WMIN in the pathophysiology of many brain disorders such as epilepsy, schizophrenia, Alzheimer’s disease, etc. All of these data indicate that WMIN are a large population with an important function in the adult brain. Further investigation of WMIN could provide us with novel data crucial for an improved elucidation of the pathophysiology of many brain disorders. In this review, we provide an overview of the current WMIN literature, with an emphasis on studies conducted on the human brain.
Collapse
|
13
|
Bobić Rasonja M, Orešković D, Knezović V, Pogledić I, Pupačić D, Vukšić M, Brugger PC, Prayer D, Petanjek Z, Jovanov Milošević N. Histological and MRI Study of the Development of the Human Indusium Griseum. Cereb Cortex 2020; 29:4709-4724. [PMID: 30722016 DOI: 10.1093/cercor/bhz004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
To uncover the ontogenesis of the human indusium griseum (IG), 28 post-mortem fetal human brains, 12-40 postconceptional weeks (PCW) of age, and 4 adult brains were analyzed immunohistochemically and compared with post-mortem magnetic resonance imaging (MRI) of 28 fetal brains (14-41 PCW). The morphogenesis of the IG occurred between 12 and 15 PCW, transforming the bilateral IG primordia into a ribbon-like cortical lamina. The histogenetic transition of sub-laminated zones into the three-layered cortical organization occurred between 15 and 35 PCW, concomitantly with rapid cell differentiation that occurred from 18 to 28 PCW and the elaboration of neuronal connectivity during the entire second half of gestation. The increasing number of total cells and neurons in the IG at 25 and 35 PCW confirmed its continued differentiation throughout this period. High-field 3.0 T post-mortem MRI enabled visualization of the IG at the mid-fetal stage using T2-weighted sequences. In conclusion, the IG had a distinct histogenetic differentiation pattern than that of the neighboring intralimbic areas of the same ontogenetic origin, and did not show any signs of regression during the fetal period or postnatally, implying a functional role of the IG in the adult brain, which is yet to be disclosed.
Collapse
Affiliation(s)
- Mihaela Bobić Rasonja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia
| | - Darko Orešković
- Department of Neurosurgery, Clinical Hospital Dubrava, Av. G. Šuška 6, Zagreb, Croatia
| | - Vinka Knezović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia
| | - Ivana Pogledić
- Department of Biomedical Imaging and Image-guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria
| | - Daniela Pupačić
- Department of Anesthesiology, Resuscitation and Intensive Care, University Hospital Center Split, Split, Croatia
| | - Mario Vukšić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia
| | - Peter C Brugger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Waehringerstrasse 13, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria
| | - Zdravko Petanjek
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia.,Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nataša Jovanov Milošević
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia
| |
Collapse
|
14
|
Banovac I, Sedmak D, Džaja D, Jalšovec D, Jovanov Milošević N, Rašin MR, Petanjek Z. Somato-dendritic morphology and axon origin site specify von Economo neurons as a subclass of modified pyramidal neurons in the human anterior cingulate cortex. J Anat 2020; 235:651-669. [PMID: 31435943 DOI: 10.1111/joa.13068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Von Economo neurons (VENs) are modified pyramidal neurons characterized by an extremely elongated rod-shaped soma. They are abundant in layer V of the anterior cingulate cortex (ACC) and fronto-insular cortex (FI) of the human brain, and have long been described as a human-specific neuron type. Recently, VENs have been reported in the ACC of apes and the FI of macaque monkeys. The first description of the somato-dendritic morphology of VENs in the FI by Cajal in 1899 (Textura del Sistema Nervioso del Hombre y de los Vertebrados, Tomo II. Madrid: Nicolas Moya) strongly suggested that they were a unique neuron subtype with specific morphological features. It is surprising that a clarification of this extremely important observation has not yet been attempted, especially as possible misidentification of other oval or fusiform cells as VENs has become relevant in many recently published studies. Here, we analyzed sections of Brodmann area 24 (ACC) stained with rapid Golgi and Golgi-Cox in five adult human specimens, and confirmed Cajal's observations. In addition, we established a comprehensive morphological description of VENs. VENs have a distinct somato-dendritic morphology that allows their clear distinction from other modified pyramidal neurons. We established that VENs have a perpendicularly oriented, stick-shaped core part consisting of the cell body and two thick extensions - an apical and basal stem. The perpendicular length of the core part was 150-250 μm and the thickness was 10-21 μm. The core part was characterized by a lack of clear demarcation between the cell body and the two extensions. Numerous thin, spiny and horizontally oriented side dendrites arose from the cell body. The basal extension of the core part typically ended by giving numerous smaller dendrites with a brush-like branching pattern. The apical extension had a topology typical for apical dendrites of pyramidal neurons. The dendrites arising from the core part had a high dendritic spine density. The most distinct feature of VENs was the distant origin site of the axon, which arose from the ending of the basal extension, often having a common origin with a dendrite. Quantitative analysis found that VENs could be divided into two groups based on total dendritic length - small VENs with a peak total dendritic length of 1500-2500 μm and large VENs with a peak total dendritic length of 5000-6000 μm. Comparative morphological analysis of VENs and other oval and fusiform modified pyramidal neurons showed that on Nissl sections small VENs might be difficult to identify, and that oval and fusiform neurons could be misidentified as VENs. Our analysis of Golgi slides of Brodmann area 9 from a total of 32 adult human subjects revealed only one cell resembling VEN morphology. Thus, our data show that the numerous recent reports on the presence of VENs in non-primates in other layers and regions of the cortex need further confirmation by showing the dendritic and axonal morphology of these cells. In conclusion, our study provides a foundation for further comprehensive morphological and functional studies on VENs between different species.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.,Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.,Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Džaja
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.,Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dubravko Jalšovec
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nataša Jovanov Milošević
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Roko Rašin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.,Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
Popovitchenko T, Park Y, Page NF, Luo X, Krsnik Z, Liu Y, Salamon I, Stephenson JD, Kraushar ML, Volk NL, Patel SM, Wijeratne HRS, Li D, Suthar KS, Wach A, Sun M, Arnold SJ, Akamatsu W, Okano H, Paillard L, Zhang H, Buyske S, Kostovic I, De Rubeis S, Hart RP, Rasin MR. Translational derepression of Elavl4 isoforms at their alternative 5' UTRs determines neuronal development. Nat Commun 2020; 11:1674. [PMID: 32245946 PMCID: PMC7125149 DOI: 10.1038/s41467-020-15412-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Neurodevelopment requires precise regulation of gene expression, including post-transcriptional regulatory events such as alternative splicing and mRNA translation. However, translational regulation of specific isoforms during neurodevelopment and the mechanisms behind it remain unknown. Using RNA-seq analysis of mouse neocortical polysomes, here we report translationally repressed and derepressed mRNA isoforms during neocortical neurogenesis whose orthologs include risk genes for neurodevelopmental disorders. We demonstrate that the translation of distinct mRNA isoforms of the RNA binding protein (RBP), Elavl4, in radial glia progenitors and early neurons depends on its alternative 5' UTRs. Furthermore, 5' UTR-driven Elavl4 isoform-specific translation depends on upstream control by another RBP, Celf1. Celf1 regulation of Elavl4 translation dictates development of glutamatergic neurons. Our findings reveal a dynamic interplay between distinct RBPs and alternative 5' UTRs in neuronal development and underscore the risk of post-transcriptional dysregulation in co-occurring neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tatiana Popovitchenko
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Graduate Program in Neurosciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yongkyu Park
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Nicholas F Page
