1
|
Mansour AA, Nassan MA, Saleh OM, Soliman MM. PROTECTIVE EFFECT OF CAMEL MILK AS ANTI-DIABETIC SUPPLEMENT: BIOCHEMICAL, MOLECULAR AND IMMUNOHISTOCHEMICAL STUDY. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638873 PMCID: PMC5471457 DOI: 10.21010/ajtcam.v14i4.13] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Diabetes is a serious disease affects human health. Diabetes in advanced stages is accompanied by general weakness and alteration in fats and carbohydrates metabolism. Recently there are some scientific trends about the usage of camel milk (CM) in the treatment of diabetes and its associated alterations. CM contains vital active particles with insulin like action that cure diabetes and its complications but how these effects occur, still unclear. Materials and Methods: Seventy-five adult male rats of the albino type divided into five equal groups. Group 1 served as a negative control (C). Group 2 was supplemented with camel milk (CM). Diabetes was induced in the remaining groups (3, 4 and 5). Group 3 served as positive diabetic control (D). Group 4 served as diabetic and administered metformin (D+MET). Group 5 served as diabetes and supplemented with camel milk (D+CM). Camel milk was supplemented for two consecutive months. Serum glucose, leptin, insulin, liver, kidney, antioxidants, MDA and lipid profiles were assayed. Tissues from liver and adipose tissues were examined using RT-PCR analysis for the changes in mRNA expression of genes of carbohydrates and lipid metabolism. Pancreas and liver were used for immunohistochemical examination using specific antibodies. Results: Camel milk supplementation ameliorated serum biochemical measurements that altered after diabetes induction. CM supplementation up-regulated mRNA expression of IRS-2, PK, and FASN genes, while down-regulated the expression of CPT-1 to control mRNA expression level. CM did not affect the expression of PEPCK gene. On the other hand, metformin failed to reduce the expression of CPT-1 compared to camel milk administered rats. Immunohistochemical findings revealed that CM administration restored the immunostaining reactivity of insulin and GLUT-4 in the pancreas of diabetic rats. Conclusion: CM administration is of medical importance and helps physicians in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Ahmed A Mansour
- Medical Biotechnology Department, Faculty of Applied Medical Sciences (Turbah), Taif Univ., KSA.,Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed A Nassan
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Osama M Saleh
- Medical Biotechnology Department, Faculty of Applied Medical Sciences (Turbah), Taif Univ., KSA.,National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt
| | - Mohamed M Soliman
- Biochemistry Department, Faculty of Veterinary Medicine, Banha University, Banha, Egypt.,Medical Laboratories Department, Faculty of Applied Medical Sciences (Turbah), Taif University., KSA
| |
Collapse
|
2
|
Parikh M, Patel K, Soni S, Gandhi T. Liver X Receptor: A Cardinal Target for Atherosclerosis and Beyond. J Atheroscler Thromb 2014. [DOI: 10.5551/jat.19778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
3
|
A low-protein, high-carbohydrate diet increases fatty acid uptake and reduces norepinephrine-induced lipolysis in rat retroperitoneal white adipose tissue. Lipids 2012; 47:279-89. [PMID: 22228227 DOI: 10.1007/s11745-011-3648-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
Abstract
A low-protein, high-carbohydrate (LPHC) diet for 15 days increased the lipid content in the carcass and adipose tissues of rats. The aim of this work was to investigate the mechanisms of this lipid increase in the retroperitoneal white adipose tissue (RWAT) of these animals. The LPHC diet induced an approximately two- and tenfold increase in serum corticosterone and TNF-α, respectively. The rate of de novo fatty acid (FA) synthesis in vivo was reduced (50%) in LPHC rats, and the lipoprotein lipase activity increased (100%). In addition, glycerokinase activity increased (60%), and the phosphoenolpyruvate carboxykinase content decreased (27%). Basal [U-¹⁴C]-glucose incorporation into glycerol-triacylglycerol did not differ between the groups; however, in the presence of insulin, [U-¹⁴C]-glucose incorporation increased by 124% in adipocytes from only control rats. The reductions in IRS1 and AKT content as well as AKT phosphorylation in the RWAT from LPHC rats and the absence of an insulin response suggest that these adipocytes have reduced insulin sensitivity. The increase in NE turnover by 45% and the lack of a lipolytic response to NE in adipocytes from LPHC rats imply catecholamine resistance. The data reveal that the increase in fat storage in the RWAT of LPHC rats results from an increase in FA uptake from circulating lipoproteins and glycerol phosphorylation, which is accompanied by an impaired lipolysis that is activated by NE.
