1
|
Sulaiman N, Zocchi DM, Bonafede S, Nanni C, Sõukand R, Pieroni A. Going or Returning to Nature? Wild Vegetable Uses in the Foraging-Centered Restaurants of Lombardy, Northern Italy. PLANTS (BASEL, SWITZERLAND) 2024; 13:2151. [PMID: 39124268 PMCID: PMC11314555 DOI: 10.3390/plants13152151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Wild vegetables (WVs) have been an essential source of human nutrition since ancient times. Foraging is a millennia-old practice that has gained more attention recently and is becoming fashionable, especially in restaurants in urban areas, as they attract customers who see WVs as an innovative sensory element and specialty food. Some cooks have used very few WVs for decades, but most chefs have only recently introduced them in their modern restaurants. Our study aims to have a deeper understanding of the diversity of WVs used by restaurants in the Lombardy region in Northern Italy and to know how they are introduced onto different menus, as well as the source of knowledge and the innovation paths related to the use/introduction of WVs in the selected sample of restaurants. Semi-structured interviews were conducted with 15 restaurant managers, chefs, and their professional foragers in the Lombardy region in Northern Italy in 2022; fifty-four wild plant taxa were recorded to be used in the considered restaurants. The collected data were analyzed to understand the current situation and the potential developments of this practice by exploring the reasons/motivations that underpin the inclusion of WVs in restaurants. A broad spectrum of restaurants was considered to evaluate the potential differences in handling and sourcing these ingredients. The results demonstrated that this trend has mainly been driven by attempts to revitalize traditional cuisines and to generate a positive impact on health, but the actual culinary preparations based upon WVs are often original and remarkably diverge from the Italian food ethnobotanical heritage. Moreover, concerns related to the environmental sustainability of these practices have been addressed.
Collapse
Affiliation(s)
- Naji Sulaiman
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy; (D.M.Z.)
| | - Dauro M. Zocchi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy; (D.M.Z.)
| | - Sara Bonafede
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy; (D.M.Z.)
| | - Chiara Nanni
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy; (D.M.Z.)
| | - Renata Sõukand
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Via Torino 155, Mestre, 30170 Venezia, Italy
| | - Andrea Pieroni
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy; (D.M.Z.)
- Department of Medical Analysis, Tishk International University, Erbil 44001, Iraq
| |
Collapse
|
2
|
Tomlekova N, Idziak-Helmcke D, Franke P, Rojek-Jelonek M, Kwasniewska J. Phaseolus vulgaris mutants reveal variation in the nuclear genome. FRONTIERS IN PLANT SCIENCE 2024; 14:1308830. [PMID: 38239224 PMCID: PMC10794375 DOI: 10.3389/fpls.2023.1308830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024]
Abstract
Phaseolus vulgaris L. (common bean) is an essential source of proteins in the human diet worldwide. Bean breeding programs to increase genetic diversity based on induced mutagenesis have a long tradition in Bulgaria. Common bean varieties with high productivity, wide environmental adaptability, good nutritional properties, and improved disease resistance have been successfully developed. In this study, we aimed to investigate selected nuclear genome features, such as the genome size, the number and chromosomal distribution of 5S and 35S rDNA loci by using the fluorescence in situ hybridization (FISH), as well as the level of DNA damage in some local Bulgarian accessions and mutants of P. vulgaris. Flow cytometry analyses revealed no significant differences in genome size between analyzed lines except for one of the analyzed mutants, M19. The value of genome size 2C DNA is about 1.37 pg2C -1 for all lines, whereas it is 1.42 pg2C-1 for M19. The chromosome number remains the same (2n=22) for all analyzed lines. Results of FISH analyses showed that the number of 5S rDNA was stable among accessions and mutant lines (four loci), while the number of 35S rDNA loci was shown as highly polymorphic, varying between ten and sixteen, and displaying differences in the size and location of 35S rDNA loci between analyzed genotypes. The cell cycle profile was different for the analyzed genotypes. The results revealed that wide variation in genome organization and size as well as DNA damage characterizes the analyzed genetic resources of the common bean.
Collapse
Affiliation(s)
- Nasya Tomlekova
- Laboratory of Molecular Biology, Department of Breeding, Marisa Vegetable Crops Research Institute, Plovdiv, Agricultural Academy, Sofia, Bulgaria
| | - Dominika Idziak-Helmcke
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Paula Franke
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jolanta Kwasniewska
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
3
|
Nawaz I, Zeb T, Ali GM, Zeb BS, Jalal A, Rehman MU, Bakht T, Ali S. High Genetic Diversity in the Himalayan Common Bean ( Phaseolus vulgaris) Germplasm with Divergence from Its Center of Origin in the Mesoamerica and Andes. ACS OMEGA 2023; 8:48787-48797. [PMID: 38162784 PMCID: PMC10753573 DOI: 10.1021/acsomega.3c05150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
The common bean is found in the Himalayan region of Pakistan with substantial morphological variability. Genetic diversity within any crop species is a precursor for genetic improvement; however, little is known about common bean genetic diversity in this region. We explored the genetic diversity in the common bean from the Himalayan region (Khyber Pakhtunkhwa, Gilgit-Baltistan, Kashmir) of Pakistan. Microsatellite genotyping was carried out for 147 samples with 40 simple sequence repeat (SSR) markers. The results revealed a clear divergence of the Pakistani population from the primary gene pool (with FST values of 0.2 with Andes and 0.27 with Mesoamerica). However, within the Himalayan germplasm, no clear evidence of spatial structure was observed (with the maximum FST values of only 0.025), probably due to the dispersal of seeds by human activity within the region. This was further elucidated by the discriminant analyses of principal components. Considering the diversity parameters, high genotypic diversity was observed for the indigenous lines (0.990), comparable to the primary gene pool (0.976 for Mesoamerica and 0.976 for Andes populations). A high genotypic diversity was observed within the Himalayan population (ranging from 0.500 for Upper Dir to 0.952 for Mansehra). Gene diversity across loci varied between 0.28 for Chitral to 0.38 for Kurram. Our results suggested a divergent and independent evolution of the Himalayan population, which might have led to the diversification of the common bean germplasm in the region postintroduction into the region. The diversity observed could also be exploited in future breeding programs for the development and introduction of climate-resilient varieties.
Collapse
Affiliation(s)
- Iffat Nawaz
- The
University of Agriculture Peshawar, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Tehseen Zeb
- The
University of Agriculture Peshawar, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | | | - Bibi Saima Zeb
- The
University of Agriculture Peshawar, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Abdullah Jalal
- The
University of Agriculture Peshawar, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Monsif Ur Rehman
- Department
of Agriculture, Hazara University, Mansehra, Mansehra 21120, Pakistan
| | - Tamana Bakht
- Shaheed
Benazir Bhutto university Sheringal Dir upper, Dir Upper 18200, Pakistan
| | - Sajid Ali
- Department
of Agriculture, Hazara University, Mansehra, Mansehra 21120, Pakistan
| |
Collapse
|
4
|
Uba CU, Oselebe HO, Tesfaye AA, Abtew WG. Association mapping in bambara groundnut [Vigna subterranea (L.) Verdc.] reveals loci associated with agro-morphological traits. BMC Genomics 2023; 24:593. [PMID: 37803263 PMCID: PMC10557193 DOI: 10.1186/s12864-023-09684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) are important for the acceleration of crop improvement through knowledge of marker-trait association (MTA). This report used DArT SNP markers to successfully perform GWAS on agro-morphological traits using 270 bambara groundnut [Vigna subterranea (L.) Verdc.] landraces sourced from diverse origins. The study aimed to identify marker traits association for nine agronomic traits using GWAS and their candidate genes. The experiment was conducted at two different locations laid out in alpha lattice design. The cowpea [Vigna unguiculata (L.) Walp.] reference genome (i.e. legume genome most closely related to bambara groundnut) assisted in the identification of candidate genes. RESULTS The analyses showed that linkage disequilibrium was found to decay rapidly with an average genetic distance of 148 kb. The broadsense heritability was relatively high and ranged from 48.39% (terminal leaf length) to 79.39% (number of pods per plant). The GWAS identified a total of 27 significant marker-trait associations (MTAs) for the nine studied traits explaining 5.27% to 24.86% of phenotypic variations. Among studied traits, the highest number of MTAs was obtained from seed coat colour (6) followed by days to flowering (5), while the least is days to maturity (1), explaining 5.76% to 11.03%, 14.5% to 19.49%, and 11.66% phenotypic variations, respectively. Also, a total of 17 candidate genes were identified, varying in number for different traits; seed coat colour (6), days to flowering (3), terminal leaf length (2), terminal leaf width (2), number of seed per pod (2), pod width (1) and days to maturity (1). CONCLUSION These results revealed the prospect of GWAS in identification of SNP variations associated with agronomic traits in bambara groundnut. Also, its present new opportunity to explore GWAS and marker assisted strategies in breeding of bambara groundnut for acceleration of the crop improvement.
Collapse
Affiliation(s)
- Charles U Uba
- Department of Horticulture and Plant Science, Jimma University, Jimma, Ethiopia.
| | | | - Abush A Tesfaye
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Wosene G Abtew
- Department of Horticulture and Plant Science, Jimma University, Jimma, Ethiopia
| |
Collapse
|
5
|
Bellucci E, Benazzo A, Xu C, Bitocchi E, Rodriguez M, Alseekh S, Di Vittori V, Gioia T, Neumann K, Cortinovis G, Frascarelli G, Murube E, Trucchi E, Nanni L, Ariani A, Logozzo G, Shin JH, Liu C, Jiang L, Ferreira JJ, Campa A, Attene G, Morrell PL, Bertorelle G, Graner A, Gepts P, Fernie AR, Jackson SA, Papa R. Selection and adaptive introgression guided the complex evolutionary history of the European common bean. Nat Commun 2023; 14:1908. [PMID: 37019898 PMCID: PMC10076260 DOI: 10.1038/s41467-023-37332-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Domesticated crops have been disseminated by humans over vast geographic areas. Common bean (Phaseolus vulgaris L.) was introduced in Europe after 1492. Here, by combining whole-genome profiling, metabolic fingerprinting and phenotypic characterisation, we show that the first common bean cultigens successfully introduced into Europe were of Andean origin, after Francisco Pizarro's expedition to northern Peru in 1529. We reveal that hybridisation, selection and recombination have shaped the genomic diversity of the European common bean in parallel with political constraints. There is clear evidence of adaptive introgression into the Mesoamerican-derived European genotypes, with 44 Andean introgressed genomic segments shared by more than 90% of European accessions and distributed across all chromosomes except PvChr11. Genomic scans for signatures of selection highlight the role of genes relevant to flowering and environmental adaptation, suggesting that introgression has been crucial for the dissemination of this tropical crop to the temperate regions of Europe.
