1
|
Lin S, Ota U, Imazato H, Takahashi K, Ishizuka M, Osaki T. In vitro evaluation of the efficacy of photodynamic therapy using 5-ALA on homologous feline mammary tumors in 2D and 3D culture conditions and a mouse subcutaneous model with 3D cultured cells. Photodiagnosis Photodyn Ther 2024; 45:103993. [PMID: 38280675 DOI: 10.1016/j.pdpdt.2024.103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Numerous studies have shown that photodynamic therapy (PDT) has a therapeutic effect on mammary tumor cells, with 5-aminolevulinic acid (5-ALA-HCL) being a commonly used photosensitizer for PDT. Feline mammary tumors (FMTs) are relatively common. However, the cytotoxic and antitumor effects of 5-ALA-PDT on FMTs have not been clarified. To this end, we evaluated the therapeutic effect of 5-ALA-PDT on FMTs through in vitro experiments using an FMT FKR cell line established for this study. METHODS We performed 5-ALA-PDT in 2D-cultured FKR-A (adherent cells) and 3D-cultured FKR-S (spheroid cells) cells and performed a series of studies to evaluate the cell viability and determine the protoporphyrin IX (PpIX) content in the cells as well as the expression levels of mRNAs associated with PpIX production and release. An in vivo study was performed to assess the effectiveness of 5-ALA-PDT. RESULTS There was a significant difference in the concentration of PpIX in FMT cells under different incubation culture modes (2D versus 3D culture). The concentration of PpIX in FMT cells was correlated with the differences in cell culture (2D and 3D) as well as the expression levels of genes such as PEPT1, PEPT2, FECH, and HO-1. CONCLUSIONS In the in vitro study, 5-ALA-PDT had a stronger inhibitory effect on 3D-cultured FKR-S cells, which resemble the internal environment of organisms more closely. We also observed a significant inhibitory effect of 5-ALA-PDT on FMT cells in vivo. To our knowledge, this is the first study on 5-ALA-PDT for FMTs under both 2D and 3D conditions.
Collapse
Affiliation(s)
- Siyao Lin
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Urara Ota
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan
| | - Hideo Imazato
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan
| | | | | | - Tomohiro Osaki
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| |
Collapse
|
2
|
Zhu W, Huang L, Wu C, Liu L, Li H. Reviewing the evolutive ACQ-to-AIE transformation of photosensitizers for phototheranostics. LUMINESCENCE 2023. [PMID: 38148620 DOI: 10.1002/bio.4655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Photodynamic therapy (PDT) represents an emerging noninvasive treatment technique for cancers and various nonmalignant diseases, including infections. During the process of PDT, the physical and chemical properties of photosensitizers (PSs) critically determine the effectiveness of PDT. Traditional PSs have made great progress in clinical applications. One of the challenges is that traditional PSs suffer from aggregation-caused quenching (ACQ) due to their discotic structures. Recently, aggregation-induced emission PSs (AIE-PSs) with a twisted propeller-shaped conformation have been widely concerned because of high reactive oxygen species (ROS) generation efficiency, strong fluorescence efficiency, and resistance to photobleaching. However, AIE-PSs also have some disadvantages, such as short absorption wavelengths and insufficient molar absorption coefficient. When the advantages and disadvantages of AIE-PSs and ACQ-PSs are complementary, combining ACQ-PSs and AIE-PSs is a "win-to-win" strategy. As far as we know, the conversion of traditional representative ACQ-PSs to AIE-PSs for phototheranostics has not been reviewed. In the review, we summarize the recent progress on the ACQ-to-AIE transformation of PSs and the strategies to achieve desirable theranostic applications. The review would be helpful to design more efficient ACQ-AIE-PSs in the future and to accelerate the development and clinical application of PDT.
Collapse
Affiliation(s)
- Wei Zhu
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Shengfa Textiles Printing and Dyeing Co., Ltd., Huzhou, China
| | - Lin Huang
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chao Wu
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lingli Liu
- Transfar Zhilian Co. Ltd., Hangzhou, China
| | - Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Przygoda M, Bartusik-Aebisher D, Dynarowicz K, Cieślar G, Kawczyk-Krupka A, Aebisher D. Cellular Mechanisms of Singlet Oxygen in Photodynamic Therapy. Int J Mol Sci 2023; 24:16890. [PMID: 38069213 PMCID: PMC10706571 DOI: 10.3390/ijms242316890] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
In this review, we delve into the realm of photodynamic therapy (PDT), an established method for combating cancer. The foundation of PDT lies in the activation of a photosensitizing agent using specific wavelengths of light, resulting in the generation of reactive oxygen species (ROS), notably singlet oxygen (1O2). We explore PDT's intricacies, emphasizing its precise targeting of cancer cells while sparing healthy tissue. We examine the pivotal role of singlet oxygen in initiating apoptosis and other cell death pathways, highlighting its potential for minimally invasive cancer treatment. Additionally, we delve into the complex interplay of cellular components, including catalase and NOX1, in defending cancer cells against PDT-induced oxidative and nitrative stress. We unveil an intriguing auto-amplifying mechanism involving secondary singlet oxygen production and catalase inactivation, offering promising avenues for enhancing PDT's effectiveness. In conclusion, our review unravels PDT's inner workings and underscores the importance of selective illumination and photosensitizer properties for achieving precision in cancer therapy. The exploration of cellular responses and interactions reveals opportunities for refining and optimizing PDT, which holds significant potential in the ongoing fight against cancer.
Collapse
Affiliation(s)
- Maria Przygoda
- Students English Division Science Club, Medical College of The University of Rzeszów, 35-315 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
4
|
Anti-Hypoxia Nanoplatforms for Enhanced Photosensitizer Uptake and Photodynamic Therapy Effects in Cancer Cells. Int J Mol Sci 2023; 24:ijms24032656. [PMID: 36768975 PMCID: PMC9916860 DOI: 10.3390/ijms24032656] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Photodynamic therapy (PDT) holds great promise in cancer eradication due to its target selectivity, non-invasiveness, and low systemic toxicity. However, due to the hypoxic nature of many native tumors, PDT is frequently limited in its therapeutic effect. Additionally, oxygen consumption during PDT may exacerbate the tumor's hypoxic condition, which stimulates tumor proliferation, metastasis, and invasion, resulting in poor treatment outcomes. Therefore, various strategies have been developed to combat hypoxia in PDT, such as oxygen carriers, reactive oxygen supplements, and the modulation of tumor microenvironments. However, most PDT-related studies are still conducted on two-dimensional (2D) cell cultures, which fail to accurately reflect tissue complexity. Thus, three-dimensional (3D) cell cultures are ideal models for drug screening, disease simulation and targeted cancer therapy, since they accurately replicate the tumor tissue architecture and microenvironment. This review summarizes recent advances in the development of strategies to overcome tumor hypoxia for enhanced PDT efficiency, with a particular focus on nanoparticle-based photosensitizer (PS) delivery systems, as well as the advantages of 3D cell cultures.
Collapse
|
5
|
Huis in ‘t Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:pharmaceutics15020330. [PMID: 36839652 PMCID: PMC9965442 DOI: 10.3390/pharmaceutics15020330] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Collapse
Affiliation(s)
- Ruben V. Huis in ‘t Veld
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Correspondence:
| | - Jeroen Heuts
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Sen Ma
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
6
|
Chilakamarthi U, Mahadik NS, Koteshwar D, Krishna NV, Giribabu L, Banerjee R. Potentiation of novel porphyrin based photodynamic therapy against colon cancer with low dose doxorubicin and elucidating the molecular signalling pathways responsible for relapse. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112625. [PMID: 36529058 DOI: 10.1016/j.jphotobiol.2022.112625] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Photodynamic therapy (PDT) is a promising non-invasive treatment modality for cancer and can be potentiated by combination with chemotherapy. Here, we combined PDT of novel porphyrin-based photosensitizers with low dose doxorubicin (Dox) to get maximum outcome. Dox potentiated and showed synergism with PDT under in vitro conditions on CT26.WT cells. The current colon cancer treatment strategies assure partial or even complete tumour regression but loco-regional relapse or distant metastasis is the major cause of death despite combination therapy. The spared cells after the treatment contribute to relapse and it is important to study their behaviour in host environment. Hence, we developed relapse models for PDT, Dox and combination treatments by transplanting respectively treated equal number of live cells to mice (n = 5) for tumour formation. Most of the treated cells lost tumour forming ability, but some treatment resistant cells developed tumours in few mice. These tumours served as relapse models and Western blot analysis of tumour samples provided clinically relevant information to delineate resistance strategies of individual as well as combination therapies at molecular level. Our results showed that low dose Dox helped in increasing the tumour inhibiting effect of PDT in combination therapy, but still there are indeed possibilities of relapse at later stages due to chemoresistance and immune suppression that may occur post-treatment. We observed that the combination therapy may also lead to the development of multidrug resistant (MDR) phenotype during relapse. Thus, this study provided clinically relevant information to further strengthen and improve PDT-drug combination therapy in order to avoid relapse and to treat cancer more effectively.
