1
|
de Vries LH, Lodewijk L, Pijnappel EW, van Diest PJ, Schepers A, Bonenkamp HJ, van Engen-van Grunsven IACH, Kruijff S, van Hemel BM, Links TP, Nieveen van Dijkum EJM, van Eeden S, van Leeuwaarde RS, Valk GD, de Keizer B, Borel Rinkes IHM, Vriens MR. Expression of integrin α vβ 3 in medullary thyroid carcinoma. Future Oncol 2024; 20:2015-2022. [PMID: 39101553 PMCID: PMC11497997 DOI: 10.1080/14796694.2024.2376511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Aim: Tumor markers often remain elevated after intended curative resection of medullary thyroid carcinoma (MTC). The aim of this study was to determine the expression of αvβ3, a promising theranostics target, in MTC and its metastases.Materials & methods: Avβ3 expression was analyzed in 104 patients using a tissue microarray and correlated with clinicopathological variables and survival.Results: Cytoplasmic αvβ3 positivity was seen in 70 patients and was associated with lymph node metastases at time of initial surgery. Membranous positivity was considered positive in 30 patients and was associated with sporadic MTC.Conclusion: Avβ3 was expressed in the cytoplasm of 67% of MTC patients. Membranous expression, which is presumably most relevant for the theranostic use of αvβ3, was seen in 29%.
Collapse
Affiliation(s)
- Lisa H de Vries
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX Utrecht, The Netherlands
| | - Lutske Lodewijk
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX Utrecht, The Netherlands
| | - Emma W Pijnappel
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX Utrecht, The Netherlands
| | - Abbey Schepers
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZA Leiden, The Netherlands
| | - Han J Bonenkamp
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA Nijmegen, The Netherlands
| | | | - Schelto Kruijff
- Department of Surgery, University Medical Center Groningen, Hanzeplein 1, 9700, RB Groningen, The Netherlands
| | - Bettien M van Hemel
- Department of Pathology, University Medical Center Groningen, Hanzeplein 1, 9700, RB Groningen, The Netherlands
| | - Thera P Links
- Department of Internal Medicine, University Medical Center Groningen, Hanzeplein 1, 9700. RB Groningen, The Netherlands
| | - Els JM Nieveen van Dijkum
- Department of Surgery, Amsterdam University Medical Center, location University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam, The Netherlands
| | - Susanne van Eeden
- Department of Pathology, Amsterdam University Medical Center, location University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam, The Netherlands
| | - Rachel S van Leeuwaarde
- Department of Endocrine Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX Utrecht, The Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX Utrecht, The Netherlands
| | - Bart de Keizer
- Department of Radiology & Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX Utrecht, The Netherlands
| | - Inne HM Borel Rinkes
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX Utrecht, The Netherlands
| | - Menno R Vriens
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX Utrecht, The Netherlands
| |
Collapse
|
2
|
Nguyen HTN, Duhon BH, Kuo HC, Fisher M, Brickey OM, Zhang L, Otero JJ, Prevedello DM, Adunka OF, Ren Y. Matrix metalloproteinase 9: An emerging biomarker for classification of adherent vestibular schwannoma. Neurooncol Adv 2024; 6:vdae058. [PMID: 38887507 PMCID: PMC11181934 DOI: 10.1093/noajnl/vdae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Background The progression of vestibular schwannoma (VS) is intricately linked with interactions between schwannoma cells and the extracellular matrix. Surgical resection of VS is associated with substantial risks as tumors are adherent to the brainstem and cranial nerves. We evaluate the role of matrix metalloproteinase 9 (MMP9) in VS and explore its potential as a biomarker to classify adherent VS. Methods Transcriptomic analysis of a murine schwannoma allograft model and immunohistochemical analysis of 17 human VS were performed. MMP9 abundance was assessed in mouse and human schwannoma cell lines. Transwell studies were performed to evaluate the effect of MMP9 on schwannoma invasion in vitro. Plasma biomarkers were identified from a multiplexed proteomic analysis in 45 prospective VS patients and validated in primary culture. The therapeutic efficacy of MMP9 inhibition was evaluated in a mouse schwannoma model. Results MMP9 was the most highly upregulated protease in mouse schwannomas and was significantly enriched in adherent VS, particularly around tumor vasculature. High levels of MMP9 were found in plasma of patients with adherent VS. MMP9 outperformed clinical and radiographic variables to classify adherent VS with outstanding discriminatory ability. Human schwannoma cells secreted MMP9 in response to TNF-α which promoted cellular invasion and adhesion protein expression in vitro. Lastly, MMP9 inhibition decreased mouse schwannoma growth in vivo. Conclusions We identify MMP9 as a preoperative biomarker to classify adherent VS. MMP9 may represent a new therapeutic target in adherent VS associated with poor surgical outcomes that lack other viable treatment options.
Collapse
Affiliation(s)
- Han T N Nguyen
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Bailey H Duhon
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hsuan-Chih Kuo
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Melanie Fisher
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Olivia M Brickey
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Lisa Zhang
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jose J Otero
- Division of Neuropathology, Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Daniel M Prevedello
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Oliver F Adunka
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yin Ren
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
3
|
Echavidre W, Durivault J, Gotorbe C, Blanchard T, Pagnuzzi M, Vial V, Raes F, Broisat A, Villeneuve R, Amblard R, Garnier N, Ortholan C, Faraggi M, Serrano B, Picco V, Montemagno C. Integrin-αvβ3 is a Therapeutically Targetable Fundamental Factor in Medulloblastoma Tumorigenicity and Radioresistance. CANCER RESEARCH COMMUNICATIONS 2023; 3:2483-2496. [PMID: 38009896 PMCID: PMC10702273 DOI: 10.1158/2767-9764.crc-23-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Medulloblastoma is one of the most prevalent solid tumors found in children, occurring in the brain's posterior fossa. The standard treatment protocol involves maximal resection surgery followed by craniospinal irradiation and chemotherapy. Despite a long-term survival rate of 70%, wide disparities among patients have been observed. The identification of pertinent targets for both initial and recurrent medulloblastoma cases is imperative. Both primary and recurrent medulloblastoma are marked by their aggressive infiltration into surrounding brain tissue, robust angiogenesis, and resistance to radiotherapy. While the significant role of integrin-αvβ3 in driving these characteristics has been extensively documented in glioblastoma, its impact in the context of medulloblastoma remains largely unexplored. Integrin-αvβ3 was found to be expressed in a subset of patients with medulloblastoma. We investigated the role of integrin-αvβ3 using medulloblastoma-derived cell lines with β3-subunit depletion or overexpression both in vitro and in vivo settings. By generating radioresistant medulloblastoma cell lines, we uncovered an increased integrin-αvβ3 expression, which correlated with increased susceptibility to pharmacologic integrin-αvβ3 inhibition with cilengitide, a competitive ligand mimetic. Finally, we conducted single-photon emission computed tomography (SPECT)/MRI studies on orthotopic models using a radiolabeled integrin-αvβ3 ligand (99mTc-RAFT-RGD). This innovative approach presents the potential for a novel predictive imaging technique in the realm of medulloblastoma. Altogether, our findings lay the foundation for employing SPECT/MRI to identify a specific subset of patients with medulloblastoma eligible for integrin-αvβ3-directed therapies. This breakthrough offers a pathway toward more targeted and effective interventions in the treatment of medulloblastoma. SIGNIFICANCE This study demonstrates integrin-αvβ3's fundamental role in medulloblastoma tumorigenicity and radioresistance and the effect of its expression on cilengitide functional activity.
Collapse
Affiliation(s)
- William Echavidre
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Jérôme Durivault
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Célia Gotorbe
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Thays Blanchard
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Marina Pagnuzzi
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Valérie Vial
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Florian Raes
- Université de Grenoble Alpes, INSERM, LRB, Grenoble, France
| | - Alexis Broisat
- Université de Grenoble Alpes, INSERM, LRB, Grenoble, France
| | - Rémy Villeneuve
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Régis Amblard
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Nicolas Garnier
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Cécile Ortholan
- Radiotherapy Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Benjamin Serrano
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Vincent Picco
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | | |
Collapse
|
4
|
Tang OY, Binder ZA, O'Rourke DM, Bagley SJ. Optimizing CAR-T Therapy for Glioblastoma. Mol Diagn Ther 2023; 27:643-660. [PMID: 37700186 DOI: 10.1007/s40291-023-00671-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Chimeric antigen receptor T-cell therapies have transformed the management of hematologic malignancies but have not yet demonstrated consistent efficacy in solid tumors. Glioblastoma is the most common primary malignant brain tumor in adults and remains a major unmet medical need. Attempts at harnessing the potential of chimeric antigen receptor T-cell therapy for glioblastoma have resulted in glimpses of promise but have been met with substantial challenges. In this focused review, we discuss current and future strategies being developed to optimize chimeric antigen receptor T cells for efficacy in patients with glioblastoma, including the identification and characterization of new target antigens, reversal of T-cell dysfunction with novel chimeric antigen receptor constructs, regulatable platforms, and gene knockout strategies, and the use of combination therapies to overcome the immune-hostile microenvironment.
Collapse
Affiliation(s)
- Oliver Y Tang
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen J Bagley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Elser M, Vehlow A, Juratli TA, Cordes N. Simultaneous inhibition of discoidin domain receptor 1 and integrin αVβ3 radiosensitizes human glioblastoma cells. Am J Cancer Res 2023; 13:4597-4612. [PMID: 37970361 PMCID: PMC10636682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/13/2023] [Indexed: 11/17/2023] Open
Abstract
Glioblastomas (GBM) are the most common primary brain tumors in adults and associated with poor clinical outcomes due to therapy resistances and destructive growth. Interactions of cancer cells with the extracellular matrix (ECM) play a pivotal role in therapy resistances and tumor progression. In this study, we investigate the functional dependencies between the discoidin domain receptor 1 (DDR1) and the integrin family of cell adhesion molecules for the radioresponse of human glioblastoma cells. By means of an RNA interference screen on DDR1 and all known integrin subunits, we identified co-targeting of DDR1/integrin β3 to most efficiently reduce clonogenicity, enhance cellular radiosensitivity and diminish repair of DNA double strand breaks (DSB). Simultaneous pharmacological inhibition of DDR1 with DDR1-IN-1 and of integrins αVβ3/αVβ5 with cilengitide resulted in confirmatory data in a panel of 2D grown glioblastoma cultures and 3D gliospheres. Mechanistically, we found that key DNA repair proteins ATM and DNA-PK are altered upon DDR1/integrin αVβ3/integrin αVβ5 inhibition, suggesting a link to DNA repair mechanisms. In sum, the radioresistance of human glioblastoma cells can effectively be declined by co-deactivation of DDR1, integrin αVβ3 and integrin αVβ5.