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xiaobing Luo
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Yuan Liu
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Graduate Program in Neurosciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Iva Salamon
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Graduate Program in Neurosciences, Rutgers University, Piscataway, NJ, 08854, USA
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Jessica D Stephenson
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Matthew L Kraushar
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Graduate Program in Neurosciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Nicole L Volk
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Sejal M Patel
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - H R Sagara Wijeratne
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Diana Li
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Kandarp S Suthar
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Aaron Wach
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Miao Sun
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, D-79104, Germany
| | - Wado Akamatsu
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Luc Paillard
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000, Rennes, France
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Steven Buyske
- Department of Statistics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ivica Kostovic
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Silvia De Rubeis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
16
|
Milos RI, Jovanov-Milošević N, Mitter C, Bobić-Rasonja M, Pogledic I, Gruber GM, Kasprian G, Brugger PC, Weber M, Judaš M, Prayer D. Developmental dynamics of the periventricular parietal crossroads of growing cortical pathways in the fetal brain - In vivo fetal MRI with histological correlation. Neuroimage 2020; 210:116553. [PMID: 31972277 DOI: 10.1016/j.neuroimage.2020.116553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
The periventricular crossroads have been described as transient structures of the fetal brain where major systems of developing fibers intersect. The triangular parietal crossroad constitutes one major crossroad region. By combining in vivo and post-mortem fetal MRI with histological and immunohistochemical methods, we aimed to characterize these structures. Data from 529 in vivo and 66 post-mortem MRI examinations of fetal brains between gestational weeks (GW) 18-39 were retrospectively reviewed. In each fetus, the area adjacent to the trigone of the lateral ventricles at the exit of the posterior limb of the internal capsule (PLIC) was assessed with respect to signal intensity, size, and shape on T2-weighted images. In addition, by using in vivo diffusion tensor imaging (DTI), the main fiber pathways that intersect in these areas were identified. In order to explain the in vivo features of the parietal crossroads (signal intensity and developmental profile), we analyzed 23 post-mortem fetal human brains, between 16 and 40 GW of age, processed by histological and immunohistochemical methods. The parietal crossroads were triangular-shaped areas with the base in the continuity of the PLIC, adjacent to the germinal matrix and the trigone of the lateral ventricles, with the tip pointing toward the subplate. These areas appeared hyperintense to the subplate, and corresponded to a convergence zone of the developing external capsule, the PLIC, and the fronto-occipital association fibers. They were best detected between GW 25-26, and, at term, they became isointense to the adjacent structures. The immunohistochemical results showed a distinct cellular, fibrillar, and extracellular matrix arrangement in the parietal crossroads, depending on the stage of development, which influenced the MRI features. The parietal crossroads are transient, but important structures in white matter maturation and their damage may be indicative of a poor prognosis for a fetus with regard to neurological development. In addition, impairment of this region may explain the complex neurodevelopmental deficits in preterm infants with periventricular hypoxic/ischemic or inflammatory lesions.
Collapse
Affiliation(s)
- Ruxandra-Iulia Milos
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Nataša Jovanov-Milošević
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Christian Mitter
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Mihaela Bobić-Rasonja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Pogledic
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gerlinde M Gruber
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter C Brugger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Miloš Judaš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
TMX2 Is a Crucial Regulator of Cellular Redox State, and Its Dysfunction Causes Severe Brain Developmental Abnormalities. Am J Hum Genet 2019; 105:1126-1147. [PMID: 31735293 DOI: 10.1016/j.ajhg.2019.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.
Collapse
|
18
|
Culjat M, Milošević NJ. Callosal septa express guidance cues and are paramedian guideposts for human corpus callosum development. J Anat 2019; 235:670-686. [PMID: 31070791 PMCID: PMC6704273 DOI: 10.1111/joa.13011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
The early development and growth of the corpus callosum are supported by several midline transient structures in mammals that include callosal septa (CS), which are present only in the second half of gestation in humans. Here we provide new data that support the guidance role of CS in corpus callosum development, derived from the analysis of 46 postmortem fetal brains, ranging in age from 16 to 40 post conception weeks (PCW). Using immunohistochemical methods, we show the expression pattern of guidance cues ephrinA4 and neogenin, extracellular protein fibronectin, as well as non-activated microglia in the CS. We found that the dynamic changes in expression of guidance cues, cellular and extracellular matrix constituents in the CS correlate well with the growth course of the corpus callosum at midsagittal level. The CS reach and maintain their developmental maximum between 20 and 26 PCW and can be visualized as hypointense structures in the ventral callosal portion with ex vivo (in vitro) T2-weighted 3T magnetic resonance imaging (MRI). The maximum of septal development overlaps with an increase in the callosal midsagittal area, whereas the slow, gradual resolution of CS coincides with a plateau of midsagittal callosal growth. The recognition of CS existence in human fetal brain and the ability to visualize them by ex vivoMRI attributes a potential diagnostic value to these transient structures, as advancement in imaging technologies will likely also enable in vivoMRI visualization of the CS in the near future.
Collapse
Affiliation(s)
- Marko Culjat
- MedStar Georgetown University HospitalWashingtonDCUSA
| | | |
Collapse
|
19
|
Sedmak G, Judaš M. The total number of white matter interstitial neurons in the human brain. J Anat 2019; 235:626-636. [PMID: 31173356 DOI: 10.1111/joa.13018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
In the adult human brain, the interstitial neurons (WMIN) of the subcortical white matter are the surviving remnants of the fetal subplate zone. It has been suggested that they perform certain important functions and may be involved in the pathogenesis of several neurological and psychiatric disorders. However, many important features of this class of human cortical neurons remain insufficiently explored. In this study, we analyzed the total number, and regional and topological distribution of WMIN in the adult human subcortical white matter, using a combined immunocytochemical (NeuN) and stereological approaches. We found that the average number of WMIN in 1 mm3 of the subcortical white matter is 1.230 ± 549, which translates to the average total number of 593 811 183.6 ± 264 849 443.35 of WMIN in the entire subcortical telencephalic white matter. While there were no significant differences in their regional distribution, the lowest number of WMIN has been consistently observed in the limbic cortex, and the highest number in the frontal cortex. With respect to their topological distribution, the WMIN were consistently more numerous within gyral crowns, less numerous along gyral walls and least numerous at the bottom of cortical sulci (where they occupy a narrow and compact zone below the cortical-white matter border). The topological location of WMIN is also significantly correlated with their morphology: pyramidal and multipolar forms are the most numerous within gyral crowns, whereas bipolar forms predominate at the bottom of cortical sulci. Our results indicate that WMIN represent substantial neuronal population in the adult human cerebral cortex (e.g. more numerous than thalamic or basal ganglia neurons) and thus deserve more detailed morphological and functional investigations in the future.