Collapse
Affiliation(s)
- Ushasri Chilakamarthi
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Namita S Mahadik
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Devulapally Koteshwar
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Narra Vamsi Krishna
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Lingamallu Giribabu
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| |
Collapse
|
7
|
Zhang Y, Zhou XA, Liu C, Shen Q, Wu Y. Vitamin B6 Inhibits High Glucose-Induced Islet β Cell Apoptosis by Upregulating Autophagy. Metabolites 2022; 12:1048. [PMID: 36355132 PMCID: PMC9695582 DOI: 10.3390/metabo12111048] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/27/2023] Open
Abstract
Vitamin B6 may alleviate diabetes by regulating insulin secretion and increasing insulin sensitivity, but its mechanism remains to be explored. In this study, vitamin B6-mediated autophagy and high glucose-induced apoptosis were tested to investigate the mechanism by which vitamin B6 regulates insulin release. The results showed that 20 mM glucose increased the apoptosis rate from 10.39% to 22.44%. Vitamin B6 reduced the apoptosis rate of RIN-m5F cells from 22.44% to 11.31%. Our data also showed that the vitamin B6 content in processed eggs was decreased and that the hydrothermal process did not affect the bioactivity of vitamin B6. Vitamin B6 increased the number of autophagosomes and the ratio of autophagosome marker protein microtubule associated protein 1 light chain 3 beta to microtubule associated protein 1 light chain 3 alpha (LC3-II/LC3-I). It also decreased the amount of sequetosome 1 (SQSTM1/p62) and inhibited the phosphorylation of p70 ribosomal protein S6 kinase (p70S6K) under normal and high glucose stress. Another study showed that vitamin B6 inhibited the apoptosis rate, whereas the autophagy inhibitor 3-methyladenine (3-MA) blocked the protective effect of vitamin B6 against apoptosis induced by high glucose. The hydrothermal process decreased the vitamin B6 content in eggs but had no effect on the cytoprotective function of vitamin B6 in RIN-m5f cells. In conclusion, we demonstrated that vitamin B6-mediated autophagy protected RIN-m5f cells from high glucose-induced apoptosis might via the mTOR-dependent pathway. Our data also suggest that low temperatures and short-term hydrothermal processes are beneficial for dietary eggs.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Xi-an Zhou
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Chuxin Liu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Qingwu Shen
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Yanyang Wu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| |
Collapse
|
8
|
Montaseri H, Nkune NW, Abrahamse H. Active targeted photodynamic therapeutic effect of silver-based nanohybrids on melanoma cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
9
|
Ma CH, Ma HH, Deng XB, Yu R, Song KW, Wei KK, Wang CJ, Li HX, Chen H. Photodynamic Therapy in Combination with Chemotherapy, Targeted, and Immunotherapy As a Successful Therapeutic Approach for Advanced Gastric Adenocarcinoma: A Case Report and Literature Review. Photobiomodul Photomed Laser Surg 2022; 40:308-314. [PMID: 35559715 DOI: 10.1089/photob.2021.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: To explore the efficacy of photodynamic therapy combined with chemotherapy, targeted therapy, and immunotherapy in poorly differentiated gastric adenocarcinoma (GAC). Background: Advanced GAC has high malignancy and mortality rate. To date, no study has applied photodynamic treatment (PDT) combined with chemo-, targeted, and immunotherapy to treat this cancer. Patient and methods: Clinical data of a patient diagnosed with poorly differentiated GAC admitted to the department of oncology of the Lanzhou University Second Hospital were retrospectively analyzed. The patient underwent four PDT procedures combined with chemo-, targeted, and immunotherapy. Results: A 72-year-old male patient received combination therapy of PDT. This treatment resolved the cancerous tissues and levels of tumor markers. There was no recurrence and metastasis during a 7-month follow-up. Conclusions: Combination therapy of PDT can effectively treat tumors and may be a method suitable for elderly patients with advanced GAC.
Collapse
Affiliation(s)
- Chen-Hui Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Huan-Huan Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Bo Deng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Rong Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ke-Wei Song
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Kong-Kong Wei
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Cai-Juan Wang
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Hui-Xia Li
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, China
| |
Collapse
|
10
|
Ji B, Wei M, Yang B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics 2022; 12:434-458. [PMID: 34987658 PMCID: PMC8690913 DOI: 10.7150/thno.67300] [Citation(s) in RCA: 176] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has made tremendous clinical progress in advanced-stage malignancies. However, patients with various tumors exhibit a low response rate to immunotherapy because of a powerful immunosuppressive tumor microenvironment (TME) and insufficient immunogenicity of tumors. Photodynamic therapy (PDT) can not only directly kill tumor cells, but also elicit immunogenic cell death (ICD), providing antitumor immunity. Unfortunately, limitations from the inherent nature and complex TME significantly reduce the efficiency of PDT. Recently, smart nanomedicine-based strategies could subtly modulate the pharmacokinetics of therapeutic compounds and the TME to optimize both PDT and immunotherapy, resulting in an improved antitumor effect. Here, the emerging nanomedicines for PDT-driven cancer immunotherapy are reviewed, including hypoxia-reversed nanomedicines, nanosized metal-organic frameworks, and subcellular targeted nanoparticles (NPs). Moreover, we highlight the synergistic nanotherapeutics used to amplify immune responses combined with immunotherapy against tumors. Lastly, the challenges and future expectations in the field of PDT-driven cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Bin Ji
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Bin Yang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
11
|
Zafon E, Echevarría I, Barrabés S, Manzano BR, Jalón FA, Rodríguez AM, Massaguer A, Espino G. Photodynamic therapy with mitochondria-targeted biscyclometallated Ir(III) complexes. Multi-action mechanism and strong influence of the cyclometallating ligand. Dalton Trans 2021; 51:111-128. [PMID: 34873601 DOI: 10.1039/d1dt03080a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy is an alternative to classical chemotherapy due to its potential to reduce side effects by a controlled activation of a photosensitizer through local irradiation with light. The photosensitizer then interacts with oxygen and generates reactive oxygen species. Iridium biscyclometallated complexes are very promising photosensitizers due to their exceptional photophysical properties and their ability to target mitochondria. Four Ir(III) biscyclometallated complexes of formula [Ir(C^N)2(N^N')]Cl, where N^N' is a ligand containing a benzimidazolyl fragment, have been synthesized and characterized. The C^N ligands were 2-phenylpyridinate (ppy) and 2-(2,4-difluorophenyl)pyridinate (dfppy). The complexes exhibited high photostability. The electrochemical and photophysical properties were modulated by both the cyclometallating and the ancillary ligands. The dfppy derivatives yielded the highest emission energy values, quantum yields of phosphorescence and excited state lifetimes. All complexes generated 1O2 in aerated solutions upon irradiation. Biological studies revealed that these complexes have a moderate cytotoxicity in the dark against different human cancer cell lines: prostate (PC-3), colon (CACO-2) and melanoma (SK-MEL-28), and against non-malignant fibroblasts (CCD-18Co). However, derivatives with ppy ligands ([1a]Cl, [2a]Cl) yielded a relevant photodynamic activity upon light irradiation (450 nm, 24.1 J cm-2), with phototoxicity indexes (EC50,dark/EC50,light) of 20.8 and 17.3, respectively, achieved in PC-3 cells. Mechanistic studies showed that these complexes are taken up by the cells through endocytosis and preferentially accumulate in mitochondria. Upon photoactivation, the complexes induced mitochondrial membrane depolarization and DNA damage, thus triggering cell death, mainly by apoptosis. Complex [1a]Cl is also able to oxidize NADH. This mitochondria-targeted photodynamic mechanism greatly inhibited the reproductive capacity of cancer cells and provides a valuable alternative to traditional chemotherapy for the controlled treatment of cancer.
Collapse
Affiliation(s)
- Elisenda Zafon
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Igor Echevarría
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Sílvia Barrabés
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Blanca R Manzano
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Félix A Jalón
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica. Escuela Técnica Superior de Ingenieros Industriales de Ciudad Real, Avda. Camilo J. Cela, 2, 13071 Ciudad Real, Spain
| | - Anna Massaguer
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Gustavo Espino
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
12
|
Ortega-Forte E, Rovira A, Gandioso A, Bonelli J, Bosch M, Ruiz J, Marchán V. COUPY Coumarins as Novel Mitochondria-Targeted Photodynamic Therapy Anticancer Agents. J Med Chem 2021; 64:17209-17220. [PMID: 34797672 PMCID: PMC8667040 DOI: 10.1021/acs.jmedchem.1c01254] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy (PDT) for cancer treatment has drawn increased attention over the last decades. Herein, we introduce a novel family of low-molecular-weight coumarins as potential PDT anticancer tools. Through a systematic study with a library of 15 compounds, we have established a detailed structure-activity relationship rationale, which allowed the selection of three lead compounds exhibiting effective in vitro anticancer activities upon visible-light irradiation in both normoxia and hypoxia (phototherapeutic indexes up to 71) and minimal toxicity toward normal cells. Acting as excellent theranostic agents targeting mitochondria, the mechanism of action of the photosensitizers has been investigated in detail in HeLa cells. The generation of cytotoxic reactive oxygen species, which has been found to be a major contributor of the coumarins' phototoxicity, and the induction of apoptosis and/or autophagy have been identified as the cell death modes triggered after irradiation with low doses of visible light.
Collapse
Affiliation(s)
- Enrique Ortega-Forte
- Departamento
de Química Inorgánica, Universidad
de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), Campus de Espinardo, Murcia E-30071, Spain
| | - Anna Rovira
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franqués 1−11, Barcelona E-08028, Spain
| | - Albert Gandioso
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franqués 1−11, Barcelona E-08028, Spain
| | - Joaquín Bonelli
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franqués 1−11, Barcelona E-08028, Spain
| | - Manel Bosch
- Unitat
de Microscòpia Òptica Avançada, Centres Científics
i Tecnològics, Universitat de Barcelona, Av. Diagonal 643, Barcelona E-08028, Spain
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad
de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), Campus de Espinardo, Murcia E-30071, Spain
| | - Vicente Marchán
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franqués 1−11, Barcelona E-08028, Spain
| |
Collapse
|
13
|
Photodynamic Therapy Induced Cell Death Mechanisms in Breast Cancer. Int J Mol Sci 2021; 22:ijms221910506. [PMID: 34638847 PMCID: PMC8508861 DOI: 10.3390/ijms221910506] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the second most common cancer globally and the pioneering cause of mortality among women. It usually begins from the ducts or lobules, referred to as ductal carcinoma in situ, or lobular carcinoma in situ. Age, mutations in Breast Cancer Gene 1 or 2 (BRCA1 or BRCA2) genes, and dense breast tissue are the highest risk factors. Current treatments are associated with various side effects, relapse, and a low quality of life. Although conventional treatments, such as surgery and chemotherapy, have been used for decades, their adverse side effects on normal cells and tissues pose a major weakness, which calls for a non-invasive treatment option. Photodynamic therapy (PDT) has proven to be a promising form of cancer therapy. It is less invasive, target-specific, and with reduced cytotoxicity to normal cells and tissues. It involves the use of a photosensitizer (PS) and light at a specific wavelength to produce reactive oxygen species. One of the reasons for the target specificity is associated with the dense vascularization of cancer tissues, which tends to increase the surface area for the PS uptake. Photosensitizers are light-sensitive molecules, which result in cancer cell destruction followed by light irradiation. Depending on the localization of the PS within the cancer cell, its destruction may be via apoptosis, necrosis, or autophagy. This review focuses on the breast cancer etiopathology and PDT-induced cell death mechanisms in breast cancer cells.