Collapse
|
4
|
Patel R, Patel M, Tsai R, Lin V, Bookout AL, Zhang Y, Magomedova L, Li T, Chan JF, Budd C, Mangelsdorf DJ, Cummins CL. LXRβ is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice. J Clin Invest 2010; 121:431-41. [PMID: 21123945 DOI: 10.1172/jci41681] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 10/13/2010] [Indexed: 12/16/2022] Open
Abstract
Although widely prescribed for their potent antiinflammatory actions, glucocorticoid drugs (e.g., dexamethasone) cause undesirable side effects that are features of the metabolic syndrome, including hyperglycemia, fatty liver, insulin resistance, and type II diabetes. Liver x receptors (LXRs) are nuclear receptors that respond to cholesterol metabolites and regulate the expression of a subset of glucocorticoid target genes. Here, we show LXRβ is required to mediate many of the negative side effects of glucocorticoids. Mice lacking LXRβ (but not LXRα) were resistant to dexamethasone-induced hyperglycemia, hyperinsulinemia, and hepatic steatosis, but remained sensitive to dexamethasone-dependent repression of the immune system. In vivo, LXRα/β knockout mice demonstrated reduced dexamethasone-induced expression of the key hepatic gluconeogenic gene, phosphoenolpyruvate carboxykinase (PEPCK). In perfused liver and primary mouse hepatocytes, LXRβ was required for glucocorticoid-induced recruitment of the glucocorticoid receptor to the PEPCK promoter. These findings suggest a new avenue for the design of safer glucocorticoid drugs through a mechanism of selective glucocorticoid receptor transactivation.
Collapse
Affiliation(s)
- Rucha Patel
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Millward CA, Desantis D, Hsieh CW, Heaney JD, Pisano S, Olswang Y, Reshef L, Beidelschies M, Puchowicz M, Croniger CM. Phosphoenolpyruvate carboxykinase (Pck1) helps regulate the triglyceride/fatty acid cycle and development of insulin resistance in mice. J Lipid Res 2010; 51:1452-63. [PMID: 20124556 DOI: 10.1194/jlr.m005363] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the role of the cytosolic form of phosphoenolpyruvate carboxykinase (Pck1) in the development of insulin resistance. Previous studies have shown that the roles of Pck1 in white adipose tissue (WAT) in glyceroneogenesis and reesterification of free fatty acids (FFA) to generate triglyceride are vital for the prevention of diabetes. We hypothesized that insulin resistance develops when dysregulation of Pck1 occurs in the triglyceride/fatty acid cycle, which regulates lipid synthesis and transport between adipose tissue and the liver. We examined this by analyzing mice with a deletion of the PPARgamma binding site in the promoter of Pck1 (PPARE(-/-)). This mutation reduced the fasting Pck1 mRNA expression in WAT in brown adipose tissue (BAT). To analyze insulin resistance, we performed hyperinsulinemic-euglycemic glucose clamp analyses. PPARE(-/-) mice were profoundly insulin resistant and had more FFA and glycerol released during the hyperinsulinemic-euglycemic clamp compared with wild-type mice (WT). Finally, we analyzed insulin secretion in isolated islets. We found a 2-fold increase in insulin secretion in the PPARE(-/-) mice at 16.7 mM glucose. Thus, the PPARE site in the Pck1 promoter is essential for maintenance of lipid metabolism and glucose homeostasis and disease prevention.
