1
|
Seididamyeh M, Netzel ME, Mereddy R, Harmer JR, Sultanbawa Y. Effect of gum Arabic on antifungal photodynamic activity of curcumin against Botrytis cinerea spores. Int J Biol Macromol 2024; 283:137019. [PMID: 39481702 DOI: 10.1016/j.ijbiomac.2024.137019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
This study investigated the effect of gum Arabic on curcumin's phototoxicity against Botrytis cinerea, a significant cause of postharvest losses in horticultural produce. Curcumin-loaded nanoparticle suspensions and emulsions stabilized with gum Arabic were prepared and their absorbance, fluorescence emission, physicochemical properties, antimicrobial photodynamic activity (using response surface methodology (RSM)), and reactive oxygen species (ROS) generation (via electron paramagnetic resonance (EPR) spectroscopy) were evaluated. Fluorescence emission exhibited a blue shift (510-550 nm) in both formulations, with emulsions showing higher intensities due to a more hydrophobic environment. Gum Arabic concentration significantly influenced the physicochemical properties of both suspensions, with nanoparticle size decreasing from 572.80 nm to 202.80 nm as gum Arabic concentration increased from 0.5 % to 2.5 % (at 65 μM curcumin). Nanoparticle suspensions demonstrated higher antimicrobial efficacy, reducing B. cinerea spores by 0.39-3.40 log10(CFU.ml-1), compared to 0.00-0.46 log10(CFU.ml-1) in emulsions. The phototoxic effect was dependent on curcumin concentration and light irradiance, as demonstrated by RSM. EPR confirmed the generation of superoxide anion and hydroxyl radicals in both formulations, which indicated a Type I photodynamic mechanism, with nanoparticle suspensions having a sustained ROS generation. Overall, gum Arabic did not impair curcumin's antifungal photodynamic activity, making it as a promising stabiliser for curcumin-based treatments.
Collapse
Affiliation(s)
- Maral Seididamyeh
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, 4068, Australia.
| | - Michael E Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, 4068, Australia.
| | - Ram Mereddy
- Department of Agriculture and Fisheries, Queensland Government, Coopers Plains, QLD 4108, Australia.
| | - Jeffrey R Harmer
- The Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, 4068, Australia.
| |
Collapse
|
2
|
Kitjanukit N, Neamsung W, Karawek A, Lertthanaphol N, Chongkol N, Hiramatsu K, Sekiguchi T, Pornsuwan S, Sakurai T, Jonglertjunya W, Phadungbut P, Ichihashi Y, Srinives S. Effects of alcohols as sacrificial reagents on a copper-doped sodium dititanate nanosheets/graphene oxide photocatalyst in CO 2 photoreduction. RSC Adv 2024; 14:27980-27989. [PMID: 39224628 PMCID: PMC11368040 DOI: 10.1039/d4ra04585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Carbon dioxide (CO2) photoreduction is an intriguing approach that converts CO2 into high-value substances with the assistance of a photocatalyst. Key to effective photoreduction is to promote the interaction of photo-induced holes and a sacrificial reagent (SCR), separating the holes from photoelectrons and enhancing the rate of the subsequent product generation. Methanol, ethanol, isopropanol, and water SCRs were tested for their ability to assist a copper-doped sodium dititanate nanosheets/graphene oxide heterostructure (CTGN) in CO2 photoreduction. The CTGN photocatalyst was suspended in a CO2-saturated aqueous solution with the assigned SCR while illuminated by a mercury lamp. Product samples from the gas and liquid phases were analyzed for targeted product compositions. Methanol SCR exhibited the best performance in facilitating CO2 photoreduction, producing ethanol as the main product at a total carbon consumption (TCC) of 6544 μmol gcat -1. The remarkable performance of methanol is attributed to the high diffusivity and excellent stability of the hydroxymethyl radical that developed during the photoreduction. The kinetics studies revealed the first and second order for the CO2 depletion and product generation rates, respectively, for the alcohol SCRs.
Collapse
Affiliation(s)
- Nutkamol Kitjanukit
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| | - Wannisa Neamsung
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| | - Apisit Karawek
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| | - Napat Lertthanaphol
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| | - Napatr Chongkol
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| | - Koki Hiramatsu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University Rokkodai-cho 1-1, Nada Kobe 657-8501 Japan
| | - Tomoya Sekiguchi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University Rokkodai-cho 1-1, Nada Kobe 657-8501 Japan
| | - Soraya Pornsuwan
- Department of Chemistry, Faculty of Science and Center of Excellence for Innovation in Chemistry, Mahidol University Bangkok 10400 Thailand
| | - Takahiro Sakurai
- Research Facility Center for Science and Technology, Kobe University Rokkodai-cho 1-1, Nada Kobe 657-8501 Japan
| | - Woranart Jonglertjunya
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| | - Poomiwat Phadungbut
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| | - Yuichi Ichihashi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University Rokkodai-cho 1-1, Nada Kobe 657-8501 Japan
| | - Sira Srinives
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| |
Collapse
|
3
|
Wang D, Pan Q, Yang J, Gong S, Liu X, Fu Y. Effects of Mixtures of Engineered Nanoparticles and Cocontaminants on Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2598-2614. [PMID: 38291652 DOI: 10.1021/acs.est.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The widespread application of nanotechnology inevitably leads to an increased release of engineered nanoparticles (ENPs) into the environment. Due to their specific physicochemical properties, ENPs may interact with other contaminants and exert combined effects on the microbial community and metabolism of anaerobic digestion (AD), an important process for organic waste reduction, stabilization, and bioenergy recovery. However, the complicated interactions between ENPs and other contaminants as well as their combined effects on AD are often overlooked. This review therefore focuses on the co-occurrence of ENPs and cocontaminants in the AD process. The key interactions between ENPs and cocontaminants and their combined influences on AD are summarized from the available literature, including the critical mechanisms and influencing factors. Some sulfides, coagulants, and chelating agents have a dramatic "detoxification" effect on the inhibition effect of ENPs on AD. However, some antibiotics and surfactants increase the inhibition of ENPs on AD. The reasons for these differences may be related to the interactive effects between ENPs and cocontaminants, changes of key enzyme activities, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS) production, and microbial communities. New scientific opportunities for a better understanding of the coexistence in real world situations are converging on the scale of nanoparticles.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Qinyi Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Jingnan Yang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Water Resources and Environmental Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sheng Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
4
|
Malinowska I, Kubica P, Madajski P, Ostrowski A, Gómez Polo C, Carvera L, Bednarski W, Zielińska-Jurek A. Synthesis, characterization, and application of 2D/2D TiO 2-GO-ZnFe 2O 4 obtained by the fluorine-free lyophilization method for solar light-driven photocatalytic degradation of ibuprofen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35929-35944. [PMID: 36538221 PMCID: PMC10039847 DOI: 10.1007/s11356-022-24587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
In this study, we report the potential of 2D/2D TiO2-GO-ZnFe2O4 photocatalyst obtained using the fluorine-free lyophilization technique for the degradation of ibuprofen belonging to the group of active pharmaceutical ingredients (API). The improved ibuprofen degradation under simulated solar light was achieved in the presence of a composite of 2D TiO2 combined with GO and embedded ZnFe2O4, which additionally provides superparamagnetic properties and enables photocatalyst separation after the photodegradation process. After only 20 min of the photodegradation process in the presence of 2D/2D TiO2-GO-ZnFe2O4 composite, more than 90% of ibuprofen was degraded under simulated solar light, leading to non-toxic and more susceptible to biodegradation intermediates. At the same time, photolysis of ibuprofen led to the formation of more toxic intermediates. Furthermore, based on the photocatalytic degradation analysis, the degradation by-products and possible photodegradation pathways of ibuprofen were investigated. The photodegradation tests and electronic spin resonance analyses indicated the significant involvement of superoxide radicals and singlet oxygen in the ibuprofen photodegradation process.