Collapse
|
14
|
Karimnia V, Slack FJ, Celli JP. Photodynamic Therapy for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13174354. [PMID: 34503165 PMCID: PMC8431269 DOI: 10.3390/cancers13174354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human cancers. Numerous clinical trials evaluating various combinations of chemotherapy and targeted agents and radiotherapy have failed to provide meaningful improvements in survival. A growing number of studies however have indicated that photodynamic therapy (PDT) may be a viable approach for treatment of some pancreatic tumors. PDT, which uses light to activate a photosensitizing agent in target tissue, has seen widespread adoption primarily for dermatological and other applications where superficial light delivery is relatively straightforward. Advances in fiber optic light delivery and dosimetry however have been leveraged to enable PDT even for challenging internal sites, including the pancreas. The aim of this article is to help inform future directions by reviewing relevant literature on the basic science, current clinical status, and potential challenges in the development of PDT as a treatment for PDAC. Abstract Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human cancers. Clinical trials of various chemotherapy, radiotherapy, targeted agents and combination strategies have generally failed to provide meaningful improvement in survival for patients with unresectable disease. Photodynamic therapy (PDT) is a photochemistry-based approach that enables selective cell killing using tumor-localizing agents activated by visible or near-infrared light. In recent years, clinical studies have demonstrated the technical feasibility of PDT for patients with locally advanced PDAC while a growing body of preclinical literature has shown that PDT can overcome drug resistance and target problematic and aggressive disease. Emerging evidence also suggests the ability of PDT to target PDAC stroma, which is known to act as both a barrier to drug delivery and a tumor-promoting signaling partner. Here, we review the literature which indicates an emergent role of PDT in clinical management of PDAC, including the potential for combination with other targeted agents and RNA medicine.
Collapse
Affiliation(s)
- Vida Karimnia
- Department of Physics, University of Massachusetts at Boston, Boston, MA 02125, USA;
| | - Frank J. Slack
- Department of Pathology, BIDMC Cancer Center/Harvard Medical School, Boston, MA 02215, USA;
| | - Jonathan P. Celli
- Department of Physics, University of Massachusetts at Boston, Boston, MA 02125, USA;
- Correspondence:
| |
Collapse
|
15
|
Kim IY, Lee TG, Reipa V, Heo MB. Titanium Dioxide Induces Apoptosis under UVA Irradiation via the Generation of Lysosomal Membrane Permeabilization-Dependent Reactive Oxygen Species in HaCat Cells. NANOMATERIALS 2021; 11:nano11081943. [PMID: 34443774 PMCID: PMC8400875 DOI: 10.3390/nano11081943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have wide commercial applications, owing to their small size; however, the biosafety of TiO2 NPs should be evaluated further. In this study, we aimed to investigate the cytotoxicity of TiO2 NPs in the presence and absence of ultraviolet A (UVA) irradiation in human keratinocyte HaCaT cells. TiO2 NPs did not significantly affect cell viability in the absence of UVA irradiation. Nonetheless, UVA-irradiated TiO2 NPs induced caspase-dependent apoptosis of HaCaT cells. Exposure of HaCaT cells to TiO2 NPs and UVA resulted in reactive oxygen species (ROS) generation and lysosomal membrane permeabilization (LMP); both effects were not observed in the absence of UVA irradiation. An analysis of the relationship between LMP and ROS, using CA-074 as a cathepsin inhibitor or NAC as an antioxidant, showed that LMP stimulates ROS generation under these conditions. These results imply that LMP-dependent oxidative stress plays a critical role in the UVA phototoxicity of TiO2 NPs in HaCaT cells.
Collapse
Affiliation(s)
- In Young Kim
- Nano-Safety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea; (I.Y.K.); (T.G.L.)
| | - Tae Geol Lee
- Nano-Safety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea; (I.Y.K.); (T.G.L.)
| | - Vytas Reipa
- Materials Measurement Laboratory, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Correspondence: (V.R.); (M.B.H.); Tel.: +1-(301)-975-5056 (V.R.); +82-(042)-604-1052 (M.B.H.)
| | - Min Beom Heo
- Nano-Safety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea; (I.Y.K.); (T.G.L.)
- Correspondence: (V.R.); (M.B.H.); Tel.: +1-(301)-975-5056 (V.R.); +82-(042)-604-1052 (M.B.H.)
| |
Collapse
|
16
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front Chem 2021; 9:691697. [PMID: 34178948 PMCID: PMC8223074 DOI: 10.3389/fchem.2021.691697] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) mostly relies on the generation of singlet oxygen, via the excitation of a photosensitizer, so that target tumor cells can be destroyed. PDT can be applied in the settings of several malignant diseases. In fact, the earliest preclinical applications date back to 1900’s. Dougherty reported the treatment of skin tumors by PDT in 1978. Several further studies around 1980 demonstrated the effectiveness of PDT. Thus, the technique has attracted the attention of numerous researchers since then. Hematoporphyrin derivative received the FDA approval as a clinical application of PDT in 1995. We have indeed witnessed a considerable progress in the field over the last century. Given the fact that PDT has a favorable adverse event profile and can enhance anti-tumor immune responses as well as demonstrating minimally invasive characteristics, it is disappointing that PDT is not broadly utilized in the clinical setting for the treatment of malignant and/or non-malignant diseases. Several issues still hinder the development of PDT, such as those related with light, tissue oxygenation and inherent properties of the photosensitizers. Various photosensitizers have been designed/synthesized in order to overcome the limitations. In this Review, we provide a general overview of the mechanisms of action in terms of PDT in cancer, including the effects on immune system and vasculature as well as mechanisms related with tumor cell destruction. We will also briefly mention the application of PDT for non-malignant diseases. The current limitations of PDT utilization in cancer will be reviewed, since identifying problems associated with design/synthesis of photosensitizers as well as application of light and tissue oxygenation might pave the way for more effective PDT approaches. Furthermore, novel promising approaches to improve outcome in PDT such as selectivity, bioengineering, subcellular/organelle targeting, etc. will also be discussed in detail, since the potential of pioneering and exceptional approaches that aim to overcome the limitations and reveal the full potential of PDT in terms of clinical translation are undoubtedly exciting. A better understanding of novel concepts in the field (e.g. enhanced, two-stage, fractional PDT) will most likely prove to be very useful for pursuing and improving effective PDT strategies.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
17
|
Yang D, Lei S, Pan K, Chen T, Lin J, Ni G, Liu J, Zeng X, Chen Q, Dan H. Application of photodynamic therapy in immune-related diseases. Photodiagnosis Photodyn Ther 2021; 34:102318. [PMID: 33940209 DOI: 10.1016/j.pdpdt.2021.102318] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that utilizes photodamage caused by photosensitizers and oxygen after exposure to a specific wavelength of light. Owing to its low toxicity, high selectivity, and minimally invasive properties, PDT has been widely applied to treat various malignant tumors, premalignant lesions, and infectious diseases. Moreover, there is growing evidence of its immunomodulatory effects and potential for the treatment of immune-related diseases. This review mainly focuses on the effect of PDT on immunity and its application in immune-related diseases.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Shangxue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Keran Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Guangcheng Ni
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
18
|
Lima MLSO, Braga CB, Becher TB, Odriozola‐Gimeno M, Torrent‐Sucarrat M, Rivilla I, Cossío FP, Marsaioli AJ, Ornelas C. Fluorescent Imidazo[1,2‐
a
]pyrimidine Compounds as Biocompatible Organic Photosensitizers that Generate Singlet Oxygen: A Potential Tool for Phototheranostics. Chemistry 2021; 27:6213-6222. [DOI: 10.1002/chem.202004957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Maria L. S. O. Lima
- Institute of Chemistry University of Campinas—Unicamp Campinas 13083-861 Sao Paulo Brazil
- Present address: Instituto Federal da Bahia IFBA—Campus Juazeiro 48918-900 Juazeiro, BA Brasil
| | - Carolyne B. Braga
- Institute of Chemistry University of Campinas—Unicamp Campinas 13083-861 Sao Paulo Brazil
| | - Tiago B. Becher
- Institute of Chemistry University of Campinas—Unicamp Campinas 13083-861 Sao Paulo Brazil
| | - Mikel Odriozola‐Gimeno
- Department of Organic Chemistry I Centro de Innovación en Quimica Avanzada (ORFEO-CINQA) Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC) Po Manuel Lardizabal 3 20018 Donostia/San Sebastián Spain
| | - Miquel Torrent‐Sucarrat
- Department of Organic Chemistry I Centro de Innovación en Quimica Avanzada (ORFEO-CINQA) Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC) Po Manuel Lardizabal 3 20018 Donostia/San Sebastián Spain
- Ikerbasque Basque Foundation for Science Ma Diaz de Haro 3 Bilbao 48013 Spain
| | - Iván Rivilla
- Department of Organic Chemistry I Centro de Innovación en Quimica Avanzada (ORFEO-CINQA) Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC) Po Manuel Lardizabal 3 20018 Donostia/San Sebastián Spain
| | - Fernando P. Cossío
- Department of Organic Chemistry I Centro de Innovación en Quimica Avanzada (ORFEO-CINQA) Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC) Po Manuel Lardizabal 3 20018 Donostia/San Sebastián Spain
| | - Anita J. Marsaioli
- Institute of Chemistry University of Campinas—Unicamp Campinas 13083-861 Sao Paulo Brazil
| | - Catia Ornelas
- Institute of Chemistry University of Campinas—Unicamp Campinas 13083-861 Sao Paulo Brazil
| |
Collapse
|
19
|
Zhang Z, Rahmat JN, Mahendran R, Zhang Y. Controllable Assembly of Upconversion Nanoparticles Enhanced Tumor Cell Penetration and Killing Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001831. [PMID: 33344124 PMCID: PMC7739948 DOI: 10.1002/advs.202001831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/03/2020] [Indexed: 05/22/2023]
Abstract
The use of upconversion nanoparticles (UCNPs) for treating deep-seated cancers and large tumors has recently been gaining momentum. Conventional approaches for loading photosensitizers (PS) to UCNPs using noncovalent physical adsorption and covalent conjugation had been previously described. However, these methods are time-consuming and require extra modification steps. Incorporating PS loading during the controlled UCNPs assembly process is seldom reported. In this study, an amphiphilic copolymer, poly(styrene-co-maleic anhydride), is used to instruct UCNPs assembly formations into well-controlled UCNPs clusters of various sizes, and the gap zones formed between individual UCNPs can be used to encapsulate PS. This nanostructure production process results in a considerably simpler and reliable method to load PS and other compounds. Also, after considering factors such as PS loading quantity, penetration in 3D bladder tumor organoids, and singlet oxygen production, the small UCNPs clusters displayed superior cell killing efficacy compared to single and big sized clusters. Therefore, these UCNPs clusters with different sizes could facilitate a clear and deep understanding of nanoparticle-based delivery platform systems for cell killing and may pave a new way for other fields of UCNPs based applications.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Juwita Norasmara Rahmat
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Ratha Mahendran
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingapore119228Singapore
| | - Yong Zhang
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117456Singapore
| |
Collapse
|
20
|
Song C, Xu W, Wu H, Wang X, Gong Q, Liu C, Liu J, Zhou L. Photodynamic therapy induces autophagy-mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway. Cell Death Dis 2020; 11:938. [PMID: 33130826 PMCID: PMC7603522 DOI: 10.1038/s41419-020-03136-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Evidence has shown that m-THPC and verteporfin (VP) are promising sensitizers in photodynamic therapy (PDT). In addition, autophagy can act as a tumor suppressor or a tumor promoter depending on the photosensitizer (PS) and the cancer cell type. However, the role of autophagy in m-THPC- and VP-mediated PDT in in vitro and in vivo models of human colorectal cancer (CRC) has not been reported. In this study, m-THPC-PDT or VP-PDT exhibited significant phototoxicity, inhibited proliferation, and induced the generation of large amounts of reactive oxygen species (ROS) in CRC cells. From immunoblotting, fluorescence image analysis, and transmission electron microscopy, we found extensive autophagic activation induced by ROS in cells. In addition, m-THPC-PDT or VP-PDT treatment significantly induced apoptosis in CRC cells. Interestingly, the inhibition of m-THPC-PDT-induced autophagy by knockdown of ATG5 or ATG7 substantially inhibited the apoptosis of CRC cells. Moreover, m-THPC-PDT treatment inhibited tumorigenesis of subcutaneous HCT116 xenografts. Meanwhile, antioxidant treatment markedly inhibited autophagy and apoptosis induced by PDT in CRC cells by inactivating JNK signaling. In conclusion, inhibition of autophagy can remarkably alleviate PDT-mediated anticancer efficiency in CRC cells via inactivation of the ROS/JNK signaling pathway. Our study provides evidence for the therapeutic application of m-THPC and VP in CRC.
