1
|
Hong Z, Wang D, Qiao X, Xie Y, Yang S, Hao K, Han C, Liu H, Liu Z. Wnt5a negatively regulates melanogenesis in primary Arctic fox epidermal melanocytes. Gene 2024; 934:149045. [PMID: 39461575 DOI: 10.1016/j.gene.2024.149045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Melanocytes, which are mainly found in the epidermis, are responsible for the melanin of skin and hair, and thereby contribute to the appearance of skin and provide protection from damage by ultraviolet radiation. Our previous study revealed that the Wnt5a, one of the many genes that affect melanin production, might be involved in the coat color seasonal change of the Arctic fox by influencing skin melanogenesis. Although the role of Wnt5a in melanocyte lines and melanoma cells has been extensively studied, its role in primary epidermal melanocytes has not been explored. This study aimed to investigate the role and mechanism of the Wnt5a in influencing melanogenesis in Arctic fox primary epidermal melanocytes. We constructed the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) knockout plasmid targeting exons of the Wnt5a and transfected it into primary epidermal melanocytes. The results of the amplification knockout region assay, RT-qPCR assay, and western blot assay showed the success of Wnt5a knockout. RT-qPCR assay and melanin content assay showed that melanin production in melanocytes was significantly increased after Wnt5a knockout, and melanin-related key genes, such as microphthalmia-associated transcription factor, tyrosinase and tyrosinase-related protein 1, were significantly elevated. In addition, we also found that the expression of the β-catenin gene of the Wnt canonical pathway was significantly elevated after Wnt5a knockout. In conclusion, our results indicate that the Wnt5a plays a negative regulatory role in melanogenesis in primary epidermal melanocytes, and is presumably involved in antagonizing or inhibiting canonical Wnt signaling.
Collapse
Affiliation(s)
- Zhilin Hong
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Dongxian Wang
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Xian Qiao
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Yuchun Xie
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Shanshan Yang
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Kexing Hao
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Cong Han
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Huayun Liu
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Zhengzhu Liu
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China.
| |
Collapse
|
2
|
Rothe R, Xu Y, Wodtke J, Brandt F, Meister S, Laube M, Lollini PL, Zhang Y, Pietzsch J, Hauser S. Programmable Release of Chemotherapeutics from Ferrocene-Based Injectable Hydrogels Slows Melanoma Growth. Adv Healthc Mater 2024; 13:e2400265. [PMID: 39007274 DOI: 10.1002/adhm.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Hydrogel-based injectable drug delivery systems provide temporally and spatially controlled drug release with reduced adverse effects on healthy tissues. Therefore, they represent a promising therapeutic option for unresectable solid tumor entities. In this study, a peptide-starPEG/hyaluronic acid-based physical hydrogel is modified with ferrocene to provide a programmable drug release orchestrated by matrix-drug interaction and local reactive oxygen species (ROS). The injectable ROS-responsive hydrogel (hiROSponse) exhibits adequate biocompatibility and biodegradability, which are important for clinical applications. HiROSponse is loaded with the two cytostatic drugs (hiROSponsedox/ptx) doxorubicin (dox) and paclitaxel (ptx). Dox is a hydrophilic compound and its release is mainly controlled by Fickian diffusion, while the hydrophobic interactions between ptx and ferrocene can control its release and thus be regulated by the oxidation of ferrocene to the more hydrophilic state of ferrocenium. In a syngeneic malignant melanoma-bearing mouse model, hiROSponsedox/ptx slows tumor growth without causing adverse side effects and doubles the relative survival probability. Programmable release is further demonstrated in a tumor model with a low physiological ROS level, where dox release, low dose local irradiation, and the resulting ROS-triggered ptx release lead to tumor growth inhibition and increased survival.
Collapse
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Bergstrasse 66, 01069, Dresden, Germany
| | - Yong Xu
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Johanna Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Florian Brandt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Bergstrasse 66, 01069, Dresden, Germany
| | - Sebastian Meister
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Pier-Luigi Lollini
- Alma Mater Studiorum, University of Bologna, Department of Medical and Surgical Sciences, Viale Filopanti 22, Bologna, 40126, Italy
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Bergstrasse 66, 01069, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| |
Collapse
|
3
|
Goldstein NB, Berk ZBK, Tomb LC, Hu J, Hoaglin LG, Roop DR, Adiri R, Zhuang Y, Canosa JM, Sanders P, Norris DA, Nocka K, Cha A, Birlea SA. Phosphodiesterase-4 Inhibitors Increase Pigment Cell Proliferation and Melanization in Cultured Melanocytes and within a 3-Dimensional Skin Equivalent Model. J Invest Dermatol 2024:S0022-202X(24)02055-4. [PMID: 39182565 DOI: 10.1016/j.jid.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Vitiligo is a common chronic autoimmune disease characterized by white macules and patches of the skin, having a negative impact on patients' life and without any definitive cure at present. Identification of new compounds to reverse depigmentation is therefore a pressing need for this disease. The pharmacologic compounds phosphodiesterase-4 inhibitors (PDE4is) are small molecules with immunomodulatory properties used for treatment of inflammatory dermatoses. PDE4is have shown repigmentation effects in patients with vitiligo, in some case reports. We characterized the proliferative and melanogenic potential of 2 known PDE4is-crisaborole and roflumilast-and of a more recently designed compound, PF-07038124. We used 2 in vitro model systems-the primary human melanocyte culture and a 3-dimensional cocultured skin model (MelanoDerm)-with an exploratory testing platform composed of complementary assays (spectrophotometry, melanin and proliferation assays, immunostaining, Fontana-Masson staining, RT-qPCR, western blot, and whole-transcriptome RNA sequencing). We identified that treatment with PDE4is was associated with increased melanocyte proliferation and melanization in both in vitro models and with increase in the melanogenic genes and proteins expression in cultured melanocytes. These effects were found to be enhanced by addition of α-melanocyte-stimulating hormone. Our findings support the further evaluation of PDE4is with or without α-melanocyte-stimulating hormone agonists in vitiligo trials.
Collapse
Affiliation(s)
| | - Zachary B K Berk
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Landon C Tomb
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Junxiao Hu
- Department of Pediatrics Endocrinology, University of Colorado, Aurora, Colorado, USA
| | - Laura G Hoaglin
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - Dennis R Roop
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - Roni Adiri
- Pfizer Pharmaceutical, Herzlyia Pituach, Israel
| | - Yonghua Zhuang
- Department of Pediatrics Endocrinology, University of Colorado, Aurora, Colorado, USA
| | | | | | - David A Norris
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | | | - Amy Cha
- Pfizer, New York, New York, USA
| | - Stanca A Birlea
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
4
|
Hipólito A, Xavier R, Brito C, Tomás A, Lemos I, Cabaço LC, Silva F, Oliva A, Barral DC, Vicente JB, Gonçalves LG, Pojo M, Serpa J. BRD9 status is a major contributor for cysteine metabolic remodeling through MST and EAAT3 modulation in malignant melanoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166983. [PMID: 38070581 DOI: 10.1016/j.bbadis.2023.166983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Cutaneous melanoma (CM) is the most aggressive skin cancer, showing globally increasing incidence. Hereditary CM accounts for a significant percentage (5-15 %) of all CM cases. However, most familial cases remain without a known genetic cause. Even though, BRD9 has been associated to CM as a susceptibility gene. The molecular events following BRD9 mutagenesis are still not completely understood. In this study, we disclosed BRD9 as a key regulator in cysteine metabolism and associated altered BRD9 to increased cell proliferation, migration and invasiveness, as well as to altered melanin levels, inducing higher susceptibility to melanomagenesis. It is evident that BRD9 WT and mutated BRD9 (c.183G>C) have a different impact on cysteine metabolism, respectively by inhibiting and activating MPST expression in the metastatic A375 cell line. The effect of the mutated BRD9 variant was more evident in A375 cells than in the less invasive WM115 line. Our data point out novel molecular and metabolic mechanisms dependent on BRD9 status that potentially account for the increased risk of developing CM and enhancing CM aggressiveness. Moreover, our findings emphasize the role of cysteine metabolism remodeling in melanoma progression and open new queues to follow to explore the role of BRD9 as a melanoma susceptibility or cancer-related gene.