Collapse
Affiliation(s)
- Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
| | - Chunming Xu
- Center for Applied Genetic Technologies, University of Georgia, 30602, Athens, GA, USA
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, 07100, Sassari, Italy
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale-CBV, Università degli Studi di Sassari, 07041, Alghero, Italy
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Plant Biotechnology, 4000, Plovdiv, Bulgaria
| | - Valerio Di Vittori
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476, Potsdam-Golm, Germany
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Germany
| | - Gaia Cortinovis
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giulia Frascarelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Ester Murube
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Emiliano Trucchi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Andrea Ariani
- Department of Plant Sciences, University of California, 95616-8780, Davis, CA, USA
| | - Giuseppina Logozzo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Jin Hee Shin
- Center for Applied Genetic Technologies, University of Georgia, 30602, Athens, GA, USA
| | - Chaochih Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, USA
| | - Liang Jiang
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476, Potsdam-Golm, Germany
| | - Juan José Ferreira
- Regional Agrifood Research and Development Service (SERIDA), 33310, Villaviciosa, Asturias, Spain
| | - Ana Campa
- Regional Agrifood Research and Development Service (SERIDA), 33310, Villaviciosa, Asturias, Spain
| | - Giovanna Attene
- Department of Agriculture, University of Sassari, 07100, Sassari, Italy
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale-CBV, Università degli Studi di Sassari, 07041, Alghero, Italy
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, USA
| | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Germany
| | - Paul Gepts
- Department of Plant Sciences, University of California, 95616-8780, Davis, CA, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Plant Biotechnology, 4000, Plovdiv, Bulgaria
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 30602, Athens, GA, USA
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy.
| |
Collapse
|
6
|
Catarcione G, Paolacci AR, Alicandri E, Gramiccia E, Taviani P, Rea R, Costanza MT, De Lorenzis G, Puccio G, Mercati F, Ciaffi M. Genetic Diversity and Population Structure of Common Bean ( Phaseolus vulgaris L.) Landraces in the Lazio Region of Italy. PLANTS (BASEL, SWITZERLAND) 2023; 12:744. [PMID: 36840092 PMCID: PMC9968208 DOI: 10.3390/plants12040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Common bean cultivation has historically been a typical component of rural economies in Italy, particularly in mountainous and hilly zones along the Apennine ridge of the central and southern regions, where the production is focused on local landraces cultivated by small-scale farmers using low-input production systems. Such landraces are at risk of genetic erosion because of the recent socioeconomic changes in rural communities. One hundred fourteen accessions belonging to 66 landraces still being grown in the Lazio region were characterized using a multidisciplinary approach. This approach included morphological (seed traits), biochemical (phaseolin and phytohemagglutinin patterns), and molecular (microsatellite loci) analyses to investigate their genetic variation, structure, and distinctiveness, which will be essential for the implementation of adequate ex situ and in situ conservation strategies. Another objective of this study was to determine the original gene pool (Andean and Mesoamerican) of the investigated landraces and to evaluate the cross-hybridization events between the two ancestral gene pools in the P. vulgaris germplasm in the Lazio region. Molecular analyses on 456 samples (four for each of the 114 accessions) revealed that the P. vulgaris germplasm in the Lazio region exhibited a high level of genetic diversity (He = 0.622) and that the Mesoamerican and Andean gene pools were clearly differentiated, with the Andean gene pool prevailing (77%) and 12% of landraces representing putative hybrids between the two gene pools. A model-based cluster analysis based on the molecular markers highlighted three main groups in agreement with the phaseolin patterns and growth habit of landraces. The combined utilisation of morphological, biochemical, and molecular data allowed for the differentiation of all landraces and the resolution of certain instances of homonymy and synonymy. Furthermore, although a high level of homozygosity was found across all landraces, 32 of the 66 examined (49%) exhibited genetic variability, indicating that the analysis based on a single or few plants per landrace, as usually carried out, may provide incomplete information.
Collapse
Affiliation(s)
- Giulio Catarcione
- DIBAF, Università degli Studi della Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Anna Rita Paolacci
- DIBAF, Università degli Studi della Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Enrica Alicandri
- DIBAF, Università degli Studi della Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Elena Gramiccia
- DIBAF, Università degli Studi della Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | | | - Roberto Rea
- ARSIAL, Via Rodolfo Lanciani 38, 00162 Roma, Italy
| | | | | | | | | | - Mario Ciaffi
- DIBAF, Università degli Studi della Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
7
|
Taboada G, Abán CL, Mercado Cárdenas G, Spedaletti Y, Aparicio González M, Maita E, Ortega-Baes P, Galván M. Characterization of fungal pathogens and germplasm screening for disease resistance in the main production area of the common bean in Argentina. FRONTIERS IN PLANT SCIENCE 2022; 13:986247. [PMID: 36161011 PMCID: PMC9490223 DOI: 10.3389/fpls.2022.986247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
The common bean (Phaseolus vulgaris L.) is the most important grain legume in the human diet, mainly in Africa and Latin America. Argentina is one of the five major producers of the common bean in the world, and the main cultivation areas are concentrated in the northwestern provinces of this country. Crop production of the common bean is often affected by biotic factors like some endemic fungal diseases, which exert a major economic impact on the region. The most important fungal diseases affecting the common bean in Argentina are white mold caused by Sclerotinia sclerotiorum, angular leaf spot caused by Pseudocercospora griseola, web blight and root rot caused by Rhizoctonia solani, which can cause production losses of up to 100% in the region. At the present, the most effective strategy for controlling these diseases is the use of genetic resistance. In this sense, population study and characterization of fungal pathogens are essential for developing cultivars with durable resistance. In this review we report diversity studies carried out on these three fungal pathogens affecting the common bean in northwestern Argentina, analyzing more than 200 isolates by means of molecular, morphological and pathogenic approaches. Also, the screening of physiological resistance in several common bean commercial lines and wild native germplasm is reviewed. This review contributes to the development of sustainable management strategies and cultural practices in bean production aimed to minimize yield losses due to fungal diseases in the common bean.
Collapse
Affiliation(s)
- Gisel Taboada
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | - Carla L. Abán
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | | | - Yamila Spedaletti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | - Mónica Aparicio González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | - Efrain Maita
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - Pablo Ortega-Baes
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - Marta Galván
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| |
Collapse
|
8
|
Giordani W, Gama HC, Chiorato AF, Marques JPR, Huo H, Benchimol-Reis LL, Camargo LEA, Garcia AAF, Vieira MLC. Genetic mapping reveals complex architecture and candidate genes involved in common bean response to Meloidogyne incognita infection. THE PLANT GENOME 2022; 15:e20161. [PMID: 34806826 DOI: 10.1002/tpg2.20161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Root-knot nematodes (RKNs), particularly Meloidogyne incognita, are among the most damaging and prevalent agricultural pathogens due to their ability to infect roots of almost all crops. The best strategy for their control is through the use of resistant cultivars. However, laborious phenotyping procedures make it difficult to assess nematode resistance in breeding programs. For common bean, this task is especially challenging because little has been done to discover resistance genes or markers to assist selection. We performed genome-wide association studies and quantitative trait loci mapping to explore the genetic architecture and genomic regions underlying the resistance to M. incognita and to identify candidate resistance genes. Phenotypic data were collected by a high-throughput assay, and the number of egg masses and the root-galling index were evaluated. Complex genetic architecture and independent genomic regions were associated with each trait. Single nucleotide polymorphisms on chromosomes Pv06, Pv07, Pv08, and Pv11 were associated with the number of egg masses, and SNPs on Pv01, Pv02, Pv05, and Pv10 were associated with root-galling. A total of 216 candidate genes were identified, including 14 resistance gene analogs and five differentially expressed in a previous RNA sequencing analysis. Histochemical analysis indicated that reactive oxygen species might play a role in the resistance response. Our findings open new perspectives to improve selection efficiency for RKN resistance, and the candidate genes are valuable targets for functional investigation and gene editing approaches.
Collapse
Affiliation(s)
- Willian Giordani
- "Luiz de Queiroz" College of Agriculture, Univ. of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil
| | - Henrique Castro Gama
- "Luiz de Queiroz" College of Agriculture, Univ. of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil
| | | | | | - Heqiang Huo
- Mid-Florida Research and Education Center, Univ. of Florida, Apopka, FL, 32703, USA
| | | | | | | | | |
Collapse
|
9
|
de Carvalho Paulino JF, de Almeida CP, Song Q, Carbonell SAM, Chiorato AF, Benchimol-Reis LL. Genetic diversity and inter-gene pool introgression of Mesoamerican Diversity Panel in common beans. J Appl Genet 2021; 62:585-600. [PMID: 34386968 DOI: 10.1007/s13353-021-00657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Brazil is among the largest producers and consumers of common bean (Phaseolus vulgaris L.) and can be considered a secondary center of diversity for the species. The aim of this study was to estimate the genetic diversity, population structure, and relationships among 288 common bean accessions in an American Diversity Panel (ADP) genotyped with 4,042 high-quality single nucleotide polymorphisms (SNPs). The results showed inter-gene pool hybridization (hybrids) between the two main gene pools (i.e., Mesoamerican and Andean), based on principal component analysis (PCA), discriminant analysis of principal components (DAPC), and STRUCTURE analysis. The genetic diversity parameters showed that the Mesoamerican group has higher values of diversity and allelic richness in comparison with the Andean group. Considering the optimal clusters (K), clustering was performed according to the type of grain (i.e., market group), the institution of origin, the period of release, and agronomic traits. A new subset was selected and named the Mesoamerican Diversity Panel (MDP), with 205 Mesoamerican accessions. Analysis of molecular variance (AMOVA) showed low genetic variance between the two panels (i.e., ADP and MDP) with the highest percentage of the limited variance among accessions in each group. The ADP showed occurrence of high genetic differentiation between populations (i.e., Mesoamerican and Andean) and introgression between gene pools in hybrids based on a set of diagnostic SNPs. The MDP showed better linkage disequilibrium (LD) decay. The availability of genetic variation from inter-gene pool hybridizations presents a potential opportunity for breeders towards the development of superior common bean cultivars.
Collapse
Affiliation(s)
| | - Caléo Panhoca de Almeida
- Common Bean Genetic Group, Natural Center of Plant Genetics, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Qijian Song
- Soybean Genomics and Improvement Lab, USDA-ARS, Beltsville, MD, USA
| | | | | | | |
Collapse
|
10
|
Díaz BG, Zucchi MI, Alves‐Pereira A, de Almeida CP, Moraes ACL, Vianna SA, Azevedo-Filho J, Colombo CA. Genome-wide SNP analysis to assess the genetic population structure and diversity of Acrocomia species. PLoS One 2021; 16:e0241025. [PMID: 34283830 PMCID: PMC8291712 DOI: 10.1371/journal.pone.0241025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Acrocomia (Arecaceae) is a genus widely distributed in tropical and subtropical America that has been achieving economic interest due to the great potential of oil production of some of its species. In particular A. aculeata, due to its vocation to supply oil with the same productive capacity as the oil palm (Elaeis guineenses) even in areas with water deficit. Although eight species are recognized in the genus, the taxonomic classification based on morphology and geographic distribution is still controversial. Knowledge about the genetic diversity and population structure of the species is limited, which has limited the understanding of the genetic relationships and the orientation of management, conservation, and genetic improvement activities of species of the genus. In the present study, we analyzed the genomic diversity and population structure of Acrocomia genus, including 172 samples from seven species, with a focus on A. aculeata with 117 samples covering a wide geographical area of occurrence of the species, using Single Nucleotide Polymorphism (SNP) markers originated from Genotyping By Sequencing (GBS).The genetic structure of the Acrocomia species were partially congruent with the current taxonomic classification based on morphological characters, recovering the separation of the species A. aculeata, A. totai, A. crispa and A. intumescens as distinct taxonomic groups. However, the species A. media was attributed to the cluster of A. aculeata while A. hassleri and A. glauscescens were grouped together with A. totai. The species that showed the highest and lowest genetic diversity were A. totai and A. media, respectively. When analyzed separately, the species A. aculeata showed a strong genetic structure, forming two genetic groups, the first represented mainly by genotypes from Brazil and the second by accessions from Central and North American countries. Greater genetic diversity was found in Brazil when compared to the other countries. Our results on the genetic diversity of the genus are unprecedented, as is also establishes new insights on the genomic relationships between Acrocomia species. It is also the first study to provide a more global view of the genomic diversity of A. aculeata. We also highlight the applicability of genomic data as a reference for future studies on genetic diversity, taxonomy, evolution and phylogeny of the Acrocomia genus, as well as to support strategies for the conservation, exploration and breeding of Acrocomia species and in particular A. aculeata.