Collapse
Affiliation(s)
- Marc Elser
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden01307 Dresden, Germany
| | - Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden01307 Dresden, Germany
| | - Tareq A Juratli
- Department of Neurosurgery, Division of Neuro-Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden01307 Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology-OncoRay01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden, German Cancer Research Center69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden01307 Dresden, Germany
| |
Collapse
|
6
|
Llaguno-Munive M, Villalba-Abascal W, Avilés-Salas A, Garcia-Lopez P. Near-Infrared Fluorescence Imaging in Preclinical Models of Glioblastoma. J Imaging 2023; 9:212. [PMID: 37888319 PMCID: PMC10607214 DOI: 10.3390/jimaging9100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer is a public health problem requiring ongoing research to improve current treatments and discover novel therapies. More accurate imaging would facilitate such research. Near-infrared fluorescence has been developed as a non-invasive imaging technique capable of visualizing and measuring biological processes at the molecular level in living subjects. In this work, we evaluate the tumor activity in two preclinical glioblastoma models by using fluorochrome (IRDye 800CW) coupled to different molecules: tripeptide Arg-Gly-Asp (RGD), 2-amino-2-deoxy-D-glucose (2-DG), and polyethylene glycol (PEG). These molecules interact with pathological conditions of tumors, including their overexpression of αvβ3 integrins (RGD), elevated glucose uptake (2-DG), and enhanced permeability and retention effect (PEG). IRDye 800CW RGD gave the best in vivo fluorescence signal from the tumor area, which contrasted well with the low fluorescence intensity of healthy tissue. In the ex vivo imaging (dissected tumor), the accumulation of IRDye 800CW RGD could be appreciated at the tumor site. Glioblastoma tumors were presently detected with specificity and sensitivity by utilizing IRDye 800CW RGD, a near-infrared fluorophore combined with a marker of αvβ3 integrin expression. Further research is needed on its capacity to monitor tumor growth in glioblastoma after chemotherapy.
Collapse
Affiliation(s)
- Monserrat Llaguno-Munive
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (M.L.-M.); (W.V.-A.)
- Laboratorio de Física Médica, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Wilberto Villalba-Abascal
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (M.L.-M.); (W.V.-A.)
| | - Alejandro Avilés-Salas
- Departamento de Patología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Patricia Garcia-Lopez
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (M.L.-M.); (W.V.-A.)
| |
Collapse
|
7
|
Franco P, Camerino I, Merlino F, D’Angelo M, Cimmino A, Carotenuto A, Colucci-D’Amato L, Stoppelli MP. αV-Integrin-Dependent Inhibition of Glioblastoma Cell Migration, Invasion and Vasculogenic Mimicry by the uPAcyclin Decapeptide. Cancers (Basel) 2023; 15:4775. [PMID: 37835469 PMCID: PMC10571957 DOI: 10.3390/cancers15194775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Among the deadliest human cancers is glioblastoma (GBM) for which new treatment approaches are urgently needed. Here, the effects of the cyclic decapeptide, uPAcyclin, are investigated using the U87-MG, U251-MG, and U138-MG human GBM and C6 rat cell models. All GBM cells express the αV-integrin subunit, the target of uPAcyclin, and bind specifically to nanomolar concentrations of the decapeptide. Although peptide exposure affects neither viability nor cell proliferation rate, nanomolar concentrations of uPAcyclin markedly inhibit the directional migration and matrix invasion of all GBM cells, in a concentration- and αV-dependent manner. Moreover, wound healing rate closure of U87-MG and C6 rat glioma cells is reduced by 50% and time-lapse videomicroscopy studies show that the formation of vascular-like structures by U87-MG in three-dimensional matrix cultures is markedly inhibited by uPAcyclin. A strong reduction in the branching point numbers of the U87-MG, C6, and U251-MG cell lines undergoing vasculogenic mimicry, in the presence of nanomolar peptide concentrations, was observed. Lysates from matrix-recovered uPAcyclin-exposed cells exhibit a reduced expression of VE-cadherin, a prominent factor in the acquisition of vascular-like structures. In conclusion, these results indicate that uPAcyclin is a promising candidate to counteract the formation of new vessels in novel targeted anti-GBM therapies.
Collapse
Affiliation(s)
- Paola Franco
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
| | - Iolanda Camerino
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples ‘Federico II’, 80131 Naples, Italy; (F.M.); (A.C.)
| | - Margherita D’Angelo
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 81100 Naples, Italy
| | - Amelia Cimmino
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples ‘Federico II’, 80131 Naples, Italy; (F.M.); (A.C.)
| | - Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- InterUniversity Center for Research in Neurosciences (CIRN), 80131 Naples, Italy
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
8
|
Improved Boron Neutron Capture Therapy Using Integrin αvβ3-Targeted Long-Retention-Type Boron Carrier in a F98 Rat Glioma Model. BIOLOGY 2023; 12:biology12030377. [PMID: 36979069 PMCID: PMC10045558 DOI: 10.3390/biology12030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Integrin αvβ3 is more highly expressed in high-grade glioma cells than in normal tissues. In this study, a novel boron-10 carrier containing maleimide-functionalized closo-dodecaborate (MID), serum albumin as a drug delivery system, and cyclic arginine-glycine-aspartate (cRGD) that can target integrin αvβ3 was developed. The efficacy of boron neutron capture therapy (BNCT) targeting integrin αvβ3 in glioma cells in the brain of rats using a cRGD-functionalized MID-albumin conjugate (cRGD-MID-AC) was evaluated. F98 glioma cells exposed to boronophenylalanine (BPA), cRGD-MID-AC, and cRGD + MID were used for cellular uptake and neutron-irradiation experiments. An F98 glioma-bearing rat brain tumor model was used for biodistribution and neutron-irradiation experiments after BPA or cRGD-MID-AC administration. BNCT using cRGD-MID-AC had a sufficient cell-killing effect in vitro, similar to that with BNCT using BPA. In biodistribution experiments, cRGD-MID-AC accumulated in the brain tumor, with the highest boron concentration observed 8 h after administration. Significant differences were observed between the untreated group and BNCT using cRGD-MID-AC groups in the in vivo neutron-irradiation experiments through the log-rank test. Long-term survivors were observed only in BNCT using cRGD-MID-AC groups 8 h after intravenous administration. These findings suggest that BNCT with cRGD-MID-AC is highly selective against gliomas through a mechanism that is different from that of BNCT with BPA.
Collapse
|
9
|
Xia D, Zhang Y, Zhang C, Yao X, Tang Y, Wang F, Han X, Yin H, Xu C, Gao X. Observation of the protein expression level via naked eye: Pt clusters catalyze non-color molecules into brown-colored molecules in cells. Front Chem 2023; 11:1145415. [PMID: 36860645 PMCID: PMC9969140 DOI: 10.3389/fchem.2023.1145415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
α v β 3 is overexpressed in various tumor cells and plays a key role in tumor genesis, invasion, and metastasis. Therefore, it is of great significance to precisely detect the α v β 3 level in cells via a simple method. For this purpose, we have constructed a peptide-coated platinum (Pt) cluster. Due to its bright fluorescence, well-defined Pt atom numbers, and peroxidase-like catalytic activity, this cluster can be used to evaluate α v β 3 levels in cells by fluorescence imaging, inductively coupled plasma mass spectrometry (ICP-MS), and catalytic amplification of visual dyes, respectively. In this report, the expression level of α v β 3 in living cells is well-detected by the naked eye under an ordinary light microscope when the Pt cluster binds to αvβ3 in cells and catalyzes non-color 3,3'-diaminobenzidine (DAB) into brown-colored molecules in situ. Moreover, SiHa, HeLa, and 16HBE cell lines with different α v β 3 expression levels can be visually distinguished by the peroxidase-like Pt clusters. This research will provide a reliable method for the simple detection of α v β 3 levels in cells.
Collapse
Affiliation(s)
- Dongfang Xia
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, China
| | - Yong Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Chunyu Zhang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiuxiu Yao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yuhua Tang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Fuchao Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, China
| | - Xu Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing, China
| | - Hongzong Yin
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, China,*Correspondence: Hongzong Yin, ; Chao Xu, ; Xueyun Gao,
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, China,*Correspondence: Hongzong Yin, ; Chao Xu, ; Xueyun Gao,
| | - Xueyun Gao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China,*Correspondence: Hongzong Yin, ; Chao Xu, ; Xueyun Gao,
| |
Collapse
|
10
|
Da Ros V, Oddo L, Toumia Y, Guida E, Minosse S, Strigari L, Strolin S, Paolani G, Di Giuliano F, Floris R, Garaci F, Dolci S, Paradossi G, Domenici F. PVA-Microbubbles as a Radioembolization Platform: Formulation and the In Vitro Proof of Concept. Pharmaceutics 2023; 15:pharmaceutics15010217. [PMID: 36678846 PMCID: PMC9862136 DOI: 10.3390/pharmaceutics15010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
This proof-of-concept study lays the foundations for the development of a delivery strategy for radioactive lanthanides, such as Yttrium-90, against recurrent glioblastoma. Our appealing hypothesis is that by taking advantage of the combination of biocompatible polyvinyl alcohol (PVA) microbubbles (MBs) and endovascular radiopharmaceutical infusion, a minimally invasive selective radioembolization can be achieved, which can lead to personalized treatments limiting off-target toxicities for the normal brain. The results show the successful formulation strategy that turns the ultrasound contrast PVA-shelled microbubbles into a microdevice, exhibiting good loading efficiency of Yttrium cargo by complexation with a bifunctional chelator. The selective targeting of Yttrium-loaded MBs on the glioblastoma-associated tumor endothelial cells can be unlocked by the biorecognition between the overexpressed αVβ3 integrin and the ligand Cyclo(Arg-Gly-Asp-D-Phe-Lys) at the PVA microbubble surface. Hence, we show the suitability of PVA MBs as selective Y-microdevices for in situ injection via the smallest (i.e., 1.2F) neurointerventional microcatheter available on the market and the accumulation of PVA MBs on the HUVEC cell line model of integrin overexpression, thereby providing ~6 × 10-15 moles of Y90 per HUVEC cell. We further discuss the potential impact of using such versatile PVA MBs as a new therapeutic chance for treating glioblastoma multiforme recurrence.