Collapse
Affiliation(s)
- Goran Sedmak
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Center for Excellence in Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Center for Excellence in Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
20
|
Petanjek Z, Sedmak D, Džaja D, Hladnik A, Rašin MR, Jovanov-Milosevic N. The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism. Front Psychiatry 2019; 10:122. [PMID: 30923504 PMCID: PMC6426783 DOI: 10.3389/fpsyt.2019.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Džaja
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Roko Rašin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Nataša Jovanov-Milosevic
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
21
|
Hrabač P, Bosak A, Vukšić M, Judaš M, Kostović I, Krsnik Ž. The Zagreb Collection of human brains: entering the virtual world. Croat Med J 2019. [PMID: 30610769 PMCID: PMC6330769 DOI: 10.3325/10.3325/cmj.2018.59.283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Pero Hrabač
- Pero Hrabač, Department of Medical Statistics, Epidemiology, and Medical Informatics, "Andrija Štampar" School of Public Health, University of Zagreb School of Medicine, Zagreb, Croatia,
| | | | | | | | | | | |
Collapse
|
22
|
Kostović I, Sedmak G, Judaš M. Neural histology and neurogenesis of the human fetal and infant brain. Neuroimage 2018; 188:743-773. [PMID: 30594683 DOI: 10.1016/j.neuroimage.2018.12.043] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/11/2023] Open
Abstract
The human brain develops slowly and over a long period of time which lasts for almost three decades. This enables good spatio-temporal resolution of histogenetic and neurogenetic events as well as an appropriate and clinically relevant timing of these events. In order to successfully apply in vivo neuroimaging data, in analyzing both the normal brain development and the neurodevelopmental origin of major neurological and mental disorders, it is important to correlate these neuroimaging data with the existing data on morphogenetic, histogenetic and neurogenetic events. Furthermore, when performing such correlation, the genetic, genomic, and molecular biology data on phenotypic specification of developing brain regions, areas and neurons should also be included. In this review, we focus on early developmental periods (form 8 postconceptional weeks to the second postnatal year) and describe the microstructural organization and neural circuitry elements of the fetal and early postnatal human cerebrum.
Collapse
Affiliation(s)
- I Kostović
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - G Sedmak
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - M Judaš
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| |
Collapse
|
23
|
Sedmak D, Hrvoj-Mihić B, Džaja D, Habek N, Uylings HB, Petanjek Z. Biphasic dendritic growth of dorsolateral prefrontal cortex associative neurons and early cognitive development. Croat Med J 2018. [PMID: 30394011 PMCID: PMC6240825 DOI: 10.3325/cmj.2018.59.189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim To analyze postnatal development and life-span changes of apical dendrite side branches (oblique dendrites) from associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex and to compare the findings with the previously established pattern of basal dendrite development. Methods We analyzed dendritic morphology from 352 rapid-Golgi impregnated neurons (10-18 neurons per subject) in Brodmann area 9 from the post-mortem tissue of 25 subjects ranging in age from 1 week to 91 years. Data were collected in the period between 1994 and 1996, and the analysis was performed between September 2017 and February 2018. Quantitative dendritic parameters were statistically analyzed using one-way analysis of variance and two-tailed t tests. Results Oblique dendrites grew rapidly during the first postnatal months, and the increase in the dendrite length was accompanied by the outgrowth of new dendritic segments. After a more than one-year-long “dormant” period of only fine dendritic rearrangements (2.5-16 months), oblique dendrites displayed a second period of marked growth, continuing through the third postnatal year. Basal and oblique dendrites displayed roughly the same growth pattern, but had considerably different topological organization in adulthood. Conclusion Our analysis confirmed that a biphasic pattern of postnatal dendritic development, together with a second growth spurt at the age of 2-3 years, represents a unique feature of the associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex. We propose that these structural changes relate to rapid cognitive development during early childhood.
Collapse
Affiliation(s)
| | | | | | | | | | - Zdravko Petanjek
- Zdravko Petanjek, Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, Zagreb, Croatia,
| |
Collapse
|
24
|
Kostović I, Išasegi IŽ, Krsnik Ž. Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix. J Anat 2018; 235:481-506. [PMID: 30549027 DOI: 10.1111/joa.12920] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
The objective of this paper was to collect normative data essential for analyzing the subplate (SP) role in pathogenesis of developmental disorders, characterized by abnormal circuitry, such as hypoxic-ischemic lesions, autism and schizophrenia. The main cytological features of the SP, such as low cell density, early differentiation of neurons and glia, plexiform arrangement of axons and dendrites, presence of synapses and a large amount of extracellular matrix (ECM) distinguish this compartment from the cell-dense cortical plate (CP; towards pia) and large fiber bundles of external axonal strata of fetal white matter (towards ventricle). For SP delineation from these adjacent layers based on combined cytological criteria, we analyzed the sublaminar distribution of different microstructural elements and the associated maturational gradients throughout development, using immunocytochemical and histological techniques on postmortem brain material (Zagreb Neuroembryological Collection). The analysis revealed that the SP compartment of the lateral neocortex shows changes in laminar organization throughout fetal development: the monolayer in the early fetal period (presubplate) undergoes dramatic bilaminar transformation between 13 and 15 postconceptional weeks (PCW), followed by subtle sublamination in three 'floors' (deep, intermediate, superficial) of midgestation (15-21 PCW). During the stationary phase (22-28 PCW), SP persists as a trilaminar compartment, gradually losing its sublaminar organization towards the end of gestation and remains as a single layer of SP remnant in the newborn brain. Based on these sublaminar transformations, we have documented developmental changes in the distribution, maturational gradients and expression of molecular markers in SP synapses, transitional forms of astroglia, neurons and ECM, which occur concomitantly with the ingrowth of thalamo-cortical, basal forebrain and cortico-cortical axons in a deep to superficial fashion. The deep SP is the zone of ingrowing axons - 'entrance (ingrowth) zone'. The process of axonal ingrowth begins with thalamo-cortical fibers and basal forebrain afferents, indicating an oblique geometry. During the later fetal period, deep SP receives long cortico-cortical axons exhibiting a tangential geometry. Intermediate SP ('proper') is the navigation and 'nexus' sublamina consisting of a plexiform arrangement of cellular elements providing guidance and substrate for axonal growth, and also containing transient connectivity of dendrites and axons in a tangential plane without radial boundaries immersed in an ECM-rich continuum. Superficial SP is the axonal accumulation ('waiting compartment') and target selection zone, indicating a dense distribution of synaptic markers, accumulation of thalamo-cortical axons (around 20 PCW), overlapping with dendrites