Collapse
Affiliation(s)
- Changfeng Song
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Hongkun Wu
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P.R. China
| | - Xiaotong Wang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Qianyi Gong
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Chang Liu
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P.R. China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China.
| | - Lin Zhou
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P.R. China.
| |
Collapse
|
21
|
Stájer A, Kajári S, Gajdács M, Musah-Eroje A, Baráth Z. Utility of Photodynamic Therapy in Dentistry: Current Concepts. Dent J (Basel) 2020; 8:E43. [PMID: 32392793 PMCID: PMC7345245 DOI: 10.3390/dj8020043] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
The significant growth in scientific and technological advancements within the field of dentistry has resulted in a wide range of novel treatment modalities for dentists to use. Photodynamic therapy (PDT) is an emerging, non-invasive treatment method, involving photosensitizers, light of a specific wavelength and the generation of singlet oxygen and reactive oxygen species (ROS) to eliminate unwanted eukaryotic cells (e.g., malignancies in the oral cavity) or pathogenic microorganisms. The aim of this review article is to summarize the history, general concepts, advantages and disadvantages of PDT and to provide examples for current indications of PDT in various subspecialties of dentistry (oral and maxillofacial surgery, oral medicine, endodontics, preventive dentistry, periodontology and implantology), in addition to presenting some images from our own experiences about the clinical success with PDT.
Collapse
Affiliation(s)
- Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Szilvia Kajári
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, 6720 Szeged, Hungary;
| | - Aima Musah-Eroje
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62-64, 6720 Szeged, Hungary; (A.M.-E.); (Z.B.)
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62-64, 6720 Szeged, Hungary; (A.M.-E.); (Z.B.)
| |
Collapse
|
22
|
Kulbacka J, Choromańska A, Drąg-Zalesińska M, Nowak P, Baczyńska D, Kotulska M, Bednarz-Misa I, Saczko J, Chwiłkowska A. Proapoptotic activity induced by photodynamic reaction with novel cyanine dyes in caspase-3-deficient human breast adenocarcinoma cell lines (MCF/WT and MCF/DX). Photodiagnosis Photodyn Ther 2020; 30:101775. [PMID: 32330609 DOI: 10.1016/j.pdpdt.2020.101775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) is currently one of the cancer treatment options. PDT requires the application of a photosensitizer (such as: porphyrins, chlorines, and phthalocyanines) that selectively targets malignant cells. It is a dilemma to find a proper photosensitizer. In our study, we have tested a new in-vitro group of cyanine dyes. These dyes are widely applied in biotechnology as fluorescent markers. Two malignant adenocarcinoma cell lines (MCF-7/WT and MCF-7/DOX) were investigated using photodynamic reaction (PDR) with four cyanine dyes (KF-570, HM-118, FBF-749, and ER-139). KF-570 and HM-118 were irradiated with red light (630 nm), whereas FBF-749 and ER-139 with green light (435 nm). To evaluate PDR efficiency, a clonogenic test was conducted. Apoptosis was investigated by TUNEL and NCA (neutral comet) assays. Proteins selected as indicators of the apoptotic pathway (AIF, sPLA2, Smac/Diablo) and intracellular response markers (SOD-1 and GST-pi) were detected using western blot. The highest number of apoptotic cells (ca. 100%) was observed after PDR with HM-118 and KF-570 in both conducted tests, in both cell lines. The results showed that HM-118 and KF-570 cyanine dyes demonstrated a major phototoxic effect causing apoptosis in doxorubicin-resistant and sensitive cell lines.
Collapse
Affiliation(s)
- Julita Kulbacka
- Wroclaw Medical University, Department of Molecular and Cellular Biology, Wroclaw, Poland.
| | - Anna Choromańska
- Wroclaw Medical University, Department of Molecular and Cellular Biology, Wroclaw, Poland
| | - Małgorzata Drąg-Zalesińska
- Wrocław Medical University, Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw, Poland
| | - Piotr Nowak
- Wroclaw University of Science and Technology, Department of Physical and Quantum Chemistry, Faculty of Chemistry, Poland
| | - Dagmara Baczyńska
- Wroclaw Medical University, Department of Molecular and Cellular Biology, Wroclaw, Poland
| | - Małgorzata Kotulska
- Wroclaw University of Science Technology, Institute of Biomedical Engineering and Instrumentation, Wroclaw, Poland
| | - Iwona Bednarz-Misa
- Wroclaw Medical University, Department of Medical Biochemistry, Wroclaw, Poland
| | - Jolanta Saczko
- Wroclaw Medical University, Department of Molecular and Cellular Biology, Wroclaw, Poland
| | - Agnieszka Chwiłkowska
- Wroclaw Medical University, Department of Molecular and Cellular Biology, Wroclaw, Poland
| |
Collapse
|
23
|
Donohoe C, Senge MO, Arnaut LG, Gomes-da-Silva LC. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochim Biophys Acta Rev Cancer 2019; 1872:188308. [PMID: 31401103 DOI: 10.1016/j.bbcan.2019.07.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/11/2023]
Abstract
Photodynamic therapy is a promising approach for cancer treatment that relies on the administration of a photosensitizer followed by tumor illumination. The generated oxidative stress may activate multiple mechanisms of cell death which are counteracted by cells through adaptive stress responses that target homeostasis rescue. The present renaissance of PDT was leveraged by the acknowledgment that this therapy has an immediate impact locally, in the illumination volume, but that subsequently it may also elicit immune responses with systemic impact. The investigation of the mechanisms of cell death under the oxidative stress of PDT is of paramount importance to understand how the immune system is activated and, ultimately, to make PDT a more appealing/relevant therapeutic option.
Collapse
Affiliation(s)
- Claire Donohoe
- CQC, Coimbra Chemistry Center, University of Coimbra, Portugal; Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Luís G Arnaut
- CQC, Coimbra Chemistry Center, University of Coimbra, Portugal
| | | |
Collapse
|
24
|
Rapozzi V, D’Este F, Xodo LE. Molecular pathways in cancer response to photodynamic therapy. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This minireview describes the complexity of the molecular mechanisms involved in the tumor response to photodynamic treatment (PDT). Different aspects of reactive oxygen (ROS) and nitrogen species (RNS) induced by PDT will be examined. In particular, we will discuss the effect of ROS and RNS on cell compartments and the main mechanisms of cell death induced by the treatment. Moreover, we will also examine host defense mechanisms as well as resistance to PDT.
Collapse
Affiliation(s)
- Valentina Rapozzi
- Department of Medicine, University of Udine, P.le Kolbe 4, Udine, 33100, Italy
| | - Francesca D’Este
- Department of Medicine, University of Udine, P.le Kolbe 4, Udine, 33100, Italy
| | - Luigi E. Xodo
- Department of Medicine, University of Udine, P.le Kolbe 4, Udine, 33100, Italy
| |
Collapse
|
25
|
Poiroux G, Barre A, Rougé P, Benoist H. Targeting Glycosylation Aberrations to Improve the Efficiency of Cancer Phototherapy. Curr Cancer Drug Targets 2019; 19:349-359. [DOI: 10.2174/1568009618666180628101059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/12/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
The use of photodynamic therapy in cancer still remains limited, partly because of the lack of photosensitizer (PS) specificity for the cancerous tissues. Various molecular tools are available to increase PS efficiency by targeting the cancer cell molecular alterations. Most strategies use the protein-protein interactions, e.g. monoclonal antibodies directed toward tumor antigens, such as HER2 or EGFR. An alternative could be the targeting of the tumor glycosylation aberrations, e.g. T/Tn antigens that are truncated O-glycans over-expressed in numerous tumors. Thus, to achieve an effective targeting, PS can be conjugated to molecules that specifically recognize the Oglycosylation aberrations at the cancer cell surface.