Collapse
Affiliation(s)
- Valerio Da Ros
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Letizia Oddo
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Yosra Toumia
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Silvia Minosse
- UOC Diagnostica per Immagini, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Strolin
- Department of Medical Physics, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Giulia Paolani
- Department of Medical Physics, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesca Di Giuliano
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Roberto Floris
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Fabio Domenici
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
11
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13. [DOI: https:/doi.org/10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body’s immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
|
12
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13:1018786. [PMID: 36483567 PMCID: PMC9722775 DOI: 10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body's immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Mehrasa Kazemi
- Department of Laboratory Medicine, Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Milad Ahmadi Najafabadi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Evazi Bakhshi
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Internalisation of RGD-Engineered Extracellular Vesicles by Glioblastoma Cells. BIOLOGY 2022; 11:biology11101483. [PMID: 36290387 PMCID: PMC9598886 DOI: 10.3390/biology11101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary Glioblastoma multiforme (GBM) is the most aggressive and malignant type of central nervous system (CNS) tumour. Although several treatment options are available, patients generally succumb within 14 months after diagnosis. With the rapid progression of exosome bioengineering technologies, novel therapy opportunities are emerging for GBM treatment. The surface of GBM cells is characterised by the overexpression of transmembrane receptor integrins, which are essential for cell interactions with several proteins in the extracellular matrix. Therefore, integrin-binding drug delivery vehicles have been proposed as a potential strategy for glioblastoma therapy. Small extracellular vesicles possess several attractive characteristics for drug delivery: small size, biocompatibility, ability to cross the blood–brain barrier and capacity to be loaded with exogenous materials. Current bioengineering technologies further increase extracellular vesicle capabilities by loading them with anticancer drugs and incorporating targeting ligands. This study explored the capacity of Arginylglycylaspartic acid (RGD, or Arginine–Glycine–Aspartate)-polypeptide-engineered extracellular vesicles to internalise and deliver loaded cargo in GBM cells. The results demonstrate that introducing the RGD ligand to extracellular vesicles could significantly increase their internalisation by GBM cells and hence improve drug delivery efficacy. Abstract Glioblastoma multiforme (GBM) is the most aggressive CNS tumour with no efficient treatment, partly due to the retention of anticancer drugs by the blood–brain barrier (BBB) and their insufficient concentration in tumour cells. Extracellular vesicles (EVs) are attractive drug carriers because of their biocompatibility and ability to cross the BBB. Additional efficiency can be achieved by adding GBM-cell-specific ligands. GBM cells overexpress integrins; thus, one of the most straightforward targeting strategies is to modify EVs with integrin-recognising molecules. This study investigated the therapeutic potential of genetically engineered EVs with elevated membrane levels of the integrin-binding peptide RGD (RGD-EVs) against GBM cells in vitro. For RGD-EV production, stable RGD-HEK 293FT cells were generated by using a pcDNA4/TO-Lamp2b-iRGD-HA expression vector and performing antibiotic-based selection. RGD-EVs were isolated from RGD-HEK 293FT-cell-conditioned medium and characterised by size (Zetasizer), specific markers (ELISA) and RGD expression (Western Blot). Internalisation by human GBM cells HROG36 and U87 MG and BJ-5ta human fibroblasts was assessed by fluorescent EV RNA labelling. The effect of doxorubicin-loaded RGD-EVs on GBM cells was evaluated by the metabolic PrestoBlue viability assay; functional GAPDH gene knockdown by RGD-EV-encapsulated siRNA was determined by RT-qPCR. RGD-EVs had 40% higher accumulation in GBM cells (but not in fibroblasts) and induced significantly stronger toxicity by loaded doxorubicin and GAPDH silencing by loaded siRNA compared to unmodified EVs. Thus, RGD modification substantially increases the specific delivery capacity of HEK 293FT-derived EVs to GBM cells.
Collapse
|
14
|
Wang M, Shen S, Hou F, Yan Y. Pathophysiological roles of integrins in gliomas from the perspective of glioma stem cells. Front Cell Dev Biol 2022; 10:962481. [PMID: 36187469 PMCID: PMC9523240 DOI: 10.3389/fcell.2022.962481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common primary intracranial tumor and is also one of the most malignant central nervous system tumors. Its characteristics, such as high malignancy, abundant tumor vasculature, drug resistance, and recurrence-prone nature, cause great suffering to glioma patients. Furthermore, glioma stem cells are the primordial cells of the glioma and play a central role in the development of glioma. Integrins—heterodimers composed of noncovalently bound a and ß subunits—are highly expressed in glioma stem cells and play an essential role in the self-renewal, differentiation, high drug resistance, and chemo-radiotherapy resistance of glioma stem cells through cell adhesion and signaling. However, there are various types of integrins, and their mechanisms of function on glioma stem cells are complex. Therefore, this article reviews the feasibility of treating gliomas by targeting integrins on glioma stem cells.
Collapse
|
15
|
Rivera-Caraballo KA, Nair M, Lee TJ, Kaur B, Yoo JY. The complex relationship between integrins and oncolytic herpes Simplex Virus 1 in high-grade glioma therapeutics. Mol Ther Oncolytics 2022; 26:63-75. [PMID: 35795093 PMCID: PMC9233184 DOI: 10.1016/j.omto.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
High-grade gliomas (HGGs) are lethal central nervous system tumors that spread quickly through the brain, making treatment challenging. Integrins are transmembrane receptors that mediate cell-extracellular matrix (ECM) interactions, cellular adhesion, migration, growth, and survival. Their upregulation and inverse correlation in HGG malignancy make targeting integrins a viable therapeutic option. Integrins also play a role in herpes simplex virus 1 (HSV-1) entry. Oncolytic HSV-1 (oHSV) is the most clinically advanced oncolytic virotherapy, showing a superior safety and efficacy profile over standard cancer treatment of solid cancers, including HGG. With the FDA-approval of oHSV for melanoma and the recent conditional approval of oHSV for malignant glioma in Japan, usage of oHSV for HGG has become of great interest. In this review, we provide a systematic overview of the role of integrins in relation to oHSV, with a special focus on its therapeutic potential against HGG. We discuss the pros and cons of targeting integrins during oHSV therapy: while integrins play a pro-therapeutic role by acting as a gateway for oHSV entry, they also mediate the innate antiviral immune responses that hinder oHSV therapeutic efficacy. We further discuss alternative strategies to regulate the dual functionality of integrins in the context of oHSV therapy.
Collapse
Affiliation(s)
- Kimberly Ann Rivera-Caraballo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mitra Nair
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
16
|
Pandey N, Anastasiadis P, Carney CP, Kanvinde PP, Woodworth GF, Winkles JA, Kim AJ. Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114415. [PMID: 35787387 PMCID: PMC10947564 DOI: 10.1016/j.addr.2022.114415] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States.
| |
Collapse
|
17
|
Zhu Z, Fang C, Xu H, Yuan L, Du Y, Ni Y, Xu Y, Shao A, Zhang A, Lou M. Anoikis resistance in diffuse glioma: The potential therapeutic targets in the future. Front Oncol 2022; 12:976557. [PMID: 36046036 PMCID: PMC9423707 DOI: 10.3389/fonc.2022.976557] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Glioma is the most common malignant intracranial tumor and exhibits diffuse metastasis and a high recurrence rate. The invasive property of glioma results from cell detachment. Anoikis is a special form of apoptosis that is activated upon cell detachment. Resistance to anoikis has proven to be a protumor factor. Therefore, it is suggested that anoikis resistance commonly occurs in glioma and promotes diffuse invasion. Several factors, such as integrin, E-cadherin, EGFR, IGFR, Trk, TGF-β, the Hippo pathway, NF-κB, eEF-2 kinase, MOB2, hypoxia, acidosis, ROS, Hsp and protective autophagy, have been shown to induce anoikis resistance in glioma. In our present review, we aim to summarize the underlying mechanism of resistance and the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Du
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunjia Ni
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Safi C, Solano AG, Liberelle B, Therriault H, Delattre L, Abdelkhalek M, Wang C, Bergeron-Fortier S, Moreau V, De Crescenzo G, Faucheux N, Lauzon MA, Paquette B, Virgilio N. Effect of Chitosan on Alginate-Based Macroporous Hydrogels for the Capture of Glioblastoma Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:4531-4540. [PMID: 35948423 DOI: 10.1021/acsabm.2c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma multiforme is a type of brain cancer associated with a very low survival rate since a large number of cancer cells remain infiltrated in the brain despite the treatments currently available. This work presents a macroporous hydrogel trap, destined to be implanted in the surgical cavity following tumor resection and designed to attract and retain cancer cells, in order to eliminate them afterward with a lethal dose of stereotactic radiotherapy. The biocompatible hydrogel formulation comprises sodium alginate (SA) and chitosan (CHI) bearing complementary electrostatic charges and stabilizing the gels in saline and cell culture media, as compared to pristine SA gels. The highly controlled and interconnected porosity, characterized by X-ray microCT, yields mechanical properties comparable to those of brain tissues and allows F98 glioblastoma cells to penetrate the gels within the entire volume, as confirmed by fluorescence microscopy. The addition of a grafted -RGD peptide on SA, combined with CHI, significantly enhances the adhesion and retention of F98 cells within the gels. Overall, the best compromise between low proliferation and a high level of accumulation and retention of F98 cells was obtained with the hydrogel formulated with 1% SA and 0.2% CHI, without the -RGD adhesion peptide.