Collapse
Affiliation(s)
- Izabela Malinowska
- Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Paweł Kubica
- Department of Analytical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Madajski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Adam Ostrowski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Cristina Gómez Polo
- Departamento de Ciencias-INAMAT2, Universidad Pública de Navarra, Campus de Arrosadia, 31006, Pamplona, Spain
| | - Laura Carvera
- Departamento de Ciencias-INAMAT2, Universidad Pública de Navarra, Campus de Arrosadia, 31006, Pamplona, Spain
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Anna Zielińska-Jurek
- Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
5
|
Abstract
The interaction of light with semiconducting materials becomes the center of a wide range of technologies, such as photocatalysis. This technology has recently attracted increasing attention due to its prospective uses in green energy and environmental remediation. The characterization of the electronic structure of the semiconductors is essential to a deep understanding of the photocatalytic process since they influence and govern the photocatalytic activity by the formation of reactive radical species. Electron paramagnetic resonance (EPR) spectroscopy is a unique analytical tool that can be employed to monitor the photoinduced phenomena occurring in the solid and liquid phases and provides precise insights into the dynamic and reactivity of the photocatalyst under different experimental conditions. This review focus on the application of EPR in the observation of paramagnetic centers formed upon irradiation of titanium dioxide and niobium oxide photocatalysts. TiO2 and Nb2O5 are very well-known semiconductors that have been widely used for photocatalytic applications. A large number of experimental results on both materials offer a reliable platform to illustrate the contribution of the EPR studies on heterogeneous photocatalysis, particularly in monitoring the photogenerated charge carriers, trap states, and surface charge transfer steps. A detailed overview of EPR-spin trapping techniques in mechanistic studies to follow the nature of the photogenerated species in suspension during the photocatalytic process is presented. The role of the electron donors or the electron acceptors and their effect on the photocatalytic process in the solid or the liquid phase are highlighted.
Collapse
|
6
|
Zhang B, Tang X, Fan C, Hao W, Zhao Y, Zeng Y. Cationic polyacrylamide alleviated the inhibitory impact of ZnO nanoparticles on anaerobic digestion of waste activated sludge through reducing reactive oxygen species induced. WATER RESEARCH 2021; 205:117651. [PMID: 34560617 DOI: 10.1016/j.watres.2021.117651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
The enrichment of zinc oxide nanoparticles (ZnO NPs) in waste activated sludge (WAS) has raised concerns about their potential impact on anaerobic digestion of WAS. To date, there is no information regarding how to attenuate the negative effects of ZnO NPs on WAS anaerobic digestion. In this study, it was found that the appropriate amount of cationic polyacrylamide (cPAM) could mitigate the toxicity of ZnO NPs. During short-term exposure, the supplement of 4.0 mg cPAM/g TSS significantly restored biochemical methane potential from 28.6% inhibition to 9.3% inhibition compared with the control digester (P < 0.01). The spiked cPAM promoted the solubilization and acidification stages by weakening the contact between ZnO NPs and anaerobes in anaerobic digestion process, thus providing abundant substance for sequent bio-utilization. In the long-term semi-continues operated reactor, the continuous replacement of cPAM (at 4.0 mg/g TSS) significantly strengthened the recovery of VS destruction rate (20.3% to 26.4%, P < 0.01) and the daily yield of methane (93.5 mL/d to 124.2 mL/d, P < 0.01). Consistent with the restored performance, the application of cPAM increased the total microbial communities and the relative abundances of dominant acidogens and methanogens. Further explorations showed decreased toxicity of ZnO NPs primarily attributed to the decline of reactive oxygen species (ROS) induced by ZnO NPs.
Collapse
Affiliation(s)
- Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Wanle Hao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yilin Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanjing Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
7
|
Pradhan A, Fernandes M, Martins PM, Pascoal C, Lanceros-Méndez S, Cássio F. Can photocatalytic and magnetic nanoparticles be a threat to aquatic detrital food webs? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144576. [PMID: 33482552 DOI: 10.1016/j.scitotenv.2020.144576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Freshwaters are likely to serve as reservoirs for engineered nanomaterials (ENMs) due to their accelerated unintentional release, increasing the relevance of assessing their impacts on aquatic biota and the ecosystem processes they drive. Stream-dwelling microbes, particularly fungi, and invertebrate shredders play an essential role in the decomposition of organic matter and transfer of energy to higher trophic levels. We assessed the impacts of two photocatalytic (nano-TiO2 and erbium doped nano-TiO2) and one magnetic (nano-CoFe2O4) ENMs on detrital-based food webs in freshwaters by exposing chestnut leaves, colonized by stream-dwelling microbes, to a series of concentrations (0.25-150 mg L-1) of these ENMs. Microbial decomposition and biomass of fungal communities, associated with leaves, were not affected by the ENMs. However, the activities of antioxidant enzymes of microbial decomposers were significantly (P < 0.05) stimulated by ENMs in a concentration-dependent way, suggesting oxidative stress in stream microbial communities. The stronger responses of these stress biomarkers against nano-TiO2 (increase upto 837.5% for catalase, 1546.8% for glutathione peroxidase and 1154.6% for glutathione S-transferase) suggest a higher toxicity of this ENM comparing to the others. To determine whether the effects could be transferred across trophic levels, the invertebrate shredder Sericostoma sp. was exposed to ENMs (1 and 50 mg L-1) for 5 days either via contaminated water or contaminated food (leaf litter). Leaf consumption rate by shredders decreased significantly (P < 0.05) with increasing concentrations of ENMs via food or water; the effects were more pronounced when exposure occurred via contaminated food (up to 99.3%, 90.7% and 90.3% inhibition by nano-Er:TiO2, nano-CoFe2O4 and nano-TiO2, respectively). Overall, the tested photocatalytic and magnetic ENMs can be harmful to microbial decomposers and invertebrate shredders further compromising detrital-based food webs in streams.