Collapse
Affiliation(s)
| | - Maria Imaculada Zucchi
- Biology Institute, University of Campinas UNICAMP, Campinas-SP, Brazil
- Centro de Pesquisa de Recursos Genéticos Vegetais, Instituto Agronômico-IAC, Campinas-SP, Brazil
| | | | - Caléo Panhoca de Almeida
- Centro de Pesquisa de Recursos Genéticos Vegetais, Instituto Agronômico-IAC, Campinas-SP, Brazil
| | | | - Suelen Alves Vianna
- Centro de Pesquisa de Recursos Genéticos Vegetais, Instituto Agronômico-IAC, Campinas-SP, Brazil
| | - Joaquim Azevedo-Filho
- Centro de Pesquisa de Recursos Genéticos Vegetais, Instituto Agronômico-IAC, Campinas-SP, Brazil
| | - Carlos Augusto Colombo
- Centro de Pesquisa de Recursos Genéticos Vegetais, Instituto Agronômico-IAC, Campinas-SP, Brazil
| |
Collapse
|
11
|
Nadeem MA, Yeken MZ, Shahid MQ, Habyarimana E, Yılmaz H, Alsaleh A, Hatipoğlu R, Çilesiz Y, Khawar KM, Ludidi N, Ercişli S, Aasim M, Karaköy T, Baloch FS. Common bean as a potential crop for future food security: an overview of past, current and future contributions in genomics, transcriptomics, transgenics and proteomics. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1920462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Mehmet Zahit Yeken
- Department of Field Crops, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, PR China
| | | | - Hilal Yılmaz
- Department of Plant and Animal Production, Izmit Vocational School, Kocaeli University, Kocaeli, Turkey
| | - Ahmad Alsaleh
- Department of Food and Agriculture, Insitutue of Hemp Research, Yozgat Bozok University, 66200, Yozgat, Turkey
| | - Rüştü Hatipoğlu
- Department of Field Crops, Faculty of Agricultural, University of Cukurova, Adana, Turkey
| | - Yeter Çilesiz
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Khalid Mahmood Khawar
- Department of Field Crops, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Ndiko Ludidi
- Department of Biotechnology and DSI-NRF Center of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| | - Sezai Ercişli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| |
Collapse
|
12
|
Kaya C, Generalovic TN, Ståhls G, Hauser M, Samayoa AC, Nunes-Silva CG, Roxburgh H, Wohlfahrt J, Ewusie EA, Kenis M, Hanboonsong Y, Orozco J, Carrejo N, Nakamura S, Gasco L, Rojo S, Tanga CM, Meier R, Rhode C, Picard CJ, Jiggins CD, Leiber F, Tomberlin JK, Hasselmann M, Blanckenhorn WU, Kapun M, Sandrock C. Global population genetic structure and demographic trajectories of the black soldier fly, Hermetia illucens. BMC Biol 2021; 19:94. [PMID: 33952283 PMCID: PMC8101212 DOI: 10.1186/s12915-021-01029-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Background The black soldier fly (Hermetia illucens) is the most promising insect candidate for nutrient-recycling through bioconversion of organic waste into biomass, thereby improving sustainability of protein supplies for animal feed and facilitating transition to a circular economy. Contrary to conventional livestock, genetic resources of farmed insects remain poorly characterised. We present the first comprehensive population genetic characterisation of H. illucens. Based on 15 novel microsatellite markers, we genotyped and analysed 2862 individuals from 150 wild and captive populations originating from 57 countries on seven subcontinents. Results We identified 16 well-distinguished genetic clusters indicating substantial global population structure. The data revealed genetic hotspots in central South America and successive northwards range expansions within the indigenous ranges of the Americas. Colonisations and naturalisations of largely unique genetic profiles occurred on all non-native continents, either preceded by demographically independent founder events from various single sources or involving admixture scenarios. A decisive primarily admixed Polynesian bridgehead population serially colonised the entire Australasian region and its secondarily admixed descendants successively mediated invasions into Africa and Europe. Conversely, captive populations from several continents traced back to a single North American origin and exhibit considerably reduced genetic diversity, although some farmed strains carry distinct genetic signatures. We highlight genetic footprints characteristic of progressing domestication due to increasing socio-economic importance of H. illucens, and ongoing introgression between domesticated strains globally traded for large-scale farming and wild populations in some regions. Conclusions We document the dynamic population genetic history of a cosmopolitan dipteran of South American origin shaped by striking geographic patterns. These reflect both ancient dispersal routes, and stochastic and heterogeneous anthropogenic introductions during the last century leading to pronounced diversification of worldwide structure of H. illucens. Upon the recent advent of its agronomic commercialisation, however, current human-mediated translocations of the black soldier fly largely involve genetically highly uniform domesticated strains, which meanwhile threaten the genetic integrity of differentiated unique local resources through introgression. Our in-depth reconstruction of the contemporary and historical demographic trajectories of H. illucens emphasises benchmarking potential for applied future research on this emerging model of the prospering insect-livestock sector. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01029-w.
Collapse
Affiliation(s)
- Cengiz Kaya
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland.,Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland
| | | | - Gunilla Ståhls
- Zoology unit, Finnish Museum of Natural History, Helsinki, Finland
| | - Martin Hauser
- California Department of Food and Agriculture, Plant Pest Diagnostics Branch, Sacramento, USA
| | - Ana C Samayoa
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Carlos G Nunes-Silva
- Department of Genetics and Biotechnology Graduate Program, Federal University of Amazonas, Manaus, Brazil
| | - Heather Roxburgh
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Jens Wohlfahrt
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Ebenezer A Ewusie
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | | | - Yupa Hanboonsong
- Department of Entomology, Khon Kaen University, Khon Kaen, Thailand
| | - Jesus Orozco
- Department of Agricultural Sciences and Production, Zamorano University, Zamorano, Honduras
| | - Nancy Carrejo
- Department of Biology, Universidad del Valle, Santiago de Cali, Colombia
| | - Satoshi Nakamura
- Crop, Livestock and Environmental Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Santos Rojo
- Department of Environmental Sciences and Natural Resources, University of Alicante, Alicante, Spain
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, Republic of South Africa
| | - Christine J Picard
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, USA
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Florian Leiber
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | | | - Martin Hasselmann
- Department of Livestock Population Genomics, University of Hohenheim, Stuttgart, Germany
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland
| | - Martin Kapun
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland.,Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Christoph Sandrock
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland.
| |
Collapse
|
13
|
Nkhata W, Shimelis H, Melis R, Chirwa R, Mzengeza T, Mathew I, Shayanowako A. Genome-wide association analysis of bean fly resistance and agro-morphological traits in common bean. PLoS One 2021; 16:e0250729. [PMID: 33914796 PMCID: PMC8084209 DOI: 10.1371/journal.pone.0250729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
The bean fly (Ophiomyia spp) is a key insect pest causing significant crop damage and yield loss in common bean (Phaseolus vulgaris L., 2n = 2x = 22). Development and deployment of agronomic superior and bean fly resistant common bean varieties aredependent on genetic variation and the identification of genes and genomic regions controlling economic traits. This study's objective was to determine the population structure of a diverse panel of common bean genotypes and deduce associations between bean fly resistance and agronomic traits based on single nucleotide polymorphism (SNP) markers. Ninety-nine common bean genotypes were phenotyped in two seasons at two locations and genotyped with 16 565 SNP markers. The genotypes exhibited significant variation for bean fly damage severity (BDS), plant mortality rate (PMR), and pupa count (PC). Likewise, the genotypes showed significant variation for agro-morphological traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield (GYD). The genotypes were delineated into two populations, which were based on the Andean and Mesoamerican gene pools. The genotypes exhibited a minimum membership coefficient of 0.60 to their respective populations. Eighty-three significant (P<0.01) markers were identified with an average linkage disequilibrium of 0.20 at 12Mb across the 11 chromosomes. Three markers were identified, each having pleiotropic effects on two traits: M100049197 (BDS and NPP), M3379537 (DTF and PC), and M13122571 (NPP and GYD). The identified markers are useful for marker-assisted selection in the breeding program to develop common bean genotypes with resistance to bean fly damage.
Collapse
Affiliation(s)
- Wilson Nkhata
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Hussein Shimelis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Rob Melis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Rowland Chirwa
- Alliance of Biodiversity International and CIAT, Chitedze Agricultural Station, Lilongwe, Malawi
| | - Tenyson Mzengeza
- Department of Agricultural Research Service, Chitedze Agricultural Research Station, Lilongwe, Malawi
| | - Isack Mathew
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Admire Shayanowako
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|
14
|
Genome-Wide Association Study (GWAS) for Resistance to Sclerotinia sclerotiorum in Common Bean. Genes (Basel) 2020; 11:genes11121496. [PMID: 33322730 PMCID: PMC7764677 DOI: 10.3390/genes11121496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/25/2022] Open
Abstract
White mold (WM) is a devastating fungal disease affecting common bean (Phaseolus vulgaris L.). In this research, a genome-wide association study (GWAS) for WM resistance was conducted using 294 lines of the Spanish diversity panel. One single-locus method and six multi-locus methods were used in the GWAS. Response to this fungus showed a continuous distribution, and 28 lines were identified as potential resistance sources, including lines of Andean and Mesoamerican origin, as well as intermediate lines between the two gene pools. Twenty-two significant associations were identified, which were organized into 15 quantitative trait intervals (QTIs) located on chromosomes Pv01, Pv02, Pv03, Pv04, Pv08, and Pv09. Seven of these QTIs were identified for the first time, whereas eight corresponded to chromosome regions previously identified in the WM resistance. In all, 468 genes were annotated in these regions, 61 of which were proposed potential candidate genes for WM resistance, based on their function related to the three main defense stages on the host: recognition (22), signal transduction (8), and defense response (31). Results obtained from this work will contribute to a better understanding of the complex quantitative resistance to WM in common bean and reveal information of significance for future breeding programs.
Collapse
|
15
|
Erdogmus S, Ates D, Nemli S, Yagmur B, Asciogul TK, Ozkuru E, Karaca N, Yilmaz H, Esiyok D, Tanyolac MB. Genome-wide association studies of Ca and Mn in the seeds of the common bean (Phaseolus vulgaris L.). Genomics 2020; 112:4536-4546. [PMID: 32763354 DOI: 10.1016/j.ygeno.2020.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
SNP markers linked to genes controlling Ca and Mn uptake were identified in the common bean seeds using DArT-based association mapping (AM). The Ca concentration in the seeds varied between 475 and 3,100 mg kg-1 with an average of 1,280.9 mg kg-1 and the Mn concentration ranged from 4.87 to 27.54 mg kg-1 with a mean of 11.76 mg kg-1. A total of 19,204 SNP markers were distributed across 11 chromosomes that correspond to the haploid genome number of the common bean. The highest value of ΔK was determined as K = 2, and 173 common bean genotypes were split into two main subclusters as POP1 (Mesoamerican) and POP2 (Andean). The results of the UPGMA dendrogram and PCA confirmed those of STRUCTURE analysis. MLM based on the Q + K model identified a large number of markers-trait associations. Of the 19,204 SNPs, five (on Pv2, 3, 8, 10 and 11) and four (on Pv2, 3, 8 and 11) SNPs were detected to be significantly related to the Ca content of the beans grown in Bornova and Menemen, respectively in 2015. In 2016, six SNPs (on Pv1-4, 8 and 10) were identified to be significantly associated with the Ca content of the seeds obtained from Bornova and six SNPs (on Pv1-4, 8 and 10) from Menemen. Eight (on Pv3, 5 and 11) and four (on Pv2, 5 and 11) SNPs had a significant association with Mn content in Bornova in 2015 and 2016, respectively. In Menemen, eight (on Pv3, 5, 8 and 11) and 11 (on Pv1, 2, 5, 10 and 11) SNPs had a significant correlation with Mn content in 2015 and 2016, respectively.
Collapse
Affiliation(s)
- Semih Erdogmus
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Duygu Ates
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Seda Nemli
- Ege University, Faculty of Fisheries, Bornova-Izmir 35100, Turkey
| | - Bulent Yagmur
- Ege University, Department of Soil Science and Plant Nutrition, Bornova-Izmir 35100, Turkey
| | | | - Esin Ozkuru
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Nur Karaca
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Hasan Yilmaz
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Dursun Esiyok
- Ege University, Department of Horticulture, Bornova-Izmir, 35040, Turkey
| | | |
Collapse
|
16
|
Lei L, Wang L, Wang S, Wu J. Marker-Trait Association Analysis of Seed Traits in Accessions of Common Bean ( Phaseolus vulgaris L.) in China. Front Genet 2020; 11:698. [PMID: 32714377 PMCID: PMC7344293 DOI: 10.3389/fgene.2020.00698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023] Open
Abstract
Seed weight and seed size are the key agronomic traits that determine yield in common bean. To investigate the genetic architecture of four seed traits (100-seed weight, seed length, seed width, and seed height) of common bean in China, marker-trait association analysis of these seed traits was performed in a nationwide population of 395 common bean accessions using 116 polymorphic SSR markers. The four seed traits were evaluated in six trials across three environments. Seed size varied among the environments. Population structure was evaluated based on SSR markers and phaseolin, which divided the accessions into two main subpopulations representing the two known gene pools. Seed weight and seed size had a strong relationship with population clustering. In addition, in a Genome-wide association studies (GWAS), 21 significantly associated markers were identified for the four seed traits with two models, namely, general linear model (GLM) and mixed linear model (MLM). Some markers had pleiotropic effects, i.e., controlled more than one trait. The significant quantitative trait loci identified in this study could be used in marker-assisted breeding to accelerate the genetic improvement of yield in common bean.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Beijing, China
| |
Collapse
|
17
|
Cortinovis G, Frascarelli G, Di Vittori V, Papa R. Current State and Perspectives in Population Genomics of the Common Bean. PLANTS (BASEL, SWITZERLAND) 2020; 9:E330. [PMID: 32150958 PMCID: PMC7154925 DOI: 10.3390/plants9030330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022]
Abstract
* Correspondence: r [...].