Collapse
Affiliation(s)
- Caroline Safi
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Angela Giraldo Solano
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Benoit Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Hélène Therriault
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Lisa Delattre
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Melek Abdelkhalek
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Changsheng Wang
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Simon Bergeron-Fortier
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Vaiana Moreau
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Marc-Antoine Lauzon
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Benoit Paquette
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nick Virgilio
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
19
|
Xu L, Zhou C, Wang F, Liu H, Dong G, Zhang S, Liu T. Functional drug carriers formed by RGD-modified β-CD-HPG for the delivery of docetaxel for targeted inhibition of nasopharyngeal carcinoma cells. RSC Adv 2022; 12:18004-18011. [PMID: 35765336 PMCID: PMC9204710 DOI: 10.1039/d2ra02301f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, a drug delivery system was prepared by grafting the targeting molecule arginine-glycine-aspartic acid (RGD) onto hyperbranched polyglycerol (HPG)-modified β-cyclodextrin (β-CD-HPG) for the targeted inhibition of nasopharyngeal carcinoma (NPC) cells. The obtained β-CD-HPG-RGD with a relatively small size and low surface charge delivered docetaxel (Doc) effectively and displayed a targeting effect to human NPC HNE-1 cells, as confirmed by confocal laser scanning microscopy and flow cytometry. The in vitro drug release analysis exhibited the controlled drug release kinetics of the β-CD-HPG-RGD/Doc nanomedicine. β-CD-HPG-RGD/Doc effectively inhibited the proliferation of HNE-1 cells and promoted apoptosis. Moreover, its biocompatibility in vitro and in vivo was assessed. The results indicate that the β-CD-HPG-RGD/Doc nanomedicine has potential application in NPC targeting therapy.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- The Second School of Clinical Medicine, Southern Medical University Guangzhou Guangdong 510515 China
| | - Chuan Zhou
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- Shantou University Medical College Shantou 515063 PR China
| | - Fan Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University Guangzhou 510632 China
| | - Huiqin Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- Shantou University Medical College Shantou 515063 PR China
| | - Guangyuan Dong
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- Shantou University Medical College Shantou 515063 PR China
| | - Siyi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- The Second School of Clinical Medicine, Southern Medical University Guangzhou Guangdong 510515 China
| | - Tao Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- The Second School of Clinical Medicine, Southern Medical University Guangzhou Guangdong 510515 China
| |
Collapse
|
20
|
Galldiks N, Langen KJ, Albert NL, Law I, Kim MM, Villanueva-Meyer JE, Soffietti R, Wen PY, Weller M, Tonn JC. Investigational PET tracers in neuro-oncology-What's on the horizon? A report of the PET/RANO group. Neuro Oncol 2022; 24:1815-1826. [PMID: 35674736 DOI: 10.1093/neuonc/noac131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many studies in patients with brain tumors evaluating innovative PET tracers have been published in recent years, and the initial results are promising. Here, the Response Assessment in Neuro-Oncology (RANO) PET working group provides an overview of the literature on novel investigational PET tracers for brain tumor patients. Furthermore, newer indications of more established PET tracers for the evaluation of glucose metabolism, amino acid transport, hypoxia, cell proliferation, and others are also discussed. Based on the preliminary findings, these novel investigational PET tracers should be further evaluated considering their promising potential. In particular, novel PET probes for imaging of translocator protein and somatostatin receptor overexpression as well as for immune system reactions appear to be of additional clinical value for tumor delineation and therapy monitoring. Progress in developing these radiotracers may contribute to improving brain tumor diagnostics and advancing clinical translational research.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center University Hospital and University of Zurich, Zurich, Switzerland
| | - Joerg C Tonn
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
22
|
Echavidre W, Picco V, Faraggi M, Montemagno C. Integrin-αvβ3 as a Therapeutic Target in Glioblastoma: Back to the Future? Pharmaceutics 2022; 14:pharmaceutics14051053. [PMID: 35631639 PMCID: PMC9144720 DOI: 10.3390/pharmaceutics14051053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM), the most common primary malignant brain tumor, is associated with a dismal prognosis. Standard therapies including maximal surgical resection, radiotherapy, and temozolomide chemotherapy remain poorly efficient. Improving GBM treatment modalities is, therefore, a paramount challenge for researchers and clinicians. GBMs exhibit the hallmark feature of aggressive invasion into the surrounding tissue. Among cell surface receptors involved in this process, members of the integrin family are known to be key actors of GBM invasion. Upregulation of integrins was reported in both tumor and stromal cells, making them a suitable target for innovative therapies targeting integrins in GBM patients, as their impairment disrupts tumor cell proliferation and invasive capacities. Among them, integrin-αvβ3 expression correlates with high-grade GBM. Driven by a plethora of preclinical biological studies, antagonists of αvβ3 rapidly became attractive therapeutic candidates to impair GBM tumorigenesis. In this perspective, the advent of nuclear medicine is currently one of the greatest components of the theranostic concept in both preclinical and clinical research fields. In this review, we provided an overview of αvβ3 expression in GBM to emphasize the therapeutic agents developed. Advanced current and future developments in the theranostic field targeting αvβ3 are finally discussed.
Collapse
Affiliation(s)
- William Echavidre
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
| | - Vincent Picco
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
- Correspondence: ; Tel.: +377-97-77-44-15
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284, INSERM U1081, Université Cote d’Azur, 06200 Nice, France
| |
Collapse
|
23
|
Li L, Chen X, Yu J, Yuan S. Preliminary Clinical Application of RGD-Containing Peptides as PET Radiotracers for Imaging Tumors. Front Oncol 2022; 12:837952. [PMID: 35311120 PMCID: PMC8924613 DOI: 10.3389/fonc.2022.837952] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a common feature of many physiological processes and pathological conditions. RGD-containing peptides can strongly bind to integrin αvβ3 expressed on endothelial cells in neovessels and several tumor cells with high specificity, making them promising molecular agents for imaging angiogenesis. Although studies of RGD-containing peptides combined with radionuclides, namely, 18F, 64Cu, and 68Ga for positron emission tomography (PET) imaging have shown high spatial resolution and accurate quantification of tracer uptake, only a few of these radiotracers have been successfully translated into clinical use. This review summarizes the RGD-based tracers in terms of accumulation in tumors and adjacent tissues, and comparison with traditional 18F-fluorodeoxyglucose (FDG) imaging. The value of RGD-based tracers for diagnosis, differential diagnosis, tumor subvolume delineation, and therapeutic response prediction is mainly discussed. Very low RGD accumulation, in contrast to high FDG metabolism, was found in normal brain tissue, indicating that RGD-based imaging provides an excellent tumor-to-background ratio for improved brain tumor imaging. However, the intensity of the RGD-based tracers is much higher than FDG in normal liver tissue, which could lead to underestimation of primary or metastatic lesions in liver. In multiple studies, RGD-based imaging successfully realized the diagnosis and differential diagnosis of solid tumors and also the prediction of chemoradiotherapy response, providing complementary rather than similar information relative to FDG imaging. Of most interest, baseline RGD uptake values can not only be used to predict the tumor efficacy of antiangiogenic therapy, but also to monitor the occurrence of adverse events in normal organs. This unique dual predictive value in antiangiogenic therapy may be better than that of FDG-based imaging.
Collapse
Affiliation(s)
- Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
25
|
Cobb DA, de Rossi J, Liu L, An E, Lee DW. Targeting of the alpha v beta 3 integrin complex by CAR-T cells leads to rapid regression of diffuse intrinsic pontine glioma and glioblastoma. J Immunother Cancer 2022; 10:jitc-2021-003816. [PMID: 35210306 PMCID: PMC8883284 DOI: 10.1136/jitc-2021-003816] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background Diffuse intrinsic pontine glioma (DIPG) and glioblastoma (GBM) are two highly aggressive and generally incurable gliomas with little therapeutic advancements made in the past several decades. Despite immense initial success of chimeric antigen receptor (CAR) T cells for the treatment of leukemia and lymphoma, significant headway into the application of CAR-T cells against solid tumors, including gliomas, is still forthcoming. The integrin complex alphav beta3 (αvβ3) is present on multiple and diverse solid tumor types and tumor vasculature with limited expression throughout most normal tissues, qualifying it as an appealing target for CAR-T cell-mediated immunotherapy. Methods Patient-derived DIPG and GBM cell lines were evaluated by flow cytometry for surface expression of αvβ3. Second-generation CAR-T cells expressing an anti-αvβ3 single-chain variable fragment were generated by retroviral transduction containing either a CD28 or 4-1BB costimulatory domain and CD3zeta. CAR-T cells were evaluated by flow cytometry for CAR expression, memory phenotype distribution, and inhibitory receptor profile. DIPG and GBM cell lines were orthotopically implanted into NSG mice via stereotactic injection and monitored with bioluminescent imaging to evaluate αvβ3 CAR-T cell-mediated antitumor responses. Results We found that patient-derived DIPG cells and GBM cell lines express high levels of surface αvβ3 by flow cytometry, while αvβ3 is minimally expressed on normal tissues by RNA sequencing and protein microarray. The manufactured CAR-T cells consisted of a substantial frequency of favorable early memory cells and a low inhibitory receptor profile. αvβ3 CAR-T cells demonstrated efficient, antigen-specific tumor cell killing in both cytotoxicity assays and in in vivo models of orthotopically and stereotactically implanted DIPG and GBM tumors into relevant locations in the brain of NSG mice. Tumor responses were rapid and robust with systemic CAR-T cell proliferation and long-lived persistence associated with long-term survival. Following tumor clearance, TCF-1+αvβ3 CAR-T cells were detectable, underscoring their ability to persist and undergo self-renewal. Conclusions These results highlight the potential of αvβ3 CAR-T cells for immunotherapeutic treatment of aggressive brain tumors with reduced risk of on-target, off-tumor mediated toxicity due to the restricted nature of αvβ3 expression in normal tissues.