Collapse
Affiliation(s)
- Ana Hipólito
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Renato Xavier
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Cheila Brito
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Ana Tomás
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Isabel Lemos
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal; Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Luís C Cabaço
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Fernanda Silva
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Abel Oliva
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Duarte C Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marta Pojo
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| |
Collapse
|
5
|
Hong C, Zhang Y, Yang L, Xu H, Cheng K, Lv Z, Chen K, Li Y, Wu H. Epimedin B exhibits pigmentation by increasing tyrosinase family proteins expression, activity, and stability. J Pharm Anal 2024; 14:69-85. [PMID: 38352950 PMCID: PMC10859565 DOI: 10.1016/j.jpha.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Epimedin B (EB) is one of the main flavonoid ingredients present in Epimedium brevicornum Maxim., a traditional herb widely used in China. Our previous study showed that EB was a stronger inducer of melanogenesis and an activator of tyrosinase (TYR). However, the role of EB in melanogenesis and the mechanism underlying the regulation remain unclear. Herein, as an extension to our previous investigation, we provide comprehensive evidence of EB-induced pigmentation in vivo and in vitro and elucidate the melanogenesis mechanism by assessing its effects on the TYR family of proteins (TYRs) in terms of expression, activity, and stability. The results showed that EB increased TYRs expression through microphthalmia-associated transcription factor-mediated p-Akt (referred to as protein kinase B (PKB))/glycogen synthase kinase 3β (GSK3β)/β-catenin, p-p70 S6 kinase cascades, and protein 38 (p38)/mitogen-activated protein (MAP) kinase (MAPK) and extracellular regulated protein kinases (ERK)/MAPK pathways, after which EB increased the number of melanosomes and promoted their maturation for melanogenesis in melanoma cells and human primary melanocytes/skin tissues. Furthermore, EB exerted repigmentation by stimulating TYR activity in hydroquinone- and N-phenylthiourea-induced TYR inhibitive models, including melanoma cells, zebrafish, and mice. Finally, EB ameliorated monobenzone-induced depigmentation in vitro and in vivo through the enhancement of TYRs stability by inhibiting TYR misfolding, TYR-related protein 1 formation, and retention in the endoplasmic reticulum and then by downregulating the ubiquitination and proteolysis processes. These data conclude that EB can target TYRs and alter their expression, activity, and stability, thus stimulating their pigmentation function, which might provide a novel rational strategy for hypopigmentation treatment in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Chen Hong
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Yifan Zhang
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Lili Yang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Haoyang Xu
- International Education College, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Kang Cheng
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai, 200000, China
| | - Zhi Lv
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai, 200000, China
| | - Kaixian Chen
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Yiming Li
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Huali Wu
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| |
Collapse
|
6
|
A Novel Furocoumarin Derivative, 5-((diethylamino)me-13 thyl)-3-phenyl-7H-furo [3,2-g] chromen-7-one Upregulates Melanin Synthesis via the Activation of cAMP/PKA and MAPKs Signal Pathway: In Vitro and In Vivo Study. Int J Mol Sci 2022; 23:ijms232214190. [PMID: 36430668 PMCID: PMC9694462 DOI: 10.3390/ijms232214190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Psoralen, a major furocoumarin component of the Fructus Psoralen (FP), in combination with ultraviolet radiation, cures abnormal pigmentation disorder. In a previous study, we synthesized a series of linear furocoumarins with different substituents, out of which 5-((diethylamino)methyl)-3-phenyl-7H-furo [3,2-g] chromen-7-one (encoded as 5D3PC) showed better pigmenting effect than others in B16 cells. In this study, we examined the mechanism underlying the melanogenic effect of 5D3PC both in vivo and in vitro. To examine the pigmentation effect, the B16 and human melanocyte cell lines, PIG1 and PIG3V melanocytes were incubated with 5D3PC. In animal experiments, C57BL/6 mice received 5% hydroquinone and were administrated with 5D3PC for 30 days. 5D3PC upregulated the melanin synthesis and tyrosinase in B16 cell, PIG1 and PIG3V. The expression level of tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1) and tyrosinase-related protein-2 (TRP-2), microphthalmia-associated transcription factor (MITF), cyclic adenosine monophosphate (cAMP), phosphorylation of cAMP-responsive element binding protein (p-CREB), phosphorylation of p38 mitogen-activated protein kinase (MAPK), c- phosphorylation of Jun N-terminal kinase (p-JNK) was significantly higher in 5D3PC-treated B16 cells. The oral administration of 5D3PC attenuated the depigmentation of the C57BL/6 vitiligo mice model by increasing the numbers of melanin-containing hair follicles, melanogenic protein, and melanogenesis-relative genes expression in skin tissues.
Collapse
|
7
|
Hong C, Yang L, Zhang Y, Li Y, Wu H. Epimedium brevicornum Maxim. Extract exhibits pigmentation by melanin biosynthesis and melanosome biogenesis/transfer. Front Pharmacol 2022; 13:963160. [PMID: 36249817 PMCID: PMC9557186 DOI: 10.3389/fphar.2022.963160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Epimedium brevicornum Maxim. (Epimedii Folium) is a traditional medicine widely utilized in China for sexual dysfunction and osteoporosis treatment. Recently, studies have reported that Epimedium flavonoid icariin displayed hair growth and melanogenic ability by targeting tyrosinase activity. Nevertheless, icariin hydrolysate icariside II and icaritin cause depigmentation due to their tyrosinase inhibition. These pigment functional discrepancies from Epimedium constituents arouse our great interest. Then, this study focused on the pigmentation effects of Epimedii Folium extract (EFE) on melanin synthesis and melanosome biogenesis/transfer, and further identified the bioactive constituents. First, in in vitro systemic studies, we discovered that the potent melanogenic and repigmented effects of EFE were dependent on concentration and amount of time in multi-melanocytes, normal human skin tissue, and vitiligo perilesional areas. In vivo, EFE exhibited repigmented effect on two kinds of depigmented models of N-phenylthiourea-induced zebrafish and hydroquinone-induced mice. Mechanistically, EFE strongly promoted tyrosinase activity and upregulated the protein expression of tyrosinase families which finally contribute to melanin biosynthesis by activating the MAPK/ERK1/2 signal pathway. In addition, EFE effectively increased melanosome number, accelerated melanosome maturity and cytoplasmic transport through the growth/extension of melanocyte dendrites, and induced melanosome transfer from melanocyte to keratinocyte for pigmentation. The six main flavonoid ingredients were identified among EFE. Compared to others, epimedin B (EB) was confirmed as a high-content, low-toxicity, and effective melanogenic compound in EFE. Taking all these together, this study systematically demonstrates the potential pigmentation effect of Epimedium brevicornum Maxim., and clarifies its related molecular mechanisms and melanogenesis basis. These results give additional insight into Epimedium herb pharmacology and may provide a novel therapy basis for hypopigmentation disorders.
Collapse
Affiliation(s)
- Chen Hong
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Zhang
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Huali Wu, ; Yiming Li,
| | - Huali Wu
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Huali Wu, ; Yiming Li,
| |
Collapse
|
8
|
Rachinger N, Mittag N, Böhme-Schäfer I, Xiang W, Kuphal S, Bosserhoff AK. Alpha-Synuclein and Its Role in Melanocytes. Cells 2022; 11:cells11132087. [PMID: 35805172 PMCID: PMC9265281 DOI: 10.3390/cells11132087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Pigmentation is an important process in skin physiology and skin diseases and presumably also plays a role in Parkinson’s disease (PD). In PD, alpha-Synuclein (aSyn) has been shown to be involved in the pigmentation of neurons. The presynaptic protein is intensively investigated for its pathological role in PD, but its physiological function remains unknown. We hypothesized that aSyn is both involved in melanocytic differentiation and melanosome trafficking processes. We detected a strong expression of aSyn in human epidermal melanocytes (NHEMs) and observed its regulation in melanocytic differentiation via the microphthalmia-associated transcription factor (MITF), a central regulator of differentiation. Moreover, we investigated its role in pigmentation by performing siRNA experiments but found no effect on the total melanin content. We discovered a localization of aSyn to melanosomes, and further analysis of aSyn knockdown revealed an important role in melanocytic morphology and a reduction in melanosome release. Additionally, we found a reduction of transferred melanosomes in co-culture experiments of melanocytes and keratinocytes but no complete inhibition of melanosome transmission. In summary, this study highlights a novel physiological role of aSyn in melanocytic morphology and its so far unknown function in the pigment secretion in melanocytes.
Collapse
Affiliation(s)
- Nicole Rachinger
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Nora Mittag
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany;
| | - Ines Böhme-Schäfer
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
- Correspondence:
| |
Collapse
|
9
|
Moore VDG, Haenel G. Variation in melanin content of lizard livers: hybrids turning to the dark side. Physiol Biochem Zool 2022; 95:536-543. [DOI: 10.1086/721445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Sangthong S, Promputtha I, Pintathong P, Chaiwut P. Chemical Constituents, Antioxidant, Anti-Tyrosinase, Cytotoxicity, and Anti-Melanogenesis Activities of Etlingera elatior (Jack) Leaf Essential Oils. Molecules 2022; 27:molecules27113469. [PMID: 35684405 PMCID: PMC9182332 DOI: 10.3390/molecules27113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Essential oils of plants have been used widely in cosmetic preparations. Being both perfuming and active ingredients, the functions of essential oils mean they are high-value ingredients. In this study, the leaf of Etlingera elatior (Jack) or Torch ginger was used. The essential oils (EO) were prepared by conventional hydrodistillation (HD) and microwave-assisted hydrodistillation (MAHD). The volatile compounds of EOs were analyzed by gas chromatography spectroscopy (GC-MS). The antioxidant activities by means of DPPH radical scavenging and ferric-reducing antioxidant power (FRAP) were determined. The inhibition of tyrosinase activity was investigated. The cytotoxicity was performed against human fibroblast cell lines (NIH/3T3) and melanoma cell lines (A375 and B16F10). The decreasing melanin content was measured in melanoma cell lines. The resulting essential oils were detected for 41 compounds from HD extraction dominants by terpenes, namely sesquiterpenes (48.499%) and monoterpenes (19.419%), while 26 compounds were detected from MAHD with the fatty alcohols as the major group. The higher antioxidant activities were found in HD EO (IC50 of 16.25 ± 0.09 mg/mL from DPPH assay and 0.91 ± 0.01 mg TEAC/g extract from FRAP assay). The survival of normal fibroblast cell lines remained at 90% at 500 µg/mL HD EO, where the EO possessed the half-maximal toxicity dose (TD50) of 214.85 ± 4.647 and 241.128 ± 2.134 μg/mL on B16F10 and A375 cell lines, respectively. This could suggest that the EO is highly selective against the melanoma cell lines. The melanin content was decreased at the half-maximum efficacy (IC50) at 252.12 ± 3.02 and 253.56 ± 3.65 in the A375 and B1610 cell lines, respectively, which were approximately 2.8-fold lower than kojic acid, the standard compound. The results of this study evidence the use of Etlingera elatior (Jack) leaf as a source of essential oil as an active agent in cosmetics.
Collapse
Affiliation(s)
- Sarita Sangthong
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.P.); (P.C.)
- Green Cosmetic Technology Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence:
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Punyawatt Pintathong
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.P.); (P.C.)
- Green Cosmetic Technology Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Phanuphong Chaiwut
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.P.); (P.C.)