Collapse
Affiliation(s)
| | | | | | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.C.); (G.F.); (V.D.V.)
| |
Collapse
|
18
|
López-Hernández F, Cortés AJ. Last-Generation Genome-Environment Associations Reveal the Genetic Basis of Heat Tolerance in Common Bean ( Phaseolus vulgaris L.). Front Genet 2019; 10:954. [PMID: 31824551 PMCID: PMC6883007 DOI: 10.3389/fgene.2019.00954] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/06/2019] [Indexed: 01/10/2023] Open
Abstract
Genome-environment associations (GEAs) are a powerful strategy for the study of adaptive traits in wild plant populations, yet they still lack behind in the use of modern statistical methods as the ones suggested for genome-wide association studies (GWASs). In order to bridge this gap, we couple GEA with last-generation GWAS algorithms in common bean to identify novel sources of heat tolerance across naturally heterogeneous ecosystems. Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption, and breeding it for resistance to heat stress is key because annual increases in atmospheric temperature are causing decreases in yield of up to 9% for every 1°C. A total of 78 geo-referenced wild accessions, spanning the two gene pools of common bean, were genotyped by sequencing (GBS), leading to the discovery of 23,373 single-nucleotide polymorphism (SNP) markers. Three indices of heat stress were developed for each accession and inputted in last-generation algorithms (i.e. SUPER, FarmCPU, and BLINK) to identify putative associated loci with the environmental heterogeneity in heat stress. Best-fit models revealed 120 significantly associated alleles distributed in all 11 common bean chromosomes. Flanking candidate genes were identified using 1-kb genomic windows centered in each associated SNP marker. Some of these genes were directly linked to heat-responsive pathways, such as the activation of heat shock proteins (MED23, MED25, HSFB1, HSP40, and HSP20). We also found protein domains related to thermostability in plants such as S1 and Zinc finger A20 and AN1. Other genes were related to biological processes that may correlate with plant tolerance to high temperature, such as time to flowering (MED25, MBD9, and PAP), germination and seedling development (Pkinase_Tyr, Ankyrin-B, and Family Glicosil-hydrolase), cell wall stability (GAE6), and signaling pathway of abiotic stress via abscisic acid (histone-like transcription factors NFYB and phospholipase C) and auxin (Auxin response factor and AUX_IAA). This work offers putative associated loci for marker-assisted and genomic selection for heat tolerance in common bean. It also demonstrates that it is feasible to identify genome-wide environmental associations with modest sample sizes by using a combination of various carefully chosen environmental indices and last-generation GWAS algorithms.
Collapse
Affiliation(s)
- Felipe López-Hernández
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia) - CI La Selva, Rionegro, Colombia
- Facultad de Ciencias – Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia - Sede Medellín, Medellín, Colombia
| | - Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia) - CI La Selva, Rionegro, Colombia
- Facultad de Ciencias Agrarias - Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín, Medellín, Colombia
| |
Collapse
|
19
|
In-Depth Characterisation of Common Bean Diversity Discloses Its Breeding Potential for Sustainable Agriculture. SUSTAINABILITY 2019. [DOI: 10.3390/su11195443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Legumes’ cultivation contributes services to agro-ecosystems and society, in line with the principles of sustainability. Among pulses, the common bean is one of the most important sources of plant proteins and other important nutrients for humans. Extensive phenotypic and genetic characterisations of unexplored bean germplasm are still needed to unlock its breeding potential. To the purpose, a panel of 192 diverse genotypes, mainly developed starting from European landrace accessions, was characterised for relevant morpho-phenological traits; a partially replicated experimental design was used. For each quantitative trait, Best Linear Unbiased Predictors and broad-sense heritability were estimated. The screened panel revealed a high level of diversity for most of the measured traits, especially for days to flowering and hundred-seed weight. The same material was also characterised by means of double-digest Restriction-site Associated DNA; a high number of SNP markers were successfully produced. The genotyping allowed understanding the fine genetic structure of the panel. Genetic information was also used to study morpho-phenological traits considering different genetic groups existing within the panel. At the same time, genotypes characterised by favourable traits were identified. The availability of such collection with its extensive characterisation, make this material an excellent resource for common bean improvement.
Collapse
|
20
|
Genotyping-by-Sequencing Reveals Molecular Genetic Diversity in Italian Common Bean Landraces. DIVERSITY 2019. [DOI: 10.3390/d11090154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The common bean (Phaseolus vulgaris L.) is one of the main legumes worldwide and represents a valuable source of nutrients. Independent domestication events in the Americas led to the formation of two cultivated genepools, namely Mesoamerican and Andean, to which European material has been brought back. In this study, Italian common bean landraces were analyzed for their genetic diversity and structure, using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS) technology. After filtering, 11,866 SNPs were obtained and 798 markers, pruned for linkage disequilibrium, were used for structure analysis. The most probable number of subpopulations (K) was two, consistent with the presence of the two genepools, identified through the phaseolin diagnostic marker. Some landraces were admixed, suggesting probable hybridization events between Mesoamerican and Andean material. When increasing the number of possible Ks, the Andean germplasm appeared to be structured in two or three subgroups. The subdivision within the Andean material was also observed in a principal coordinate analysis (PCoA) plot and a dendrogram based on genetic distances. The Mesoamerican landraces showed a higher level of genetic diversity compared to the Andean landraces. Calculation of the fixation index (FST) at individual SNPs between the Mesoamerican and Andean genepools and within the Andean genepool evidenced clusters of highly divergent loci in specific chromosomal regions. This work may help to preserve landraces of the common bean from genetic erosion, and could represent a starting point for the identification of interesting traits that determine plant adaptation.
Collapse
|
21
|
Wilker J, Navabi A, Rajcan I, Marsolais F, Hill B, Torkamaneh D, Pauls KP. Agronomic Performance and Nitrogen Fixation of Heirloom and Conventional Dry Bean Varieties Under Low-Nitrogen Field Conditions. FRONTIERS IN PLANT SCIENCE 2019; 10:952. [PMID: 31404343 PMCID: PMC6676800 DOI: 10.3389/fpls.2019.00952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/09/2019] [Indexed: 05/26/2023]
Abstract
Common beans (Phaseolus vulgaris) form a relationship with nitrogen-fixing rhizobia and through a process termed symbiotic nitrogen fixation (SNF) which provides them with a source of nitrogen. However, beans are considered poor nitrogen fixers, and modern production practices involve routine use of N fertilizer, which leads to the down-regulation of SNF. High-yielding, conventionally bred bean varieties are developed using conventional production practices and selection criteria, typically not including SNF efficiency, and may have lost this trait over decades of modern breeding. In contrast, heirloom bean genotypes were developed before the advent of modern production practices and may represent an underutilized pool of genetics which could be used to improve SNF. This study compared the SNF capacity under low-N field conditions, of collections of heirloom varieties with and conventionally bred dry bean varieties. The heirloom-conventional panel (HCP) consisted of 42 genotypes from various online seed retailers or from the University of Guelph Bean Breeding program seedbank. The HCP was genotyped using a single nucleotide polymorphism (SNP) array to investigate genetic relatedness within the panel. Field trials were conducted at three locations in ON, Canada from 2014 to 2015 and various agronomic and seed composition traits were measured, including capacity for nitrogen fixation (using the natural abundance method to measure seed N isotope ratios). Significant variation for SNF was found in the panel. However, on average, heirloom genotypes did not fix significantly more nitrogen than conventionally bred varieties. However, five heirloom genotypes fixed >60% of their nitrogen from the atmosphere. Yield (kg ha-1) was not significantly different between heirloom and conventional genotypes, suggesting that incorporating heirloom genotypes into a modern breeding program would not negatively impact yield. Nitrogen fixation was significantly higher among Middle American genotypes than among Andean genotypes, confirming previous findings. The best nitrogen fixing line was Coco Sophie, a European heirloom white bean whose genetic makeup is admixed between the Andean and Middle American genepools. Heirloom genotypes represent a useful source of genetics to improve SNF in modern bean breeding.
Collapse
Affiliation(s)
- Jennifer Wilker
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Alireza Navabi
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Frédéric Marsolais
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Brett Hill
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Davoud Torkamaneh
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - K. Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
22
|
Singh J, Gezan SA, Vallejos CE. Developmental Pleiotropy Shaped the Roots of the Domesticated Common Bean ( Phaseolus vulgaris). PLANT PHYSIOLOGY 2019; 180:1467-1479. [PMID: 31061105 PMCID: PMC6752912 DOI: 10.1104/pp.18.01509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/23/2019] [Indexed: 06/01/2023]
Abstract
Roots have been omitted from previous domestication analyses owing mostly to their subterranean nature. We hypothesized that domestication-associated changes in common bean (Phaseolus vulgaris) roots were due to direct selection for some aboveground traits that also affect roots, and to indirect selection of root traits that improved aboveground plant performance. To test this hypothesis, we compared the root traits of wild and domesticated accessions and performed a multistep quantitative trait locus (QTL) analysis of an intra-Andean recombinant inbred family derived from a landrace and a wild accession. Multivariate analysis of root traits distinguished wild from domesticated accessions and showed that seed weight affects many root traits of young seedlings. Sequential and methodical scanning of the genome confirmed the significant effect of seed weight on root traits and identified QTLs that control seed weight, root architecture, shoot and root traits, and shoot traits alone. The root domestication syndrome in the common bean was associated with genes that were directly selected to increase seed weight but had a significant effect on early root growth through a developmental pleiotropic effect. The syndrome was also associated with genes that control root system architecture and that were apparently the product of indirect selection.
Collapse
Affiliation(s)
- Jugpreet Singh
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611
| | - Salvador A Gezan
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611
| | - C Eduardo Vallejos
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
23
|
Weller JL, Vander Schoor JK, Perez-Wright EC, Hecht V, González AM, Capel C, Yuste-Lisbona FJ, Lozano R, Santalla M. Parallel origins of photoperiod adaptation following dual domestications of common bean. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1209-1219. [PMID: 31222352 DOI: 10.1093/jxb/ery455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/09/2019] [Indexed: 05/02/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is an important grain legume domesticated independently in Mexico and Andean South America approximately 8000 years ago. Wild forms are obligate short-day plants, and relaxation of photoperiod sensitivity was important for expansion to higher latitudes and subsequent global spread. To better understand the nature and origin of this key adaptation, we examined its genetic control in progeny of a wide cross between a wild accession and a photoperiod-insensitive cultivar. We found that photoperiod sensitivity is under oligogenic control, and confirm a major effect of the Ppd locus on chromosome 1. The red/far-red photoreceptor gene PHYTOCHROME A3 (PHYA3) was identified as a strong positional candidate for Ppd, and sequencing revealed distinct deleterious PHYA3 mutations in photoperiod-insensitive Andean and Mesoamerican accessions. These results reveal the independent origins of photoperiod insensitivity within the two major common bean gene pools and demonstrate the conserved importance of PHYA genes in photoperiod adaptation of short-day legume species.
Collapse
Affiliation(s)
- James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | - Valérie Hecht
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Ana M González
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, Pontevedra, Spain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almeria, Almeria, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almeria, Almeria, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almeria, Almeria, Spain
| | - Marta Santalla
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, Pontevedra, Spain
| |
Collapse
|
24
|
Diniz AL, Giordani W, Costa ZP, Margarido GRA, Perseguini JMKC, Benchimol-Reis LL, Chiorato AF, Garcia AAF, Vieira MLC. Evidence for Strong Kinship Influence on the Extent of Linkage Disequilibrium in Cultivated Common Beans. Genes (Basel) 2018; 10:E5. [PMID: 30583474 PMCID: PMC6356217 DOI: 10.3390/genes10010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023] Open
Abstract
Phaseolus vulgaris is an important grain legume for human consumption. Recently, association mapping studies have been performed for the species aiming to identify loci underlying quantitative variation of traits. It is now imperative to know whether the linkage disequilibrium (LD) reflects the true association between a marker and causative loci. The aim of this study was to estimate and analyze LD on a diversity panel of common beans using ordinary r² and r2 extensions which correct bias due to population structure (rS²), kinship (rV²), and both (rVS²). A total of 10,362 single nucleotide polymorphisms (SNPs) were identified by genotyping by sequencing (GBS), and polymorphisms were found to be widely distributed along the 11 chromosomes. In terms of r2, high values of LD (over 0.8) were identified between SNPs located at opposite chromosomal ends. Estimates for rV² were lower than those for rS². Results for rV² and rVS² were similar, suggesting that kinship may also include information on population structure. Over genetic distance, LD decayed to 0.1 at a distance of 1 Mb for rVS². Inter-chromosomal LD was also evidenced. This study showed that LD estimates decay dramatically according to the population structure, and especially the degree of kinship. Importantly, the LD estimates reported herein may influence our ability to perform association mapping studies on P. vulgaris.