Collapse
Affiliation(s)
- Dustin A Cobb
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Jacopo de Rossi
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Lixia Liu
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Erin An
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel W Lee
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA .,University of Virginia Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
26
|
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Front Immunol 2022; 13:830292. [PMID: 35211124 PMCID: PMC8861853 DOI: 10.3389/fimmu.2022.830292] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
During this last decade, adoptive transfer of T lymphocytes genetically modified to express chimeric antigen receptors (CARs) emerged as a valuable therapeutic strategy in hematological cancers. However, this immunotherapy has demonstrated limited efficacy in solid tumors. The main obstacle encountered by CAR-T cells in solid malignancies is the immunosuppressive tumor microenvironment (TME). The TME impedes tumor trafficking and penetration of T lymphocytes and installs an immunosuppressive milieu by producing suppressive soluble factors and by overexpressing negative immune checkpoints. In order to overcome these hurdles, new CAR-T cells engineering strategies were designed, to potentiate tumor recognition and infiltration and anti-cancer activity in the hostile TME. In this review, we provide an overview of the major mechanisms used by tumor cells to evade immune defenses and we critically expose the most optimistic engineering strategies to make CAR-T cell therapy a solid option for solid tumors.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Sarah Mallah
- Faculty of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Guillaume Sarrabayrouse
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
27
|
Microglial Cytokines Induce Invasiveness and Proliferation of Human Glioblastoma through Pyk2 and FAK Activation. Cancers (Basel) 2021; 13:cancers13246160. [PMID: 34944779 PMCID: PMC8699228 DOI: 10.3390/cancers13246160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Microglia infiltrate most gliomas and have been demonstrated to promote tumor growth, invasion, and treatment resistance. To develop improved treatment methods, that take into consideration the supporting role of microglia in tumor progression, the functional and mechanistic pathways of glioma–microglia interactions need to be identified and experimentally dissected. Our recent studies and literature reports revealed the overexpression of Pyk2 and FAK in glioblastomas. Pyk2 and FAK signaling pathways have been shown to regulate migration and proliferation in glioma cells, including microglia-promoted glioma cell migration. However, the specific factors released by microglia that modulate Pyk2 and FAK to promote glioma invasiveness and proliferation are poorly understood. The aim of this study was to identify key microglia-derived signaling molecules that induce the activation of Pyk2- and FAK-dependent glioma cell proliferation and invasiveness. Abstract Glioblastoma is the most aggressive brain tumor in adults. Multiple lines of evidence suggest that microglia create a microenvironment favoring glioma invasion and proliferation. Our previous studies and literature reports indicated the involvement of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) in glioma cell proliferation and invasion, stimulated by tumor-infiltrating microglia. However, the specific microglia-released factors that modulate Pyk2 and FAK signaling in glioma cells are unknown. In this study, 20 human glioblastoma specimens were evaluated with the use of RT-PCR and western blotting. A Pierson correlation test demonstrated a correlation (0.6–1.0) between the gene expression levels for platelet-derived growth factor β(PDGFβ), stromal-derived factor 1α (SDF-1α), IL-6, IL-8, and epidermal growth factor (EGF) in tumor-purified microglia and levels of p-Pyk2 (Y579/Y580) and p-FAK(Y925) in glioma cells. siRNA knockdown against Pyk2 or FAK in three primary glioblastoma cell lines, developed from the investigated specimens, in combination with the cytokine receptor inhibitors gefitinib (1 μM), DMPQ (200 nM), and burixafor (1 μM) identified EGF, PDGFβ, and SDF-1α as key extracellular factors in the Pyk2- and FAK-dependent activation of invadopodia formation and the migration of glioma cells. EGF and IL-6 were identified as regulators of the Pyk2- and FAK-dependent activation of cell viability and mitosis.
Collapse
|
28
|
Pinheiro RGR, Coutinho AJ, Pinheiro M, Neves AR. Nanoparticles for Targeted Brain Drug Delivery: What Do We Know? Int J Mol Sci 2021; 22:ijms222111654. [PMID: 34769082 PMCID: PMC8584083 DOI: 10.3390/ijms222111654] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
The blood-brain barrier (BBB) is a barrier that separates the blood from the brain tissue and possesses unique characteristics that make the delivery of drugs to the brain a great challenge. To achieve this purpose, it is necessary to design strategies to allow BBB passage, in order to reach the brain and target the desired anatomic region. The use of nanomedicine has great potential to overcome this problem, since one can modify nanoparticles with strategic molecules that can interact with the BBB and induce uptake through the brain endothelial cells and consequently reach the brain tissue. This review addresses the potential of nanomedicines to treat neurological diseases by using nanoparticles specially developed to cross the BBB.
Collapse
Affiliation(s)
- Rúben G. R. Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Joyce Coutinho
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Rute Neves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence:
| |
Collapse
|
29
|
Expression Analysis of α5 Integrin Subunit Reveals Its Upregulation as a Negative Prognostic Biomarker for Glioblastoma. Pharmaceuticals (Basel) 2021; 14:ph14090882. [PMID: 34577582 PMCID: PMC8465081 DOI: 10.3390/ph14090882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Integrin α5β1 was suggested to be involved in glioblastoma (GBM) aggressiveness and treatment resistance through preclinical studies and genomic analysis in patients. However, further protein expression data are still required to confirm this hypothesis. In the present study, we investigated by immunofluorescence the expression of integrin α5 and its prognostic impact in a glioblastoma series of patients scheduled to undergo the Stupp protocol as first-line treatment for GBM. The integrin α5 protein expression level was estimated in each tumor by the mean fluorescence intensity (MFI) and allowed us to identify two subpopulations showing either a high or low expression level. The distribution of patients in both subpopulations was not significantly different according to age, gender, recursive partitioning analysis (RPA) prognostic score, molecular markers or surgical and medical treatment. A high integrin α5 protein expression level was associated with a high risk of recurrence (HR = 1.696, 95% CI 1.031-2.792, p = 0.0377) and reduced overall survival (OS), even more significant in patients who completed the Stupp protocol (median OS: 15.6 vs. 22.8 months; HR = 2.324; 95% CI 1.168-4.621, p = 0.0162). In multivariate analysis, a high integrin α5 protein expression level was confirmed as an independent prognostic factor in the subpopulation of patients who completed the temozolomide-based first-line treatment for predicting OS over age, extent of surgery, RPA score and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation (p = 0.029). In summary, for the first time, our study validates that a high integrin α5 protein expression level is associated with poor prognosis in GBM and confirms its potential as a therapeutic target implicated in the Stupp protocol resistance.
Collapse
|
30
|
Pienkowski T, Kowalczyk T, Kretowski A, Ciborowski M. A review of gliomas-related proteins. Characteristics of potential biomarkers. Am J Cancer Res 2021; 11:3425-3444. [PMID: 34354853 PMCID: PMC8332856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023] Open
Abstract
Brain tumors are one of the most commonly diagnosed cancers of the central nervous system. Of all diagnosed malignant tumors, 80% are gliomas. An unequivocal diagnosis of gliomas is not always simple, and there is a great need for research to find new treatment options and diagnostic approaches. This paper is focused on the glioma-related protein profiles as compared to healthy brain tissue, which is reflected in multiple correlations between biological aspects that influence proliferation, apoptosis evasion and the invasiveness of neoplastic cells. The work presents the possibilities of facilitating clinical practice with proteomic biomarkers, which offer a wider diagnostic spectrum and reduce the margin of mistake in histopathological or imaging diagnostic methods. In fact, many changes in the body's homeostasis can be overlooked due to the lack of symptoms or their non-specificity. Nevertheless, a single marker has limited reliability in distinguishing a particular tumor subtype, since the increased or decreased level of the protein of interest may differ between the stages or locations of the tumor. Moreover, the correlations between proposed proteins - presented in this paper - may help clinicians to choose the most optimal therapy, and estimate its effectiveness, or indicate new therapeutic targets affecting disrupted biochemical pathways.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
31
|
Nanoformulation Shows Cytotoxicity against Glioblastoma Cell Lines and Antiangiogenic Activity in Chicken Chorioallantoic Membrane. Pharmaceutics 2021; 13:pharmaceutics13060862. [PMID: 34208088 PMCID: PMC8230781 DOI: 10.3390/pharmaceutics13060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GB) is a histological and genetically heterogeneous brain tumor that is highly proliferative and vascularized. The prognosis is poor with currently available treatment. In this study, we evaluated the cytotoxicity and antiangiogenic activity of doxorubicin-loaded-chitosan-coated-arginylglycylaspartic acid-functionalized-poly(ε-caprolactone)-alpha bisabolol-LNC (AB-DOX-LNC-L-C-RGD). The nanoformulation was prepared by self-assembling followed by interfacial reactions, physicochemically characterized and evaluated in vitro against GB cell lines (U87MG and U138MG) and in vivo using the chicken chorioallantoic membrane assay (CAM). Spherical shape nanocapsules had a hydrodynamic mean diameter of 138 nm, zeta potential of +13.4 mV, doxorubicin encapsulation of 65%, and RGD conjugation of 92%. After 24 h of treatment (U87MG and U138MG), the median inhibition concentrations (IC50) were 520 and 490 nmol L−1 doxorubicin-equivalent concentrations, respectively. The treatment induced antiproliferative activity with S-phase cell-cycle arrest and apoptosis in the GB cells. Furthermore, after 48 h of exposure, evaluation of antiangiogenic activity (CAM) showed that the relative vessel growth following treatment with the nanocapsules was 5.4 times lower than that with the control treatment. The results support the therapeutic potential of the nanoformulation against GB and, thereby, pave the way for future preclinical studies.
Collapse
|
32
|
Godugu K, Sudha T, Davis PJ, Mousa SA. Nano Diaminopropane tetrac and integrin αvβ3 expression in different cancer types: Anti-cancer efficacy and Safety. Cancer Treat Res Commun 2021; 28:100395. [PMID: 34034044 DOI: 10.1016/j.ctarc.2021.100395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Integrins are a family of heterodimeric plasma membrane glycoproteins, which regulate tumor growth, angiogenesis, migration, and metastasis. Integrin αvβ3 has been recognized as a putative target for the treatment of several cancers. Thus, the characterization of αvβ3 distribution in different human tumors is of substantial interest in tumor targeting and its suppression. In this study we evaluated the expression of integrin αvβ3 in different cancer types to define the expression pattern in cancer model. Furthermore, we investigated the effect of novel αvβ3 antagonist Diaminopropane Tetraiodothyroacetic acid conjugated to poly (lactic-co-glycolic acid) polymer and its nanoformulated form (NDAT), on different cancer cell lines both in vitro and in xenografts. In vitro, NDAT downregulated αv and β3 monomer expression. In vivo in tumor xenografts, similarly, NDAT downregulated αv and β3. Distinct reduction in tumor weight and viability was observed in glioblastoma xenografts treated with NDAT. Furthermore, NDAT was safe and tolerable in mice treated with high doses. In conclusion, NDAT is an effective and safe inhibitor of integrin αvβ3 expression in various cancer types, which indicates its impact on the targetability and suppression of αvβ3-associated tumor functions.