- Green Cosmetic Technology Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
11
|
Kalaj BN, Ni QZ, La Clair JJ, Deheyn DD, Burkart MD. Chemoenzymatic Isolation and Characterization of High Purity Mammalian Melanin. Chembiochem 2022; 23:e202200021. [PMID: 35318787 DOI: 10.1002/cbic.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/28/2022] [Indexed: 11/10/2022]
Abstract
Although melanin is one of the most ubiquitous polymers in living systems, our understanding of its molecular structure, biosynthesis and biophysical properties has been limited to only a small number of organisms other than humans. This is in part due to the difficulty associated with isolating pure melanin. While purification methods exist, they typically involve harsh treatments with strong acid/base conditions combined with elevated temperatures that can lead to the polymer backbone degradation. To be successful, a viable isolation method must deliver a selective, yet complete degradation of non-melanin biopolymers as well as remove small molecule metabolites that are not integrative to the melanin backbone. Here, we demonstrate the use of chemoenzymatic processing guided by fluorescent probes for the purification and isolation of native mammalian melanin without significant induction of chemical degradation. This multi-step purification-tracking methodology enables quantitative isolation of pure melanin from mammalian tissue for spectroscopic characterization.
Collapse
Affiliation(s)
- Brianna N Kalaj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Qing Zhe Ni
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive La Jolla, California, 92093-0202, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| |
Collapse
|
12
|
Zhong J, Wang H, Yang K, Wang H, Duan C, Ni N, An L, Luo Y, Zhao P, Gou Y, Sheng S, Shi D, Chen C, Wagstaff W, Hendren-Santiago B, Haydon RC, Luu HH, Reid RR, Ho SH, Ameer GA, Shen L, He TC, Fan J. Reversibly immortalized keratinocytes (iKera) facilitate re-epithelization and skin wound healing: Potential applications in cell-based skin tissue engineering. Bioact Mater 2022; 9:523-540. [PMID: 34820586 PMCID: PMC8581279 DOI: 10.1016/j.bioactmat.2021.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization. Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation. Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing, effective management of large chronic skin wounds remains a clinical challenge. Keratinocytes are critical to re-epithelialization and wound healing. Here, we investigated whether exogenous keratinocytes, in combination with a citrate-based scaffold, enhanced skin wound healing. We first established reversibly immortalized mouse keratinocytes (iKera), and confirmed that the iKera cells expressed keratinocyte markers, and were responsive to UVB treatment, and were non-tumorigenic. In a proof-of-principle experiment, we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone, in a mouse skin wound model. Thus, these results demonstrate that iKera cells may serve as a valuable skin epithelial source when, combining with appropriate biocompatible scaffolds, to investigate cutaneous wound healing and skin regeneration.
Collapse
Affiliation(s)
- Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Ke Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Pediatric Research Institute, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huifeng Wang
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Chongwen Duan
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Na Ni
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Liqin An
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yetao Luo
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shiyan Sheng
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Guillermo A. Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60616, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| |
Collapse
|
13
|
Tang H, Yang L, Wu L, Wang H, Chen K, Wu H, Li Y. Kaempferol, the melanogenic component of Sanguisorba officinalis, enhances dendricity and melanosome maturation/transport in melanocytes. J Pharmacol Sci 2021; 147:348-357. [PMID: 34663517 DOI: 10.1016/j.jphs.2021.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Kaempferol, a representative flavonoid constituent of Sanguisorba officinalis, promotes melanogenesis, but the underlying mechanisms remain unknown. Here, we evaluated the effects of kaempferol on melanocytes morphology and behavior and determined the mechanisms regulating kaempferol-induced pigmentation. We observed that kaempferol increased melanin contents and dendritic length and stimulated melanocyte migration both in vitro and vivo. It significantly enhanced the expression of microphthalmia-associated transcription factor (MITF) and downstream enzymes of melanin biosynthesis-tyrosinase (TYR), tyrosinase-related protein (TRP-1), and dopachrome tautomerase (DCT). It also induced melanosome maturation (increased stage III and IV melanosomes) and melanin transfer to dendritic tips; this was evidenced as follows: kaempferol-treated melanocytes exhibited the perimembranous accumulation of HMB45-positive melanosomes and increased the expression of Rab27A, RhoA, and Cdc42, which improved melanosome transport to perimembranous actin filaments. These results jointly indicated that kaempferol promotes melanogenesis and melanocyte growth. Additionally, kaempferol stimulated the phosphorylation of P38/ERK MAPK and downregulated p-PI3K, p-AKT, and p-P70s6K expression. Pre-incubation with P38 (SB203580) and ERK (PD98059) signaling inhibitors reversed the melanogenic and dendritic effects and MITF expression. PI3K/AKT inhibitor augmented kaempferol-induced melanin content and dendrite length. In summary, kaempferol regulated melanocytes' dendritic growth and melanosome quantity, maturation, and transport via P38/ERK MAPK and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Huihao Tang
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Longlong Wu
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huimin Wang
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixian Chen
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huali Wu
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yiming Li
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
14
|
Skoniecka A, Cichorek M, Tyminska A, Pelikant-Malecka I, Dziewiatkowski J. Melanization as unfavorable factor in amelanotic melanoma cell biology. PROTOPLASMA 2021; 258:935-948. [PMID: 33506271 PMCID: PMC8433105 DOI: 10.1007/s00709-021-01613-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/15/2021] [Indexed: 05/15/2023]
Abstract
The biology of three amelanotic melanoma cell lines (Ab, B16F10, and A375) of different species origin was analyzed during in vitro induced melanization in these cells. Melanin production was induced by DMEM medium characterized by a high level of L-tyrosine (a basic amino acid for melanogenesis). The biodiversity of amelanotic melanoma cells was confirmed by their different responses to melanogenesis induction; Ab hamster melanomas underwent intensive melanization, mouse B16F10 darkened slightly, while human A375 cells did not show any change in melanin content. Highly melanized Ab cells entered a cell death pathway, while slight melanization did not influence cell biology in a significant way. The rapid and high melanization of Ab cells induced apoptosis documented by phosphatidylserine externalization, caspase activation, and mitochondrial energetic state decrease. Melanoma cell type, culture medium, and time of incubation should be taken into consideration during amelanotic melanoma cell culture in vitro. L-tyrosine, as a concentration-dependent factor presented in the culture media, could stimulate some amelanotic melanoma cell lines (Ab, B16F10) to melanin production. The presence of melanin should be considered in the examination of antimelanoma compounds in vitro, because induction of melanin may interfere or be helpful in the treatment of amelanotic melanoma.
Collapse
Affiliation(s)
- A. Skoniecka
- Embryology Department, Medical University of Gdansk, Ul. Debinki 1 St, 80-211, Gdansk, Poland
| | - M. Cichorek
- Embryology Department, Medical University of Gdansk, Ul. Debinki 1 St, 80-211, Gdansk, Poland
| | - A. Tyminska
- Embryology Department, Medical University of Gdansk, Ul. Debinki 1 St, 80-211, Gdansk, Poland
| | - I. Pelikant-Malecka
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland
| | - J. Dziewiatkowski
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Debinki 1 St, 80-211, Gdansk, Poland
| |
Collapse
|
15
|
Wu HC, Chen YF, Cheng MJ, Wu MD, Chen YL, Chang HS. Investigations into Chemical Components from Monascus purpureus with Photoprotective and Anti-Melanogenic Activities. J Fungi (Basel) 2021; 7:619. [PMID: 34436158 PMCID: PMC8396976 DOI: 10.3390/jof7080619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Monascus species are asexually or sexually reproduced homothallic fungi that can produce a red colorant, specifically the so-called red yeast rice or Anka, which is used as a food ingredient in Asia. Traditional experiences of using Monascus for treating indigestion, enhancing blood circulation, and health remedies motivate us to investigate and repurpose Monascus-fermented products. Here, two new 5H-cyclopenta[c]pyridine type azaphilones, 5S,6S-monaspurpyridine A (1) and 5R,6R-monaspurpyridine A (2), two new xanthonoids, monasxanthones A and B (3 and 4), one new naphthalenone, monasnaphthalenone (5), and one new azaphilone, monapurpurin (6), along with two known compounds were isolated from the 70% EtOH extract of a citrinin-free domesticated strain M. purpureus BCRC 38110. The phytochemical properties of the xanthonoid and naphthalenone components were first identified from Monascus sp. differently from the representative ingredients of polyketide-derived azaphilones. UVB-induced cell viability loss and reactive oxygen species (ROS) overproduction in human keratinocytes were attenuated by monascuspirolide B (7) and ergosterol peroxide (8), indicating their photoprotective potentials. Ergosterol peroxide (8) decreased the melanin contents and tyrosinase activities of mouse melanocytes, depending on the concentration, suggesting their anti-melanogenic effects. In conclusion, six new and two known compounds were isolated from M. purpureus BCRC 38110, and two of them exhibited dermal protective activities. The results revealed the novel potential of M. purpureus for developing natural cosmeceutics against skin photoaging.
Collapse
Affiliation(s)
- Ho-Cheng Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (Y.-F.C.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (Y.-F.C.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ming-Jen Cheng
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan; (M.-J.C.); (M.-D.W.); (Y.-L.C.)
| | - Ming-Der Wu
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan; (M.-J.C.); (M.-D.W.); (Y.-L.C.)
| | - Yen-Lin Chen
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan; (M.-J.C.); (M.-D.W.); (Y.-L.C.)