from layer VI neurons. In the late preterm brain period, superficial SP contains a chondroitin sulfate non-immunoreactive band. The developmental dynamics for the distribution of neuronal, glial and ECM markers comply with sequential ingrowth of afferents in three levels of SP: ECM and synaptic markers shift from deep to superficial SP, with transient forms of glia following this arrangement, and calretinin neurons are concentrated in the SP during the formation phase. These results indicate developmental and morphogenetic roles in the SP cellular (transient glia, neurons and synapses) and ECM framework, enabling the spatial accommodation, navigation and establishment of numerous connections of cortical pathways in the expanded human brain. The original findings of early developmental dynamics of transitional subtypes of astroglia, calretinin neurons, ECM and synaptic markers presented in the SP are interesting in the light of recent concepts concerning its functional and morphogenetic role and an increasing interest in SP as a prospective substrate of abnormalities in cortical circuitry, leading to a cognitive deficit in different neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Iris Žunić Išasegi
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
25
|
Žunić Išasegi I, Radoš M, Krsnik Ž, Radoš M, Benjak V, Kostović I. Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall. Brain Struct Funct 2018; 223:3919-3943. [PMID: 30094607 PMCID: PMC6267252 DOI: 10.1007/s00429-018-1721-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022]
Abstract
Development of the cerebral wall is characterized by partially overlapping histogenetic events. However, little is known with regards to when, where, and how growing axonal pathways interact with progenitor cell lineages in the proliferative zones of the human fetal cerebrum. We analyzed the developmental continuity and spatial distribution of the axonal sagittal strata (SS) and their relationship with proliferative zones in a series of human brains (8-40 post-conceptional weeks; PCW) by comparing histological, histochemical, and immunocytochemical data with magnetic resonance imaging (MRI). Between 8.5 and 11 PCW, thalamocortical fibers from the intermediate zone (IZ) were initially dispersed throughout the subventricular zone (SVZ), while sizeable axonal "invasion" occurred between 12.5 and 15 PCW followed by callosal fibers which "delaminated" the ventricular zone-inner SVZ from the outer SVZ (OSVZ). During midgestation, the SS extensively invaded the OSVZ, separating cell bands, and a new multilaminar axonal-cellular compartment (MACC) was formed. Preterm period reveals increased complexity of the MACC in terms of glial architecture and the thinning of proliferative bands. The addition of associative fibers and the formation of the centrum semiovale separated the SS from the subplate. In vivo MRI of the occipital SS indicates a "triplet" structure of alternating hypointense and hyperintense bands. Our results highlighted the developmental continuity of sagittally oriented "corridors" of projection, commissural and associative fibers, and histogenetic interaction with progenitors, neurons, and glia. Histogenetical changes in the MACC, and consequently, delineation of the SS on MRI, may serve as a relevant indicator of white matter microstructural integrity in the developing brain.
Collapse
Affiliation(s)
- Iris Žunić Išasegi
- Croatian Institute for Brain Research, Centar of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Milan Radoš
- Croatian Institute for Brain Research, Centar of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, Centar of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Marko Radoš
- Department of Radiology, Clinical Hospital Center Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Vesna Benjak
- Department of Pediatrics, Clinical Hospital Center Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, Centar of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, Croatia.
| |
Collapse
|
26
|
Sedmak D, Hrvoj-Mihić B, Džaja D, Habek N, Uylings HB, Petanjek Z. Biphasic dendritic growth of dorsolateral prefrontal cortex associative neurons and early cognitive development. Croat Med J 2018; 59:189-202. [PMID: 30394011 PMCID: PMC6240825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/31/2018] [Indexed: 10/05/2023] Open
Abstract
AIM To analyze postnatal development and life-span changes of apical dendrite side branches (oblique dendrites) from associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex and to compare the findings with the previously established pattern of basal dendrite development. METHODS We analyzed dendritic morphology from 352 rapid-Golgi impregnated neurons (10-18 neurons per subject) in Brodmann area 9 from the post-mortem tissue of 25 subjects ranging in age from 1 week to 91 years. Data were collected in the period between 1994 and 1996, and the analysis was performed between September 2017 and February 2018. Quantitative dendritic parameters were statistically analyzed using one-way analysis of variance and two-tailed t tests. RESULTS Oblique dendrites grew rapidly during the first postnatal months, and the increase in the dendrite length was accompanied by the outgrowth of new dendritic segments. After a more than one-year-long "dormant" period of only fine dendritic rearrangements (2.5-16 months), oblique dendrites displayed a second period of marked growth, continuing through the third postnatal year. Basal and oblique dendrites displayed roughly the same growth pattern, but had considerably different topological organization in adulthood. CONCLUSION Our analysis confirmed that a biphasic pattern of postnatal dendritic development, together with a second growth spurt at the age of 2-3 years, represents a unique feature of the associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex. We propose that these structural changes relate to rapid cognitive development during early childhood.
Collapse
Affiliation(s)
| | | | | | | | | | - Zdravko Petanjek
- Zdravko Petanjek, Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, Zagreb, Croatia,
| |
Collapse
|
27
|
Charvet CJ, Šimić G, Kostović I, Knezović V, Vukšić M, Babić Leko M, Takahashi E, Sherwood CC, Wolfe MD, Finlay BL. Coevolution in the timing of GABAergic and pyramidal neuron maturation in primates. Proc Biol Sci 2018; 284:rspb.2017.1169. [PMID: 28855363 DOI: 10.1098/rspb.2017.1169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/21/2017] [Indexed: 01/12/2023] Open
Abstract
The cortex of primates is relatively expanded compared with many other mammals, yet little is known about what developmental processes account for the expansion of cortical subtype numbers in primates, including humans. We asked whether GABAergic and pyramidal neuron production occurs for longer than expected in primates than in mice in a sample of 86 developing primate and rodent brains. We use high-resolution structural, diffusion MR scans and histological material to compare the timing of the ganglionic eminences (GE) and cortical proliferative pool (CPP) maturation between humans, macaques, rats, and mice. We also compare the timing of post-neurogenetic maturation of GABAergic and pyramidal neurons in primates (i.e. humans, macaques) relative to rats and mice to identify whether delays in neurogenesis are concomitant with delayed post-neurogenetic maturation. We found that the growth of the GE and CPP are both selectively delayed compared with other events in primates. By contrast, the timing of post-neurogenetic GABAergic and pyramidal events (e.g. synaptogenesis) are predictable from the timing of other events in primates and in studied rodents. The extended duration of GABAergic and pyramidal neuron production is associated with the amplification of GABAerigc and pyramidal neuron numbers in the human and non-human primate cortex.