Collapse
Affiliation(s)
- Augusto Lima Diniz
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Willian Giordani
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Zirlane Portugal Costa
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Gabriel R A Margarido
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Juliana Morini K C Perseguini
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná 85660-000, Brazil.
- Centro de Recursos Genéticos, Instituto Agronômico de Campinas, Campinas, São Paulo 13075-630, Brazil.
| | - Luciana L Benchimol-Reis
- Centro de Recursos Genéticos, Instituto Agronômico de Campinas, Campinas, São Paulo 13075-630, Brazil.
| | - Alisson F Chiorato
- Centro de Grãos e Fibras, Instituto Agronômico de Campinas, Campinas, São Paulo 13075-630, Brazil.
| | - Antônio Augusto F Garcia
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| |
Collapse
|
25
|
Campa A, Murube E, Ferreira JJ. Genetic Diversity, Population Structure, and Linkage Disequilibrium in a Spanish Common Bean Diversity Panel Revealed through Genotyping-by-Sequencing. Genes (Basel) 2018; 9:E518. [PMID: 30360561 PMCID: PMC6266623 DOI: 10.3390/genes9110518] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022] Open
Abstract
A common bean (Phaseolus vulgaris) diversity panel of 308 lines was established from local Spanish germplasm, as well as old and elite cultivars mainly used for snap consumption. Most of the landraces included derived from the Spanish common bean core collection, so this panel can be considered to be representative of the Spanish diversity for this species. The panel was characterized by 3099 single-nucleotide polymorphism markers obtained through genotyping-by-sequencing, which revealed a wide genetic diversity and a low level of redundant material within the panel. Structure, cluster, and principal component analyses revealed the presence of two main subpopulations corresponding to the two main gene pools identified in common bean, the Andean and Mesoamerican pools, although most lines (70%) were associated with the Andean gene pool. Lines showing recombination between the two gene pools were also observed, most of them showing useful for snap bean consumption, which suggests that both gene pools were probably used in the breeding of snap bean cultivars. The usefulness of this panel for genome-wide association studies was tested by conducting association mapping for determinacy. Significant marker⁻trait associations were found on chromosome Pv01, involving the gene Phvul.001G189200, which was identified as a candidate gene for determinacy in the common bean.
Collapse
Affiliation(s)
- Ana Campa
- Plant Genetics, Area of Horticultural and Forest Crops, SERIDA, 33300 Asturias, Spain.
| | - Ester Murube
- Plant Genetics, Area of Horticultural and Forest Crops, SERIDA, 33300 Asturias, Spain.
| | - Juan José Ferreira
- Plant Genetics, Area of Horticultural and Forest Crops, SERIDA, 33300 Asturias, Spain.
| |
Collapse
|
26
|
Nadeem MA, Habyarimana E, Çiftçi V, Nawaz MA, Karaköy T, Comertpay G, Shahid MQ, Hatipoğlu R, Yeken MZ, Ali F, Ercişli S, Chung G, Baloch FS. Characterization of genetic diversity in Turkish common bean gene pool using phenotypic and whole-genome DArTseq-generated silicoDArT marker information. PLoS One 2018; 13:e0205363. [PMID: 30308006 PMCID: PMC6181364 DOI: 10.1371/journal.pone.0205363] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
Turkey presents a great diversity of common bean landraces in farmers' fields. We collected 183 common bean accessions from 19 different Turkish geographic regions and 5 scarlet runner bean accessions to investigate their genetic diversity and population structure using phenotypic information (growth habit, and seed weight, flower color, bracteole shape and size, pod shape and leaf shape and color), geographic provenance and 12,557 silicoDArT markers. A total of 24.14% markers were found novel. For the entire population (188 accessions), the expected heterozygosity was 0.078 and overall gene diversity, Fst and Fis were 0.14, 0.55 and 1, respectively. Using marker information, model-based structure, principal coordinate analysis (PCoA) and unweighted pair-group method with arithmetic means (UPGMA) algorithms clustered the 188 accessions into two main populations A (predominant) and B, and 5 unclassified genotypes, representing 3 meaningful heterotic groups for breeding purposes. Phenotypic information clearly distinguished these populations; population A and B, respectively, were bigger (>40g/100 seeds) and smaller (<40g/100 seeds) seed-sized. The unclassified population was pure and only contained climbing genotypes with 100 seed weight 2-3 times greater than populations A and B. Clustering was mainly based on A: seed weight, B: growth habit, C: geographical provinces and D: flower color. Mean kinship was generally low, but population B was more diverse than population A. Overall, a useful level of gene and genotypic diversity was observed in this work and can be used by the scientific community in breeding efforts to develop superior common bean strains.
Collapse
Affiliation(s)
- Muhammad Azhar Nadeem
- Department of field crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, Bolu, Turkey
| | - Ephrem Habyarimana
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria–Centro di ricerca cerealicoltura e colture industriali, Bologna, Italy
| | - Vahdettin Çiftçi
- Department of field crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, Bolu, Turkey
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Chonnam, Republic of Korea
| | - Tolga Karaköy
- Organic Agriculture Program, Vocational School of Sivas, University of Cumhuriyet, Sivas, Turkey
| | - Gonul Comertpay
- Eastern Mediterranean Agricultural Research Institute, Turkey
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio resources, South China Agricultural University, Guangzhou, China
| | - Rüştü Hatipoğlu
- Department of Field Crops, Faculty of Agricultural, University of Cukurova, Adana, Turkey
| | - Mehmet Zahit Yeken
- Department of field crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, Bolu, Turkey
| | - Fawad Ali
- Department of field crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, Bolu, Turkey
| | - Sezai Ercişli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam, Republic of Korea
| | - Faheem Shehzad Baloch
- Department of field crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
27
|
Hiraoka Y, Fukatsu E, Mishima K, Hirao T, Teshima KM, Tamura M, Tsubomura M, Iki T, Kurita M, Takahashi M, Watanabe A. Potential of Genome-Wide Studies in Unrelated Plus Trees of a Coniferous Species, Cryptomeria japonica (Japanese Cedar). FRONTIERS IN PLANT SCIENCE 2018; 9:1322. [PMID: 30254658 PMCID: PMC6141754 DOI: 10.3389/fpls.2018.01322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
A genome-wide association study (GWAS) was conducted on more than 30,000 single nucleotide polymorphisms (SNPs) in unrelated first-generation plus tree genotypes from three populations of Japanese cedar Cryptomeria japonica D. Don with genomic prediction for traits of growth, wood properties and male fecundity. Among the assessed populations, genetic characteristics including the extent of linkage disequilibrium (LD) and genetic structure differed and these differences are considered to be due to differences in genetic background. Through population-independent GWAS, several significant SNPs found close to the regions associated with each of these traits and shared in common across the populations were identified. The accuracies of genomic predictions were dependent on the traits and populations and reflected the genetic architecture of traits and genetic characteristics. Prediction accuracies using SNPs selected based on GWAS results were similar to those using all SNPs for several combinations of traits and populations. We discussed the application of genome-wide studies for C. japonica improvement.
Collapse
Affiliation(s)
- Yuichiro Hiraoka
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Eitaro Fukatsu
- Kyushu Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Kumamoto, Japan
| | - Kentaro Mishima
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Tomonori Hirao
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | | | - Miho Tamura
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Miyoko Tsubomura
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Taiichi Iki
- Tohoku Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Takizawa, Japan
| | - Manabu Kurita
- Kyushu Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Kumamoto, Japan
| | - Makoto Takahashi
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | | |
Collapse
|
28
|
Blair MW, Cortés AJ, Farmer AD, Huang W, Ambachew D, Penmetsa RV, Carrasquilla-Garcia N, Assefa T, Cannon SB. Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.). PLoS One 2018; 13:e0189597. [PMID: 29522524 PMCID: PMC5844515 DOI: 10.1371/journal.pone.0189597] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Recombination (R) rate and linkage disequilibrium (LD) analyses are the basis for plant breeding. These vary by breeding system, by generation of inbreeding or outcrossing and by region in the chromosome. Common bean (Phaseolus vulgaris L.) is a favored food legume with a small sequenced genome (514 Mb) and n = 11 chromosomes. The goal of this study was to describe R and LD in the common bean genome using a 768-marker array of single nucleotide polymorphisms (SNP) based on Trans-legume Orthologous Group (TOG) genes along with an advanced-generation Recombinant Inbred Line reference mapping population (BAT93 x Jalo EEP558) and an internationally available diversity panel. A whole genome genetic map was created that covered all eleven linkage groups (LG). The LGs were linked to the physical map by sequence data of the TOGs compared to each chromosome sequence of common bean. The genetic map length in total was smaller than for previous maps reflecting the precision of allele calling and mapping with SNP technology as well as the use of gene-based markers. A total of 91.4% of TOG markers had singleton hits with annotated Pv genes and all mapped outside of regions of resistance gene clusters. LD levels were found to be stronger within the Mesoamerican genepool and decay more rapidly within the Andean genepool. The recombination rate across the genome was 2.13 cM / Mb but R was found to be highly repressed around centromeres and frequent outside peri-centromeric regions. These results have important implications for association and genetic mapping or crop improvement in common bean.
Collapse
Affiliation(s)
- Matthew W. Blair
- Department of Agricultural & Environmental Science, Tennessee State University (TSU), Nashville, Tennessee, United States of America
| | - Andrés J. Cortés
- Colombian Corporation for Agricultural Research (CORPOICA), C.I. La Selva, Rionegro, Department of Antioquia, Colombia
| | - Andrew D. Farmer
- National Center for Genome Resources (NCGR), Santa Fe, New Mexico, United States of America
| | - Wei Huang
- Iowa State University (ISU), Ames, Iowa, United States of America
| | - Daniel Ambachew
- Department of Agricultural & Environmental Science, Tennessee State University (TSU), Nashville, Tennessee, United States of America
| | - R. Varma Penmetsa
- University of California, Davis (US-D), California, United States of America
| | | | - Teshale Assefa
- Iowa State University (ISU), Ames, Iowa, United States of America
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa, United States of America
| | - Steven B. Cannon
- Iowa State University (ISU), Ames, Iowa, United States of America
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa, United States of America
| |
Collapse
|
29
|
Cortés AJ, Blair MW. Genotyping by Sequencing and Genome-Environment Associations in Wild Common Bean Predict Widespread Divergent Adaptation to Drought. FRONTIERS IN PLANT SCIENCE 2018; 9:128. [PMID: 29515597 PMCID: PMC5826387 DOI: 10.3389/fpls.2018.00128] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/23/2018] [Indexed: 05/18/2023]
Abstract
Drought will reduce global crop production by >10% in 2050 substantially worsening global malnutrition. Breeding for resistance to drought will require accessing crop genetic diversity found in the wild accessions from the driest high stress ecosystems. Genome-environment associations (GEA) in crop wild relatives reveal natural adaptation, and therefore can be used to identify adaptive variation. We explored this approach in the food crop Phaseolus vulgaris L., characterizing 86 geo-referenced wild accessions using genotyping by sequencing (GBS) to discover single nucleotide polymorphisms (SNPs). The wild beans represented Mesoamerica, Guatemala, Colombia, Ecuador/Northern Peru and Andean groupings. We found high polymorphism with a total of 22,845 SNPs across the 86 accessions that confirmed genetic relationships for the groups. As a second objective, we quantified allelic associations with a bioclimatic-based drought index using 10 different statistical models that accounted for population structure. Based on the optimum model, 115 SNPs in 90 regions, widespread in all 11 common bean chromosomes, were associated with the bioclimatic-based drought index. A gene coding for an ankyrin repeat-containing protein and a phototropic-responsive NPH3 gene were identified as potential candidates. Genomic windows of 1 Mb containing associated SNPs had more positive Tajima's D scores than windows without associated markers. This indicates that adaptation to drought, as estimated by bioclimatic variables, has been under natural divergent selection, suggesting that drought tolerance may be favorable under dry conditions but harmful in humid conditions. Our work exemplifies that genomic signatures of adaptation are useful for germplasm characterization, potentially enhancing future marker-assisted selection and crop improvement.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Matthew W. Blair
- Department of Agricultural and Environmental Science, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
30
|
Chacón-Sánchez MI, Martínez-Castillo J. Testing Domestication Scenarios of Lima Bean ( Phaseolus lunatus L.) in Mesoamerica: Insights from Genome-Wide Genetic Markers. FRONTIERS IN PLANT SCIENCE 2017; 8:1551. [PMID: 28955351 PMCID: PMC5601060 DOI: 10.3389/fpls.2017.01551] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/24/2017] [Indexed: 05/03/2023]
Abstract
Plant domestication can be seen as a long-term process that involves a complex interplay among demographic processes and evolutionary forces. Previous studies have suggested two domestication scenarios for Lima bean in Mesoamerica: two separate domestication events, one from gene pool MI in central-western Mexico and another one from gene pool MII in the area Guatemala-Costa Rica, or a single domestication from gene pool MI in central-western Mexico followed by post-domestication gene flow with wild populations. In this study we evaluated the genetic structure of the wild gene pool and tested these two competing domestication scenarios of Lima bean in Mesoamerica by applying an ABC approach to a set of genome-wide SNP markers. The results confirm the existence of three gene pools in wild Lima bean, two Mesoamerican gene pools (MI and MII) and the Andean gene pool (AI), and suggest the existence of another gene pool in central Colombia. The results indicate that although both domestication scenarios may be supported by genetic data, higher statistical support was given to the single domestication scenario in central-western Mexico followed by admixture with wild populations. Domestication would have involved strong founder effects reflected in loss of genetic diversity and increased LD levels in landraces. Genomic regions affected by selection were detected and these may harbor candidate genes related to domestication.