Collapse
Affiliation(s)
- Arunava Pradhan
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Marta Fernandes
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Centre of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Pedro M Martins
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Centre of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Centre of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Fernanda Cássio
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Abdel-Latif HMR, Dawood MAO, Menanteau-Ledouble S, El-Matbouli M. Environmental transformation of n-TiO 2 in the aquatic systems and their ecotoxicity in bivalve mollusks: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110776. [PMID: 32474243 DOI: 10.1016/j.ecoenv.2020.110776] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Over the past decades, titanium dioxide nanoparticles (n-TiO2) have been extensively used in several industrial applications and the manufacture of novel consumer products. Although strict regulations have been put in place to limit their release into the aquatic environment, these nanoparticles can still be found at elevated levels within the environment, which can result in toxic effects on exposed organisms and has possible implications in term of public health. Bivalve mollusks are a unique and ideal group of shellfish for the study and monitoring the aquatic pollution by n-TiO2 because of their filter-feeding behaviour and ability to accumulate toxicants in their tissues. In these animals, exposure to n-TiO2 leads to oxidative stress, immunotoxicity, neurotoxicity, and genotoxicity, as well as behavioral and physiological changes. This review summarizes the uptake, accumulation, and fate of n-TiO2 in aquatic environments and the possible interactions between n-TiO2 and other contaminants such as heavy metals and organic pollutants. Moreover, the toxicological impacts and mechanisms of action are discussed for a wide range of bivalve mollusks. This data underlines the pressing need for additional knowledge and future research plans for the development of control strategies to mitigate the release of n-TiO2 to the aquatic environment to prevent the toxicological impacts on bivalves and protect public health.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Behera province, Egypt.
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt; School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA.
| | | | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
9
|
Arabeyyat ZH, Al-Awady MJ, Greenway GM, Paunov VN, Rotchell JM. Toxicity of polyelectrolyte-functionalized titania nanoparticles in zebrafish (Danio rerio) embryos. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3137-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractWe investigated the effects of short-term exposure of bare TiO2NPs and polyelectrolyte-coated TiO2NPs in the 5–25 nm size range, at relatively high concentrations (of 500 and 1000 mg/L) under light or dark conditions, in D. rerio embryos. The biological endpoints investigated included embryo viability and mRNA transcript levels of antioxidant and membrane transport genes relative to control embryos. The presence of nanoparticles on the surface of embryos was assessed using TEM. The results confirm an accumulation of TiO2NPs on the outer surface (chorion) of the embryo, but not within the embryo. No significant difference in embryo viability was detected following each exposure regime. The expression of antioxidant biomarker, SOD2, was significantly impacted by the type of TiO2NP, with TiO2NPs/PSS/PAH coating exposure showing down regulation; the concentration of the nanoparticles, with down regulation at 500 mg/L; and dark/light condition with down regulation in the light. The expression levels of the hypoxia and membrane markers, HIF1 and Pxmp2, were not significantly impacted by any factor. The study indicates that SOD2 mRNA expression levels may be useful in the detection of apparent oxidative stress induced by the titania nanoparticle build up on the embryo chorion surface.
Collapse
|
10
|
Jing L, Wang D, Xu Y, Xie M, Yan J, He M, Song Z, Xu H, Li H. Porous defective carbon nitride obtained by a universal method for photocatalytic hydrogen production from water splitting. J Colloid Interface Sci 2020; 566:171-182. [PMID: 32004957 DOI: 10.1016/j.jcis.2020.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 01/03/2023]
Abstract
For the first time, herein this work, we have developed an effective and adaptable method to introduce defects onto the polymeric carbon nitride by simply grinding urea with urea nitrate which resulting new carbon nitride composite (UNU-C3N4) and melamine with urea nitrate which resulting new carbon nitride composite (UNM-C3N4). The UNU-C3N4 reveals high performance towards photocatalytic hydrogen production and as well as photocatalytic removal of contaminants. The results confirm that the defects enhanced the specific surface area, and improved performance of adsorbed oxygen which beneficial to generate more active radicals and more conducive sties to improve d the overall photocatalytic performance. The high N, H, and O content-enhanced electron polarization effects, by introducing the additional N, H, and O atoms into the g-C3N4 matrix, which will increase the charge transfer rate and charge separation efficiency. At the same time, the results of ESR also expression that the new type of as-prepared carbon nitride samples exhibit abundant of hydrogen radical (H) formation, which is also assist to improve the photocatalytic hydrogen production performance. As expected, the H2 evolution rate of UNU-C3N4(or UNM-C3N4) underneath simulated solar light irradiation is 9.93 times (13.76 times) than that of U-C3N4 (urea as raw material) (or M-C3N4 (melamine as raw material)). The high hydrogen evolution rates of UNU-C3N4 and UNM-C3N4 are 830.94 and 556.79 μmol g-1 h-1 under the visible-light irradiation, respectively. Meanwhile, the synthesized UNU-C3N4 and UNM-C3N4 material are demonstrated an efficient ability to degrade pollutants. In general, this work provides a viable way to introduce defects and hydrogen bands into the structure of carbon nitride.
Collapse
Affiliation(s)
- Liquan Jing
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Duidui Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Meng Xie
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jia Yan
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Minqiang He
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhilong Song
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Xu
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
11
|
Zhang XM, Li Y, Gu YX, Zhang CN, Lai HC, Shi JY. Ta-Coated Titanium Surface With Superior Bacteriostasis And Osseointegration. Int J Nanomedicine 2019; 14:8693-8706. [PMID: 31806965 PMCID: PMC6842742 DOI: 10.2147/ijn.s218640] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Although tantalum (Ta)-based coatings have been proven to have good antibacterial activity, the underlying mechanism and in vivo biological performance remain unclear, which are essential for the clinical application of Ta-coated biomaterials as dental implants. Purpose The main objective of this study is to investigate the antibacterial activity of Ta-modified titanium (Ti) implants against peri-implantitis-related microbes and the potential molecular mechanisms. Methods Fusobacterium nucleatum and Porphyromonas gingivalis were selected to evaluate the antibacterial activity and potential antibacterial mechanism of Ta modification. The in vivo biocompatibility of Ta-modified implants was also evaluated. Results The results showed that Ta-modified surface performed excellent antimicrobial activity against Fusobacterium nucleatum and Porphyromonas gingivalis. Micro galvanic might be formed between the incorporated Ta and the Ti base, which could consume the protons and result in decreased ATP synthesis and increased ROS generation. The gene expression of bacterial virulence factors associated with cellular attachment, invasion and viability as the target of ROS was downregulated. Importantly, in vivo biological studies showed that Ta modification significantly promoted the osseointegration of implants by stimulating the expression of bone-forming proteins. Conclusion This study may provide some insights into clinical applications of Ta-coated Ti implants, especially in possibly infected situations.