Collapse
Affiliation(s)
- Christine J Charvet
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA .,Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivica Kostović
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vinka Knezović
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Mario Vukšić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Marnin D Wolfe
- School of Integrative Plant Science, Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Barbara L Finlay
- Evolutionary Neuroscience Group, Department of Psychology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
28
|
Herrera-Molina R, Mlinac-Jerkovic K, Ilic K, Stöber F, Vemula SK, Sandoval M, Milosevic NJ, Simic G, Smalla KH, Goldschmidt J, Bognar SK, Montag D. Neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration. Sci Rep 2017; 7:7273. [PMID: 28779130 PMCID: PMC5544750 DOI: 10.1038/s41598-017-07839-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/26/2017] [Indexed: 02/05/2023] Open
Abstract
The cell adhesion molecule neuroplastin (Np) is a novel candidate to influence human intelligence. Np-deficient mice display complex cognitive deficits and reduced levels of Plasma Membrane Ca2+ ATPases (PMCAs), an essential regulator of the intracellular Ca2+ concentration ([iCa2+]) and neuronal activity. We show abundant expression and conserved cellular and molecular features of Np in glutamatergic neurons in human hippocampal-cortical pathways as characterized for the rodent brain. In Nptnlox/loxEmx1Cre mice, glutamatergic neuron-selective Np ablation resulted in behavioral deficits indicating hippocampal, striatal, and sensorimotor dysfunction paralleled by highly altered activities in hippocampal CA1 area, sensorimotor cortex layers I-III/IV, and the striatal sensorimotor domain detected by single-photon emission computed tomography. Altered hippocampal and cortical activities correlated with reduction of distinct PMCA paralogs in Nptnlox/loxEmx1Cre mice and increased [iCa2+] in cultured mutant neurons. Human and rodent Np enhanced the post-transcriptional expression of and co-localized with PMCA paralogs in the plasma membrane of transfected cells. Our results indicate Np as essential for PMCA expression in glutamatergic neurons allowing proper [iCa2+] regulation and normal circuit activity. Neuron-type-specific Np ablation empowers the investigation of circuit-coded learning and memory and identification of causal mechanisms leading to cognitive deterioration.
Collapse
Affiliation(s)
- Rodrigo Herrera-Molina
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Franziska Stöber
- Department of Systems Physiology; Special Laboratories, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sampath Kumar Vemula
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Mauricio Sandoval
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Natasa Jovanov Milosevic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Goran Simic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Karl-Heinz Smalla
- Department of Molecular Biology Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Jürgen Goldschmidt
- Department of Systems Physiology; Special Laboratories, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Svjetlana Kalanj Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dirk Montag
- Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
29
|
Vasung L, Raguz M, Kostovic I, Takahashi E. Spatiotemporal Relationship of Brain Pathways during Human Fetal Development Using High-Angular Resolution Diffusion MR Imaging and Histology. Front Neurosci 2017; 11:348. [PMID: 28744187 PMCID: PMC5504538 DOI: 10.3389/fnins.2017.00348] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/06/2017] [Indexed: 01/08/2023] Open
Abstract
In this study, we aimed to identify major fiber pathways and their spatiotemporal relationships within transient fetal zones in the human fetal brain by comparing postmortem high-angular resolution diffusion MR imaging (HARDI) in combination with deterministic streamline tractography and histology. Diffusion weighted imaging was performed on postmortem human fetal brains [N = 9, age = 18–34 post-conceptual weeks (PCW)] that were grossly normal with no pathologic abnormalities. After HARDI was performed, the fibers were reconstructed using Q-ball algorithm and deterministic streamline tractography. The position of major fiber pathways within transient fetal zones was identified both on diffusion weighted images and on histological sections. Our major findings include: (1) the development of massive projection fibers by 18 PCW, as compared to most association fibers (with the exception of limbic fibers) which have only begun to emerge, (2) the characteristic laminar distribution and sagittal plane geometry of reconstructed fibers throughout development, (3) the protracted prenatal development shown of the corpus collosum and its' associated fibers, as well as the association fibers, and (4) the predomination of radial coherence in the telencephalon (i.e., majority of streamlines in the telencephalic wall were radially oriented) during early prenatal period (24 PCW). In conclusion, correlation between histology and HARDI (in combination with Q-ball reconstruction and deterministic streamline tractography) allowed us to detect sequential development of fiber systems (projection, callosal, and association), their spatial relations with transient fetal zones, and their geometric properties.
Collapse
Affiliation(s)
- Lana Vasung
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, United States
| | - Marina Raguz
- School of Medicine, Croatian Institute for Brain Research, University of ZagrebZagreb, Croatia
| | - Ivica Kostovic
- School of Medicine, Croatian Institute for Brain Research, University of ZagrebZagreb, Croatia
| | - Emi Takahashi
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
30
|
Sedmak G, Jovanov-Milošević N, Puskarjov M, Ulamec M, Krušlin B, Kaila K, Judaš M. Developmental Expression Patterns of KCC2 and Functionally Associated Molecules in the Human Brain. Cereb Cortex 2016; 26:4574-4589. [PMID: 26428952 DOI: 10.1093/cercor/bhv218] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Work on rodents demonstrated that steep upregulation of KCC2, a neuron-specific Cl- extruder of cation-chloride cotransporter (CCC) family, commences in supraspinal structures at around birth, leading to establishment of hyperpolarizing GABAergic responses. We describe spatiotemporal expression profiles of the entire CCC family in human brain. KCC2 mRNA was observed already at 10th postconceptional week (PCW) in amygdala, cerebellum, and thalamus. KCC2-immunoreactive (KCC2-ir) neurons were abundant in subplate at 18 PCW. By 25 PCW, numerous subplate and cortical plate neurons became KCC2-ir. The mRNA expression profiles of α- and β-isoforms of Na-K ATPase, which fuels cation-chloride cotransport, as well of tropomyosin receptor kinase B (TrkB), which promotes developmental upregulation of KCC2, were consistent with data from studies on rodents about their interactions with KCC2. Thus, in human brain, expression of KCC2 and its functionally associated proteins begins in early fetal period. Our work facilitates translation of results on CCC functions from animal studies to human and refutes the view that poor efficacy of anticonvulsants in the term human neonate is attributable to the lack of KCC2. We propose that perinatally low threshold for activation of Ca2+-dependent protease calpain renders neonates susceptible to downregulation of KCC2 by traumatic events, such as perinatal hypoxia ischemia.