Collapse
Affiliation(s)
- María I. Chacón-Sánchez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de ColombiaBogotá, Colombia
| | | |
Collapse
|
31
|
Valdisser PAMR, Pereira WJ, Almeida Filho JE, Müller BSF, Coelho GRC, de Menezes IPP, Vianna JPG, Zucchi MI, Lanna AC, Coelho ASG, de Oliveira JP, Moraes ADC, Brondani C, Vianello RP. In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics 2017; 18:423. [PMID: 28558696 PMCID: PMC5450071 DOI: 10.1186/s12864-017-3805-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/17/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Common bean is a legume of social and nutritional importance as a food crop, cultivated worldwide especially in developing countries, accounting for an important source of income for small farmers. The availability of the complete sequences of the two common bean genomes has dramatically accelerated and has enabled new experimental strategies to be applied for genetic research. DArTseq has been widely used as a method of SNP genotyping allowing comprehensive genome coverage with genetic applications in common bean breeding programs. RESULTS Using this technology, 6286 SNPs (1 SNP/86.5 Kbp) were genotyped in genic (43.3%) and non-genic regions (56.7%). Genetic subdivision associated to the common bean gene pools (K = 2) and related to grain types (K = 3 and K = 5) were reported. A total of 83% and 91% of all SNPs were polymorphic within the Andean and Mesoamerican gene pools, respectively, and 26% were able to differentiate the gene pools. Genetic diversity analysis revealed an average H E of 0.442 for the whole collection, 0.102 for Andean and 0.168 for Mesoamerican gene pools (F ST = 0.747 between gene pools), 0.440 for the group of cultivars and lines, and 0.448 for the group of landrace accessions (F ST = 0.002 between cultivar/line and landrace groups). The SNP effects were predicted with predominance of impact on non-coding regions (77.8%). SNPs under selection were identified within gene pools comparing landrace and cultivar/line germplasm groups (Andean: 18; Mesoamerican: 69) and between the gene pools (59 SNPs), predominantly on chromosomes 1 and 9. The LD extension estimate corrected for population structure and relatedness (r2SV) was ~ 88 kbp, while for the Andean gene pool was ~ 395 kbp, and for the Mesoamerican was ~ 130 kbp. CONCLUSIONS For common bean, DArTseq provides an efficient and cost-effective strategy of generating SNPs for large-scale genome-wide studies. The DArTseq resulted in an operational panel of 560 polymorphic SNPs in linkage equilibrium, providing high genome coverage. This SNP set could be used in genotyping platforms with many applications, such as population genetics, phylogeny relation between common bean varieties and support to molecular breeding approaches.
Collapse
Affiliation(s)
- Paula A. M. R. Valdisser
- Embrapa Arroz e Feijão (CNPAF), Santo Antônio de Goiás, Goiânia, GO Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Wendell J. Pereira
- Programa de Pós-Graduação em Biologia Molecular, Universidade de Brasília (UnB), Brasília, DF Brazil
| | - Jâneo E. Almeida Filho
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, RJ Brazil
| | - Bárbara S. F. Müller
- Programa de Pós-Graduação em Biologia Molecular, Universidade de Brasília (UnB), Brasília, DF Brazil
| | | | - Ivandilson P. P. de Menezes
- Laboratório de Genética e Biologia Molecular, Departamento de Biologia, Instituto Federal Goiano (IF Goiano), Urutaí, GO Brazil
| | - João P. G. Vianna
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Maria I. Zucchi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Anna C. Lanna
- Embrapa Arroz e Feijão (CNPAF), Santo Antônio de Goiás, Goiânia, GO Brazil
| | | | | | | | - Claudio Brondani
- Embrapa Arroz e Feijão (CNPAF), Santo Antônio de Goiás, Goiânia, GO Brazil
| | - Rosana P. Vianello
- Embrapa Arroz e Feijão (CNPAF), Santo Antônio de Goiás, Goiânia, GO Brazil
| |
Collapse
|
32
|
Bitocchi E, Rau D, Bellucci E, Rodriguez M, Murgia ML, Gioia T, Santo D, Nanni L, Attene G, Papa R. Beans ( Phaseolus ssp.) as a Model for Understanding Crop Evolution. FRONTIERS IN PLANT SCIENCE 2017; 8:722. [PMID: 28533789 PMCID: PMC5420584 DOI: 10.3389/fpls.2017.00722] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/19/2017] [Indexed: 05/03/2023]
Abstract
Here, we aim to provide a comprehensive and up-to-date overview of the most significant outcomes in the literature regarding the origin of Phaseolus genus, the geographical distribution of the wild species, the domestication process, and the wide spread out of the centers of origin. Phaseolus can be considered as a unique model for the study of crop evolution, and in particular, for an understanding of the convergent phenotypic evolution that occurred under domestication. The almost unique situation that characterizes the Phaseolus genus is that five of its ∼70 species have been domesticated (i.e., Phaseolus vulgaris, P. coccineus, P. dumosus, P. acutifolius, and P. lunatus), and in addition, for P. vulgaris and P. lunatus, the wild forms are distributed in both Mesoamerica and South America, where at least two independent and isolated episodes of domestication occurred. Thus, at least seven independent domestication events occurred, which provides the possibility to unravel the genetic basis of the domestication process not only among species of the same genus, but also between gene pools within the same species. Along with this, other interesting features makes Phaseolus crops very useful in the study of evolution, including: (i) their recent divergence, and the high level of collinearity and synteny among their genomes; (ii) their different breeding systems and life history traits, from annual and autogamous, to perennial and allogamous; and (iii) their adaptation to different environments, not only in their centers of origin, but also out of the Americas, following their introduction and wide spread through different countries. In particular for P. vulgaris this resulted in the breaking of the spatial isolation of the Mesoamerican and Andean gene pools, which allowed spontaneous hybridization, thus increasing of the possibility of novel genotypes and phenotypes. This knowledge that is associated to the genetic resources that have been conserved ex situ and in situ represents a crucial tool in the hands of researchers, to preserve and evaluate this diversity, and at the same time, to identify the genetic basis of adaptation and to develop new improved varieties to tackle the challenges of climate change, and food security and sustainability.
Collapse
Affiliation(s)
- Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | - Domenico Rau
- Department of Agriculture, University of SassariSassari, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | | | - Maria L. Murgia
- Department of Agriculture, University of SassariSassari, Italy
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of BasilicataPotenza, Italy
| | - Debora Santo
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | - Giovanna Attene
- Department of Agriculture, University of SassariSassari, Italy
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| |
Collapse
|
33
|
Bitocchi E, Rau D, Benazzo A, Bellucci E, Goretti D, Biagetti E, Panziera A, Laidò G, Rodriguez M, Gioia T, Attene G, McClean P, Lee RK, Jackson SA, Bertorelle G, Papa R. High Level of Nonsynonymous Changes in Common Bean Suggests That Selection under Domestication Increased Functional Diversity at Target Traits. FRONTIERS IN PLANT SCIENCE 2017; 7:2005. [PMID: 28111584 PMCID: PMC5216878 DOI: 10.3389/fpls.2016.02005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/16/2016] [Indexed: 05/05/2023]
Abstract
Crop species have been deeply affected by the domestication process, and there have been many efforts to identify selection signatures at the genome level. This knowledge will help geneticists to better understand the evolution of organisms, and at the same time, help breeders to implement successful breeding strategies. Here, we focused on domestication in the Mesoamerican gene pool of Phaseolus vulgaris by sequencing 49 gene fragments from a sample of 45 P. vulgaris wild and domesticated accessions, and as controls, two accessions each of the closely related species Phaseolus coccineus and Phaseolus dumosus. An excess of nonsynonymous mutations within the domesticated germplasm was found. Our data suggest that the cost of domestication alone cannot explain fully this finding. Indeed, the significantly higher frequency of polymorphisms in the coding regions observed only in the domesticated plants (compared to noncoding regions), the fact that these mutations were mostly nonsynonymous and appear to be recently derived mutations, and the investigations into the functions of their relative genes (responses to biotic and abiotic stresses), support a scenario that involves new functional mutations selected for adaptation during domestication. Moreover, consistent with this hypothesis, selection analysis and the possibility to compare data obtained for the same genes in different studies of varying sizes, data types, and methodologies allowed us to identify four genes that were strongly selected during domestication. Each selection candidate is involved in plant resistance/tolerance to abiotic stresses, such as heat, drought, and salinity. Overall, our study suggests that domestication acted to increase functional diversity at target loci, which probably controlled traits related to expansion and adaptation to new agro-ecological growing conditions.
Collapse
Affiliation(s)
- Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| | - Domenico Rau
- Department of Agriculture, Università degli Studi di SassariSassari, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, Università degli Studi di FerraraFerrara, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| | - Daniela Goretti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå UniversityUmeå, Sweden
| | - Eleonora Biagetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| | - Alex Panziera
- Department of Life Sciences and Biotechnology, Università degli Studi di FerraraFerrara, Italy
| | - Giovanni Laidò
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la CerealicolturaFoggia, Italy
| | - Monica Rodriguez
- Department of Agriculture, Università degli Studi di SassariSassari, Italy
| | - Tania Gioia
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della BasilicataPotenza, Italy
| | - Giovanna Attene
- Department of Agriculture, Università degli Studi di SassariSassari, Italy
| | - Phillip McClean
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| | - Rian K. Lee
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of GeorgiaAthens, GA, USA
| | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, Università degli Studi di FerraraFerrara, Italy
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| |
Collapse
|
34
|
Genetic Diversity and Association Mapping for Agromorphological and Grain Quality Traits of a Structured Collection of Durum Wheat Landraces Including subsp. durum, turgidum and diccocon. PLoS One 2016; 11:e0166577. [PMID: 27846306 PMCID: PMC5113043 DOI: 10.1371/journal.pone.0166577] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022] Open
Abstract
Association mapping was performed for 18 agromorphological and grain quality traits in a set of 183 Spanish landraces, including subspecies durum, turgidum and dicoccon, genotyped with 749 DArT (Diversity Array Technology) markers. Large genetic and phenotypic variability was detected, being the level of diversity among the chromosomes and genomes heterogeneous, and sometimes complementary, among subspecies. Overall, 356 were monomorphic in at least one subspecies, mainly in dicoccon, and some of them coincidental between subspecies, especially between turgidum and dicoccon. Several of those fixed markers were associated to plant responses to environmental stresses or linked to genes subjected to selection during tetraploid wheat domestication process. A total of 85 stable MTAs (marker–trait associations) have been identified for the agromorphological and quality parameters, some of them common among subspecies and others subspecies-specific. For all the traits, we have found MTAs explaining more than 10% of the phenotypic variation in any of the three subspecies. The number of MTAs on the B genome exceeded that on the A genome in subsp. durum, equalled in turgidum and was below in dicoccon. The validation of several adaptive and quality trait MTAs by combining the association mapping with an analysis of the signature of selection, identifying the putative gene function of the marker, or by coincidences with previous reports, showed that our approach was successful for the detection of MTAs and the high potential of the collection to identify marker–trait associations. Novel MTAs not previously reported, some of them subspecies specific, have been described and provide new information about the genetic control of complex traits.