Collapse
Affiliation(s)
- Guillaume Poiroux
- Universite de Toulouse, CRCT, INSERM UMR 1037, 2 Avenue Hubert Curien, 31037 Toulouse, France
| | - Annick Barre
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| | - Pierre Rougé
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| | - Hervé Benoist
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| |
Collapse
|
26
|
Ren Z, Liang J, Zhang P, Chen J, Wen J. Inhibition of human glioblastoma cell invasion involves PION@E6 mediated autophagy process. Cancer Manag Res 2019; 11:2643-2652. [PMID: 31015768 PMCID: PMC6446987 DOI: 10.2147/cmar.s200151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Glioblastoma (GBM) is the most severe brain cancer due to its ability to invade surrounding brain tissue. Iron oxide nanoparticles (ION) could effectively induce a decrease of cell migration/invasion. Also IONs could generate ROS stress which induces autophagy elevation. Autophagy is associated with both anti-tumorigenesis and protumorigenesis. Objective To explore the effect of PEGylated IONs (PION@E6) on the GBM cell invasion and its mechanism based on autophagy. Materials and methods PION@E6 were prepared and characterized according to our previous study. After incubation of U251 cells with PION@E6, cellular uptake of PION@E6 and cell viability were tested by Prussian blue staining and Cell Counting Kit-8, respectively. The migration and invasive capability was assessed by transwell cell migration and invasion assay. Expressions of autophagy biomarkers were detected by Western blotting. Intracellular ROS level was determined using 2′–7′-dichlorodihydrofluorescein diacetate. Results Average hydrate particle size and zeta potential of PION@E6 were 37.86±12.90 nm and –23.8 mV, respectively, and uniformly distributed nanoparticles with an average diameter of 10 nm were observed by TEM. Chlorin e6 successfully incorporated onto PION@E6 was demonstrated by ultraviolet and visible absorption spectrophotometry, and PION@E6 owning excellent water solubility and stability were showed by Colloid stability test. PION@E6 were successfully taken up by U251 cells with Prussian blue staining, and they showed in vitro cytotoxicity to glioma cells after long incubation of 72 hours. Migration/invasion of cells was significantly inhibited by PION@E6, which could be counteracted by pretreatment with 3-MA. Additionally, the expression of beclin-1, IC3I, and IC3II proteins was higher, whereas that of p62 protein was lower. Moreover, a dose dependent intracellular ROS generation of PION@E6 was detected. Conclusion Invasiveness of human GBM cells involves the PION@E6-mediated autophagy process, which may be related to the intracellular ROS induced by PION@E6.
Collapse
Affiliation(s)
- Zhongyu Ren
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guangxi, People's Republic of China,
| | - Jing Liang
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guangxi, People's Republic of China,
| | - Peng Zhang
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guangxi, People's Republic of China,
| | - Jianjiao Chen
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guangxi, People's Republic of China,
| | - Jian Wen
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guangxi, People's Republic of China,
| |
Collapse
|
27
|
Wan SS, Zhang L, Zhang XZ. An ATP-Regulated Ion Transport Nanosystem for Homeostatic Perturbation Therapy and Sensitizing Photodynamic Therapy by Autophagy Inhibition of Tumors. ACS CENTRAL SCIENCE 2019; 5:327-340. [PMID: 30834321 PMCID: PMC6396388 DOI: 10.1021/acscentsci.8b00822] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 05/08/2023]
Abstract
In this article, an adenosine-triphosphate-regulated (ATP-regulated) ion transport nanosystem [SQU@PCN, porphyrinic porous coordination network (PCN) incorporated with squaramide (SQU)] was designed and synthesized for homeostatic perturbation therapy (HPT) and sensitizing photodynamic therapy (PDT) of tumors. It was found that this nanotransporter SQU@PCN easily accumulated in tumor sites while avoiding metabolic clearance and side effects. In response to a high expression of ATP in the tumor, SQU@PCN was decomposed because of the strong coordination of ATP with metal ligand of PCN. Subsequently, incorporated SQU was released and then simultaneously transported chloride ions across membrane of the cell and lysosome along with the chloride ion concentration gradient. On one hand, influx of chloride ions by SQU increased intracellular ion concentration, which disrupted ion homeostasis and further induced tumor cell apoptosis. On the other hand, SQU-medicated coupling transport of H+/Cl- across the lysosomal membrane alkalized the lysosome, resulting in inhibition of autophagy. This SQU-mediated autophagy inhibition would sensitize PCN-based PDT since activated autophagy by traditional PDT would resist and weaken the therapeutic efficacy. In vivo animal test results revealed that combined HPT and sensitized PDT could realize tumor eradication while blocking metastasis, which provided a paradigm for complementary multimodal tumor treatment.
Collapse
Affiliation(s)
| | | | - Xian-Zheng Zhang
- Key Laboratory of Biomedical
Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
28
|
Anand S, Yasinchak A, Govande M, Shakya S, Maytin EV. Painless versus conventional photodynamic therapy for treatment of actinic keratosis: Comparison of cell death and immune response in a murine model. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10860:108600K. [PMID: 33790491 PMCID: PMC8009283 DOI: 10.1117/12.2511646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aminolevulinic acid based photodynamic therapy (ALA-PDT) is a popular and efficacious treatment for actinic keratosis (AK). However, standard PDT can elicit stinging pain during illumination, and hence is not always favored by patients. In a new regimen called metronomic PDT (mPDT), similar to daylight PDT but using blue light, the illumination is delivered concurrently with ALA application rather than after a 1-hour pre-incubation (conventional regimen, cPDT). In the clinic, mPDT is not only painless but also nearly as effective as cPDT for AK lesion clearance. In this investigation, a murine AK model (generated by repeated UVB exposure) was treated with either mPDT or cPDT. Lesion clearance was followed by area measurement, and samples were harvested for mechanistic analyses. Compared to pretreatment (100%), the average lesion area was reduced to 47% and 32% in cPDT, and to 57% and 40% in mPDT at 1- and 2-weeks post PDT, respectively. Relative to untreated controls, enhanced cell death (histomorphology by H&E staining and apoptosis by TUNEL assay), and generation of Reactive Oxygen Species (ROS; CM-H2DCFDA staining) were observed in both cPDT and mPDT samples. Activation of cleaved Caspase-3 was specifically observed only in cPDT samples. Immunomodulation by inflammatory cells was observed by enhanced infiltration/retention of neutrophils and macrophages in metronomic PDT samples. Our results suggest that metronomic PDT can be just as effective as conventional PDT for treatment of AK, but the mechanisms may be quite different.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering, Lerner Research Institute
- Dermatology and Plastic Surgery Institute
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Anton Yasinchak
- Department of Biomedical Engineering, Lerner Research Institute
| | - Mukul Govande
- Department of Biomedical Engineering, Lerner Research Institute
| | - Sajina Shakya
- Department of Biomedical Engineering, Lerner Research Institute
| | - Edward V. Maytin
- Department of Biomedical Engineering, Lerner Research Institute
- Dermatology and Plastic Surgery Institute
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
29
|
Martins WK, Santos NF, Rocha CDS, Bacellar IOL, Tsubone TM, Viotto AC, Matsukuma AY, Abrantes ABDP, Siani P, Dias LG, Baptista MS. Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy 2019; 15:259-279. [PMID: 30176156 PMCID: PMC6333451 DOI: 10.1080/15548627.2018.1515609] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 01/12/2023] Open
Abstract
Cells challenged by photosensitized oxidations face strong redox stresses and rely on autophagy to either survive or die. However, the use of macroautophagy/autophagy to improve the efficiency of photosensitizers, in terms of inducing cell death, remains unexplored. Here, we addressed the concept that a parallel damage in the membranes of mitochondria and lysosomes leads to a scenario of autophagy malfunction that can greatly improve the efficiency of the photosensitizer to cause cell death. Specific damage to these organelles was induced by irradiation of cells pretreated with 2 phenothiazinium salts, methylene blue (MB) and 1,9-dimethyl methylene blue (DMMB). At a low concentration level (10 nM), only DMMB could induce mitochondrial damage, leading to mitophagy activation, which did not progress to completion because of the parallel damage in lysosome, triggering cell death. MB-induced photodamage was perceived almost instantaneously after irradiation, in response to a massive and nonspecific oxidative stress at a higher concentration range (2 µM). We showed that the parallel damage in mitochondria and lysosomes activates and inhibits mitophagy, leading to a late and more efficient cell death, offering significant advantage (2 orders of magnitude) over photosensitizers that cause unspecific oxidative stress. We are confident that this concept can be used to develop better light-activated drugs. Abbreviations: ΔΨm: mitochondrial transmembrane inner potential; AAU: autophagy arbitrary units; ATG5, autophagy related 5; ATG7: autophagy related 7; BAF: bafilomycin A1; BSA: bovine serum albumin; CASP3: caspase 3; CF: carboxyfluorescein; CTSB: cathepsin B; CVS: crystal violet staining; DCF: dichlorofluorescein; DCFH2: 2',7'-dichlorodihydrofluorescein; DMMB: 1,9-dimethyl methylene blue; ER: endoplasmic reticulum; HaCaT: non-malignant immortal keratinocyte cell line from adult human skin; HP: hydrogen peroxide; LC3B-II: microtubule associated protein 1 light chain 3 beta-II; LMP: lysosomal membrane permeabilization; LTG: LysoTracker™ Green DND-26; LTR: LysoTracker™ Red DND-99; 3-MA: 3-methyladenine; MB: methylene blue; mtDNA: mitochondrial DNA; MitoSOX™: red mitochondrial superoxide probe; MTDR: MitoTracker™ Deep Red FM; MTO: MitoTracker™ Orange CMTMRos; MT-ND1: mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1; MTT: methylthiazolyldiphenyl-tetrazolium bromide; 1O2: singlet oxygen; OH. hydroxil radical; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PBS: phosphate-buffered saline; PI: propidium iodide; PDT: photodynamic therapy; PS: photosensitizer; QPCR: gene-specific quantitative PCR-based; Rh123: rhodamine 123; ROS: reactive oxygen species RTN: rotenone; SQSTM1/p62: sequestosome 1; SUVs: small unilamellar vesicles; TBS: Tris-buffered saline.