Collapse
Affiliation(s)
| | | | - Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of Helsinki, Viikinkaari 1, Helsinki FI-00014, Finland
| | - Monika Ulamec
- Department of Pathology, Clinical Hospital Center Sisters of Mercy, University of Zagreb School of Medicine, Zagreb 10 000, Croatia
| | - Božo Krušlin
- Department of Pathology, Clinical Hospital Center Sisters of Mercy, University of Zagreb School of Medicine, Zagreb 10 000, Croatia
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, Viikinkaari 1, Helsinki FI-00014, Finland
| | | |
Collapse
|
31
|
Mladinov M, Sedmak G, Fuller HR, Babić Leko M, Mayer D, Kirincich J, Štajduhar A, Borovečki F, Hof PR, Šimić G. Gene expression profiling of the dorsolateral and medial orbitofrontal cortex in schizophrenia. Transl Neurosci 2016; 7:139-150. [PMID: 28123834 PMCID: PMC5234522 DOI: 10.1515/tnsci-2016-0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/05/2016] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a complex polygenic disorder of unknown etiology. Over 3,000 candidate genes associated with schizophrenia have been reported, most of which being mentioned only once. Alterations in cognitive processing - working memory, metacognition and mentalization - represent a core feature of schizophrenia, which indicates the involvement of the prefrontal cortex in the pathophysiology of this disorder. Hence we compared the gene expression in postmortem tissue from the left and right dorsolateral prefrontal cortex (DLPFC, Brodmann's area 46), and the medial part of the orbitofrontal cortex (MOFC, Brodmann's area 11/12), in six patients with schizophrenia and six control brains. Although in the past decade several studies performed transcriptome profiling in schizophrenia, this is the first study to investigate both hemispheres, providing new knowledge about possible brain asymmetry at the level of gene expression and its relation to schizophrenia. We found that in the left hemisphere, twelve genes from the DLPFC and eight genes from the MOFC were differentially expressed in patients with schizophrenia compared to controls. In the right hemisphere there was only one gene differentially expressed in the MOFC. We reproduce the involvement of previously reported genes TARDBP and HNRNPC in the pathogenesis of schizophrenia, and report seven novel genes: SART1, KAT7, C1D, NPM1, EVI2A, XGY2, and TTTY15. As the differentially expressed genes only partially overlap with previous studies that analyzed other brain regions, our findings indicate the importance of considering prefrontal cortical regions, especially those in the left hemisphere, for obtaining disease-relevant insights.
Collapse
Affiliation(s)
- Mihovil Mladinov
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Goran Sedmak
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK and Institute for Science and Technology in Medicine, Keele University, Staffordshire, ST5 5BG, United Kingdom of Great Britain and Northern Ireland
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Davor Mayer
- Department of Forensic Medicine, University of Zagreb Medical School, Zagreb, Croatia
| | - Jason Kirincich
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Andrija Štajduhar
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Fran Borovečki
- Department of Neurology, University Clinical Hospital Zagreb, Zagreb, Croatia
| | - Patrick R Hof
- Fishberg Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
32
|
Secondary expansion of the transient subplate zone in the developing cerebrum of human and nonhuman primates. Proc Natl Acad Sci U S A 2016; 113:9892-7. [PMID: 27503885 DOI: 10.1073/pnas.1610078113] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The subplate (SP) was the last cellular compartment added to the Boulder Committee's list of transient embryonic zones [Bystron I, Blakemore C, Rakic P (2008) Nature Rev Neurosci 9(2):110-122]. It is highly developed in human and nonhuman primates, but its origin, mode, and dynamics of development, resolution, and eventual extinction are not well understood because human postmortem tissue offers only static descriptive data, and mice cannot serve as an adequate experimental model for the distinct regional differences in primates. Here, we take advantage of the large and slowly developing SP in macaque monkey to examine the origin, settling pattern, and subsequent dispersion of the SP neurons in primates. Monkey embryos exposed to the radioactive DNA replication marker tritiated thymidine ([(3)H]dT, or TdR) at early embryonic ages were killed at different intervals postinjection to follow postmitotic cells' positional changes. As expected in primates, most SP neurons generated in the ventricular zone initially migrate radially, together with prospective layer 6 neurons. Surprisingly, mostly during midgestation, SP cells become secondarily displaced and widespread into the expanding SP zone, which becomes particularly wide subjacent to the association cortical areas and underneath the summit of its folia. We found that invasion of monoamine, basal forebrain, thalamocortical, and corticocortical axons is mainly responsible for this region-dependent passive dispersion of the SP cells. Histologic and immunohistochemical comparison with the human SP at corresponding fetal ages indicates that the same developmental events occur in both primate species.
Collapse
|
33
|
Vasung L, Lepage C, Radoš M, Pletikos M, Goldman JS, Richiardi J, Raguž M, Fischi-Gómez E, Karama S, Huppi PS, Evans AC, Kostovic I. Quantitative and Qualitative Analysis of Transient Fetal Compartments during Prenatal Human Brain Development. Front Neuroanat 2016; 10:11. [PMID: 26941612 PMCID: PMC4764715 DOI: 10.3389/fnana.2016.00011] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/01/2016] [Indexed: 02/04/2023] Open
Abstract
The cerebral wall of the human fetal brain is composed of transient cellular compartments, which show characteristic spatiotemporal relationships with intensity of major neurogenic events (cell proliferation, migration, axonal growth, dendritic differentiation, synaptogenesis, cell death, and myelination). The aim of the present study was to obtain new quantitative data describing volume, surface area, and thickness of transient compartments in the human fetal cerebrum. Forty-four postmortem fetal brains aged 13–40 postconceptional weeks (PCW) were included in this study. High-resolution T1 weighted MR images were acquired on 19 fetal brain hemispheres. MR images were processed using in-house software (MNI-ACE toolbox). Delineation of fetal compartments was performed semi-automatically by co-registration of MRI with histological sections of the same brains, or with the age-matched brains from Zagreb Neuroembryological Collection. Growth trajectories of transient fetal compartments were reconstructed. The composition of telencephalic wall was quantitatively assessed. Between 13 and 25 PCW, when the intensity of neuronal proliferation decreases drastically, the relative volume of proliferative (ventricular and subventricular) compartments showed pronounced decline. In contrast, synapse- and extracellular matrix-rich subplate compartment continued to grow during the first two trimesters, occupying up to 45% of telencephalon and reaching its maximum volume and thickness around 30 PCW. This developmental maximum coincides with a period of intensive growth of long cortico-cortical fibers, which enter and wait in subplate before approaching the cortical plate. Although we did not find significant age related changes in mean thickness of the cortical plate, the volume, gyrification index, and surface area of the cortical plate continued to exponentially grow during the last phases of prenatal development. This cortical expansion coincides developmentally with the transformation of embryonic cortical columns, dendritic differentiation, and ingrowth of axons. These results provide a quantitative description of transient human fetal brain compartments observable with MRI. Moreover, they will improve understanding of structural-functional relationships during brain development, will enable correlation between in vitro/in vivo imaging and fine structural histological studies, and will serve as a reference for study of perinatal brain injuries.