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (Y.-F.C.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
16
|
Lim HY, Kim E, Park SH, Hwang KH, Kim D, Jung YJ, Kopalli SR, Hong YD, Sung GH, Cho JY. Antimelanogenesis Effects of Theasinensin A. Int J Mol Sci 2021; 22:ijms22147453. [PMID: 34299073 PMCID: PMC8305159 DOI: 10.3390/ijms22147453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Theasinensin A (TSA) is a major group of catechin dimers mainly found in oolong tea and black tea. This compound is also manufactured with epigallocatechin gallate (EGCG) as a substrate and is refined after the enzyme reaction. In previous studies, TSA has been reported to be effective against inflammation. However, the effect of these substances on skin melanin formation remains unknown. In this study, we unraveled the role of TSA in melanogenesis using mouse melanoma B16F10 cells and normal human epidermal melanocytes (NHEMs) through reverse transcription polymerase chain reaction (RT-PCR), Western blotting analysis, luciferase reporter assay, and enzyme-linked immunosorbent assay analysis. TSA inhibited melanin formation and secretion in α-melanocyte stimulating hormone (α-MSH)-induced B16F10 cells and NHEMs. TSA down-regulated the mRNA expression of tyrosinase (Tyr), tyrosinase-related protein 1 (Tyrp1), and Tyrp2, which are all related to melanin formation in these cells. TSA was able to suppress the activities of certain proteins in the melanocortin 1 receptor (MC1R) signaling pathway associated with melanin synthesis in B16F10 cells: cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), protein kinase A (PKA), tyrosinase, and microphthalmia-associated transcription factor (MITF). We also confirmed α-MSH-mediated CREB activities through a luciferase reporter assay, and that the quantities of cAMP were reduced by TSA in the enzyme linked immunosorbent assay (ELISA) results. Based on these findings, TSA should be considered an effective inhibitor of hyperpigmentation.
Collapse
Affiliation(s)
- Hye Yeon Lim
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (H.Y.L.); (S.H.P.)
| | - Eunji Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (H.Y.L.); (S.H.P.)
| | - Kyung Hwan Hwang
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (K.H.H.); (D.K.); (Y.D.H.)
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (K.H.H.); (D.K.); (Y.D.H.)
| | - You-Jung Jung
- Biological Resources Utilization Department, National Institute of Biological Resources, Incheon 22689, Korea;
| | | | - Yong Deog Hong
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (K.H.H.); (D.K.); (Y.D.H.)
| | - Gi-Ho Sung
- Department of Microbiology, Biomedical Institute of Mycological Resource, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Simgokro, 100 Gil, 7, Seo-gu, Incheon 22711, Korea
- Correspondence: (G.-H.S.); (J.Y.C.); Tel.: +82-32-290-2772 (G.-H.S.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (H.Y.L.); (S.H.P.)
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (G.-H.S.); (J.Y.C.); Tel.: +82-32-290-2772 (G.-H.S.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
17
|
Hseu YC, Vudhya Gowrisankar Y, Wang LW, Zhang YZ, Chen XZ, Huang PJ, Yen HR, Yang HL. The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated α-MSH in keratinocytes via Nrf2-mediated antioxidant pathways. Redox Biol 2021; 44:102007. [PMID: 34049220 PMCID: PMC8167190 DOI: 10.1016/j.redox.2021.102007] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Pterostilbene (Pt) is a natural polyphenol found in blueberries and several grape varieties. Pt's pharmacological importance was well documented. Nevertheless, the depigmenting effects are not demonstrated. We evaluated the Pt's depigmenting effects through autophagy induction in B16F10 cells and inhibition of UVA (3 J/cm2)-irradiated α-MSH in keratinocyte HaCaT cells via Nrf2-mediated antioxidant pathways. Pt (2.5–5μM) attenuated ROS production and downregulated the POMC/α-MSH pathway in HaCaT cells. The conditioned medium-derived from UVA-irradiated HaCaT pretreated with Pt suppressed melanogenesis in B16F10 through MITF-CREB-tyrosinase pathway downregulation. Interestingly, Pt-induced HaCaT autophagy was revealed by enhanced LC3-II accumulation, p62/SQSTM1 activation, and AVO formation. Pt significantly decreased melanosome gp100 but increased LC3-II levels in HaCaT cells exposed to B16F10-derived melanin. Pt activated and facilitated the Nrf2 antioxidant pathway in HaCaT cells leading to increased HO-1, γ-GCLC, and NQO-1 antioxidant protein expression. ERK, AMPK, and ROS pathways mediate the Nrf2 activation. However, Nrf2 knockdown suppressed Pt's antioxidant ability leading to uncontrolled ROS and α-MSH levels after UVA-irradiation suggested the essentiality of the Nrf2 pathway. Moreover, in α-MSH-stimulated B16F10 cells, Pt (10–30 μM) downregulated the MC1R, MITF, tyrosinase, TRP-1/-2, and melanin expression. Further, Pt showed potent anti-melanogenic effects through autophagy induction mechanism in B16F10 cells, verified by increased LC3-II/p62 levels, AVO formation, and Beclin-1/Bcl-2 ratio, decreased ATG4B levels and PI3K/AKT/mTOR pathway. Transmission electron microscopy provided direct evidence by showing autophagosomes engulfing melanosomes following Pt treatment in α-MSH-stimulated B16F10 cells. Moreover, Pt-induced anti-melanogenic activity through the downregulation of CREB-MITF pathway-mediated TRP-1/-2, tyrosinase expressions, melanosome formation, and melanin synthesis was substantially reversed due to 3-MA (autophagy inhibitor) pretreatment or LC3 silencing in B16F10 cells. In vivo results also confirmed that Pt-inhibited tyrosinase expression/activity and endogenous pigmentation in the zebrafish model. Therefore, pterostilbene is a potent skin-whitening and antioxidant agent and could be used in skin-whitening formulations as a topical applicant. Pt inhibits ROS-mediated POMC/α-MSH pathway in UVA-irradiated HaCaT cells. Pt activates Nrf2-mediated HO-1, γ-GCLC, and NQO-1 expression in HaCaT cells. Pt-induces autophagy in B16F10 cells leading to melanogenesis inhibition. Pt-mediates anti-melanogenic mechanisms in α-MSH-stimulated B16F10 cells. Pt-inhibits tyrosinase expression and endogenous pigmentation in zebrafish model.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan.
| | | | - Li-Wei Wang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Yan-Zhen Zhang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Xuan-Zao Chen
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Pei-Jane Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Hung-Rong Yen
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan; School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
18
|
Singh M, Mansuri MS, Kadam A, Palit SP, Dwivedi M, Laddha NC, Begum R. Tumor Necrosis Factor-alpha affects melanocyte survival and melanin synthesis via multiple pathways in vitiligo. Cytokine 2021; 140:155432. [PMID: 33517195 DOI: 10.1016/j.cyto.2021.155432] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a major mediator of inflammation and its increased levels have been analyzed in vitiligo patients. Vitiligo is a depigmentary skin disarray caused due to disapperance of functional melanocytes. The aim of the study was to investigate the role of TNF-α in melanocyte biology, analyzing candidate molecules of melanocytes and immune homeostasis. Our results showed increased TNF-α transcripts in vitiligenous lesional and non-lesional skin. Melanocytes upon exogenous stimulation with TNF-α exhibited a significant reduction in cell viability with elevated cellular and mitochondrial ROS and compromised complex I activity. Moreover, we observed a reduction in melanin content via shedding of dendrites, down-regulation of MITF-M, TYR and up-regulation of TNFR1, IL6, ICAM1 expression, whereas TNFR2 levels remain unaltered. TNF-α exposure stimulated cell apoptosis at 48 h and autophagy at 12 h, elevating ATG12 and BECN1 transcripts. Our novel findings establish the functional link between autophagy and melanocyte destruction. Overall, our study suggests a key function of TNF-α in melanocyte homeostasis and autoimmune vitiligo pathogenesis.
Collapse
Affiliation(s)
- Mala Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Mohmmad Shoab Mansuri
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Sayantani P Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Naresh C Laddha
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India.
| |
Collapse
|
19
|
Siddiqui MF, Jeon S, Kim MM. Rapid and sensitive detection of melanin using glutathione conjugated gold nanocluster based fluorescence quenching assay. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119086. [PMID: 33128947 DOI: 10.1016/j.saa.2020.119086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/14/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
In the present study, a rapid, facile, and highly sensitive assay based on glutathione conjugated gold nanocluster (GSH-AuNCs) is developed for the detection of melanin. The analysis of melanin which is linked to several diseases is crucial. The current methods for melanin estimation are complex and long, thus demands an alternative technology. In general, melanin exhibits photoactive properties, thus, it might have fluorescence quenching properties through the phenomenon of fluorescence resonance energy transfer. To verify our assumption, we have developed the fluorescence quenching assay based on gold nanocluster and melanin interaction. As a result, under the optimized condition, the developed quenching assay demonstrated the high selectivity and sensitivity toward melanin with a limit of detection and correlation coefficient of 0.060 μg/mL and 0.993, respectively. Moreover, the whole process represented the rapid assay time of 30 min to complete. To validate the performance of our assay on real samples, B16F1 cells lysate, and hair samples were tested that provided satisfactory results. Therefore, we believe that our assay due to good sensitivity and short assay time could be beneficial for the clinical diagnosis of melanin in the future study.
Collapse
Affiliation(s)
- Mohd Farhan Siddiqui
- Department of Applied Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea
| | - Sojeong Jeon
- Department of Biology & Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea.
| |
Collapse
|
20
|
Benito-Martínez S, Zhu Y, Jani RA, Harper DC, Marks MS, Delevoye C. Research Techniques Made Simple: Cell Biology Methods for the Analysis of Pigmentation. J Invest Dermatol 2020; 140:257-268.e8. [PMID: 31980058 DOI: 10.1016/j.jid.2019.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Pigmentation of the skin and hair represents the result of melanin biosynthesis within melanosomes of epidermal melanocytes, followed by the transfer of mature melanin granules to adjacent keratinocytes within the basal layer of the epidermis. Natural variation in these processes produces the diversity of skin and hair color among human populations, and defects in these processes lead to diseases such as oculocutaneous albinism. While genetic regulators of pigmentation have been well studied in human and animal models, we are still learning much about the cell biological features that regulate melanogenesis, melanosome maturation, and melanosome motility in melanocytes, and have barely scratched the surface in our understanding of melanin transfer from melanocytes to keratinocytes. Herein, we describe cultured cell model systems and common assays that have been used by investigators to dissect these features and that will hopefully lead to additional advances in the future.