Collapse
Affiliation(s)
- Waleska K. Martins
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-graduação Stricto Sensue Pesquisa, Universidade Anhanguera de São Paulo, São Paulo, Brazil
| | - Nayra Fernandes Santos
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - Cleidiane de Sousa Rocha
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-graduação Stricto Sensue Pesquisa, Universidade Anhanguera de São Paulo, São Paulo, Brazil
| | - Isabel O. L. Bacellar
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - Tayana Mazin Tsubone
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Cláudia Viotto
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | | | - Aline B. de P. Abrantes
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Siani
- FFCLRP, Departamento de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luís Gustavo Dias
- FFCLRP, Departamento de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Mauricio S. Baptista
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Zhu B, Li S, Yu L, Hu W, Sheng D, Hou J, Zhao N, Hou X, Wu Y, Han Z, Wei L, Zhang L. Inhibition of Autophagy with Chloroquine Enhanced Sinoporphyrin Sodium Mediated Photodynamic Therapy-induced Apoptosis in Human Colorectal Cancer Cells. Int J Biol Sci 2019; 15:12-23. [PMID: 30662343 PMCID: PMC6329935 DOI: 10.7150/ijbs.27156] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
To evaluate the antitumor effect of sinoporphyrin sodium mediated photodynamic therapy (DVDMS-PDT) against human colorectal cancer (CRC) and to investigate the role of autophagy in its effect. Shrunken cells, condensed nuclei and increased levels of cleaved caspase-3 and Bax were observed in DVDMS-PDT treated HCT116 cells, reminiscent of apoptosis. DVDMS-PDT showed better antitumor efficiency in HCT116 cells than Photofrin mediated photodynamic therapy (PF-PDT) both in vitro and in vivo. And DVDMS-PDT caused autophagic characteristics: double membrane autophagosome structures and changes in autophagy-related protein expression (ATG7, P62, Bcl-2 and LC3-Ⅱ). In addition, inhibition of autophagy by chloroquine (CQ) promoted apoptosis, suggesting a possible protective role of autophagy in DVDMS-PDT-treated HCT116 cells, which was proved by flow cytometry and western blotting. The results of xenograft mouse model showed markedly increased apoptosis and significantly reduced tumor size in DVDMS-PDT treated group than Control, and DVDMS-PDT exhibited better antitumor efficiency than PF-PDT. Further, no visible tumor was observed in the CQ+DVDMS-PDT group at the end of the xenograft mouse experiment, which confirmed the hypothesis that autophagy was protective to DVDMS-PDT treated HCT116 cells. Our findings suggest that DVDMS is a promising photosensitizer and the combined use of autophagy inhibitor can remarkably enhance the DVDMS-PDT mediated anti-cancer efficiency in HCT116 cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Bing Zhu
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Shanxin Li
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Lei Yu
- Department of Information, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Wei Hu
- Department of Pharmacy, The Second Hospital of Anhui Medical University, Hefei, China
| | - Dandan Sheng
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Jing Hou
- GCP Office, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naping Zhao
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiaojuan Hou
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Yechen Wu
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Li Zhang
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai, China
- Department of Pharmacy, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
Stepp H, Stummer W. 5‐ALA in the management of malignant glioma. Lasers Surg Med 2018; 50:399-419. [DOI: 10.1002/lsm.22933] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert Stepp
- LIFE Center and Department of UrologyUniversity Hospital of MunichFeodor‐Lynen‐Str. 1981377MunichGermany
| | - Walter Stummer
- Department of NeurosurgeryUniversity Clinic MünsterAlbert‐Schweitzer‐Campus 1, Gebäude A148149MünsterGermany
| |
Collapse
|
32
|
Xin J, Wang S, Wang B, Wang J, Wang J, Zhang L, Xin B, Shen L, Zhang Z, Yao C. AlPcS 4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic ® F127 nanomicellar drug carriers. Int J Nanomedicine 2018; 13:2017-2036. [PMID: 29670347 PMCID: PMC5894760 DOI: 10.2147/ijn.s154054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose As a promising photodynamic therapy (PDT) agent, Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4) provides deep penetration into tissue, high quantum yields, good photostability, and low photobleaching. However, its low delivery efficiency and high binding affinity to serum albumin cause its low penetration into cancer cells, further limiting its PDT effect on gastric cancer. In order to improve AlPcS4/PDT effect, the AlPcS4 delivery sys tems with different drug carriers were synthesized and investigated. Materials and methods Gold nanorods, cationic liposomes, and Pluronic® F127 nanomicellars were used to formulate the AlPcS4 delivery systems. The anticancer effect was evaluated by CCK-8 assay and colony formation assay. The delivery efficiency of AlPcS4 and the binding affinity to serum proteins were determined by fluorescence intensity assay. The apoptosis and necrosis ability, reactive oxygen species and singlet oxygen generation, mitochondrial transmembrane potential and ([Ca2+]i) concentration were further measured to evaluate the mechanism of cell death. Results The series of synthesized AlPcS4 delivery systems with different drug carriers improve the limited PDT effect in varying degrees. In contrast, AlPcS4 complex with gold nanorods has significant anticancer effects because gold nanorods are not only suitable for AlPcS4 delivery, but also exhibit enhanced singlet oxygen generation effect and photothermal effect to induce cell death directly. Moreover, AlPcS4 complex with cationic liposomes shows the potent inhibition effect because of its optimal AlPcS4 delivery efficiency and ability to block serum albumin. In addition, AlPcS4 complex with Pluronic F127 exhibits inferior PDT effect but presents lower cytotoxicity, slower dissociation rate, and longer retention time of incorporated drugs; thus, F127–AlPcS4 is used for prolonged gastric cancer therapy. Conclusion The described AlPcS4 drug delivery systems provide promising agents for gastric cancer therapy.
Collapse
Affiliation(s)
- Jing Xin
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bing Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiazhuang Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Luwei Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Xin
- School of Innovation and Entrepreneurship, Xi'an Fan Yi University, Xi'an, Shaanxi, China
| | - Lijian Shen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
33
|
van Lith SA, van den Brand D, Wallbrecher R, Wübbeke L, van Duijnhoven SM, Mäkinen PI, Hoogstad-van Evert JS, Massuger L, Ylä-Herttuala S, Brock R, Leenders WP. The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates. Eur J Pharm Biopharm 2018; 124:63-72. [DOI: 10.1016/j.ejpb.2017.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022]
|
34
|
Domagala A, Stachura J, Gabrysiak M, Muchowicz A, Zagozdzon R, Golab J, Firczuk M. Inhibition of autophagy sensitizes cancer cells to Photofrin-based photodynamic therapy. BMC Cancer 2018; 18:210. [PMID: 29463237 PMCID: PMC5819678 DOI: 10.1186/s12885-018-4126-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background Accumulating evidence suggest that autophagy plays a pivotal role in various anticancer therapies, including photodynamic therapy (PDT), acting as a pro-death or pro-survival mechanism in a context-dependent manner. Therefore, we aimed to determine the role of autophagy in Photofrin-based PDT. Methods In vitro cytotoxic/cytostatic effects of PDT were evaluated with crystal violet cell viability assay. Autophagy induction was analyzed by immunoblotting and immunofluorescence using anti-LC3 antibody. Autophagy was inhibited by shRNA-mediated ATG5 knockdown or CRISPR/Cas9-mediated ATG5 knockout. Apoptosis was assessed by flow cytometry analysis of propidium iodide and anexin V-positive cells as well as by detection of cleaved PARP and caspase 3 proteins using immunoblotting. Protein carbonylation was evaluated by the 2,4-dinitrophenylhydrazine (DNPH) method. Results Photofrin-PDT leads to robust autophagy induction in two cancer cell lines, Hela and MCF-7. shRNA-mediated knockdown of ATG5 only partially blocks autophagic response and only marginally affects the sensitivity of Hela and MCF-7 cells to PDT. ATG5 knockout in HeLa cell line utilizing CRISPR/Cas9 genome editing results in increased PDT-mediated cytotoxicity, which is accompanied by an enhanced apoptotic response and increased accumulation of carbonylated proteins. Conclusions Altogether, these observations imply that autophagy contributes to Photofrin-PDT resistance by enabling clearance of carbonylated and other damaged proteins. Therefore, autophagy inhibition may serve as a strategy to improve PDT efficacy.
Collapse
Affiliation(s)
- Antoni Domagala
- Department of Immunology, Medical University of Warsaw, 1A Banacha Str., F building, 02-097, Warsaw, Poland
| | - Joanna Stachura
- Department of Immunology, Medical University of Warsaw, 1A Banacha Str., F building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Magdalena Gabrysiak
- Department of Immunology, Medical University of Warsaw, 1A Banacha Str., F building, 02-097, Warsaw, Poland.,Immunity&Cancer Laboratory, The Francis Crick Institute, London, UK
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, 1A Banacha Str., F building, 02-097, Warsaw, Poland
| | - Radoslaw Zagozdzon
- Department of Immunology, Medical University of Warsaw, 1A Banacha Str., F building, 02-097, Warsaw, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 1A Banacha Str., F building, 02-097, Warsaw, Poland.,Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, 1A Banacha Str., F building, 02-097, Warsaw, Poland.
| |
Collapse
|
35
|
Kessel D, Oleinick NL. Cell Death Pathways Associated with Photodynamic Therapy: An Update. Photochem Photobiol 2018; 94:213-218. [PMID: 29143339 DOI: 10.1111/php.12857] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) has the potential to make a significant impact on cancer treatment. PDT can sensitize malignant tissues to light, leading to a highly selective effect if an appropriate light dose can be delivered. Variations in light distribution and drug delivery, along with impaired efficacy in hypoxic regions, can reduce the overall tumor response. There is also evidence that malignant cells surviving PDT may become more aggressive than the initial tumor population. Promotion of more effective direct tumor eradication is therefore an important goal. While a list of properties for the "ideal" photosensitizing agent often includes formulation, pharmacologic and photophysical elements, we propose that subcellular targeting is also an important consideration. Perspectives relating to optimizing PDT efficacy are offered here. These relate to death pathways initiated by photodamage to particular subcellular organelles.