Collapse
Affiliation(s)
- Xiao-Meng Zhang
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yuan Li
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Ying-Xin Gu
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Chu-Nan Zhang
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Hong-Chang Lai
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jun-Yu Shi
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
12
|
Sharma S, Sharma RK, Gaur K, Cátala Torres JF, Loza-Rosas SA, Torres A, Saxena M, Julin M, Tinoco AD. Fueling a Hot Debate on the Application of TiO 2 Nanoparticles in Sunscreen. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2317. [PMID: 31330764 PMCID: PMC6678326 DOI: 10.3390/ma12142317] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
Titanium is one of the most abundant elements in the earth's crust and while there are many examples of its bioactive properties and use by living organisms, there are few studies that have probed its biochemical reactivity in physiological environments. In the cosmetic industry, TiO2 nanoparticles are widely used. They are often incorporated in sunscreens as inorganic physical sun blockers, taking advantage of their semiconducting property, which facilitates absorbing ultraviolet (UV) radiation. Sunscreens are formulated to protect human skin from the redox activity of the TiO2 nanoparticles (NPs) and are mass-marketed as safe for people and the environment. By closely examining the biological use of TiO2 and the influence of biomolecules on its stability and solubility, we reassess the reactivity of the material in the presence and absence of UV energy. We also consider the alarming impact that TiO2 NP seepage into bodies of water can cause to the environment and aquatic life, and the effect that it can have on human skin and health, in general, especially if it penetrates into the human body and the bloodstream.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Environmental Sciences, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Rohit K Sharma
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - José F Cátala Torres
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Sergio A Loza-Rosas
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Anamaris Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Manoj Saxena
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Mara Julin
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Arthur D Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA.
| |
Collapse
|
13
|
Zhang L, Zhang Z, He X, Zheng L, Cheng S, Li Z. Diminished inhibitory impact of ZnO nanoparticles on anaerobic fermentation by the presence of TiO 2 nanoparticles: Phenomenon and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:313-322. [PMID: 30081368 DOI: 10.1016/j.scitotenv.2018.07.468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/02/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Engineered nanoparticle materials (ENMs) are widely and increasingly produced and employed in many sectors. The use of diverse ENMs potentially leads to the release of multiple ENMs into the environment. These ENMs after discharge will be end in wastewater treatment plant and present in sludge. This work investigated the effect of multi-ENMs systems of ZnO and TiO2 on sludge anaerobic fermentation and the related toxicity mechanism. Results revealed that the toxicity of ZnO ENMs on anaerobic fermentation was reduced in the presence of TiO2 ENMs. Investigation on the change of free Zn2+ and reactive oxygen species (OH and H2O2) suggested that both of free Zn2+ and ROS contributed to the toxicity mechanism. Zn2+ decrease was the main reason for the reduced toxicity in multi-ENMs systems. ROS mainly led to the reduction of cell viability in anaerobic fermentation systems. The presence of TiO2 in the multi-ENMs systems promoted the recovery of enzyme activity, cell viability and bacteria abundance.
Collapse
Affiliation(s)
- Lingling Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Zhaoxi Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xi He
- Beijing Drainage Group Water Engineering Design &Research Institute Co., Ltd, Beijing 100068, PR China
| | - Lei Zheng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Shikun Cheng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zifu Li
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
14
|
Swain B, Park JR, Park KS, Lee CG. Synthesis of cosmetic grade TiO 2-SiO 2 core-shell powder from mechanically milled TiO 2 nanopowder for commercial mass production. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 95:95-103. [PMID: 30573275 DOI: 10.1016/j.msec.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 01/03/2023]
Abstract
TiO2 nanoparticles as an active sunscreen ingredient generate reactive oxygen species (ROS) upon UVA irradiation which is cytotoxic, genotoxic and potential to damage the DNA. The health concern and potential risks from TiO2 can be mitigated by shielding the particles through the suitable coating. Considering the advantages of SiO2, SiO2 coated TiO2 nanoparticles can be a potential material which can replace TiO2 for thickening, whitening, lubricating, and sunscreen ingredient in cosmetics. This article reports the synthesis of cosmetic grade TiO2-SiO2 core-shell nanopowder from mechanically milled TiO2 nanopowder for commercial mass production. From commercial TiO2 nanopowder was fabricated through size reduction by nanoset milling. Followed by the fabricated TiO2 nanopowder coated with SiO2 through sol-gel technique. A suitable optimum condition was explored for cosmetic grade TiO2-SiO2 core-shell nanopowder. Various physical properties and optical properties were analyzed. Synthesized of cosmetic grade TiO2-SiO2 core-shell nanopowder found to be at 100 nm size, with a homogeneous SiO2 coating having UVA protection factor 39 and sun protection factor (SPF) is 42. From the size, safety, and SPF perspective it can be an excellent cosmetic grade powder and from process simplicity perspective it can be commercially viable.