Collapse
Affiliation(s)
- Kavitha Godugu
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, , 1 Discovery Drive, Rensselaer, NY, USA
| | - Thangirala Sudha
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, , 1 Discovery Drive, Rensselaer, NY, USA
| | - Paul J Davis
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, , 1 Discovery Drive, Rensselaer, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, , 1 Discovery Drive, Rensselaer, NY, USA.
| |
Collapse
|
33
|
Solano AG, Dupuy J, Therriault H, Liberelle B, Faucheux N, Lauzon MA, Virgilio N, Paquette B. An alginate-based macroporous hydrogel matrix to trap cancer cells. Carbohydr Polym 2021; 266:118115. [PMID: 34044932 DOI: 10.1016/j.carbpol.2021.118115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
To overcome the radioresistance of glioblastoma (GBM) cells infiltrated in the brain, we propose to attract these cancer cells into a trap to which a lethal radiation dose can be delivered safely. Herein, we have prepared and characterized a sodium alginate-based macroporous hydrogel as a potential cancer cell trap. Microcomputed X-ray tomography shows that the hydrogel matrices comprise interconnected pores with an average diameter of 300 μm. The F98 GBM cells migrated in the pores and mainly accumulated in the center of the matrix. Depending on the number of cancer cells added, the grafting of RGD cell-adhesion peptides to the alginate resulted in a 4 to 10 times increase in the number of F98 cells (which overexpress the associated αvβ3 and αvβ5 binding integrins) retained in the matrix. Finally, a radiation dose of 25 Gy eliminated all F98 cells trapped in the matrix, without significantly altering the matrix mechanical properties.
Collapse
Affiliation(s)
- Angela Giraldo Solano
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Joan Dupuy
- Centre de recherche sur les systèmes polymères et composites à haute performance (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, 2900, boul. Édouard-Montpetit, Montréal, Québec, Canada
| | - Hélène Therriault
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Benoît Liberelle
- Centre de recherche sur les systèmes polymères et composites à haute performance (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, 2900, boul. Édouard-Montpetit, Montréal, Québec, Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marc-Antoine Lauzon
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nick Virgilio
- Centre de recherche sur les systèmes polymères et composites à haute performance (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, 2900, boul. Édouard-Montpetit, Montréal, Québec, Canada.
| | - Benoit Paquette
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
34
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
35
|
Che P, Yu L, Friedman GK, Wang M, Ke X, Wang H, Zhang W, Nabors B, Ding Q, Han X. Integrin αvβ3 Engagement Regulates Glucose Metabolism and Migration through Focal Adhesion Kinase (FAK) and Protein Arginine Methyltransferase 5 (PRMT5) in Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13051111. [PMID: 33807786 PMCID: PMC7961489 DOI: 10.3390/cancers13051111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming promotes glioblastoma cell migration and invasion. Integrin αvβ3 is one of the major integrin family members in glioblastoma multiforme cell surface mediating interactions with extracellular matrix proteins that are important for glioblastoma progression. The role of αvβ3 integrin in regulating metabolic reprogramming and its mechanism of action have not been determined in glioblastoma cells. Integrin αvβ3 engagement with osteopontin promotes glucose uptake and aerobic glycolysis, while inhibiting mitochondrial oxidative phosphorylation. Blocking or downregulation of integrin αvβ3 inhibits glucose uptake and aerobic glycolysis and promotes mitochondrial oxidative phosphorylation, resulting in decreased migration and growth in glioblastoma cells. Pharmacological inhibition of focal adhesion kinase (FAK) or downregulation of protein arginine methyltransferase 5 (PRMT5) blocks metabolic shift toward glycolysis and inhibits glioblastoma cell migration and invasion. These results support that integrin αvβ3 and osteopontin engagement plays an important role in promoting the metabolic shift toward glycolysis and inhibiting mitochondria oxidative phosphorylation in glioblastoma cells. The metabolic shift in cell energy metabolism is coupled to changes in migration, invasion, and growth, which are mediated by downstream FAK and PRMT5 in glioblastoma cells.
Collapse
Affiliation(s)
- Pulin Che
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
| | - Lei Yu
- Guiyang Maternal and Child Health Hospital, Guiyang 550001, China;
| | - Gregory K. Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Meimei Wang
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China;
| | - Huafeng Wang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
- School of Life Science, Shanxi Normal University, Linfen City 041004, China
| | - Wenbin Zhang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
| | - Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
| | - Qiang Ding
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
- Correspondence: (Q.D.); (X.H.)
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
- Correspondence: (Q.D.); (X.H.)
| |
Collapse
|
36
|
Huizer K, Zhu C, Chirifi I, Krist B, Zorgman D, van der Weiden M, van den Bosch TPP, Dumas J, Cheng C, Kros JM, Mustafa DA. Periostin Is Expressed by Pericytes and Is Crucial for Angiogenesis in Glioma. J Neuropathol Exp Neurol 2021; 79:863-872. [PMID: 32647861 DOI: 10.1093/jnen/nlaa067] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
The expression of the matricellular protein periostin has been associated with glioma progression. In previous work we found an association of periostin with glioma angiogenesis. Here, we screen gliomas for POSTN expression and identify the cells that express periostin in human gliomas. In addition, we study the role of periostin in an in vitro model for angiogenesis. The expression of periostin was investigated by RT-PCR and by immunohistochemistry. In addition, we used double labeling and in situ RNA techniques to identify the expressing cells. To investigate the function of periostin, we silenced POSTN in a 3D in vitro angiogenesis model. Periostin expression was elevated in pilocytic astrocytoma and glioblastoma, but not in grade II/III astrocytomas and oligodendrogliomas. The expression of periostin colocalized with PDGFRβ+ cells, but not with OLIG2+/SOX2+ glioma stem cells. Silencing of periostin in pericytes in coculture experiments resulted in attenuation of the numbers and the length of the vessels formation and in a decrease in endothelial junction formation. We conclude that pericytes are the main source of periostin in human gliomas and that periostin plays an essential role in the growth and branching of blood vessels. Therefore, periostin should be explored as a novel target for developing anti-angiogenic therapy for glioma.
Collapse
Affiliation(s)
- Karin Huizer
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Changbin Zhu
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ihsan Chirifi
- Laboratory for Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bart Krist
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Denise Zorgman
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcel van der Weiden
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thierry P P van den Bosch
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jasper Dumas
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline Cheng
- Laboratory for Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A Mustafa
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Mangin F, Collet C, Jouan-Hureaux V, Maskali F, Roeder E, Pierson J, Selmeczi K, Marie PY, Boura C, Pellegrini-Moïse N, Lamandé-Langle S. Synthesis of a DOTA- C-glyco bifunctional chelating agent and preliminary in vitro and in vivo study of [ 68Ga]Ga-DOTA- C-glyco-RGD. RSC Adv 2021; 11:7672-7681. [PMID: 35423261 PMCID: PMC8694941 DOI: 10.1039/d0ra09274f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
The design of bifunctional chelating agents (BFCA) allowing straightforward radiometal labelling of biomolecules is a current challenge. We report herein the development of a bifunctional chelating agent based on a DOTA chelator linked to a C-glycosyl compound, taking advantage of the robustness and hydrophilicity of this type of carbohydrate derivative. This new BFCA was coupled with success by CuAAC with c(RGDfK) for αvβ3 integrin targeting. As attested by in vitro evaluation, the conjugate DOTA-C-glyco-c(RGDfC) demonstrated high affinity for αvβ3 integrins (IC50 of 42 nM). [68Ga]Ga-DOTA-C-glyco-c(RGDfK) was radiosynthesized straightforwardly and showed high hydrophilic property (log D 7.4 = -3.71) and in vitro stability (>120 min). Preliminary in vivo PET study of U87MG engrafted mice gave evidence of an interesting tumor-to-non-target area ratio. All these data indicate that [68Ga]Ga-DOTA-C-glyco-c(RGDfK) allows monitoring of αvβ3 expression and could thus be used for cancer diagnosis. The DOTA-C-glycoside BFCA reported here could also be used with various ligands and chelating other (radio)metals opening a broad scope of applications in imaging modalities and therapy.
Collapse
Affiliation(s)
| | - Charlotte Collet
- NancycloTEP, Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine Nancy F-54000 France
- Université de Lorraine, INSERM, U1254 IADI F-54000 Nancy France
| | | | - Fatiha Maskali
- NancycloTEP, Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine Nancy F-54000 France
- Université de Lorraine, INSERM, DCAC, UMR 1116 F-54000 Nancy France
| | - Emilie Roeder
- NancycloTEP, Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine Nancy F-54000 France
| | | | | | - Pierre-Yves Marie
- NancycloTEP, Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine Nancy F-54000 France
- Université de Lorraine, INSERM, DCAC, UMR 1116 F-54000 Nancy France
- Department of Nuclear Medicine, CHRU-Nancy F-54000 Nancy France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN F-54000 Nancy France
| | | | | |
Collapse
|
38
|
Hasbum A, Quintanilla J, Jr JA, Ding MH, Levy A, Chew SA. Strategies to better treat glioblastoma: antiangiogenic agents and endothelial cell targeting agents. Future Med Chem 2021; 13:393-418. [PMID: 33399488 PMCID: PMC7888526 DOI: 10.4155/fmc-2020-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive form of glioma, with poor prognosis and high mortality rates. As GBM is a highly vascularized cancer, antiangiogenic therapies to halt or minimize the rate of tumor growth are critical to improving treatment. In this review, antiangiogenic therapies, including small-molecule drugs, nucleic acids and proteins and peptides, are discussed. The authors further explore biomaterials that have been utilized to increase the bioavailability and bioactivity of antiangiogenic factors for better antitumor responses in GBM. Finally, the authors summarize the current status of biomaterial-based targeting moieties that target endothelial cells in GBM to more efficiently deliver therapeutics to these cells and avoid off-target cell or organ side effects.