Collapse
Affiliation(s)
- Silvia Benito-Martínez
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, Paris, France
| | - Yueyao Zhu
- Department of Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA; Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Riddhi Atul Jani
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, Paris, France
| | - Dawn C Harper
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA; Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Cédric Delevoye
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, Paris, France.
| |
Collapse
|
21
|
Zeng B, Li K, Yang Z, Wang H, Wang C, Huang P, Pan Y. Isoimperatorin (ISO) reduces melanin content in keratinocytes via miR-3619/CSTB and miR-3619/CSTD axes. Biosci Biotechnol Biochem 2020; 84:1436-1443. [PMID: 32299303 DOI: 10.1080/09168451.2020.1751581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Melanin metabolism disorders may cause severe impacts on the psychological and social activities of patients. Different from the other two steps of melanin metabolism, namely synthesis and transport, little has been known about the mechanism of melanin degradation. Isoimperatorin (ISO) suppressed the activity of tyrosinase, an essential enzyme in melanin biosynthesis, hence, we investigated the effects and mechanism of ISO in melanin reduction. ISO stimulation significantly reduces the melanin contents and PMEL 17 protein levels; meanwhile, the activity and the protein levels of two critical lysosomal enzymes, Cathepsin B and Cathepsin D, can be significantly increased by ISO treatment. MiR-3619 inhibited the expression of CSTB and CSTD, therefore affecting ISO-induced degradation of melanin. In summary, ISO reduces the melanin content via miR-3619/CSTB and miR-3619/CSTD axes. ISO could be a potent skin-whitening agent, which needs further in vivo and clinical investigation.
Collapse
Affiliation(s)
- Bijun Zeng
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Kai Li
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Zhibo Yang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Haizhen Wang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Chang Wang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Pan Huang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Yi Pan
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine , Changsha, Hunan, China
| |
Collapse
|
22
|
Colorimetric assay of tyrosinase inhibition using melanocyte laden hydrogel fabricated by digital light processing printing. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Anthocyanins from Hibiscus syriacus L. Inhibit Melanogenesis by Activating the ERK Signaling Pathway. Biomolecules 2019; 9:biom9110645. [PMID: 31653006 PMCID: PMC6920888 DOI: 10.3390/biom9110645] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Hibiscus syriacus L. exhibited promising potential as a new source of food and colorants containing various anthocyanins. However, the function of anthocyanins from H. syriacus L. has not been investigated. In the current study, we evaluated whether anthocyanins from the H. syriacus L. varieties Pulsae and Paektanshim (PS and PTS) inhibit melanin biogenesis. B16F10 cells and zebrafish larvae were exposed to PS and PTS in the presence or absence of α-melanocyte-stimulating hormone (α-MSH), and melanin contents accompanied by its regulating genes and proteins were analyzed. PS and PTS moderately downregulated mushroom tyrosinase activity in vitro, but significantly decreased extracellular and intracellular melanin production in B16F10 cells, and inhibited α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. PS and PTS also attenuated pigmentation in α-MSH-stimulated zebrafish larvae. Furthermore, PS and PTS activated the phosphorylation of extracellular signal-regulated kinase (ERK), whereas PD98059, a specific ERK inhibitor, completely reversed PS- and PTS-mediated anti-melanogenic activity in B16F10 cells and zebrafish larvae, which indicates that PS- and PTS-mediated anti-melanogenic activity is due to ERK activation. Moreover, chromatography data showed that PS and PTS possessed 17 identical anthocyanins as a negative regulator of ERK. These findings suggested that anthocyanins from PS and PTS inhibited melanogenesis in vitro and in vivo by activating the ERK signaling pathway.
Collapse
|
24
|
Nunes CJ, Otake AH, Bustos SO, Fazzi RB, Chammas R, Da Costa Ferreira AM. Unlike reactivity of mono- and binuclear imine-copper(II) complexes toward melanoma cells via a tyrosinase-dependent mechanism. Chem Biol Interact 2019; 311:108789. [PMID: 31401089 DOI: 10.1016/j.cbi.2019.108789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023]
Abstract
The cytotoxicity of a dinuclear imine-copper (II) complex 2, and its analogous mononuclear complex 1, toward different melanoma cells, particularly human SKMEL-05 and SKMEL-147, was investigated. Complex 2, a tyrosinase mimic, showed much higher activity in comparison to complex 1, and its reactivity was verified to be remarkably activated by UVB-light, while the mononuclear compound showed a small or negligible effect. Further, a significant dependence on the melanin content in the tumor cells, both from intrinsic pigmentation or stimulated by irradiation, was observed in the case of complex 2. Similar tests with keratinocytes and melanocytes indicated a much lower sensitivity to both copper (II) complexes, even after exposition to UV light. Clonogenic assays attested that the fractions of melanoma cells survival were much lower under treatment with complex 2 compared to complex 1, both with or without previous irradiation of the cells. The process also involves generation of reactive oxygen species (ROS), as verified by EPR spectroscopy, and by using fluorescence indicators. Autophagic assays indicated a remarkable formation of cytoplasmic vacuoles in melanomas treated with complex 2, while this effect was not observed in similar treatment with complex 1. Monitoring of specific protein LC3 corroborated the simultaneous occurrence of autophagy. A balance interplay between different modes of cell death, apoptosis and autophagy, occurs when melanomas were treated with the dinuclear complex 2, in contrast to the mononuclear complex 1. These results pointed out to different mechanisms of action of such complexes, depending on its nuclearity.
Collapse
Affiliation(s)
- Cléia Justino Nunes
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Andréia Hanada Otake
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, 01246-000, SP, Brazil
| | - Silvina Odete Bustos
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, 01246-000, SP, Brazil
| | - Rodrigo Boni Fazzi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Roger Chammas
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, 01246-000, SP, Brazil
| | - Ana Maria Da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil.
| |
Collapse
|
25
|
Nanomelanin Potentially Protects the Spleen from Radiotherapy-Associated Damage and Enhances Immunoactivity in Tumor-Bearing Mice. MATERIALS 2019; 12:ma12101725. [PMID: 31137873 PMCID: PMC6567087 DOI: 10.3390/ma12101725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 01/09/2023]
Abstract
Radiotherapy side-effects present serious problems in cancer treatment. Melanin, a natural polymer with low toxicity, is considered as a potential radio-protector; however, its application as an agent against irradiation during cancer treatment has still received little attention. In this study, nanomelanin particles were prepared, characterized and applied in protecting the spleens of tumor-bearing mice irradiated with X-rays. These nanoparticles had sizes varying in the range of 80–200 nm and contained several important functional groups such as carboxyl (-COO), carbonyl (-C=O) and hydroxyl (-OH) groups on the surfaces. Tumor-bearing mice were treated with nanomelanin at a concentration of 40 mg/kg before irradiating with a single dose of 6.0 Gray of X-ray at a high dose rate (1.0 Gray/min). Impressively, X-ray caused mild splenic fibrosis in 40% of nanomelanin-protected mice, whereas severe fibrosis was observed in 100% of mice treated with X-ray alone. Treatment with nanomelanin also partly rescued the volume and weight of mouse spleens from irradiation through promoting the transcription levels of splenic Interleukin-2 (IL-2) and Tumor Necrosis Factor alpha (TNF-α). More interestingly, splenic T cell and dendritic cell populations were 1.91 and 1.64-fold higher in nanomelanin-treated mice than those in mice which received X-ray alone. Consistently, the percentage of lymphocytes was also significantly greater in blood from nanomelanin-treated mice. In addition, nanomelanin might indirectly induce apoptosis in tumor tissues via activation of TNF-α, Bax, and Caspase-3 genes. In summary, our results demonstrate that nanomelanin protects spleens from X-ray irradiation and consequently enhances immunoactivity in tumor-bearing mice; therefore, we present nanomelanin as a potential protector against damage from radiotherapy in cancer treatment.
Collapse
|
26
|
Godoy-Gallardo M, Labay C, Hosta-Rigau L. Tyrosinase-Loaded Multicompartment Microreactor toward Melanoma Depletion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5862-5876. [PMID: 30605301 DOI: 10.1021/acsami.8b20275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Melanoma is malignant skin cancer occurring with increasing prevalence with no effective treatment. A unique feature of melanoma cells is that they require higher concentrations of ltyrosine (l-tyr) for expansion than normal cells. As such, it has been demonstrated that dietary l-tyr restriction lowers systemic l-tyr and suppresses melanoma advancement in mice. Unfortunately, this diet is not well tolerated by humans. An alternative approach to impede melanoma progression will be to administer the enzyme tyrosinase (TYR), which converts l-tyr into melanin. Herein, a multicompartment carrier consisting of a polymer shell entrapping thousands of liposomes is employed to act as a microreactor depleting l-tyr in the presence of melanoma cells. It is shown that the TYR enzyme can be incorporated within the liposomal subunits with preserved catalytic activity. Aiming to mimic the dynamic environment at the tumor site, l-tyr conversion is conducted by co-culturing melanoma cells and microreactors in a microfluidic setup with applied intratumor shear stress. It is demonstrated that the microreactors are concurrently depleting l-tyr, which translates into inhibited melanoma cell growth. Thus, the first microreactor where the depletion of a substrate translates into antitumor properties in vitro is reported.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech , Technical University of Denmark , Building 423 , 2800 Lyngby , Denmark
| | - Cédric Labay
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech , Technical University of Denmark , Building 423 , 2800 Lyngby , Denmark
| | - Leticia Hosta-Rigau
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech , Technical University of Denmark , Building 423 , 2800 Lyngby , Denmark
| |
Collapse
|
27
|
Chung S, Lim GJ, Lee JY. Quantitative analysis of melanin content in a three-dimensional melanoma cell culture. Sci Rep 2019; 9:780. [PMID: 30692593 PMCID: PMC6349835 DOI: 10.1038/s41598-018-37055-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Reliable measurement of the amount of melanin produced by melanocytes is essential to study various skin disorders and to evaluate the efficacy of candidate reagents for such disorders or for whitening purposes. Conventional melanin quantification methods are based on absorption spectroscopy, which measures the melanin from lysed cells grown on two-dimensional (2D) surfaces. The 2D culture environment is intrinsically different from in vivo systems though, and therefore cells often lose their original phenotypes. Melanocytes in particular lose their ability to synthesize melanin, thereby requiring melanogenesis stimulators such as alpha-melanocyte stimulating hormone (α-MSH) to promote melanin synthesis. In this study, we compared melanin synthesis in B16 murine melanoma cells grown in 2D and three-dimensional culture environments. B16 cells instantly formed an aggregate in a hanging-drop culture, and synthesized melanin efficiently without treatment of α-MSH. We were able to measure the melanin secreted from a single melanocyte aggregate, indicating that our method enables non-invasive long-term monitoring of melanin synthesis and secretion in a high-throughput format. We successfully tested the developed platform by quantifying the depigmenting effects of arbutin and kojic acid.