Collapse
Affiliation(s)
- Basudev Swain
- Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE), Yongin, Republic of Korea.
| | - Jae Ryang Park
- Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE), Yongin, Republic of Korea
| | - Kyung-Soo Park
- Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE), Yongin, Republic of Korea
| | - Chan Gi Lee
- Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE), Yongin, Republic of Korea.
| |
Collapse
|
15
|
Vila L, García-Rodríguez A, Marcos R, Hernández A. Titanium dioxide nanoparticles translocate through differentiated Caco-2 cell monolayers, without disrupting the barrier functionality or inducing genotoxic damage. J Appl Toxicol 2018; 38:1195-1205. [PMID: 29722448 DOI: 10.1002/jat.3630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/22/2018] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
The widespread use of titanium dioxide nanoparticles (TiO2 NPs) in commercial food products makes intestinal cells a suitable target. Accordingly, we have used the human colon adenocarcinoma Caco-2 cells to detect their potential harmful effects. Caco-2 cells can differentiate in to enterocytic-like cells, forming consistent cell monolayers and are used as a model of the intestinal barrier. Using both undifferentiated and differentiated Caco-2 cells, we have explored a set of biomarkers, aiming to evaluate undesirable effects associated to TiO2 NP exposure. Results indicate non-toxic effects in exposures ranging 1-200 μg ml-1 . Significant differences were observed in cell uptake, with a higher amount of incorporated TiO2 NPs in undifferentiated cells, as visualized using confocal microscopy. In well-established monolayers, translocation was detected using both confocal microscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy. In spite of the observed uptake and translocation, TiO2 NP exposures did not modify the integrity of the monolayer, as measured using the transepithelial electrical resistance and Lucifer yellow methods. The potential genotoxic effects in differentiated cells were evaluated in the comet assay, with and without formamidopyrimidine DNA glycosylase enzyme to detect oxidatively the damaged DNA bases. Although some changes were detected at the lower dose (10 μg ml-1 ), no effects were observed at higher doses.
Collapse
Affiliation(s)
- Laura Vila
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba García-Rodríguez
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|
16
|
Yadav T, Mungray AA, Mungray AK. Effect of TiO 2 nanoparticles on UASB biomass activity and dewatered sludge. ENVIRONMENTAL TECHNOLOGY 2017; 38:413-423. [PMID: 27283102 DOI: 10.1080/09593330.2016.1196738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The accumulation of the nanowastes in the wastewater treatment plants has raised several concerns; therefore, it is an utmost priority to study the nanoparticle (NP) toxicity in such systems. In this work, the effect of TiO2 NPs on up-flow anaerobic sludge blanket (UASB) microflora and their photocatalytic effect on dewatered sludge were studied. We observed 99.98% removal of TiO2 NPs by sludge biomass within 24 h, though negligible toxicity was found up to 100 mg/L TiO2 concentration on extracellular polymeric substances (EPS), volatile fatty acid and biogas generation. The low toxicity corresponds to the agglomeration of TiO2 NPs in UASB sludge. Alterations in dewatered sludge biochemical composition and increase in cell damage were observed upon exposure to sunlight as evidenced by FTIR and fluorescent microscopy, respectively. Results suggest the negligible toxicity of TiO2 NPs on UASB biomass activity; however, once exposed to open environment and sunlight, they may exert detrimental effects.
Collapse
Affiliation(s)
- Tushar Yadav
- a Chemical Engineering Department , Sardar Vallabhbhai National Institute of Technology , Surat , Gujarat , India
| | - Alka A Mungray
- a Chemical Engineering Department , Sardar Vallabhbhai National Institute of Technology , Surat , Gujarat , India
| | - Arvind K Mungray
- a Chemical Engineering Department , Sardar Vallabhbhai National Institute of Technology , Surat , Gujarat , India
| |
Collapse
|
17
|
The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species. Redox Biol 2016; 9:90-99. [PMID: 27454766 PMCID: PMC4961297 DOI: 10.1016/j.redox.2016.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022] Open
Abstract
Methyl-aminolevulinate-based photodynamic therapy (MAL-PDT) is utilised clinically for the treatment of non-melanoma skin cancers and pre-cancers and the hydroxypyridinone iron chelator, CP94, has successfully been demonstrated to increase MAL-PDT efficacy in an initial clinical pilot study. However, the biochemical and photochemical processes leading to CP94-enhanced photodynamic cell death, beyond the well-documented increases in accumulation of the photosensitiser protoporphyrin IX (PpIX), have not yet been fully elucidated. This investigation demonstrated that MAL-based photodynamic cell killing of cultured human squamous carcinoma cells (A431) occurred in a predominantly necrotic manner following the generation of singlet oxygen and ROS. Augmenting MAL-based photodynamic cell killing with CP94 co-treatment resulted in increased PpIX accumulation, MitoSOX-detectable ROS generation (probably of mitochondrial origin) and necrotic cell death, but did not affect singlet oxygen generation. We also report (to our knowledge, for the first time) the detection of intracellular PpIX-generated singlet oxygen in whole cells via electron paramagnetic resonance spectroscopy in conjunction with a spin trap. Augmentation of MAL-based photodynamic cell killing with CP94 increases necrosis. CP94 augmentation increases generation of ROS, likely to be mitochondria-localised. PpIX-generated 1O2 was detected in whole cells by EPR spectroscopy. Photodynamic cell killing was dependent primarily on 1O2. Superoxide/other ROS also contributed to the efficacy of photodynamic cell killing.
Collapse
|
18
|
UV-induced reactions of Mg 2+ -doped anatase nanocrystals with exposed {0 0 1} facets: An EPR study. J Catal 2015. [DOI: 10.1016/j.jcat.2015.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Antibiofilm Activity of Epoxy/Ag-TiO2 Polymer Nanocomposite Coatings against Staphylococcus Aureus and Escherichia Coli. COATINGS 2015. [DOI: 10.3390/coatings5020095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Dvoranová D, Barbieriková Z, Brezová V. Radical intermediates in photoinduced reactions on TiO2 (an EPR spin trapping study). Molecules 2014; 19:17279-304. [PMID: 25353381 PMCID: PMC6271711 DOI: 10.3390/molecules191117279] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/29/2014] [Accepted: 10/22/2014] [Indexed: 01/10/2023] Open
Abstract
The radical intermediates formed upon UVA irradiation of titanium dioxide suspensions in aqueous and non-aqueous environments were investigated applying the EPR spin trapping technique. The results showed that the generation of reactive species and their consecutive reactions are influenced by the solvent properties (e.g., polarity, solubility of molecular oxygen, rate constant for the reaction of hydroxyl radicals with the solvent). The formation of hydroxyl radicals, evidenced as the corresponding spin-adducts, dominated in the irradiated TiO2 aqueous suspensions. The addition of 17O-enriched water caused changes in the EPR spectra reflecting the interaction of an unpaired electron with the 17O nucleus. The photoexcitation of TiO2 in non-aqueous solvents (dimethylsulfoxide, acetonitrile, methanol and ethanol) in the presence of 5,5-dimethyl-1-pyrroline N-oxide spin trap displayed a stabilization of the superoxide radical anions generated via electron transfer reaction to molecular oxygen, and various oxygen- and carbon-centered radicals from the solvents were generated. The character and origin of the carbon-centered spin-adducts was confirmed using nitroso spin trapping agents.