Collapse
Affiliation(s)
- Asbiel Hasbum
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Jaqueline Quintanilla
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Juan A Amieva Jr
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - May-Hui Ding
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, FL 33314, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| |
Collapse
|
39
|
Jin Z, Piao L, Sun G, Lv C, Jing Y, Jin R. Dual functional nanoparticles efficiently across the blood-brain barrier to combat glioblastoma via simultaneously inhibit the PI3K pathway and NKG2A axis. J Drug Target 2020; 29:323-335. [PMID: 33108906 DOI: 10.1080/1061186x.2020.1841214] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The blood-brain barrier (BBB) and complex tumour immunosuppressive micro-environment posed austere challenges for combatting brain tumours such as the glioblastoma. In this study, we have developed a novel dual functional dendrimer drug delivery system (DDS) by the PAMAM and loaded with siLSINCT5 (NP- siRNA) for efficiently across the BBB to inhibit glioblastoma. To achieve the goal of BBB crossing, on the surface of NP-siRNA was decorated with the cell penetrating peptides tLyp-1 (tLypNP-siRNA). Moreover, to overcome the immunosuppressive microenvironment within the glioblastoma (GBM) tissues, a checkpoint inhibitor named as anti-NKG2A monoclonal antibody (aNKG2A), which was able of promoting anti-tumour immunity by unleashing both T and NK Cells, was further conjugated on the surface of siLSINCT5-loaded nanoparticles via the pH-sensitive linkage. Therefore, the developed dual functional and siLSINCT5-loaded dendrimer nanoparticles (tLyp/aNKNP-siRNA) was supposed to have the ability to efficiently cross the BBB and inhibit GBM by simultaneously inhibit the LSINCT5-activated signalling pathways and activate the anti-tumour immunity. The hypothesis was thoroughly confirmed by in vitro cellular and in vivo animal experiments, and provided a novel strategy for combating glioblastoma.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, PR China
| | - Lianhua Piao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Guangchao Sun
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, PR China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, PR China
| | - Yi Jing
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, PR China
| | - Rihua Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, PR China
| |
Collapse
|
40
|
Lee JA, Ayat N, Sun Z, Tofilon PJ, Lu ZR, Camphausen K. Improving Radiation Response in Glioblastoma Using ECO/siRNA Nanoparticles Targeting DNA Damage Repair. Cancers (Basel) 2020; 12:cancers12113260. [PMID: 33158243 PMCID: PMC7694254 DOI: 10.3390/cancers12113260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most common form of brain cancer and among the most lethal of human cancers. Radiation therapy is a mainstay in the standard of care for GBM, killing tumor cells by creating DNA damage. Inhibiting DNA damage repair (DDR) proteins enhances radiation therapy by not allowing tumor cells to repair the DNA damage caused by radiation. The aim of our study was to investigate whether the novel nanoparticle material, ECO, could be used to deliver small interfering RNA (siRNA) to GBM tumor cells and temporarily reduce the production of DDR proteins to improve radiation therapy outcomes. SiRNAs can be designed to target an innumerable number of genes and with the right delivery vehicle can be used in a variety of disease settings. Our work provides support for the use of the novel ECO material for delivery of siRNA in GBM. Abstract Radiation therapy is a mainstay in the standard of care for glioblastoma (GBM), thus inhibiting the DNA damage response (DDR) is a major strategy to improve radiation response and therapeutic outcomes. Small interfering RNA (siRNA) therapy holds immeasurable potential for the treatment of GBM, however delivery of the siRNA payload remains the largest obstacle for clinical implementation. Here we demonstrate the effectiveness of the novel nanomaterial, ECO (1-aminoethylimino[bis(N-oleoylcysteinylaminoethyl) propionamide]), to deliver siRNA targeting DDR proteins ataxia telangiectasia mutated and DNA-dependent protein kinase (DNApk-cs) for the radiosensitzation of GBM in vitro and in vivo. ECO nanoparticles (NPs) were shown to efficiently deliver siRNA and silence target protein expression in glioma (U251) and glioma stem cell lines (NSC11, GBMJ1). Importantly, ECO NPs displayed no cytotoxicity and minimal silencing of genes in normal astrocytes. Treatment with ECO/siRNA NPs and radiation resulted in the prolonged presence of γH2AX foci, indicators of DNA damage, and increased radiosensitivity in all tumor cell lines. In vivo, intratumoral injection of ECO/siDNApk-cs NPs with radiation resulted in a significant increase in survival compared with injection of NPs alone. These data suggest the ECO nanomaterial can effectively deliver siRNA to more selectively target and radiosensitize tumor cells to improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Jennifer A. Lee
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.J.T.); (K.C.)
- Correspondence:
| | - Nadia Ayat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44140, USA; (N.A.); (Z.S.); (Z.-R.L.)
| | - Zhanhu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44140, USA; (N.A.); (Z.S.); (Z.-R.L.)
| | - Philip J. Tofilon
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.J.T.); (K.C.)
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44140, USA; (N.A.); (Z.S.); (Z.-R.L.)
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.J.T.); (K.C.)
| |
Collapse
|
41
|
Kang S, Lee S, Park S. iRGD Peptide as a Tumor-Penetrating Enhancer for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020; 12:E1906. [PMID: 32847045 PMCID: PMC7563641 DOI: 10.3390/polym12091906] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The unique structure and physiology of a tumor microenvironment impede intra-tumoral penetration of chemotherapeutic agents. A novel iRGD peptide that exploits the tumor microenvironment can activate integrin-dependent binding to tumor vasculatures and neuropilin-1 (NRP-1)-dependent transport to tumor tissues. Recent studies have focused on its dual-targeting ability to achieve enhanced penetration of chemotherapeutics for the efficient eradication of cancer cells. Both the covalent conjugation and the co-administration of iRGD with chemotherapeutic agents and engineered delivery vehicles have been explored. Interestingly, the iRGD-mediated drug delivery also enhances penetration through the blood-brain barrier (BBB). Recent studies have shown its synergistic effect with BBB disruptive techniques. The efficacy of immunotherapy involving immune checkpoint blockades has also been amplified by using iRGD as a targeting moiety. In this review, we presented the recent advances in iRGD technology, focusing on cancer treatment modalities, including the current clinical trials using iRGD. The iRGD-mediated nano-carrier system could serve as a promising strategy in drug delivery to the deeper tumor regions, and be combined with various therapeutic interventions due to its novel targeting ability.
Collapse
Affiliation(s)
| | | | - Soyeun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea; (S.K.); (S.L.)
| |
Collapse
|
42
|
Kondo N, Wakamori K, Hirata M, Temma T. Radioiodinated bicyclic RGD peptide for imaging integrin α vβ 3 in cancers. Biochem Biophys Res Commun 2020; 528:168-173. [PMID: 32451087 DOI: 10.1016/j.bbrc.2020.05.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 11/19/2022]
Abstract
Integrin αvβ3 is an effective marker of angiogenesis in cancer, and αvβ3-specific imaging can yield important details about this complex physiological process. We utilized the recently reported and highly αvβ3-specific peptide, bicyclic RGD (bcRGD), as the basic structure of an in vivo αvβ3 imaging probe, and synthesized a radioiodinated form of bcRGD, namely [125I]bcRGD, with high radiochemical purity (>99%) and high molar activity (81 GBq/μmol). As expected, [125I]bcRGD exhibited high selectivity for αvβ3 compared with αvβ5 and α5β1in vitro. [125I]bcRGD showed significantly higher accumulation in U-87MG cells (1.6% dose/mg) with high expression of αvβ3 compared to A549 cells (0.3% dose/mg) with only moderate expression. Furthermore, 30 min after administration to tumor-bearing mice, [125I]bcRGD showed significantly higher accumulation in U-87MG tumors (3.8% ID/g) than in A549 tumors (2.1% ID/g), and the radioactivity accumulation ratios of U-87MG tumor/blood and U-87MG tumor/muscle were 4.0 and 6.0, respectively. These results highlight the promising properties of [123/125I]bcRGD for use as an in vivo αvβ3 imaging probe, as well as the utility of bcRGD as a basic structure of molecular probes for both imaging and therapeutic applications. bcRGD may exhibit broad use in future theranostics applications targeting integrin αvβ3-related diseases.
Collapse
Affiliation(s)
- Naoya Kondo
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences; 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | - Keita Wakamori
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences; 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Masahiko Hirata
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences; 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takashi Temma
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences; 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
43
|
Yang J, Zhang Q, Liu Y, Zhang X, Shan W, Ye S, Zhou X, Ge Y, Wang X, Ren L. Nanoparticle-based co-delivery of siRNA and paclitaxel for dual-targeting of glioblastoma. Nanomedicine (Lond) 2020; 15:1391-1409. [PMID: 32495692 DOI: 10.2217/nnm-2020-0066] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To explore the therapeutic effect of nanoparticle-based dual-targeting delivery of antitumor agents for glioblastoma treatment. Materials & methods: A hepatitis B core protein-virus-like particle (VLP)-based dual-targeting delivery system was designed with the primary brain targeting peptide TGN for blood-brain barrier penetration and tumor vascular preferred ligand RGD (arginine-glycine-aspartic acid) for glioblastoma targeting. Chemo- and gene-therapeutic agents of paclitaxel and siRNA were co-packaged inside the vehicle. Results: The results demonstrated efficient delivery of the packaged agents to invasive tumor sites. The combination of chemo- and gene-therapies demonstrated synergistic antitumor effects through enhancing necrosis and apoptosis, as well as being able to inhibit tumor invasion with minimal cytotoxicity. Conclusion: Our hepatitis B core-VLP-based dual-targeting delivery of chemo- and gene-therapeutic agents possesses a synergistic antitumor effect for glioblastoma therapy.