Collapse
Affiliation(s)
- Lana Vasung
- Department of Developmental Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagreb, Croatia; Division of Development and Growth, Department of Pediatrics, University of GenevaGeneva, Switzerland
| | - Claude Lepage
- Ludmer Centre for Neuroinformatics, McGill Centre for Integrative Neuroscience, Department of Biomedical Engineering, Montreal Neurological Institute, Montreal, McGill University Montreal, QC, Canada
| | - Milan Radoš
- Department of Developmental Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Mihovil Pletikos
- Department of Developmental Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagreb, Croatia; Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of MedicineNew Haven, CT, USA
| | - Jennifer S Goldman
- Ludmer Centre for Neuroinformatics, McGill Centre for Integrative Neuroscience, Department of Biomedical Engineering, Montreal Neurological Institute, Montreal, McGill University Montreal, QC, Canada
| | - Jonas Richiardi
- Laboratory of Neurology and Imaging of Cognition, Department of Neuroscience, University of Geneva Geneva, Switzerland
| | - Marina Raguž
- Department of Developmental Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Elda Fischi-Gómez
- Division of Development and Growth, Department of Pediatrics, University of Geneva Geneva, Switzerland
| | - Sherif Karama
- Ludmer Centre for Neuroinformatics, McGill Centre for Integrative Neuroscience, Department of Biomedical Engineering, Montreal Neurological Institute, Montreal, McGill University Montreal, QC, Canada
| | - Petra S Huppi
- Division of Development and Growth, Department of Pediatrics, University of Geneva Geneva, Switzerland
| | - Alan C Evans
- Ludmer Centre for Neuroinformatics, McGill Centre for Integrative Neuroscience, Department of Biomedical Engineering, Montreal Neurological Institute, Montreal, McGill University Montreal, QC, Canada
| | - Ivica Kostovic
- Department of Developmental Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia
| |
Collapse
|
34
|
Fuller HR, Slade R, Jovanov-Milošević N, Babić M, Sedmak G, Šimić G, Fuszard MA, Shirran SL, Botting CH, Gates MA. Stathmin is enriched in the developing corticospinal tract. Mol Cell Neurosci 2015; 69:12-21. [PMID: 26370173 DOI: 10.1016/j.mcn.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 01/28/2023] Open
Abstract
Understanding the intra- and extracellular proteins involved in the development of the corticospinal tract (CST) may offer insights into how the pathway could be regenerated following traumatic spinal cord injury. Currently, however, little is known about the proteome of the developing corticospinal system. The present study, therefore, has used quantitative proteomics and bioinformatics to detail the protein profile of the rat CST during its formation in the spinal cord. This analysis identified increased expression of 65 proteins during the early ingrowth of corticospinal axons into the spinal cord, and 36 proteins at the period of heightened CST growth. A majority of these proteins were involved in cellular assembly and organization, with annotations being most highly associated with cytoskeletal organization, microtubule dynamics, neurite outgrowth, and the formation, polymerization and quantity of microtubules. In addition, 22 proteins were more highly expressed within the developing CST in comparison to other developing white matter tracts of the spinal cord of age-matched animals. Of these differentially expressed proteins, only one, stathmin 1 (a protein known to be involved in microtubule dynamics), was both highly enriched in the developing CST and relatively sparse in other developing descending and ascending spinal tracts. Immunohistochemical analyses of the developing rat spinal cord and fetal human brain stem confirmed the enriched pattern of stathmin expression along the developing CST, and in vitro growth assays of rat corticospinal neurons showed a reduced length of neurite processes in response to pharmacological perturbation of stathmin activity. Combined, these findings suggest that stathmin activity may modulate axonal growth during development of the corticospinal projection, and reinforces the notion that microtubule dynamics could play an important role in the generation and regeneration of the CST.
Collapse
Affiliation(s)
- Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK; Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK; Postgraduate Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Robert Slade
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK; Postgraduate Medicine, Keele University, Staffordshire ST5 5BG, UK
| | | | - Mirjana Babić
- Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Goran Šimić
- Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Matthew A Fuszard
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Catherine H Botting
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Monte A Gates
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
| |
Collapse
|
35
|
Hladnik A, Džaja D, Darmopil S, Jovanov-Milošević N, Petanjek Z. Spatio-temporal extension in site of origin for cortical calretinin neurons in primates. Front Neuroanat 2014; 8:50. [PMID: 25018702 PMCID: PMC4072090 DOI: 10.3389/fnana.2014.00050] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/03/2014] [Indexed: 11/13/2022] Open
Abstract
The vast majority of cortical GABAergic neurons can be defined by parvalbumin, somatostatin or calretinin expression. In most mammalians, parvalbumin and somatostatin interneurons have constant proportions, each representing 5-7% of the total neuron number. In contrast, there is a threefold increase in the proportion of calretinin interneurons, which do not exceed 4% in rodents and reach 12% in higher order areas of primate cerebral cortex. In rodents, almost all parvalbumin and somatostatin interneurons originate from the medial part of the subpallial proliferative structure, the ganglionic eminence (GE), while almost all calretinin interneurons originate from its caudal part. The spatial pattern of cortical GABAergic neurons origin from the GE is preserved in the monkey and human brain. However, it could be expected that the evolution is changing developmental rules to enable considerable expansion of calretinin interneuron population. During the early fetal period in primates, cortical GABAergic neurons are almost entirely generated in the subpallium, as in rodents. Already at that time, the primate caudal ganglionic eminence (CGE) shows a relative increase in size and production of calretinin interneurons. During the second trimester of gestation, that is the main neurogenetic stage in primates without clear correlates found in rodents, the pallial production of cortical GABAergic neurons together with the extended persistence of the GE is observed. We propose that the CGE could be the main source of calretinin interneurons for the posterior and lateral cortical regions, but not for the frontal cortex. The associative granular frontal cortex represents around one third of the cortical surface and contains almost half of cortical calretinin interneurons. The majority of calretinin interneurons destined for the frontal cortex could be generated in the pallium, especially in the newly evolved outer subventricular zone that becomes the main pool of cortical progenitors.
Collapse
Affiliation(s)
- Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Domagoj Džaja
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Sanja Darmopil
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb Zagreb, Croatia ; Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Nataša Jovanov-Milošević
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb Zagreb, Croatia ; Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia
| |
Collapse
|
36
|
Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models. Neuroimage 2014; 96:288-99. [PMID: 24680870 DOI: 10.1016/j.neuroimage.2014.03.057] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/19/2014] [Accepted: 03/21/2014] [Indexed: 01/28/2023] Open
Abstract
Brain white matter connections have become a focus of major interest with important maturational processes occurring in newborns. To study the complex microstructural developmental changes in-vivo, it is imperative that non-invasive neuroimaging approaches are developed for this age-group. Multi-b-value diffusion weighted imaging data were acquired in 13 newborns, and the biophysical compartment diffusion models CHARMED-light and NODDI, providing new microstructural parameters such as intra-neurite volume fraction (νin) and neurite orientation dispersion index (ODI), were developed for newborn data. Comparative analysis was performed and twenty ROIs in the white matter were investigated. Diffusion tensor imaging and both biophysical compartment models highlighted the compact and oriented structure of the corpus-callosum with the highest FA and νin values and the smallest ODI values. We could clearly differentiate, using the FA, νin and ODI, the posterior and anterior internal capsule representing similar cellular structure but with different maturation (i.e. partially myelinated and absence of myelin, respectively). Late maturing regions (external capsule and periventricular crossroads of pathways) had lower νin values, but displayed significant differences in ODI. The compartmented models CHARMED-light and NODDI bring new indices corroborating the cellular architectures, with the lowest νin, reflecting the late maturation of areas with thin non-myelinated fibers, and with highest ODI indicating the presence of fiber crossings and fanning. The application of biophysical compartment diffusion models adds new insights to the brain white matter development in vivo.