Collapse
Affiliation(s)
- Dana Dvoranová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava SK-812 37, Slovakia
| | - Zuzana Barbieriková
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava SK-812 37, Slovakia
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava SK-812 37, Slovakia.
| |
Collapse
|
21
|
Petersen EJ, Reipa V, Watson SS, Stanley DL, Rabb SA, Nelson BC. DNA Damaging Potential of Photoactivated P25 Titanium Dioxide Nanoparticles. Chem Res Toxicol 2014; 27:1877-84. [DOI: 10.1021/tx500340v] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory—Biosystems and Biomaterials
Division, ‡Material Measurement Laboratory—Chemical Sciences Division, §Engineering Laboratory—Materials
and Structural Systems Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vytas Reipa
- Material Measurement Laboratory—Biosystems and Biomaterials
Division, ‡Material Measurement Laboratory—Chemical Sciences Division, §Engineering Laboratory—Materials
and Structural Systems Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Stephanie S. Watson
- Material Measurement Laboratory—Biosystems and Biomaterials
Division, ‡Material Measurement Laboratory—Chemical Sciences Division, §Engineering Laboratory—Materials
and Structural Systems Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Deborah L. Stanley
- Material Measurement Laboratory—Biosystems and Biomaterials
Division, ‡Material Measurement Laboratory—Chemical Sciences Division, §Engineering Laboratory—Materials
and Structural Systems Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Savelas A. Rabb
- Material Measurement Laboratory—Biosystems and Biomaterials
Division, ‡Material Measurement Laboratory—Chemical Sciences Division, §Engineering Laboratory—Materials
and Structural Systems Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Bryant C. Nelson
- Material Measurement Laboratory—Biosystems and Biomaterials
Division, ‡Material Measurement Laboratory—Chemical Sciences Division, §Engineering Laboratory—Materials
and Structural Systems Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
22
|
Li M, Yin JJ, Wamer WG, Lo YM. Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. J Food Drug Anal 2014; 22:76-85. [PMID: 24673905 PMCID: PMC9359148 DOI: 10.1016/j.jfda.2014.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/02/2013] [Accepted: 12/21/2013] [Indexed: 12/29/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are one of the most widely used nanomaterials that have been manufactured worldwide and applied in different commercial realms. The well-recognized ability of TiO2 to promote the formation of reactive oxygen species (ROS) has been extensively studied as one of the important mechanisms underlying TiO2 NPs toxicity. As the “gold standard” method to quantify and identify ROS, electron spin resonance (ESR) spectroscopy has been employed in many studies aimed at evaluating TiO2 NPs safety. This review aims to provide a thorough discussion of current studies using ESR as the primary method to unravel the mechanism of TiO2 NPs toxicity. ESR spin label oximetry and immune-spin trapping techniques are also briefly introduced, because the combination of spin trapping/labeling techniques offers a promising tool for studying the oxidative damage caused by TiO2 NPs.
Collapse
Affiliation(s)
- Meng Li
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Jun-Jie Yin
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Wayne G Wamer
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Y Martin Lo
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
23
|
Lorenzetti M, Biglino D, Novak S, Kobe S. Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:390-8. [PMID: 24582265 DOI: 10.1016/j.msec.2014.01.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/14/2013] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Abstract
The paper reports on the photoinduced properties of hydrothermally treated (HT) titanium used for bone implants. The anatase coatings composed of 30-100nm anatase crystals exhibited high photocatalytic activity and good photo-induced wettability, reaching a superhydrophilic state, despite the larger crystal dimensions than the previously reported optimal ones. These properties are due to a suitable combination of surface texture, roughness, thickness, crystal morphology and particle size, which allowed the two independent photo-induced phenomena to occur simultaneously. The results on caffeine degradation by photocatalysis and the prolonged effect (up to two weeks) of photo-induced wettability in dark suggested a possible applicability of the HT anatase coatings as bacteria-repelling surfaces for body implants, in favor of a better osseointegration in vivo.
Collapse
Affiliation(s)
- Martina Lorenzetti
- Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | | - Saša Novak
- Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.
| | - Spomenka Kobe
- Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| |
Collapse
|
24
|
Di Paola A, Bellardita M, Palmisano L, Barbieriková Z, Brezová V. Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2013.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Chong R, Li J, Zhou X, Ma Y, Yang J, Huang L, Han H, Zhang F, Li C. Selective photocatalytic conversion of glycerol to hydroxyacetaldehyde in aqueous solution on facet tuned TiO2-based catalysts. Chem Commun (Camb) 2014; 50:165-7. [DOI: 10.1039/c3cc46515b] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
D'Agata A, Fasulo S, Dallas LJ, Fisher AS, Maisano M, Readman JW, Jha AN. Enhanced toxicity of 'bulk' titanium dioxide compared to 'fresh' and 'aged' nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology 2013; 8:549-58. [PMID: 23697396 DOI: 10.3109/17435390.2013.807446] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Marine bivalves (Mytilus galloprovincialis) were exposed to titanium dioxide (10 mg L(-1)) either as engineered nanoparticles (nTiO2; fresh, or aged under simulated sunlight for 7 days) or the bulk equivalent. Inductively coupled plasma-optical emission spectrometry analyses of mussel tissues showed higher Ti accumulation (>10-fold) in the digestive gland compared to gills. Nano-sized TiO2 showed greater accumulation than bulk, irrespective of ageing, particularly in digestive gland (>sixfold higher). Despite this, transcriptional expression of metallothionein genes, histology and histochemical analysis suggested that the bulk material was more toxic. Haemocytes showed significantly enhanced DNA damage, determined by the modified comet assay, for all treatments compared to the control, but no significant differences between the treatments. Our integrated study suggests that for this ecologically relevant organism photocatalytic ageing of nTiO2 does not significantly alter toxicity, and that bulk TiO2 may be less ecotoxicologically inert than previously assumed.
Collapse
Affiliation(s)
- Alessia D'Agata
- Department of Biological and Environmental Sciences, University of Messina , Viale F. Stagno d'Alcontres 31, S. Agata - 98166, Messina , Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Kruszewski M, Grądzka I, Bartłomiejczyk T, Chwastowska J, Sommer S, Grzelak A, Zuberek M, Lankoff A, Dusinska M, Wojewódzka M. Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles. Toxicol Lett 2013; 219:151-9. [PMID: 23518319 DOI: 10.1016/j.toxlet.2013.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/19/2013] [Accepted: 03/10/2013] [Indexed: 01/23/2023]
Abstract
We examined the relation between DNA damage and the clonogenic potential of 3 human cell lines, HepG2, HT29 and A549, treated with bare 20 nm or 200 nm silver nanoparticles (AgNPs). The endpoints examined were the DNA breakage estimated by the comet assay, the oxidative base damage recognized by formamido-pyrimidine glycosylase (FPG) and estimated with the FPG+comet assay, and the frequencies of histone γH2AX foci and micronuclei. Each cell line studied had a different pattern of DNA breakage and base damage versus the NPs concentration and time of treatment. The overall pattern of DNA breakage and base damage induction corresponded to the intracellular generation of reactive oxygen species. There was no increase in the frequencies of histone γH2AX foci and micronuclei as compared to those in the untreated cells. The reported experiments suggest that only the oxidative DNA damage corresponds to the loss of the clonogenic ability of cells treated with AgNPs.