Collapse
Affiliation(s)
- Jun Yang
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, PR China
| | - Qiang Zhang
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Yanxiu Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Xinjie Zhang
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, PR China
| | - Wenjun Shan
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Shefang Ye
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xi Zhou
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Yunlong Ge
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, PR China
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Lei Ren
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|
44
|
Zikavirus prME Envelope Pseudotyped Human Immunodeficiency Virus Type-1 as a Novel Tool for Glioblastoma-Directed Virotherapy. Cancers (Basel) 2020; 12:cancers12041000. [PMID: 32325703 PMCID: PMC7226176 DOI: 10.3390/cancers12041000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme is the most lethal type of brain tumor that is not yet curable owing to its frequent resurgence after surgery. Resistance is mainly caused by the presence of a subpopulation of tumor cells, the glioma stem cells (GSCs), which are highly resistant to radiation and chemotherapy. In 2015, Zikavirus (ZIKV)-induced microcephaly emerged in newborns, indicating that ZIKV has a specific neurotropism. Accordingly, an oncolytic tropism for infecting GSCs was demonstrated in a murine tumor model. Like other flaviviruses, ZIKV is enveloped by two proteins, prM and E. The pME expression plasmid along with the HIV-1 vector pNL Luc AM generated prME pseudotyped viral particles. Four different prME envelopes, Z1 to Z4, were cloned, and the corresponding pseudotypes, Z1- to Z4-HIVluc, produced by this two-plasmid system, were tested for entry efficiency using Vero-B4 cells. The most efficient pseudotype, Z1-HIVluc, also infected glioma-derived cell lines U87 and 86HG39. The pseudotype system was then extended by using a three-plasmid system including pME-Z1, the HIV-1 packaging plasmid psPAX2, and the lentiviral vector pLenti-luciferase-P2A-Neo. The corresponding pseudotype, designated Z1-LENTIluc, also infected U87 and 86HG39 cells. Altogether, a pseudotyped virus especially targeting glioma-derived cells might be a promising candidate for a prospective glioblastoma-directed virotherapy.
Collapse
|
45
|
Ullah I, Chung K, Bae S, Li Y, Kim C, Choi B, Nam HY, Kim SH, Yun CO, Lee KY, Kumar P, Lee SK. Nose-to-Brain Delivery of Cancer-Targeting Paclitaxel-Loaded Nanoparticles Potentiates Antitumor Effects in Malignant Glioblastoma. Mol Pharm 2020; 17:1193-1204. [PMID: 31944768 DOI: 10.1021/acs.molpharmaceut.9b01215] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive tumor with no curative treatment. The tumor recurrence after resection often requires chemotherapy or radiation to delay the infiltration of tumor remnants. Intracerebral chemotherapies are preferentially being used to prevent tumor regrowth, but treatments remain unsuccessful because of the poor drug distribution in the brain. In this study, we investigated the therapeutic efficacy of cancer-targeting arginyl-glycyl-aspartic tripeptide (RGD) conjugated paclitaxel (PTX)-loaded nanoparticles (NPs) against GBM by nose-to-brain delivery. Our results demonstrated that RGD-modified PTX-loaded NPs showed cancer-specific delivery and enhanced anticancer effects in vivo. The intranasal (IN) inoculation of RGD-PTX-loaded NPs effectively controls the tumor burden (75 ± 12% reduction) by inducing apoptosis and/or inhibiting cancer cell proliferation without affecting the G0 stage of normal brain cells. Our data provide therapeutic evidence supporting the use of intranasally delivered cancer-targeted PTX-loaded NPs for GBM therapy.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven 06510, United States
| | - Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Sumin Bae
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Yan Li
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea.,National Cancer Center, Gyeonggi-do, Goyang 10408, Korea
| | - Chunggu Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Boyoung Choi
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea.,Samyang Biopharmaceuticals Co., Seoul 13488, Korea
| | | | - Sun Hwa Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Chae-Ok Yun
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Kuen Yong Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven 06510, United States
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
46
|
Du J, Hou K, Mi S, Ji H, Ma S, Ba Y, Hu S, Xie R, Chen L. Malignant Evaluation and Clinical Prognostic Values of m6A RNA Methylation Regulators in Glioblastoma. Front Oncol 2020; 10:208. [PMID: 32211315 PMCID: PMC7075451 DOI: 10.3389/fonc.2020.00208] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation, the most common form of mRNA modification and regulated by the m6A RNA methylation regulators ("writers," "erasers," and "readers"), has been reported to be associated with the progression of the malignant tumor. However, its role in glioblastoma (GBM) has been poorly known. This study aimed to identify the expression, potential functions, and prognostic values of m6A RNA methylation regulators in GBM. Here, we revealed that the 13 central m6A RNA methylation regulators were firmly related to the clinical and molecular phenotype of GBM. Taking advantage of consensus cluster analysis, we obtained two categories of GBM samples and found malignancy-related processes of m6A methylation regulators and compounds that specifically targeted the malignant processes. Besides, we also obtained a list of genes with poor prognosis in GBM. Finally, we derived a risk-gene signature with three selected m6A RNA methylation regulators, which allowed us to extend the in-depth study and dichotomized the OS of patients with GBM into high- and low-risk subgroups. Notably, this risk-gene signature could be used as independent prognostic markers and accurate clinicopathological parameter predictors. In conclusion, m6A RNA methylation regulators are a type of vital participant in the malignant progression of GBM, with a critical potential in the prognostic stratification and treatment strategies of GBM.
Collapse
Affiliation(s)
- Jianyang Du
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Kuiyuan Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shan Mi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Hang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yixu Ba
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Xie
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
47
|
Zhao Y, Wang J, Yang J, Miao J. Synergistic antitumor effect of ING4/PTEN double tumor suppressors mediated by adenovirus modified with arginine-glycine-aspartate on glioma. J Neurosurg Sci 2020; 64:173-180. [DOI: 10.23736/s0390-5616.17.03978-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Chung K, Ullah I, Kim N, Lim J, Shin J, Lee SC, Jeon S, Kim SH, Kumar P, Lee SK. Intranasal delivery of cancer-targeting doxorubicin-loaded PLGA nanoparticles arrests glioblastoma growth. J Drug Target 2020; 28:617-626. [PMID: 31852284 DOI: 10.1080/1061186x.2019.1706095] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumour and treatment is very challenging. Despite the recent advances in drug delivery systems, various approaches that allow sufficient deposition of anti-cancer drugs within the brain remain unsuccessful due to limited drug delivery throughout the brain. In this study, we utilised an intranasal (IN) approach to allow delivery of anti-cancer drug, encapsulated in PLGA nanoparticles (NPs). PLGA NPs were modified with the RGD ligand to enable Avβ3 expressing tumour-specific delivery. IN delivery of RGD-conjugated-doxorubicin (DOX)-loaded-PLGA-nanoparticles (RGD-DOX-NP) showed cancer-specific delivery of NP and inhibition of brain tumour growth compared to the free-DOX or non-modified DOX-NP in the C6-implanted GBM model. Further, IN treatment with RGD-DOX-NP induces apoptosis in the tumour region without affecting normal brain cells. Our study provides therapeutic evidence to treat GBM using a non-invasive IN approach, which may further be translated to other brain-associated diseases.
Collapse
Affiliation(s)
- Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea
| | - Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Nahyeon Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea.,Samsung Bioepis, Incheon, Korea
| | - Jaeyeoung Lim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea.,Celltrion, Incheon, Korea
| | - Jungah Shin
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea.,Chong Kun Dang Pharmaceutics, Seoul, Korea
| | - Sangah C Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea.,Department of Health Services, Policy, and Practice, Brown University, Providence, RI, USA
| | - Sangmin Jeon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul, Korea
| |
Collapse
|
49
|
Wu PH, Opadele AE, Onodera Y, Nam JM. Targeting Integrins in Cancer Nanomedicine: Applications in Cancer Diagnosis and Therapy. Cancers (Basel) 2019; 11:E1783. [PMID: 31766201 PMCID: PMC6895796 DOI: 10.3390/cancers11111783] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023] Open
Abstract
Due to advancements in nanotechnology, the application of nanosized materials (nanomaterials) in cancer diagnostics and therapeutics has become a leading area in cancer research. The decoration of nanomaterial surfaces with biological ligands is a major strategy for directing the actions of nanomaterials specifically to cancer cells. These ligands can bind to specific receptors on the cell surface and enable nanomaterials to actively target cancer cells. Integrins are one of the cell surface receptors that regulate the communication between cells and their microenvironment. Several integrins are overexpressed in many types of cancer cells and the tumor microvasculature and function in the mediation of various cellular events. Therefore, the surface modification of nanomaterials with integrin-specific ligands not only increases their binding affinity to cancer cells but also enhances the cellular uptake of nanomaterials through the intracellular trafficking of integrins. Moreover, the integrin-specific ligands themselves interfere with cancer migration and invasion by interacting with integrins, and this finding provides a novel direction for new treatment approaches in cancer nanomedicine. This article reviews the integrin-specific ligands that have been used in cancer nanomedicine and provides an overview of the recent progress in cancer diagnostics and therapeutic strategies involving the use of integrin-targeted nanomaterials.
Collapse
Affiliation(s)
- Ping-Hsiu Wu
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Abayomi Emmanuel Opadele
- Molecular and Cellular Dynamics Research, Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan;
| | - Yasuhito Onodera
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Jin-Min Nam
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| |
Collapse
|
50
|
Wang T, Li G, Wang D, Li F, Men D, Hu T, Xi Y, Zhang XE. Quantitative profiling of integrin αvβ3 on single cells with quantum dot labeling to reveal the phenotypic heterogeneity of glioblastoma. NANOSCALE 2019; 11:18224-18231. [PMID: 31560005 DOI: 10.1039/c9nr01105f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The distribution, localization and density of individual molecules (e.g. drug-specific receptors) on single cells can offer profound information about cell phenotypes. Profiling this information is a new research direction within the field of single cell biology, but it remains technically challenging. Through the combined use of quantum dot labeling, structured illumination microscopy (SIM) and computer-aided local surface reconstruction, we acquired a 3D imaging map of a drug target molecule, integrin αvβ3, on glioblastoma cells at the single cell level. The results revealed that integrin αvβ3 exhibits discrete distribution on the surface of glioblastoma cells, with its density differing significantly among cell lines. The density is illustrated as the approximate number of target molecules per μm2 on the irregular cell surface, ranging from 0 to 1.6. Functional studies revealed that the sensitivity of glioblastoma cells to inhibitor molecules depends on the density of the target molecules. After inhibitor treatment, the viability and invasion ability of different glioblastoma cells were highly correlated with the density of integrin αvβ3 on their surfaces. This study not only provides a novel protocol for the quantitative analysis of surface proteins from irregular single cells, but also offers a clue for understanding the heterogeneity of tumor cells on the basis of molecular phenotypes. Thus, this work has potential significance in guiding targeted therapies for cancers.
Collapse
Affiliation(s)
- Tingting Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | |
Collapse
|