Collapse
|
37
|
Congenital brain anomalies and chromosomal aberrations from the Zagreb Collection of human brains. Transl Neurosci 2014. [DOI: 10.2478/s13380-014-0231-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AbstractThe Zagreb Collection of developing and adult human brains consists of approximately 1,300 brains of fetuses, children and adults that were collected following routine autopsies in the period from 1974 to 2014. The collection comprises brains of different normal developmental stages that may serve for investigation of normal human brain development. Previous studies on this material have led to several important contributions on human cortical development, such as the discovery of the transient fetal subplate zone. The Zagreb Collection, however, also contains approximately 100 brains with different anomalies including chromosomal aberrations such as Down syndrome. We have analyzed all the available material from the Zagreb Collection and identified 44 brains of fetuses and children with Down syndrome, 10 with Patau syndrome, 6 with Edwards syndrome as well as 7 holoprosencephalic, 7 hydrocephalic and 4 microcephalic brains. The largest part of the Collection is available for further research using modern genetic, immunocytochemical and imaging methods, especially magnetic resonance imaging. Furthermore, the histological slides from the Zagreb Collection are currently being digitally scanned and made available as virtual slides to general scientific audience. The Zagreb Collection represents unique and versatile resource for the future study of normal and abnormal human brain development.
Collapse
|
38
|
Jovanov Milošević N, Judaš M, Aronica E, Kostovic I. Neural ECM in laminar organization and connectivity development in healthy and diseased human brain. PROGRESS IN BRAIN RESEARCH 2014; 214:159-78. [DOI: 10.1016/b978-0-444-63486-3.00007-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Struct Funct 2012; 219:231-53. [DOI: 10.1007/s00429-012-0496-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/03/2012] [Indexed: 12/14/2022]
|
40
|
Kwan KY, Lam MMS, Johnson MB, Dube U, Shim S, Rašin MR, Sousa AMM, Fertuzinhos S, Chen JG, Arellano JI, Chan DW, Pletikos M, Vasung L, Rowitch DH, Huang EJ, Schwartz ML, Willemsen R, Oostra BA, Rakic P, Heffer M, Kostović I, Judaš M, Sestan N. Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell 2012; 149:899-911. [PMID: 22579290 DOI: 10.1016/j.cell.2012.02.060] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/19/2011] [Accepted: 02/15/2012] [Indexed: 02/06/2023]
Abstract
Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism, results from loss of function of the RNA-binding protein FMRP. Here, we show that FMRP regulates translation of neuronal nitric oxide synthase 1 (NOS1) in the developing human neocortex. Whereas NOS1 mRNA is widely expressed, NOS1 protein is transiently coexpressed with FMRP during early synaptogenesis in layer- and region-specific pyramidal neurons. These include midfetal layer 5 subcortically projecting neurons arranged into alternating columns in the prospective Broca's area and orofacial motor cortex. Human NOS1 translation is activated by FMRP via interactions with coding region binding motifs absent from mouse Nos1 mRNA, which is expressed in mouse pyramidal neurons, but not efficiently translated. Correspondingly, neocortical NOS1 protein levels are severely reduced in developing human FXS cases, but not FMRP-deficient mice. Thus, alterations in FMRP posttranscriptional regulation of NOS1 in developing neocortical circuits may contribute to cognitive dysfunction in FXS.
Collapse
Affiliation(s)
- Kenneth Y Kwan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci U S A 2011; 108:13281-6. [PMID: 21788513 DOI: 10.1073/pnas.1105108108] [Citation(s) in RCA: 899] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The major mechanism for generating diversity of neuronal connections beyond their genetic determination is the activity-dependent stabilization and selective elimination of the initially overproduced synapses [Changeux JP, Danchin A (1976) Nature 264:705-712]. The largest number of supranumerary synapses has been recorded in the cerebral cortex of human and nonhuman primates. It is generally accepted that synaptic pruning in the cerebral cortex, including prefrontal areas, occurs at puberty and is completed during early adolescence [Huttenlocher PR, et al. (1979) Brain Res 163:195-205]. In the present study we analyzed synaptic spine density on the dendrites of layer IIIC cortico-cortical and layer V cortico-subcortical projecting pyramidal neurons in a large sample of human prefrontal cortices in subjects ranging in age from newborn to 91 y. We confirm that dendritic spine density in childhood exceeds adult values by two- to threefold and begins to decrease during puberty. However, we also obtained evidence that overproduction and developmental remodeling, including substantial elimination of synaptic spines, continues beyond adolescence and throughout the third decade of life before stabilizing at the adult level. Such an extraordinarily long phase of developmental reorganization of cortical neuronal circuitry has implications for understanding the effect of environmental impact on the development of human cognitive and emotional capacities as well as the late onset of human-specific neuropsychiatric disorders.
Collapse
|
42
|
Abstract
AbstractWe quantitatively analyzed the dendritic and dendritic spine development on basal and oblique dendrites of large layer IIIc pyramidal neurons of the prospective prefrontal area 9 in the brains of three infants with Down syndrome (DS) and five age-matched-controls over the period from 32 weeks postconception to the 7th postnatal month. By using Neurolucida 3.1 software on rapid Golgi impregnated slices, 9–10 neurons were three-dimensionally reconstructed. There were no significant differences in the pattern of the dendritic and spine development between the basal and apical oblique dendrites. The DS subjects did not depart significantly from the developmental curve of the control subjects. Our data showed that large and significant segment outgrowth, in parallel with dendritic elongation occurred during a limited period of time, between 36 weeks postconception and the first postnatal month. Dendritic spines appeared at the time of birth and their density continued to increase up to the age of 7 months. During the first postnatal month long thin spines and filopodia-like protrusions predominated, but the spines later changed their morphology to a more mature form. No differences in the spine morphology were qualitatively observed between the DS infants and the age matched controls. This data suggests that intensive formation of cortical circuitry occurs on large layer IIIc pyramidal neurons during perinatal period and is not disturbed in DS infants. Consequently, this could be a biological potential to mitigate psychomotor impairment in DS patient.
Collapse
|