Collapse
Affiliation(s)
- Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tzitrinovich Z, Lipovsky A, Gedanken A, Lubart R. Visible light-induced OH radicals in Ga2O3: an EPR study. Phys Chem Chem Phys 2013; 15:12977-81. [DOI: 10.1039/c3cp00102d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Yang Y, Zhang C, Hu Z. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:39-48. [PMID: 24592426 DOI: 10.1039/c2em30655g] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metallic and metal oxide nanomaterials have been increasingly used in consumer products (e.g. sunscreen, socks), the medical and electronic industries, and environmental remediation. Many of them ultimately enter wastewater treatment plants (WWTPs) or landfills. This review paper discusses the fate and potential effects of four types of nanoparticles, namely, silver nanoparticles (AgNPs), nano ZnO, nano TiO2, and nano zero valent iron (NZVI), on waste/wastewater treatment and anaerobic digestion. The stabilities and chemical properties of these nanoparticles (NPs) result in significant differences in antimicrobial activities. Analysis of published data of metallic and metal oxide NPs suggests that oxygen is often a prerequisite for the generation of reactive oxygen species (ROS) for AgNPs and NZVI, while illumination is necessary for ROS generation for nano TiO2 and nano ZnO. Furthermore, such nanoparticles are capable of being oxidized or dissolved in water and can release metal ions, leading to metal toxicity. Therefore, AgNPs and nano TiO2 are chemically stable NPs that have no adverse effects on microbes under anaerobic conditions. Although the toxicity of nanomaterials has been studied intensively under aerobic conditions, more research is needed to address their fate in anaerobic waste/wastewater treatment systems and their long-term effects on the environment.
Collapse
|
30
|
Barbieriková Z, Mihalíková M, Brezová V. Photoinduced Oxidation of Sterically Hindered Amines in Acetonitrile Solutions and Titania Suspensions (An EPR Study). Photochem Photobiol 2012; 88:1442-54. [DOI: 10.1111/j.1751-1097.2012.01189.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Al-Subiai SN, Arlt VM, Frickers PE, Readman JW, Stolpe B, Lead JR, Moody AJ, Jha AN. Merging nano-genotoxicology with eco-genotoxicology: an integrated approach to determine interactive genotoxic and sub-lethal toxic effects of C(60) fullerenes and fluoranthene in marine mussels, Mytilus sp. Mutat Res 2012; 745:92-103. [PMID: 22230430 DOI: 10.1016/j.mrgentox.2011.12.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 11/25/2022]
Abstract
Whilst there is growing concern over the potential detrimental impact of engineered nanoparticles (ENPs) on the natural environment, little is known about their interactions with other contaminants. In the present study, marine mussels (Mytilus sp.) were exposed for 3 days to C(60) fullerenes (C(60); 0.10-1 mg l(-1)) and a model polycyclic aromatic hydrocarbon (PAH), fluoranthene (32-100 μg l(-1)), either alone or in combination. The first two experiments were conducted by exposing the organisms to different concentrations of C(60) and fluoranthene alone, in order to determine the effects on total glutathione levels (as a measure of generic oxidative stress), genotoxicity (DNA strand breaks using Comet assay in haemocytes), DNA adduct analyses (using (32)P-postlabelling method) in different organs, histopathological changes in different tissues (i.e. adductor muscle, digestive gland and gills) and physiological effects (feeding or clearance rate). Subsequently, in the third experiment, a combined exposure of C(60) plus fluoranthene (0.10 mg l(-1) and 32 μg l(-1), respectively) was carried out to evaluate all endpoints mentioned above. Both fluoranthene and C(60) on their own caused concentration-dependent increases in DNA strand breaks as determined by the Comet assay. Formation of DNA adducts however could not be detected for any exposure conditions. Combined exposure to C(60) and fluoranthene additively enhanced the levels of DNA strand breaks along with a 2-fold increase in the total glutathione content. In addition, significant accumulation of C(60) was observed in all organs, with highest levels in digestive gland (24.90 ± 4.91μg C(60) g(-1) ww). Interestingly, clear signs of abnormalities in adductor muscle, digestive gland and gills were observed by histopathology. Clearance rates indicated significant differences compared to the control with exposure to C(60), and C(60)/fluoranthene combined treatments, but not after fluoranthene exposure alone. This study demonstrated that at the selected concentrations, both C(60) and fluoranthene evoke toxic responses and genetic damage. The combined exposure produced enhanced damage with additive rather than synergistic effects.
Collapse
Affiliation(s)
- Sherain N Al-Subiai
- School of Biomedical & Biological Sciences, Plymouth University, Plymouth, PL4 8AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Handy RD, van den Brink N, Chappell M, Mühling M, Behra R, Dušinská M, Simpson P, Ahtiainen J, Jha AN, Seiter J, Bednar A, Kennedy A, Fernandes TF, Riediker M. Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:933-72. [PMID: 22422174 PMCID: PMC3325413 DOI: 10.1007/s10646-012-0862-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2012] [Indexed: 05/18/2023]
Abstract
This review paper reports the consensus of a technical workshop hosted by the European network, NanoImpactNet (NIN). The workshop aimed to review the collective experience of working at the bench with manufactured nanomaterials (MNMs), and to recommend modifications to existing experimental methods and OECD protocols. Current procedures for cleaning glassware are appropriate for most MNMs, although interference with electrodes may occur. Maintaining exposure is more difficult with MNMs compared to conventional chemicals. A metal salt control is recommended for experiments with metallic MNMs that may release free metal ions. Dispersing agents should be avoided, but if they must be used, then natural or synthetic dispersing agents are possible, and dispersion controls essential. Time constraints and technology gaps indicate that full characterisation of test media during ecotoxicity tests is currently not practical. Details of electron microscopy, dark-field microscopy, a range of spectroscopic methods (EDX, XRD, XANES, EXAFS), light scattering techniques (DLS, SLS) and chromatography are discussed. The development of user-friendly software to predict particle behaviour in test media according to DLVO theory is in progress, and simple optical methods are available to estimate the settling behaviour of suspensions during experiments. However, for soil matrices such simple approaches may not be applicable. Alternatively, a Critical Body Residue approach may be taken in which body concentrations in organisms are related to effects, and toxicity thresholds derived. For microbial assays, the cell wall is a formidable barrier to MNMs and end points that rely on the test substance penetrating the cell may be insensitive. Instead assays based on the cell envelope should be developed for MNMs. In algal growth tests, the abiotic factors that promote particle aggregation in the media (e.g. ionic strength) are also important in providing nutrients, and manipulation of the media to control the dispersion may also inhibit growth. Controls to quantify shading effects, and precise details of lighting regimes, shaking or mixing should be reported in algal tests. Photosynthesis may be more sensitive than traditional growth end points for algae and plants. Tests with invertebrates should consider non-chemical toxicity from particle adherence to the organisms. The use of semi-static exposure methods with fish can reduce the logistical issues of waste water disposal and facilitate aspects of animal husbandry relevant to MMNs. There are concerns that the existing bioaccumulation tests are conceptually flawed for MNMs and that new test(s) are required. In vitro testing strategies, as exemplified by genotoxicity assays, can be modified for MNMs, but the risk of false negatives in some assays is highlighted. In conclusion, most protocols will require some modifications and recommendations are made to aid the researcher at the bench.