Collapse
Affiliation(s)
- Soobin Chung
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.,Department of Bio-Analytical Science, University of Science & Technology, 217 Gajeong-ro, Youseong-gu, Daejeon, 34113, Republic of Korea
| | - Gippeum J Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji Youn Lee
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
28
|
Lapierre-Landry M, Carroll J, Skala MC. Imaging retinal melanin: a review of current technologies. J Biol Eng 2018; 12:29. [PMID: 30534199 PMCID: PMC6280494 DOI: 10.1186/s13036-018-0124-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/22/2018] [Indexed: 11/10/2022] Open
Abstract
The retinal pigment epithelium (RPE) is essential to the health of the retina and the proper functioning of the photoreceptors. The RPE is rich in melanosomes, which contain the pigment melanin. Changes in RPE pigmentation are seen with normal aging and in diseases such as albinism and age-related macular degeneration. However, most techniques used to this day to detect and quantify ocular melanin are performed ex vivo and are destructive to the tissue. There is a need for in vivo imaging of melanin both at the clinical and pre-clinical level to study how pigmentation changes can inform disease progression. In this manuscript, we review in vivo imaging techniques such as fundus photography, fundus reflectometry, near-infrared autofluorescence imaging, photoacoustic imaging, and functional optical coherence tomography that specifically detect melanin in the retina. These methods use different contrast mechanisms to detect melanin and provide images with different resolutions and field-of-views, making them complementary to each other.
Collapse
Affiliation(s)
- Maryse Lapierre-Landry
- 1Morgridge Institute for Research, Madison, WI USA.,2Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA.,6Department of Pediatrics, Case Western Reserve University, Cleveland, OH USA
| | - Joseph Carroll
- 3Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI USA.,4Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI USA
| | - Melissa C Skala
- 1Morgridge Institute for Research, Madison, WI USA.,5Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI USA
| |
Collapse
|
29
|
Pan CW, Zhang O, Hu DN, Wu RK, Li J, Zhong H, Hu M. Iris Color and Lens Thickness in Chinese Teenagers. Transl Vis Sci Technol 2018; 7:25. [PMID: 30323998 PMCID: PMC6181192 DOI: 10.1167/tvst.7.5.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/17/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose We aimed to determine the association of iris color with lens thickness (LT) in a school-based sample of Chinese teenagers. Methods In total, 2346 grade 7 students, from 10 middle schools, aged 13 to 14 years in Mojiang located in Southwestern China were included in the analysis. A grading system was developed to assess iris color based on standardized slit-lamp photographs. LT was measured by the LenStar LS900. Refractive error was measured after cycloplegia using an autorefractor and ocular biometric parameters, including axial length (AL), were measured using an IOL Master. Results There was a significant trend of decreasing LTs with darker iris color. On average, eyes with “grade 1” (the lightest) iris color, when compared with those with “grade 5” (the darkest), had greater LTs (mean difference, 0.1 mm). After adjusting for other potential confounders including sex, height, and ALs in generalized estimating equation models, the trend was similar and did not change significantly. Compared with individuals with iris color of grade 1, those with grade 5 had a thinner lens of 0.1 mm (95% confidence interval [CI]: 0.01, 0.19) in sex-adjusted model and a 0.09 mm (95% CI: 0, 0.18) in multivariate-adjusted model. Conclusions Lighter iris color might be associated with greater LTs in Chinese teenagers. The biological mechanisms underlying the association warrant further clarification. Translational Relevance As LT is an important refractive component, knowledge on the effect of iris color on LTs may assist in the design of novel technologies, which could control refractive development.
Collapse
Affiliation(s)
- Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ou Zhang
- Department of General Medicine, Kunming Children's Hospital, Kunming, China
| | - Dan-Ning Hu
- New York Eye and Ear Infirmary at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rong-Kun Wu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jun Li
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Hua Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Hu
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
30
|
Melanins from two selected isolates of Pseudocercospora griseola grown in-vitro: Chemical features and redox activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:207-215. [DOI: 10.1016/j.jphotobiol.2018.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022]
|
31
|
Dawson-Baglien EM, Noland EL, Sledge DG, Kiupel M, Petersen-Jones SM. Physiological characterization of ocular melanosis-affected canine melanocytes. Vet Ophthalmol 2018; 22:132-146. [PMID: 29701286 DOI: 10.1111/vop.12572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cairn terriers with ocular melanosis (OM) accumulate large, heavily pigmented melanocytes in the anterior uvea. Darkly pigmented plaques develop within the sclera, leading us to hypothesize that OM uveal melanocytes may have an abnormal migratory capacity. ANIMALS STUDIED Globes from OM-affected Cairn terriers and unaffected control eyes enucleated for reasons unrelated to this study were used for immunohistochemistry and to culture melanocytes for in vitro cell behavior assays. PROCEDURES The scleral plaques of six dogs were immunolabeled for HMB-45, MelanA, PNL2, CD18, CD204, and Iba-1 and compared with the pigment cells accumulated within the irides. Cultured uveal melanocytes from OM-affected and control dogs were compared using conventional assays measuring cell proliferation, invasion capability, and melanin production. RESULTS Melanocytes isolated from OM eyes had significantly elevated levels of per-cell melanin content and production compared to controls. The majority of pigmented cells in the scleral plaques were HMB45 positive indicating a melanocytic origin. Many were also CD18 positive. No differences were observed between cultured melanocytes from OM-affected and control uvea for standard in vitro proliferation or invasion assays. CONCLUSION Pigmented cells which accumulate in the sclera of OM-affected Cairn terriers are predominantly melanocytes; however, in vitro assays of uveal melanocytes did not reveal differences in migratory behavior between OM and control cells. Migratory behavior of OM-melanocytes may be environment-dependent. We suggest that RNA sequencing and differential expression analysis would be a useful next step in understanding this disease.
Collapse
Affiliation(s)
- Ethan M Dawson-Baglien
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.,Genetics Program, College of Natural Science, Michigan State University, Lansing, MI, USA
| | - Erica L Noland
- Diagnostic Center for Population and Animal Health, Michigan State University, Lansing, MI, USA
| | - Dodd G Sledge
- Diagnostic Center for Population and Animal Health, Michigan State University, Lansing, MI, USA
| | - Matti Kiupel
- Diagnostic Center for Population and Animal Health, Michigan State University, Lansing, MI, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.,Genetics Program, College of Natural Science, Michigan State University, Lansing, MI, USA
| |
Collapse
|
32
|
Joshi SS, Jiang S, Unni E, Goding SR, Fan T, Antony PA, Hornyak TJ. 17-AAG inhibits vemurafenib-associated MAP kinase activation and is synergistic with cellular immunotherapy in a murine melanoma model. PLoS One 2018; 13:e0191264. [PMID: 29481571 PMCID: PMC5826531 DOI: 10.1371/journal.pone.0191264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone which stabilizes client proteins with important roles in tumor growth. 17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of HSP90 ATPase activity, occupies the ATP binding site of HSP90 causing a conformational change which destabilizes client proteins and directs them towards proteosomal degradation. Malignant melanomas have active RAF-MEK-ERK signaling which can occur either through an activating mutation in BRAF (BRAFV600E) or through activation of signal transduction upstream of BRAF. Prior work showed that 17-AAG inhibits cell growth in BRAFV600E and BRAF wildtype (BRAFWT) melanomas, although there were conflicting reports about the dependence of BRAFV600E and BRAFWT upon HSP90 activity for stability. Here, we demonstrate that BRAFWT and CRAF are bound by HSP90 in BRAFWT, NRAS mutant melanoma cells. HSP90 inhibition by 17-AAG inhibits ERK signaling and cell growth by destabilizing CRAF but not BRAFWT in the majority of NRAS mutant melanoma cells. The highly-selective BRAFV600E inhibitor, PLX4032 (vemurafenib), inhibits ERK signaling and cell growth in mutant BRAF melanoma cells, but paradoxically enhances signaling in cells with wild-type BRAF. In our study, we examined whether 17-AAG could inhibit PLX4032-enhanced ERK signaling in BRAFWT melanoma cells. As expected, PLX4032 alone enhanced ERK signaling in the BRAFWT melanoma cell lines Mel-Juso, SK-Mel-2, and SK-Mel-30, and inhibited signaling and cell growth in BRAFV600E A375 cells. However, HSP90 inhibition by 17-AAG inhibited PLX4032-enhanced ERK signaling and inhibited cell growth by destabilizing CRAF. Surprisingly, 17-AAG also stimulated melanin production in SK-Mel-30 cells and enhanced TYRP1 and DCT expression without stimulating TYR production in all three BRAFWT cell lines studied as well as in B16F10 mouse melanoma cells. In vivo, the combination of 17-AAG and cellular immunotherapy directed against Tyrp1 enhanced the inhibition of tumor growth compared to either therapy alone. Our studies support a role for 17-AAG and HSP90 inhibition in enhancing cellular immunotherapy for melanoma.