Collapse
Affiliation(s)
- David Kessel
- Wayne State University School of Medicine, Detroit, MI
| | - Nancy L Oleinick
- Case Western Reserve University School of Medicine and the Case Comprehensive Cancer Center, Cleveland, OH
| |
Collapse
|
36
|
Bogdan J, Pławińska-Czarnak J, Zarzyńska J. Nanoparticles of Titanium and Zinc Oxides as Novel Agents in Tumor Treatment: a Review. NANOSCALE RESEARCH LETTERS 2017; 12:225. [PMID: 28351128 PMCID: PMC5368103 DOI: 10.1186/s11671-017-2007-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/17/2017] [Indexed: 05/22/2023]
Abstract
Cancer has become a global problem. On all continents, a great number of people are diagnosed with this disease. In spite of the progress in medical care, cancer still ends fatal for a great number of the ill, either as a result of a late diagnosis or due to inefficiency of therapies. The majority of the tumors are resistant to drugs. Thus, the search for new, more effective therapy methods continues. Recently, nanotechnology has been attributed with big expectations in respect of the cancer fight. That interdisciplinary field of science creates nanomaterials (NMs) and nanoparticles (NPs) that can be applied, e.g., in nanomedicine. NMs and NPs are perceived as very promising in cancer therapy since they can perform as drug carriers, as well as photo- or sonosensitizers (compounds that generate the formation of reactive oxygen species as a result of either electromagnetic radiation excitation with an adequate wavelength or ultrasound activation, respectively). Consequently, two new treatment modalities, the photodynamic therapy (PDT) and the sonodynamic therapy (SDT) have been created. The attachment of ligands or antibodies to NMs or to NPs improve their selective distribution into the targeted organ or cell; hence, the therapy effectiveness can be improved. An important advantage of the targeted tumor treatment is lowering the cyto- and genotoxicity of active substance towards healthy cells. Therefore, both PDT and SDT constitute a valuable alternative to chemo- or radiotherapy. The vital role in cancer eradication is attributed to two inorganic sensitizers in their nanosized scale: titanium dioxide and zinc oxide.
Collapse
Affiliation(s)
- Janusz Bogdan
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Joanna Pławińska-Czarnak
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Joanna Zarzyńska
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
37
|
Tsubone TM, Martins WK, Pavani C, Junqueira HC, Itri R, Baptista MS. Enhanced efficiency of cell death by lysosome-specific photodamage. Sci Rep 2017; 7:6734. [PMID: 28751688 PMCID: PMC5532215 DOI: 10.1038/s41598-017-06788-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/19/2017] [Indexed: 11/08/2022] Open
Abstract
Mobilization of specific mechanisms of regulated cell death is a promising alternative to treat challenging illness such as neurodegenerative disease and cancer. The use of light to activate these mechanisms may provide a route for target-specific therapies. Two asymmetric porphyrins with opposite charges, the negatively charged TPPS2a and the positively charged CisDiMPyP were compared in terms of their properties in membrane mimics and in cells. CisDiMPyP interacts to a larger extent with model membranes and with cells than TPPS2a, due to a favorable electrostatic interaction. CisDiMPyP is also more effective than TPPS2a in damaging membranes. Surprisingly, TPPS2a is more efficient in causing photoinduced cell death. The lethal concentration on cell viability of 50% (LC50) found for TPPS2a was ~3.5 (raw data) and ~5 (considering photosensitizer incorporation) times smaller than for CisDiMPyP. CisDiMPyP damaged mainly mitochondria and triggered short-term phototoxicity by necro-apoptotic cell death. Photoexcitation of TPPS2a promotes mainly lysosomal damage leading to autophagy-associated cell death. Our data shows that an exact damage in lysosome is more effective to diminish proliferation of HeLa cells than a similar damage in mitochondria. Precisely targeting organelles and specifically triggering regulated cell death mechanisms shall help in the development of new organelle-target therapies.
Collapse
Affiliation(s)
| | - Waleska Kerllen Martins
- Instituto de Química, Universidade de São Paulo, São Paulo-SP, Brazil
- Universidade Santo Amaro, São Paulo-SP, Brazil
| | - Christiane Pavani
- Instituto de Química, Universidade de São Paulo, São Paulo-SP, Brazil
- Universidade Nove de Julho, São Paulo-SP, Brazil
| | | | - Rosangela Itri
- Instituto de Física, Universidade de São Paulo, São Paulo-SP, Brazil
| | | |
Collapse
|
38
|
Kiew LV, Cheah HY, Voon SH, Gallon E, Movellan J, Ng KH, Alpugan S, Lee HB, Dumoulin F, Vicent MJ, Chung LY. Near-infrared activatable phthalocyanine-poly-L-glutamic acid conjugate: increased cellular uptake and light–dark toxicity ratio toward an effective photodynamic cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1447-1458. [DOI: 10.1016/j.nano.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/23/2016] [Accepted: 02/05/2017] [Indexed: 12/31/2022]
|
39
|
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017; 9:cancers9020019. [PMID: 28218708 PMCID: PMC5332942 DOI: 10.3390/cancers9020019] [Citation(s) in RCA: 571] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer therapy, based on a photochemical reaction between a light activatable molecule or photosensitizer, light, and molecular oxygen. When these three harmless components are present together, reactive oxygen species are formed. These can directly damage cells and/or vasculature, and induce inflammatory and immune responses. PDT is a two-stage procedure, which starts with photosensitizer administration followed by a locally directed light exposure, with the aim of confined tumor destruction. Since its regulatory approval, over 30 years ago, PDT has been the subject of numerous studies and has proven to be an effective form of cancer therapy. This review provides an overview of the clinical trials conducted over the last 10 years, illustrating how PDT is applied in the clinic today. Furthermore, examples from ongoing clinical trials and the most recent preclinical studies are presented, to show the directions, in which PDT is headed, in the near and distant future. Despite the clinical success reported, PDT is still currently underutilized in the clinic. We also discuss the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.
Collapse
Affiliation(s)
- Demian van Straten
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Vida Mashayekhi
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Henriette S de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| | - Sabrina Oliveira
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
- Pharmaceutics, Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht 3584 CG, The Netherlands.
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| |
Collapse
|
40
|
Ruiz-González R, Milán P, Bresolí-Obach R, Stockert JC, Villanueva A, Cañete M, Nonell S. Photodynamic Synergistic Effect of Pheophorbide a and Doxorubicin in Combined Treatment against Tumoral Cells. Cancers (Basel) 2017; 9:cancers9020018. [PMID: 28218672 PMCID: PMC5332941 DOI: 10.3390/cancers9020018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 02/11/2017] [Indexed: 11/16/2022] Open
Abstract
A combination of therapies to treat cancer malignancies is at the forefront of research with the aim to reduce drug doses (ultimately side effects) and diminish the possibility of resistance emergence given the multitarget strategy. With this goal in mind, in the present study, we report the combination between the chemotherapeutic drug doxorubicin (DOXO) and the photosensitizing agent pheophorbide a (PhA) to inactivate HeLa cells. Photophysical studies revealed that DOXO can quench the excited states of PhA, detracting from its photosensitizing ability. DOXO can itself photosensitize the production of singlet oxygen; however, this is largely suppressed when bound to DNA. Photodynamic treatments of cells incubated with DOXO and PhA led to different outcomes depending on the concentrations and administration protocols, ranging from antagonistic to synergic for the same concentrations. Taken together, the results indicate that an appropriate combination of DOXO with PhA and red light may produce improved cytotoxicity with a smaller dose of the chemotherapeutic drug, as a result of the different subcellular localization, targets and mode of action of the two agents.
Collapse
Affiliation(s)
- Rubén Ruiz-González
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| | - Paula Milán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Cantoblanco-Madrid, Spain.
| | - Roger Bresolí-Obach
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| | - Juan Carlos Stockert
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Cantoblanco-Madrid, Spain.
| | - Angeles Villanueva
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Cantoblanco-Madrid, Spain.
| | - Magdalena Cañete
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Cantoblanco-Madrid, Spain.
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| |
Collapse
|
41
|
Horne TK, Cronjé MJ. Mechanistics and photo-energetics of macrocycles and photodynamic therapy: An overview of aspects to consider for research. Chem Biol Drug Des 2017; 89:221-242. [DOI: 10.1111/cbdd.12761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/24/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Tamarisk K. Horne
- Department of Biochemistry; Faculty of Science; University of Johannesburg; Auckland Park South Africa
| | - Marianne J. Cronjé
- Department of Biochemistry; Faculty of Science; University of Johannesburg; Auckland Park South Africa
| |
Collapse
|
42
|
Ziółkowska B, Woźniak M, Ziółkowski P. Co-expression of autophagic markers following photodynamic therapy in SW620 human colon adenocarcinoma cells. Mol Med Rep 2016; 14:2548-54. [PMID: 27485939 PMCID: PMC4991753 DOI: 10.3892/mmr.2016.5541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive cancer treatment. It involves the combination of a photosensitizer and light of a specific wavelength to generate singlet oxygen and other reactive oxygen species that lead to tumor cell death. Autophagy is one of the pathways that tumor cells undergo during photodamage and it is common in photodynamic therapy. The aim of this study was to examine the effect of in vitro PDT on the expression of autophagy‑related proteins, autophagy related 7 (Atg7), light chain 3 (LC3) and Beclin‑1. Human SW620 colon carcinoma cells were treated with 5-aminolevulinic acid (ALA)‑based PDT at a dose of 3 mM. The irradiation was performed using 4.5 J/cm2 total light and a fluence rate of 60 mW/cm2. Autophagy was evaluated by immunocytochemistry using specific antibodies to Atg7, Beclin‑1 and LC3. The evaluation was repeated at several time points (0, 4, 8 and 24 h) following irradiation. The induction of autophagy was observed directly following the 5‑ALA‑mediated PDT procedure with the strongest expression of autophagy-related proteins at 4 and 8 h after irradiation as demonstrated using immunocytochemistry. It was characterized by significantly increased expression of Beclin‑1, Atg7 and LC3. To the best of our knowledge this is the first study to analyze Beclin‑1, Atg7 and LC3 expression in a PDT‑related experiment. This study enhances the understanding of the role of autophagy in PDT, which may contribute to better and more effective tumor responses to this therapy.