Collapse
Affiliation(s)
- Richard D Handy
- Ecotoxicology Research and Innovation Centre, School of Biomedical & Biological Sciences, University of Plymouth, Plymouth, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang W, Yu Y, An T, Li G, Yip HY, Yu JC, Wong PK. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: bactericidal performance and mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4599-4606. [PMID: 22428729 DOI: 10.1021/es2042977] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bismuth vanadate nanotube (BV-NT), synthesized by a template-free solvothermal method, was used as an effective visible-light-driven (VLD) photocatalyst for inactivation of Escherichia coli K-12. The mechanism of photocatalytic bacterial inactivation was investigated by employing multiple scavengers combined with a simple partition system. The VLD photocatalytic bacterial inactivation by BV-NT did not allow any bacterial regrowth. The photogenerated h(+) and reactive oxidative species derived from h(+), such as OH(ads), H(2)O(2) and HO(2)/O(2)(-), were the major reactive species for bacterial inactivation. The inactivation by h(+) and OH(ads) required close contact between the BV-NT and bacterial cells, and only a limited amount of H(2)O(2) could diffuse into the solution to inactivate bacterial cells. The direct oxidation effect of h(+) to bacterial cells was confirmed by adopting F(-) surface modification and anaerobic experiments. The bacterial cells could trap e(-) in order to minimize e(-)-h(+) recombination, especially under anaerobic condition. Transmission electron microscopic study indicated the destruction process of bacterial cell began from the cell wall to other cellular components. The OH(ads) was postulated to be more important than OH(bulk) and was not supposed to be released very easily in the BV-NT bacterial inactivation system.
Collapse
Affiliation(s)
- Wanjun Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim SU, Villamena FA. Reactivities of superoxide and hydroperoxyl radicals with disubstituted cyclic nitrones: a DFT study. J Phys Chem A 2012; 116:886-98. [PMID: 22085265 PMCID: PMC3349087 DOI: 10.1021/jp209896n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The unique ability of nitrone spin traps to detect and characterize transient free radicals by electron paramagnetic resonance (EPR) spectroscopy has fueled the development of new spin traps with improved properties. Among a variety of free radicals in chemical and biological systems, superoxide radical anion (O(2)(•-)) plays a critical role as a precursor to other more oxidizing species such as hydroxyl radical (HO(•)), peroxynitrite (ONOO(-)), and hypochlorous acid (HOCl), and therefore the direct detection of O(2)(•-) is important. To overcome the limitations of conventional cyclic nitrones, that is, poor reactivity with O(2)(•-), instability of the O(2)(•-) adduct, and poor cellular target specificity, synthesis of disubstituted nitrones has become attractive. Disubstituted nitrones offer advantages over the monosubstituted ones because they allow bifunctionalization of spin traps, therefore accommodating all the desired spin trap properties in one molecular design. However, because of the high number of possible disubstituted analogues as candidate, a systematic computational study is needed to find leads for the optimal spin trap design for biconjugation. In this paper, calculation of the energetics of O(2)(•-) and HO(2)(•) adduct formation from various disubstituted nitrones at PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level of theory was performed to determine the most favorable disubstituted nitrones for this reaction. In addition, our results provided general trends of radical reactivity that is dependent upon but not exclusive to the charge densities of nitronyl-C, the position of substituents including stereoselectivities, and the presence of intramolecular H-bonding interaction. Unusually high exoergic ΔG(298K,aq)'s for O(2)(•-) and HO(2)(•) adduct formation were predicted for (3S,5S)-5-methyl-3,5-bis(methylcarbamoyl)-1-pyrroline N-oxide (11-cis) and (4S,5S)-5-dimethoxyphosphoryl-5-methyl-4-ethoxycarbonyl-1-pyrroline N-oxide (29-trans) with ΔG(298K,aq) = -3.3 and -9.4 kcal/mol, respectively, which are the most exoergic ΔG(298K,aq) observed thus far for any nitrone at the level of theory employed in this study.
Collapse
Affiliation(s)
- Shang-U Kim
- Department of Pharmacology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Frederick A. Villamena
- Department of Pharmacology and Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
35
|
Characterization of synthesized silver nanoparticles and assessment of its genotoxicity potentials using the alkaline comet assay. Mutat Res 2011; 742:61-5. [PMID: 22178963 DOI: 10.1016/j.mrgentox.2011.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/10/2011] [Accepted: 12/03/2011] [Indexed: 01/27/2023]
Abstract
Nano-silver (Nano-Ag) particles were synthesized and then characterized using transmission electron microscopy (TEM) and X-ray diffractometry. TEM showed that Nano-Ag were spherical in shape and their size ranged from 40 to 60nm. X-ray diffractometry indicated that the sample was crystalline and had a face centered cubic structure of pure silver. Genotoxicity of this Nano-Ag was evaluated in human peripheral blood cells using the alkaline comet assay. Results indicated that Nano-Ag (50 and 100μg/mL) caused DNA damage following a 3h treatment. Subsequently, a short treatment of 5min also showed DNA damage. In conclusion, we have shown that the synthesized Nano-Ag induced DNA damage in human peripheral blood cells as detected by the alkaline comet assay. Results further indicated that treatment of cells with Nano-Ag in the presence of hydrogen peroxide did not induce any DNA damage.
Collapse
|