Collapse
Affiliation(s)
- Sandeep S. Joshi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shunlin Jiang
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Emmanual Unni
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stephen R. Goding
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tao Fan
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Paul A. Antony
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas J. Hornyak
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Differential effects of Zincum metallicum on cell models. HOMEOPATHY 2018; 106:171-180. [DOI: 10.1016/j.homp.2017.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/23/2022]
Abstract
Introduction: Zinc is an essential trace element necessary for life. Traditional and complementary medicines use zinc-based formulations to treat different classes of diseases. Basic research on homeopathic preparations of zinc are rare and there are a few published clinical cases describing its effects on patients. The use of cell-based models in drug screening is a reliable source of evidence.Methods: We sought to investigate experimental end-points using cell-based models to determine the effects of dilutions of Zincum metallicum prepared according to the Brazilian Homeopathic Pharmacopoeia. Murine RAW 264.7 macrophages and melanoma B16-F10 cell lines were cultured according to standard procedures. Cells were treated with either 5c, 6c or 30c Zincum metallicum and control cells with its respective vehicle (5c, 6c, or 30c Lactose). Macrophage activation by CD54 immunolabeling and intracellular reactive oxygen species (ROS) using DCFH-DA (2,7-dichlorodihydrofluorescein diacetate) were detected by flow cytometry. Phagocytic capacity (endocytic index) was quantified by light microscopy. Features of melanoma cells were analyzed by colorimetric assays to determine melanin content and cell proliferation rate. All obtained data were submitted to normality test followed by statistical analysis.Results: Zincum metallicum 6c shifted high ROS-producing macrophages to a low ROS-producing phenotype. Macrophage CD54 expression was increased by Zincum metallicum 5c. No changes in endocytic index were observed. Melanoma cells were not affected by any treatment we tested.Conclusions: Differing responses and non-linearity were found on macrophages challenged with Zincum metallicum at high dilutions. No changes in melanoma cells were observed. Customised assays using target cells can be useful to investigate high-dilution effects. Other cell types and conditions should be explored.
Collapse
|
34
|
Matsuda KM, Lopes-Calcas A, Honke ML, O'Brien-Moran Z, Buist R, West M, Martin M. Ex vivo tissue imaging for radiology-pathology correlation: a pilot study with a small bore 7-T MRI in a rare pigmented ganglioglioma exhibiting complex MR signal characteristics associated with melanin and hemosiderin. J Med Imaging (Bellingham) 2017; 4:036001. [PMID: 28924575 PMCID: PMC5596201 DOI: 10.1117/1.jmi.4.3.036001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/09/2017] [Indexed: 12/02/2022] Open
Abstract
To advance magnetic resonance imaging (MRI) technologies further for in vivo tissue characterization with histopathologic validation, we investigated the feasibility of ex vivo tissue imaging of a surgically removed human brain tumor as a comprehensive approach for radiology–pathology correlation in histoanatomically identical fashion in a rare case of pigmented ganglioglioma with complex paramagnetic properties. Pieces of surgically removed ganglioglioma, containing melanin and hemosiderin pigments, were imaged with a small bore 7-T MRI scanner to obtain T1-, T2-, and T2*-weighted image and diffusion tensor imaging (DTI). Corresponding histopathological slides were prepared for routine hematoxylin and eosin stain and special stains for melanin and iron/hemosiderin to correlate with MRI signal characteristics. Furthermore, mean diffusivity (MD) maps were generated from DTI data and correlated with cellularity using image analysis. While the presence of melanin was difficult to interpret in in vivo MRI with certainty due to concomitant hemosiderin pigments and calcium depositions, ex vivo tissue imaging clearly demonstrated pieces of tissue exhibiting the characteristic MR signal pattern for melanin with pathologic confirmation in a histoanatomically identical location. There was also concordant correlation between MD and cellularity. Although it is still in an initial phase of development, ex vivo tissue imaging is a promising approach, which offers radiology–pathology correlation in a straightforward and comprehensive manner.
Collapse
Affiliation(s)
- Kant M Matsuda
- University of Manitoba, Max Rady College of Medicine, Department of Pathology, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada.,Health Sciences Centre Winnipeg, Department of Pathology, Diagnostic Services of Manitoba, Winnipeg, Manitoba, Canada.,Memorial Sloan-Kettering Cancer Center, Department of Pathology, New York, New York, United States
| | - Ana Lopes-Calcas
- University of Manitoba, Max Rady College of Medicine, Department of Pathology, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Michael L Honke
- University of Winnipeg, Department of Physics, Winnipeg, Manitoba, Canada
| | - Zoe O'Brien-Moran
- University of Winnipeg, Department of Physics, Winnipeg, Manitoba, Canada
| | - Richard Buist
- University of Manitoba, Max Rady College of Medicine, Department of Radiology, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Michael West
- University of Manitoba, Max Rady College of Medicine, Department of Neurosurgery, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Melanie Martin
- University of Winnipeg, Department of Physics, Winnipeg, Manitoba, Canada.,University of Manitoba, Max Rady College of Medicine, Department of Radiology, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| |
Collapse
|
35
|
Jo H, Choi M, Sim J, Viji M, Li S, Lee YH, Kim Y, Seo SY, Zhou Y, Lee K, Kim WJ, Hong JT, Lee H, Jung JK. Synthesis and biological evaluation of caffeic acid derivatives as potent inhibitors of α-MSH-stimulated melanogenesis. Bioorg Med Chem Lett 2017; 27:3374-3377. [PMID: 28619537 DOI: 10.1016/j.bmcl.2017.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 11/17/2022]
Abstract
We have disclosed our effort to develop caffeic acid derivatives as potent and non-toxic inhibitors of α-MSH-stimulated melanogenesis to treat pigmentation disorders and skin medication including a cosmetic skin-whitening agent. The SAR studies revealed that cyclohexyl ester and secondary amide derivatives of caffeic acid showed significant inhibitory activities.
Collapse
Affiliation(s)
- Hyeju Jo
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Minho Choi
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jaeuk Sim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Siyuan Li
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Young Hee Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Youngsoo Kim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Seung-Yong Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea.
| | - Yuanyuan Zhou
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Wun-Jae Kim
- College of Medicines, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Heesoon Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea.
| |
Collapse
|
36
|
Thang ND, Diep PN, Lien PTH, Lien LT. Polygonum multiflorum root extract as a potential candidate for treatment of early graying hair. J Adv Pharm Technol Res 2017; 8:8-13. [PMID: 28217548 PMCID: PMC5288971 DOI: 10.4103/2231-4040.197332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite Polygonum multiflorum (PM) has been experiencely used as a drug to treat early graying hair phenomenon in Asian countries for a long time, there is limited study examined the real biological effects of PM on hair graying in vitro and in vivo. In this study, we investigated the effects of PM root extract (PM-RE) on melanin synthesis in human melanoma SKMEL-28 cells and embryos/larvae of wild-type strain AB zebrafish. We also preliminary revealed the molecular mechanism of early hair graying phenomenon in both in vitro and in vivo models. Our results showed that PM-RE significantly induced melanin synthesis in melanin-producing SKMEL-28 melanoma cells and also in zebrafish embryos/larvae at 4-day postfertilization through activation of MC1R/MITF/tyrosinase-signaling pathway. We also investigated the differences in genotype between graying hair follicle and black hair follicle of young peoples and found that early hair graying phenomenon may be related to downregulation of MC1R/MITF/tyrosinase pathway. Taken together, we suggested that PM-RE at safe doses could be used as a potential agent for the treatment of early hair graying and other loss pigmentation-related diseases.
Collapse
Affiliation(s)
- Nguyen Dinh Thang
- Department of Biochemistry and Plant Physiology, Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam; National Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Pham Ngoc Diep
- Department of Biochemistry and Plant Physiology, Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam; National Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Pham Thi Huong Lien
- Department of Biochemistry and Plant Physiology, Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam; National Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Le Thi Lien
- Department of Biochemistry and Plant Physiology, Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam; National Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
37
|
Thanh DTH, Thanh NL, Thang ND. Toxicological and melanin synthesis effects of Polygonum multiflorum root extracts on zebrafish embryos and human melanocytes. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0042-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Beberok A, Wrześniok D, Rzepka Z, Rok J, Delijewski M, Otręba M, Respondek M, Buszman E. Effect of fluoroquinolones on melanogenesis in normal human melanocytes HEMn-DP: a comparative in vitro study. Cutan Ocul Toxicol 2016; 36:169-175. [PMID: 27572617 DOI: 10.1080/15569527.2016.1229674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Fluoroquinolones are one of the most commonly prescribed classes of antibiotics. However, their use is often connected with high risk of phototoxic reactions that lead to various skin or eye disorders. The aim of this study was to examine the effect of ciprofloxacin, lomefloxacin, moxifloxacin and fluoroquinolone derivatives with different phototoxic potential, on the viability and melanogenesis in melanocytes. MATERIALS AND METHODS Normal human epidermal melanocytes, dark pigmented (HEMn-DP) were used as an in vitro model system. The effect of the tested antibiotics on cell viability and melanization in pigmented cells was investigated using a spectrophotometric method. The WST-1 assay was used to detect the cytotoxic effect of antibiotics. RESULTS Ciprofloxacin, lomefloxacin and moxifloxacin induced the concentration-dependent loss in melanocytes viability. The values of EC50 for the tested fluoroquinolone derivatives were found to be 2.0 mM for ciprofloxacin, 0.51 mM for lomefloxacin and 0.27 mM for moxifloxacin. The exposure of cells to different concentrations of the analyzed drugs resulted in decrease in melanin content and tyrosinase activity. The highest decrease was observed for lomefloxacin which may explain its high phototoxic potential in vivo. The role of melanin in the mechanism of the toxicity of fluoroquinolones was discussed and the obtained results were compared with the previously obtained data concerning light-pigmented melanocytes (HEMa-LP). CONCLUSIONS The results obtained in vitro suggest that the phototoxic potential of fluoroquinolones in vivo depends on specific drug-melanin interaction, the ability of drugs to affect melanogenesis as well as on the degree of melanocytes pigmentation.