Collapse
|
35
|
Oliveira HR, Tomás D, Silva M, Lopes S, Viegas W, Veloso MM. Genetic Diversity and Population Structure in Vicia faba L. Landraces and Wild Related Species Assessed by Nuclear SSRs. PLoS One 2016; 11:e0154801. [PMID: 27168146 PMCID: PMC4864303 DOI: 10.1371/journal.pone.0154801] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022] Open
Abstract
Faba bean (Vicia faba L.) is a facultative cross-pollinating legume crop with a great importance for food and feed due to its high protein content as well as the important role in soil fertility and nitrogen fixation. In this work we evaluated genetic diversity and population structure of faba bean accessions from the Western Mediterranean basin and wild related species. For that purpose we screened 53 V. faba, 2 V. johannis and 7 V. narbonensis accessions from Portugal, Spain and Morocco with 28 faba bean Single Sequence Repeats (SSR). SSR genotyping showed that the number of alleles detected per locus for the polymorphic markers ranged between 2 and 10, with Polymorphic Information Content (PIC) values between 0.662 and 0.071, and heterozygosity (HO) between 0–0.467. Heterozygosity and inbreeding coefficient levels indicate a higher level of inbreeding in wild related species than in cultivated Vicia. The analysis of molecular variance (AMOVA) showed a superior genetic diversity within accessions than between accessions even from distant regions. These results are in accordance to population structure analysis showing that individuals from the same accession can be genetically more similar to individuals from far away accessions, than from individuals from the same accession. In all three levels of analysis (whole panel of cultivated and wild accessions, cultivated faba bean accessions and Portuguese accessions) no population structure was observed based on geography or climatic factors. Differences between V. narbonensis and V. johannis are undetectable although these wild taxa are clearly distinct from V. faba accessions. Thus, a limited gene flow occurred between cultivated accessions and wild relatives. Contrastingly, the lack of population structure seems to indicate a high degree of gene flow between V. faba accessions, possibly explained by the partially allogamous habit in association with frequent seed exchange/introduction.
Collapse
Affiliation(s)
- Hugo R. Oliveira
- Plant Biology/CIBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485–661, Vairão, Portugal
| | - Diana Tomás
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349–017, Lisboa, Portugal
- * E-mail:
| | - Manuela Silva
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349–017, Lisboa, Portugal
| | - Susana Lopes
- CTM.CIBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485–661, Vairão, Portugal
| | - Wanda Viegas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349–017, Lisboa, Portugal
| | - Maria Manuela Veloso
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349–017, Lisboa, Portugal
- Unidade de Investigação de Biotecnologia e Recursos Genéticos, INIAV, Quinta do Marquês, 2784–505, Oeiras, Portugal
| |
Collapse
|
36
|
Magdy M, Werner O, McDaniel SF, Goffinet B, Ros RM. Genomic scanning using AFLP to detect loci under selection in the moss Funaria hygrometrica along a climate gradient in the Sierra Nevada Mountains, Spain. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:280-288. [PMID: 26284822 DOI: 10.1111/plb.12381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
The common cord moss Funaria hygrometrica has a worldwide distribution and thrives in a wide variety of environments. Here, we studied the genetic diversity in F. hygrometrica along an abiotic gradient in the Mediterranean high mountain of Sierra Nevada (Spain) using a genome scan method. Eighty-four samples from 17 locations from 24 to 2700 m were fingerprinted based on their amplified fragment length polymorphism (AFLP) banding pattern. Using PCA and Bayesian inference we found that the genetic diversity was structured in three or four clusters, respectively. Using a genome scan method we identified 13 outlier loci, which showed a signature of positive selection. Partial Mantel tests were performed between the Euclidean distance matrices of geographic and climatic variables, versus the pair-wise genetic distance of the AFLP dataset and AFLP-positive outliers dataset. AFLP-positive outlier data were significantly correlated with the gradient of the climatic variables, suggesting adaptive variation among populations of F. hygrometrica along the Sierra Nevada Mountains. We highlight the additional analyses necessary to identify the nature of these loci, and their biological role in the adaptation process.
Collapse
Affiliation(s)
- M Magdy
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - O Werner
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - S F McDaniel
- Biology Department, University of Florida, Gainesville, FL, USA
| | - B Goffinet
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - R M Ros
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
37
|
Genome-Wide Association Studies of Anthracnose and Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.). PLoS One 2016; 11:e0150506. [PMID: 26930078 PMCID: PMC4773255 DOI: 10.1371/journal.pone.0150506] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/14/2016] [Indexed: 12/27/2022] Open
Abstract
The common bean (Phaseolus vulgaris L.) is the world’s most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more effective screening of elite germplasm to find resistance alleles for marker-assisted selection in breeding programs.
Collapse
|
38
|
Rodriguez M, Rau D, Bitocchi E, Bellucci E, Biagetti E, Carboni A, Gepts P, Nanni L, Papa R, Attene G. Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris. THE NEW PHYTOLOGIST 2016; 209:1781-94. [PMID: 26526745 DOI: 10.1111/nph.13713] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/06/2015] [Indexed: 05/19/2023]
Abstract
Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources.
Collapse
Affiliation(s)
- Monica Rodriguez
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. de Nicola, 07100, Sassari, Italy
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, Università degli Studi di Sassari, Surigheddu, 07040, Alghero, Italy
| | - Domenico Rau
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. de Nicola, 07100, Sassari, Italy
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisa Bellucci
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Eleonora Biagetti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Andrea Carboni
- Centro di Ricerca per le Colture Industriali (CRA-CIN), Consiglio per la Ricerca e la Sperimentazione in Agricoltura, via di Corticella, 133, 40128, Bologna, Italy
| | - Paul Gepts
- Department of Plant Sciences/MS1, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Laura Nanni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Giovanna Attene
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. de Nicola, 07100, Sassari, Italy
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, Università degli Studi di Sassari, Surigheddu, 07040, Alghero, Italy
| |
Collapse
|
39
|
Blair MW, Cortés AJ, This D. Identification of an ERECTA gene and its drought adaptation associations with wild and cultivated common bean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:250-259. [PMID: 26566842 DOI: 10.1016/j.plantsci.2015.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 05/25/2023]
Abstract
In this research, we cloned and accessed nucleotide diversity in the common bean ERECTA gene which has been implicated in drought tolerance and stomatal patterning. The homologous gene segment was isolated with degenerate primer and was found to be located on Chromosome 1. The gene had at least one paralog on Chromosome 9 and duplicate copies in soybean for each homolog. ERECTA-like genes were also discovered but the function of these was of less interest due to low similarity with the ERECTA gene from Arabidopsis. The diversity of the 5' end of the large Chr. 1 PvERECTA gene was evaluated in a collection of 145 wild and cultivated common beans that were also characterized by geographic source and drought tolerance, respectively. Our wild population sampled a range of wet to dry habitats, while our cultivated samples were representative of landrace diversity and the patterns of nucleotide variation differed between groups. The 5' region exhibited lower levels of diversity in the cultivated collection, which was indicative of population bottlenecks associated with the domestication process, compared to the wild collection where diversity was associated with ecological differences. We discuss associations of nucleotide diversity at PvERECTA with drought tolerance prediction for the genotypes.
Collapse
Affiliation(s)
- Matthew W Blair
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, USA
| | - Andrés J Cortés
- Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Dominique This
- Montpellier SupAgro, UMR AGAP, CIRAD, TA96/03. Ave Agropolis, 34398 Montpellier cedex 5, France
| |
Collapse
|
40
|
Bitocchi E, Bellucci E, Rau D, Albertini E, Rodriguez M, Veronesi F, Attene G, Nanni L. European flint landraces grown in situ reveal adaptive introgression from modern maize. PLoS One 2015; 10:e0121381. [PMID: 25853809 PMCID: PMC4390310 DOI: 10.1371/journal.pone.0121381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/31/2015] [Indexed: 12/23/2022] Open
Abstract
We have investigated the role of selection in the determination of the detected levels of introgression from modern maize hybrid varieties into maize landraces still cultivated in situ in Italy. We exploited the availability of a historical collection of landraces undertaken before the introduction and widespread use of modern maize, to analyse genomic changes that have occurred in these maize landraces over 50 years of co-existence with hybrid varieties. We have combined a previously published SSR dataset (n=21) with an AFLP loci dataset (n=168) to provide higher resolution power and to obtain a more detailed picture. We show that selection pressures for adaptation have favoured new alleles introduced by migration from hybrids. This shows the potential for analysis of historical introgression even over this short period of 50 years, for an understanding of the evolution of the genome and for the identification of its functionally important regions. Moreover, this demonstrates that landraces grown in situ represent almost unique populations for use for such studies when the focus is on the domesticated plant. This is due to their adaptation, which has arisen from their dynamic evolution under a continuously changing agro-ecological environment, and their capture of new alleles from hybridisation. We have also identified loci for which selection has inhibited introgression from modern germplasm and has enhanced the distinction between landraces and modern maize. These loci indicate that selection acted in the past, during the formation of the flint and dent gene pools. In particular, the locus showing the strongest signals of selection is a Misfit transposable element. Finally, molecular characterisation of the same samples with two different molecular markers has allowed us to compare their performances. Although the genetic-diversity and population-structure analyses provide the same global qualitative pattern, which thus provides the same inferences, there are differences related to their natures and characteristics.
Collapse
Affiliation(s)
- Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Domenico Rau
- Department of Agriculture, Università degli Studi di Sassari, Sassari, Italy
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Monica Rodriguez
- Department of Agriculture, Università degli Studi di Sassari, Sassari, Italy
| | - Fabio Veronesi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giovanna Attene
- Department of Agriculture, Università degli Studi di Sassari, Sassari, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
41
|
|
42
|
Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-Guedira G, Adhikari TB. Genome-wide association study reveals novel quantitative trait Loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS One 2014; 9:e108179. [PMID: 25268502 PMCID: PMC4182470 DOI: 10.1371/journal.pone.0108179] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/23/2014] [Indexed: 11/18/2022] Open
Abstract
Accelerated wheat development and deployment of high-yielding, climate resilient, and disease resistant cultivars can contribute to enhanced food security and sustainable intensification. To facilitate gene discovery, we assembled an association mapping panel of 528 spring wheat landraces of diverse geographic origin for a genome-wide association study (GWAS). All accessions were genotyped using an Illumina Infinium 9K wheat single nucleotide polymorphism (SNP) chip and 4781 polymorphic SNPs were used for analysis. To identify loci underlying resistance to the major leaf spot diseases and to better understand the genomic patterns, we quantified population structure, allelic diversity, and linkage disequilibrium. Our results showed 32 loci were significantly associated with resistance to the major leaf spot diseases. Further analysis identified QTL effective against major leaf spot diseases of wheat which appeared to be novel and others that were previously identified by association analysis using Diversity Arrays Technology (DArT) and bi-parental mapping. In addition, several identified SNPs co-localized with genes that have been implicated in plant disease resistance. Future work could aim to select the putative novel loci and pyramid them in locally adapted wheat cultivars to develop broad-spectrum resistance to multiple leaf spot diseases of wheat via marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Suraj Gurung
- Department of Plant Pathology, University of California Davis, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Salinas, California, United States of America
| | - Sujan Mamidi
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - J. Michael Bonman
- USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, Idaho, United States of America
| | - Mai Xiong
- USDA-ARS, Plant Science Research Unit, Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gina Brown-Guedira
- USDA-ARS, Plant Science Research Unit, Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Tika B. Adhikari
- Center for Integrated Pest Management and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
43
|
López-Pedrouso M, Bernal J, Franco D, Zapata C. Evaluating two-dimensional electrophoresis profiles of the protein phaseolin as markers of genetic differentiation and seed protein quality in common bean (Phaseolus vulgaris L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7200-7208. [PMID: 24983510 DOI: 10.1021/jf502439u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High-resolution two-dimensional electrophoresis (2-DE) profiles of the protein phaseolin, the major seed storage protein of common bean, display great number of spots with differentially glycosylated and phosphorylated α- and β-type polypeptides. This work aims to test whether these complex profiles can be useful markers of genetic differentiation and seed protein quality in bean populations. The 2-DE phaseolin profile and the amino acid composition were examined in bean seeds from 18 domesticated and wild accessions belonging to the Mesoamerican and Andean gene pools. We found that proteomic distances based on 2-DE profiles were successful in identifying the accessions belonging to each gene pool and outliers distantly related. In addition, accessions identified as outliers from proteomic distances showed the highest levels of methionine content, an essential amino acid deficient in bean seeds. These findings suggest that 2-DE phaseolin profiles provide valuable information with potential of being used in common bean genetic improvement.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Genetics, University of Santiago de Compostela , Santiago de Compostela-15782, Spain
| | | | | | | |
Collapse
|
44
|
Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 2014; 46:707-13. [PMID: 24908249 PMCID: PMC7048698 DOI: 10.1038/ng.3008] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 05/15/2014] [Indexed: 01/13/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.