Collapse
Affiliation(s)
- Barbara Ziółkowska
- Department of Pathology, Wrocław Medical University, 50‑368 Wrocław, Poland
| | - Marta Woźniak
- Department of Pathology, Wrocław Medical University, 50‑368 Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University, 50‑368 Wrocław, Poland
| |
Collapse
|
43
|
Investigation of cell death mechanisms in human lymphatic endothelial cells undergoing photodynamic therapy. Photodiagnosis Photodyn Ther 2016; 14:57-65. [DOI: 10.1016/j.pdpdt.2016.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/25/2016] [Accepted: 02/05/2016] [Indexed: 12/24/2022]
|
44
|
Aggarwal N, Santiago AM, Kessel D, Sloane BF. Photodynamic therapy as an effective therapeutic approach in MAME models of inflammatory breast cancer. Breast Cancer Res Treat 2015; 154:251-62. [PMID: 26502410 DOI: 10.1007/s10549-015-3618-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive, FDA-approved therapy for treatment of endobronchial and esophageal cancers that are accessible to light. Inflammatory breast cancer (IBC) is an aggressive and highly metastatic form of breast cancer that spreads to dermal lymphatics, a site that would be accessible to light. IBC patients have a relatively poor survival rate due to lack of targeted therapies. The use of PDT is underexplored for breast cancers but has been proposed for treatment of subtypes for which a targeted therapy is unavailable. We optimized and used a 3D mammary architecture and microenvironment engineering (MAME) model of IBC to examine the effects of PDT using two treatment protocols. The first protocol used benzoporphyrin derivative monoacid A (BPD) activated at doses ranging from 45 to 540 mJ/cm(2). The second PDT protocol used two photosensitizers: mono-L-aspartyl chlorin e6 (NPe6) and BPD that were sequentially activated. Photokilling by PDT was assessed by live-dead assays. Using a MAME model of IBC, we have shown a significant dose-response in photokilling by BPD-PDT. Sequential activation of NPe6 followed by BPD is more effective in photokilling of tumor cells than BPD alone. Sequential activation at light doses of 45 mJ/cm(2) for each agent resulted in >90 % cell death, a response only achieved by BPD-PDT at a dose of 360 mJ/cm(2). Our data also show that effects of PDT on a volumetric measurement of 3D MAME structures reflect efficacy of PDT treatment. Our study is the first to demonstrate the potential of PDT for treating IBC.
Collapse
Affiliation(s)
- Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI, 48201, USA.
| | - Ann Marie Santiago
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI, 48201, USA.
| | - David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI, 48201, USA.
| | - Bonnie F Sloane
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI, 48201, USA.
| |
Collapse
|
45
|
Acedo P, Zawacka-Pankau J. p53 family members - important messengers in cell death signaling in photodynamic therapy of cancer? Photochem Photobiol Sci 2015. [PMID: 26202022 DOI: 10.1039/c5pp00251f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
TP53 is one of the genes most frequently inactivated in cancers. Mutations in TP53 gene are linked to worse prognosis and shorter overall survival of cancer patients. TP53 encodes a critical tumor suppressor, which dictates cell fate decisions upon stress stimuli. As a sensor of cellular stress, p53 is a relevant messenger of cell death signaling in ROS-driven photodynamic therapy (PDT) of cancer. The significant role of p53 in response to PDT has been reported for several clinically approved photosensitizers. Multiple reports described that wild-type p53 contributes to cell killing upon photodynamic therapy with clinically approved photosensitizers but the mechanism is still not fully understood. This work outlines the diverse functions of p53 family members in cancer cells' susceptibility and resistance to PDT. In summary p53 and p53 family members are emerging as important mediators of cell death signaling in photodynamic therapy of cancer, however the mechanism of cell death provoked during PDT might differ depending on the tissue type and the photosensitizer applied.
Collapse
Affiliation(s)
- Pilar Acedo
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Nobels väg 16, 171 77 Stockholm, Sweden.
| | | |
Collapse
|
46
|
Weijer R, Broekgaarden M, Kos M, van Vught R, Rauws EA, Breukink E, van Gulik TM, Storm G, Heger M. Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.05.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Kessel D, Reiners JJ. Promotion of Proapoptotic Signals by Lysosomal Photodamage. Photochem Photobiol 2015; 91:931-6. [PMID: 25873082 DOI: 10.1111/php.12456] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/26/2015] [Indexed: 01/21/2023]
Abstract
We previously reported that low-level lysosomal photodamage enhanced the efficacy of subsequent mitochondrial photodamage, resulting in a substantial promotion of apoptotic cell death. We now extend our analysis of the sequential PDT protocol to include two additional lysosomal-targeting photosensitizers. These agents, because of enhanced permeability, are more potent than the agent (N-aspartyl chlorin E6, NPe6) used in the initial study. Addition of the cell-permeable cysteine protease inhibitor E-64d and calcium chelator BAPTA-AM almost completely suppressed sequential PDT-induced loss of mitochondrial membrane potential and activation of procaspases-3 and -7. These inhibitors did not, however, suppress the proapoptotic effect of a BH3 mimetic or mitochondrial photodamage. Knockdowns of ATG7 or ATG5, proteins normally associated with autophagy, suppressed photodamage induced by the sequential PDT protocol. These effects appear to be independent of the autophagic process as pharmacological inhibition of autophagy offered no such protection. Effects of ATG7 and ATG5 knockdowns may reflect the role that ATG7 plays in regulating lysosome permeability, and the likelihood that a proteolytic fragment of ATG5 amplifies mitochondrial proapoptotic processes. Our results suggest that low-dose photodamage that sequentially targets lysosomes and mitochondria may offer significant advantages over the use of single photosensitizers.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University, Detroit, MI
| | - John J Reiners
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI
| |
Collapse
|
48
|
Mostafa D, Tarakji B. Photodynamic therapy in treatment of oral lichen planus. J Clin Med Res 2015; 7:393-9. [PMID: 25883701 PMCID: PMC4394911 DOI: 10.14740/jocmr2147w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2015] [Indexed: 12/18/2022] Open
Abstract
Oral lichen planus (OLP) is a relatively common chronic immunologic mucocutaneous disorder. Although there are many presenting treatments, some of them proved its failure. Recently, the use of photodynamic therapy (PDT) has been expanding due to its numerous advantages, as it is safe, convenient, and non-invasive and has toxic effect towards selective tissues. This article provides comprehensive review on OLP, its etiology, clinical features and recent non-pharmacological treatments. We also describe the topical PDT and its mechanisms. Our purpose was to evaluate the efficacy of PDT in treatment of OLP through collecting the data of the related clinical studies. We searched in PubMed website for the clinical studies that were reported from 2000 to 2014 using specific keywords: "photodynamic therapy" and "treatment of oral lichen planus". Inclusion criteria were English publications only were concerned. In the selected studies of photodynamic treatment, adult patients (more than 20 years) were conducted and the OLP lesions were clinically and histologically confirmed. Exclusion criteria were classical and pharmacological treatments of OLP were excluded and also the using of PDT on skin lesions of lichen planus. We established five clinical studies in this review where all of them reported improvement and effectiveness of PDT in treatment of OLP lesions. The main outcome of comparing the related clinical studies is that the photodynamic is considered as a safe, effective and promising treatment modality for OLP.
Collapse
Affiliation(s)
- Diana Mostafa
- Department of Oral Maxillofacial Sciences, Al-Farabi College of Dentistry and Nursing, Riyadh, Kingdom of Saudi Arabia
| | - Bassel Tarakji
- Department of Oral Maxillofacial Sciences, Al-Farabi College of Dentistry and Nursing, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
49
|
Assessment of the effect of laser irradiations at different wavelengths (660, 810, 980, and 1064 nm) on autophagy in a rat model of mucositis. Lasers Med Sci 2015; 30:1289-95. [PMID: 25732242 DOI: 10.1007/s10103-015-1727-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/18/2015] [Indexed: 02/07/2023]
Abstract
It is known that high-dose radiation has an effect on tissue healing, but tissue healing does not occur when low dose radiation is applied. To clarify this issue, we compare the treatment success of low dose radiation with programmed cell death mechanisms on wounded tissue. In this study, we aimed to investigate the interactions of low and high-dose radiation using an autophagic mechanism. We included 35 adult Wistar-Albino rats in this study. All animals were injected with 100 mg/kg of 5-fluorouracil (5-FU) on the first day and 65 mg/kg of 5-FU on the third day. The tips of 18-gauge needles were used to develop a superficial scratching on the left cheek pouch mucosa by dragging in a linear movement on third and fifth days. After mucositis formation was clinically detected, animals were divided into five groups (n = 7). Different wavelengths of laser irradiations (1064 nm, Fidelis Plus, Fotona, Slovenia; 980 nm, FOX laser, A.R.C., Germany; 810 nm, Fotona XD, Fotona, Slovenia; 660 nm, HELBO, Medizintechnik GmbH, Wels, Austria) were performed on four groups once daily for 4 days. The laser irradiation was not performed on the control group. To get the tissue from the left cheek at the end of fourth day from all animals, oval excisional biopsy was performed. Molecular analysis assessments of pathological and normal tissue taken were performed. For this purpose, the expression analysis of autophagy genes was performed. The results were evaluated by normalization and statistics analysis. We found that Ulk1, Beclin1, and Atg5 expression levels were increased in the rats when the Nd:YAG laser was applied. This increase showed that a 1064-nm laser is needed to activate the autophagic mechanism. However, in the diode applications, we found that Beclin1, Atg10, Atg5, and Atg7 expressions numerically decreased. Atg5 is responsible for the elongation of autophagosome. Becn1 is a control gene in the control mechanism of autophagy. The reduction of the expression of these genes leads us to think that it may depend on the effect of drug (5-FU) used to form model. Expressions of therapeutic genes increase to ensure hemostasis, but in our study, expressions were found to decrease. More detailed studies are needed.
Collapse
|
50
|
Garg AD, Maes H, Romano E, Agostinis P. Autophagy, a major adaptation pathway shaping cancer cell death and anticancer immunity responses following photodynamic therapy. Photochem Photobiol Sci 2015; 14:1410-24. [DOI: 10.1039/c4pp00466c] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Autophagy is fundamentally a cytoprotective and pro-survival process yet studies have shown that it has an exceedingly contextual role in cancer biology; depending on the phase, location or type of oncogenic trigger and/or therapy, its role could fluctuate from pro- to anti-tumourigenic.
Collapse
Affiliation(s)
- Abhishek D. Garg
- Cell Death Research & Therapy (CDRT) Unit
- Department for Cellular and Molecular Medicine
- University of Leuven (KULeuven)
- Leuven
- Belgium
| | - Hannelore Maes
- Cell Death Research & Therapy (CDRT) Unit
- Department for Cellular and Molecular Medicine
- University of Leuven (KULeuven)
- Leuven
- Belgium
| | - Erminia Romano
- Cell Death Research & Therapy (CDRT) Unit
- Department for Cellular and Molecular Medicine
- University of Leuven (KULeuven)
- Leuven
- Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Unit
- Department for Cellular and Molecular Medicine
- University of Leuven (KULeuven)
- Leuven
- Belgium
| |
Collapse
|