Collapse
Affiliation(s)
- Artur Beberok
- a Department of Pharmaceutical Chemistry , Medical University of Silesia in Katowice , Sosnowiec , Poland
| | - Dorota Wrześniok
- a Department of Pharmaceutical Chemistry , Medical University of Silesia in Katowice , Sosnowiec , Poland
| | - Zuzanna Rzepka
- a Department of Pharmaceutical Chemistry , Medical University of Silesia in Katowice , Sosnowiec , Poland
| | - Jakub Rok
- a Department of Pharmaceutical Chemistry , Medical University of Silesia in Katowice , Sosnowiec , Poland
| | - Marcin Delijewski
- a Department of Pharmaceutical Chemistry , Medical University of Silesia in Katowice , Sosnowiec , Poland
| | - Michał Otręba
- a Department of Pharmaceutical Chemistry , Medical University of Silesia in Katowice , Sosnowiec , Poland
| | - Michalina Respondek
- a Department of Pharmaceutical Chemistry , Medical University of Silesia in Katowice , Sosnowiec , Poland
| | - Ewa Buszman
- a Department of Pharmaceutical Chemistry , Medical University of Silesia in Katowice , Sosnowiec , Poland
| |
Collapse
|
39
|
Eidet JR, Reppe S, Pasovic L, Olstad OK, Lyberg T, Khan AZ, Fostad IG, Chen DF, Utheim TP. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway. Sci Rep 2016; 6:22671. [PMID: 26940175 PMCID: PMC4778122 DOI: 10.1038/srep22671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin’s potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated.
Collapse
Affiliation(s)
- J R Eidet
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - S Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - L Pasovic
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - O K Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - T Lyberg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - A Z Khan
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - I G Fostad
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - D F Chen
- Schepens Eye Research Institute, Harvard Medical School/Massachusetts Eye and Ear, Boston, MA
| | - T P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Effect of norfloxacin and moxifloxacin on melanin synthesis and antioxidant enzymes activity in normal human melanocytes. Mol Cell Biochem 2014; 401:107-14. [PMID: 25433710 PMCID: PMC4315488 DOI: 10.1007/s11010-014-2297-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Fluoroquinolone antibiotics provide broad-spectrum coverage for a number of infectious diseases, including respiratory as well as urinary tract infections. One of the important adverse effects of these drugs is phototoxicity which introduces a serious limitation to their use. To gain insight the molecular mechanisms underlying the fluoroquinolones-induced phototoxic side effects, the impact of two fluoroquinolone derivatives with different phototoxic potential, norfloxacin and moxifloxacin, on melanogenesis and antioxidant enzymes activity in normal human melanocytes HEMa-LP was determined. Both drugs induced concentration-dependent loss in melanocytes viability. The value of EC50 for these drugs was found to be 0.5 mM. Norfloxacin and moxifloxacin suppressed melanin biosynthesis; antibiotics were shown to inhibit cellular tyrosinase activity and to reduce melanin content in melanocytes. When comparing the both analyzed fluoroquinolones, it was observed that norfloxacin possesses greater inhibitory effect on tyrosinase activity in melanocytes than moxifloxacin. The extent of oxidative stress in cells was assessed by measuring the activity of antioxidant enzymes: SOD, CAT, and GPx. It was observed that norfloxacin caused higher depletion of antioxidant status in melanocytes when compared with moxifloxacin. The obtained results give a new insight into the mechanisms of fluoroquinolones toxicity directed to pigmented tissues. Moreover, the presented differences in modulation of biochemical processes in melanocytes may be an explanation for various phototoxic activities of the analyzed fluoroquinolone derivatives in vivo.
Collapse
|
41
|
Wrześniok D, Otręba M, Beberok A, Buszman E. Impact of kanamycin on melanogenesis and antioxidant enzymes activity in melanocytes--an in vitro study. J Cell Biochem 2014; 114:2746-52. [PMID: 23804282 DOI: 10.1002/jcb.24623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 06/20/2013] [Indexed: 01/16/2023]
Abstract
Aminoglycosides, broad spectrum aminoglycoside antibiotics, are used in various infections therapy due to their good antimicrobial characteristics. However, their adverse effects such as nephrotoxicity and auditory ototoxicity, as well as some toxic effects directed to pigmented tissues, complicate the use of these agents. This study was undertaken to investigate the effect of aminoglycoside antibiotic-kanamycin on viability, melanogenesis and antioxidant enzymes activity in cultured human normal melanocytes (HEMa-LP). It has been demonstrated that kanamycin induces concentration-dependent loss in melanocytes viability. The value of EC50 was found to be ~6.0 mM. Kanamycin suppressed melanin biosynthesis: antibiotic was shown to inhibit cellular tyrosinase activity and to reduce melanin content in normal human melanocytes. Significant changes in the cellular antioxidant enzymes: SOD, CAT and GPx were stated in melanocytes exposed to kanamycin. Moreover, it was observed that kanamycin caused depletion of antioxidant defense sytem. It is concluded that the inhibitory effect of kanamycin on melanogenesis and not sufficient antioxidant defense mechanism in melanocytes in vitro may explain the potential mechanisms of undesirable side effects of this drug directed to pigmented tissues in vivo.
Collapse
Affiliation(s)
- Dorota Wrześniok
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| | | | | | | |
Collapse
|
42
|
Lee JY, Choi HJ, Chung TW, Kim CH, Jeong HS, Ha KT. Caffeic acid phenethyl ester inhibits alpha-melanocyte stimulating hormone-induced melanin synthesis through suppressing transactivation activity of microphthalmia-associated transcription factor. JOURNAL OF NATURAL PRODUCTS 2013; 76:1399-1405. [PMID: 23876066 DOI: 10.1021/np400129z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Caffeic acid phenethyl ester (1), a natural compound found in various plants and propolis, is a well-known anti-inflammatory, immunomodulatory, and cytotoxic agent. The present study aimed to investigate the molecular events underlying the antimelanogenic activity of 1 in alpha-melanocyte stimulating hormone (α-MSH)-stimulated B16-F10 melanoma cells. In this investigation, 1 effectively reduced α-MSH-stimulated melanin synthesis by suppressing expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2), although this compound did not directly inhibit tyrosinase enzyme activity. On the other hand, the expression and nuclear translocation of microphthalmia-associated transcription factor (MITF) as a key transcription factor for tyrosinase expression regulating melanogenesis were not affected by treatment with 1. The upstream signaling pathways including cAMP response element-binding protein (CREB), glycogen synthase kinase-3β (GSK-3β), and Akt for activation and expression of MITF were also not influenced by 1. Interestingly, 1 inhibited transcriptional activity of a tyrosinase promoter by suppressing the interaction of MITF protein with an M-box containing a CATGTG motif on the tyrosinase promoter. Given the important role of MITF in melanogenesis, suppression of 1 on the function of MITF to transactivate tyrosinase promoter may present a novel therapeutic approach to treat hyperpigmentation disorders.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Division of Applied Medicine, School of Korean Medicine, Pusan National University , Yangsan, Gyeongnam, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:965312. [PMID: 23781272 PMCID: PMC3678497 DOI: 10.1155/2013/965312] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/29/2013] [Accepted: 05/13/2013] [Indexed: 01/30/2023]
Abstract
To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content.
Collapse
|
44
|
Szabó I, Crich SG, Alberti D, Kálmán FK, Aime S. Mn loaded apoferritin as an MRI sensor of melanin formation in melanoma cells. Chem Commun (Camb) 2012; 48:2436-8. [PMID: 22273600 DOI: 10.1039/c2cc17801j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mn(III)-loaded apoferritin is promptly reduced to Mn(II)-apoferritin by the oxidation of L-DOPA to melanin. The process is nicely witnessed by a marked relaxation enhancement of water proton relaxation rate that has been detected both in cultured melanoma cells and in tumor animal models.
Collapse
Affiliation(s)
- Ibolya Szabó
- Center for Molecular Imaging, Department of Chemistry IFM, University of Torino, via Nizza 52, Torino, Italy
| | | | | | | | | |
Collapse
|
45
|
Comparison of eumelanin and pheomelanin content between cultured uveal melanoma cells and normal uveal melanocytes. Melanoma Res 2009; 19:75-9. [PMID: 19262410 DOI: 10.1097/cmr.0b013e328329ae49] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Levels of eumelanin (EM) and pheomelanin (PM) of uveal melanoma cells have not been measured and compared with those of normal uveal melanocytes. EM and PM amounts in four immortal human uveal melanoma cell lines were measured by chemical degradation and microanalytical high-performance liquid chromatography and compared with those from 39 normal human uveal melanocyte cell lines reported earlier by us. Uveal melanoma cells had a very low EM/PM ratio (0.41), which was very significantly lower than that from normal melanocytes isolated both from eyes with light-colored irides (1.31) or dark-colored irides (7.32). The low EM/PM ratio was caused by a low level of EM in melanoma cells, which was only 1/8 and 1/31 of that in melanocytes from eyes with light-colored irides and dark-colored irides, respectively. The PM level in uveal melanoma cells was not statistically different from normal melanocytes from eyes with light-colored irides or dark-colored irides. The total quantity of EM and PM in uveal melanoma cells was significantly less than that in normal melanocytes. This difference was because of the low level of EM in uveal melanoma cells. The results of these studies indicate that the changes of melanin content in uveal melanoma cells mainly relate to the decrease of EM content. Low melanin and EM content may make melanoma cells more susceptible to mutagenic effects of ultraviolet radiation and oxidative stress, which may enhance the proliferation of melanoma cells and accelerate progression of melanoma.
Collapse
|