Collapse
Affiliation(s)
- Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama USA
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota USA
| | - Sujan Mamidi
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota USA
| | - G Albert Wu
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Steven B Cannon
- US Department of Agriculture–Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, Iowa USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama USA
| | - Shengqiang Shu
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Qijian Song
- US Department of Agriculture–Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, Maryland USA
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia USA
| | | | - Valerie Geffroy
- CNRS, Université Paris–Sud, Institut de Biologie des Plantes, UMR 8618, Saclay Plant Sciences (SPS), Orsay, France
- Institut National de la Recherche Agronomique (INRA), Université Paris–Sud, Unité Mixte de Recherche de Génétique Végétale, Gif-sur-Yvette, France
| | - Samira Mafi Moghaddam
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota USA
| | - Dongying Gao
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia USA
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Matthew Blair
- Department of Agricultural and Natural Sciences, Tennessee State University, Nashville, Tennessee USA
| | - Mark A Brick
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado USA
| | - Mansi Chovatia
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Paul Gepts
- Department of Plant Sciences, University of California, Davis, Davis, California USA
| | - David M Goodstein
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Michael Gonzales
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia USA
| | - Uffe Hellsten
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - David L Hyten
- US Department of Agriculture–Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, Maryland USA
- Present Address: Present addresses: Pioneer Hi-Bred International, Inc., Johnston, Iowa, USA (D.L.H.) and Genética e Melhoramento, Federal University of Viçosa, Viçosa, Brazil (J.R.).,
| | - Gaofeng Jia
- US Department of Agriculture–Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, Maryland USA
| | - James D Kelly
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan USA
| | - Dave Kudrna
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona USA
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota USA
| | - Manon M S Richard
- CNRS, Université Paris–Sud, Institut de Biologie des Plantes, UMR 8618, Saclay Plant Sciences (SPS), Orsay, France
| | - Phillip N Miklas
- US Department of Agriculture–Agricultural Research Service, Vegetable and Forage Crop Research Unit, Prosser, Washington USA
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota USA
| | - Josiane Rodrigues
- US Department of Agriculture–Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, Maryland USA
- Present Address: Present addresses: Pioneer Hi-Bred International, Inc., Johnston, Iowa, USA (D.L.H.) and Genética e Melhoramento, Federal University of Viçosa, Viçosa, Brazil (J.R.).,
| | - Vincent Thareau
- CNRS, Université Paris–Sud, Institut de Biologie des Plantes, UMR 8618, Saclay Plant Sciences (SPS), Orsay, France
| | - Carlos A Urrea
- Panhandle Research and Extension Center, University of Nebraska, Scottsbluff, Nebraska USA
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Yeisoo Yu
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona USA
| | - Ming Zhang
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Rod A Wing
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona USA
| | - Perry B Cregan
- US Department of Agriculture–Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, Maryland USA
| | - Daniel S Rokhsar
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia USA
| |
Collapse
|
45
|
Bellucci E, Bitocchi E, Ferrarini A, Benazzo A, Biagetti E, Klie S, Minio A, Rau D, Rodriguez M, Panziera A, Venturini L, Attene G, Albertini E, Jackson SA, Nanni L, Fernie AR, Nikoloski Z, Bertorelle G, Delledonne M, Papa R. Decreased Nucleotide and Expression Diversity and Modified Coexpression Patterns Characterize Domestication in the Common Bean. THE PLANT CELL 2014; 26:1901-1912. [PMID: 24850850 PMCID: PMC4079357 DOI: 10.1105/tpc.114.124040] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 05/02/2023]
Abstract
Using RNA sequencing technology and de novo transcriptome assembly, we compared representative sets of wild and domesticated accessions of common bean (Phaseolus vulgaris) from Mesoamerica. RNA was extracted at the first true-leaf stage, and de novo assembly was used to develop a reference transcriptome; the final data set consists of ∼190,000 single nucleotide polymorphisms from 27,243 contigs in expressed genomic regions. A drastic reduction in nucleotide diversity (∼60%) is evident for the domesticated form, compared with the wild form, and almost 50% of the contigs that are polymorphic were brought to fixation by domestication. In parallel, the effects of domestication decreased the diversity of gene expression (18%). While the coexpression networks for the wild and domesticated accessions demonstrate similar seminal network properties, they show distinct community structures that are enriched for different molecular functions. After simulating the demographic dynamics during domestication, we found that 9% of the genes were actively selected during domestication. We also show that selection induced a further reduction in the diversity of gene expression (26%) and was associated with 5-fold enrichment of differentially expressed genes. While there is substantial evidence of positive selection associated with domestication, in a few cases, this selection has increased the nucleotide diversity in the domesticated pool at target loci associated with abiotic stress responses, flowering time, and morphology.
Collapse
Affiliation(s)
- Elisa Bellucci
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Elena Bitocchi
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Alberto Ferrarini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44100 Ferrara, Italy
| | - Eleonora Biagetti
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Sebastian Klie
- Genes and Small Molecules Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Andrea Minio
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Domenico Rau
- Department of Agriculture, University of Sassari, 07100 Sassari, Italy
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, 07100 Sassari, Italy
| | - Alex Panziera
- Department of Life Sciences and Biotechnology, University of Ferrara, 44100 Ferrara, Italy Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, 38010 S. Michele all'Adige, Italy
| | - Luca Venturini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Giovanna Attene
- Department of Agriculture, University of Sassari, 07100 Sassari, Italy
| | - Emidio Albertini
- Department of Applied Biology, University of Perugia, 06121 Perugia, Italy
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602
| | - Laura Nanni
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, 44100 Ferrara, Italy
| | | | - Roberto Papa
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy Consiglio per la Ricerca e Sperimentazione in Agricoltura, Cereal Research Centre (CRA-CER), 71122 Foggia, Italy
| |
Collapse
|
46
|
Laidò G, Marone D, Russo MA, Colecchia SA, Mastrangelo AM, De Vita P, Papa R. Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.). PLoS One 2014; 9:e95211. [PMID: 24759998 PMCID: PMC3997356 DOI: 10.1371/journal.pone.0095211] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/25/2014] [Indexed: 11/18/2022] Open
Abstract
Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker–trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker–trait associations.
Collapse
Affiliation(s)
- Giovanni Laidò
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Daniela Marone
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Maria A. Russo
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Salvatore A. Colecchia
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Anna M. Mastrangelo
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Pasquale De Vita
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Roberto Papa
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
- * E-mail:
| |
Collapse
|
47
|
Perseguini JMKC, Silva GMB, Rosa JRBF, Gazaffi R, Marçal JF, Carbonell SAM, Chiorato AF, Zucchi MI, Garcia AAF, Benchimol-Reis LL. Developing a common bean core collection suitable for association mapping studies. Genet Mol Biol 2014; 38:67-78. [PMID: 25983627 PMCID: PMC4415564 DOI: 10.1590/s1415-475738120140126] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/08/2014] [Indexed: 12/17/2022] Open
Abstract
Because of the continuous introduction of germplasm from abroad, some collections have a high number of accessions, making it difficult to explore the genetic variability present in a germplasm bank for conservation and breeding purposes. Therefore, the aim of this study was to quantify and analyze the structure of genetic variability among 500 common bean accessions to construct a core collection. A total of 58 SSRs were used for this purpose. The polymorphism information content (PIC) in the 180 common bean accessions selected to compose the core collection ranged from 0.17 to 0.86, and the discriminatory power (DP) ranged from 0.21 to 0.90. The 500 accessions were clustered into 15 distinct groups and the 180 accessions into four distinct groups in the Structure analysis. According to analysis of molecular variance, the most divergent accessions comprised 97.2% of the observed genetic variability present within the base collection, confirming the efficiency of the selection criterion. The 180 selected accessions will be used for association mapping in future studies and could be potentially used by breeders to direct new crosses and generate elite cultivars that meet current and future global market needs.
Collapse
Affiliation(s)
- Juliana Morini Küpper Cardoso Perseguini
- Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil . ; Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas, Campinas, SP, Brazil
| | | | | | - Rodrigo Gazaffi
- Departamento de Biotecnologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, SP, Brazil
| | - Jéssica Fernanda Marçal
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas, Campinas, SP, Brazil
| | | | | | - Maria Imaculada Zucchi
- Agência Paulista de Tecnologia dos Agronegócios, Centro de Desenvolvimento Tecnológico, Instituto Agronômico, Campinas, SP, Brazil
| | | | - Luciana Lasry Benchimol-Reis
- Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil . ; Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas, Campinas, SP, Brazil
| |
Collapse
|
48
|
Goretti D, Bitocchi E, Bellucci E, Rodriguez M, Rau D, Gioia T, Attene G, McClean P, Nanni L, Papa R. Development of single nucleotide polymorphisms in Phaseolus vulgaris and related Phaseolus spp. MOLECULAR BREEDING 2014; 33:531-544. [PMID: 0 DOI: 10.1007/s11032-013-9970-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
49
|
Diniz AL, Zucchi MI, Santini L, Benchimol-Reis LL, Fungaro MHP, Vieira MLC. Nucleotide diversity based on phaseolin and iron reductase genes in common bean accessions of different geographical origins. Genome 2014; 57:69-77. [PMID: 24702064 DOI: 10.1139/gen-2013-0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Discriminating genotypes within plant collections is imperative, and DNA sequence approaches for detecting single nucleotide polymorphisms (SNPs) have proved essential in any modern analysis of germplasm. By sequencing the α-Phs and PvFRO1 genes that, respectively, encode phaseolin and an iron reductase, we prospected for SNPs in exonic and intronic regions of both genes in a sample of 31 accessions of Phaseolus vulgaris from Mesoamerican and Andean gene pools, and one accession of Phaseolus lunatus, chosen as an outgroup. Sequence alignment showed 95 SNPs in α-Phs and 83 in PvFRO1, but diversity along the nucleotide sequences was not evenly distributed in both genes. Accessions from the same gene pool showed greater similarity than those from different gene pools, and the cluster patterns obtained in this study were consistent with the hierarchical organization into two P. vulgaris gene pools. The polymorphisms detected in the α-Phs gene allowed better discrimination among the accessions within each cluster than the PvFRO1 polymorphisms. Furthermore, some variations within exons changes amino acids in both predicted protein sequences. In an unprecedented result, the phaseolin-predicted amino acid variation allowed most of the accessions to be typified.
Collapse
Affiliation(s)
- Augusto L Diniz
- a Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, P.O. Box 83, Piracicaba, 13418-900, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-Guedira G, Adhikari TB. Genome-wide association study reveals novel quantitative trait Loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS One 2014. [PMID: 25268502 DOI: 10.1371/journal.pgen.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Accelerated wheat development and deployment of high-yielding, climate resilient, and disease resistant cultivars can contribute to enhanced food security and sustainable intensification. To facilitate gene discovery, we assembled an association mapping panel of 528 spring wheat landraces of diverse geographic origin for a genome-wide association study (GWAS). All accessions were genotyped using an Illumina Infinium 9K wheat single nucleotide polymorphism (SNP) chip and 4781 polymorphic SNPs were used for analysis. To identify loci underlying resistance to the major leaf spot diseases and to better understand the genomic patterns, we quantified population structure, allelic diversity, and linkage disequilibrium. Our results showed 32 loci were significantly associated with resistance to the major leaf spot diseases. Further analysis identified QTL effective against major leaf spot diseases of wheat which appeared to be novel and others that were previously identified by association analysis using Diversity Arrays Technology (DArT) and bi-parental mapping. In addition, several identified SNPs co-localized with genes that have been implicated in plant disease resistance. Future work could aim to select the putative novel loci and pyramid them in locally adapted wheat cultivars to develop broad-spectrum resistance to multiple leaf spot diseases of wheat via marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Suraj Gurung
- Department of Plant Pathology, University of California Davis, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Salinas, California, United States of America
| | - Sujan Mamidi
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - J Michael Bonman
- USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, Idaho, United States of America
| | - Mai Xiong
- USDA-ARS, Plant Science Research Unit, Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gina Brown-Guedira
- USDA-ARS, Plant Science Research Unit, Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Tika B Adhikari
- Center for Integrated Pest Management and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|