Collapse
Affiliation(s)
- Carrie A Millward
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gayen JR, Saberi M, Schenk S, Biswas N, Vaingankar SM, Cheung WW, Najjar SM, O'Connor DT, Bandyopadhyay G, Mahata SK. A novel pathway of insulin sensitivity in chromogranin A null mice: a crucial role for pancreastatin in glucose homeostasis. J Biol Chem 2009; 284:28498-509. [PMID: 19706599 PMCID: PMC2781393 DOI: 10.1074/jbc.m109.020636] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/23/2009] [Indexed: 11/06/2022] Open
Abstract
Chromogranin A (CHGA/Chga), a proprotein, widely distributed in endocrine and neuroendocrine tissues (not expressed in muscle, liver, and adipose tissues), generates at least four bioactive peptides. One of those peptides, pancreastatin (PST), has been reported to interfere with insulin action. We generated a Chga knock-out (KO) mouse by the targeted deletion of the Chga gene in neuroendocrine tissues. KO mice displayed hypertension, higher plasma catecholamine, and adipokine levels and lower IL-6 and lipid levels compared with wild type mice. Liver glycogen content was elevated, but the nitric oxide (NO) level was diminished. Glucose, insulin, and pyruvate tolerance tests and hyperinsulinemic-euglycemic clamp studies established increased insulin sensitivity in liver but decreased glucose disposal in muscle. Despite higher catecholamine and ketone body levels and muscle insulin resistance, KO mice maintained euglycemia due to increased liver insulin sensitivity. Suppressed mRNA abundance of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase) in KO mice further support this conclusion. PST administration in KO mice stimulated phosphoenolpyruvate carboxykinase and G6Pase mRNA abundance and raised the blood glucose level. In liver cells transfected with G6Pase promoter, PST caused transcriptional activation in a protein kinase C (PKC)- and NO synthase-dependent manner. Thus, PST action may be mediated by suppressing IRS1/2-phosphatidylinositol 3-kinase-Akt-FOXO-1 signaling and insulin-induced maturation of SREBP1c by PKC and a high level of NO. The combined effects of conventional PKC and endothelial NO synthase activation by PST can suppress insulin signaling. The rise in blood PST level with age and in diabetes suggests that PST is a negative regulator of insulin sensitivity and glucose homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sonia M. Najjar
- the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio 43614-5804
| | - Daniel T. O'Connor
- From the Departments of Medicine
- Molecular Genetics, University of California, San Diego and
- Veterans Affairs San Diego Healthcare System, La Jolla, California 92093-0838 and
| | | | - Sushil K. Mahata
- From the Departments of Medicine
- Veterans Affairs San Diego Healthcare System, La Jolla, California 92093-0838 and
| |
Collapse
|
7
|
Xie X, Liao H, Dang H, Pang W, Guan Y, Wang X, Shyy JYJ, Zhu Y, Sladek FM. Down-regulation of hepatic HNF4alpha gene expression during hyperinsulinemia via SREBPs. Mol Endocrinol 2009; 23:434-43. [PMID: 19179483 DOI: 10.1210/me.2007-0531] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the coding region of hepatocyte nuclear factor 4alpha (HNF4alpha), and its upstream promoter (P2) that drives expression in the pancreas, are known to lead to maturity-onset diabetes of the young 1 (MODY1). HNF4alpha also controls gluconeogenesis and lipid metabolism in the liver, where the proximal promoter (P1) predominates. However, very little is known about the role of hepatic HNF4alpha in diabetes. Here, we examine the expression of hepatic HNF4alpha in two diabetic mouse models, db/db mice (type 2, insulin resistant) and streptozotocin-treated mice (type 1, insulin deficient). We found that the level of HNF4alpha protein and mRNA was decreased in the liver of db/db mice but increased in streptozotocin-treated mice. Because insulin increases the activity of sterol regulatory element-binding proteins (SREBP)-1c and -2, we also examined the effect of SREBPs on hepatic HNF4alpha gene expression and found that, like insulin, ectopic expression of SREBPs decreases the level of hepatic HNF4alpha protein and mRNA both in vitro in primary hepatocytes and in vivo in the liver of C57BL/6 mice. Finally, we use gel shift, chromatin immunoprecipitation, small interfering RNA, and reporter gene analysis to show that SREBP2 binds the human HNF4alpha P1 promoter and negatively regulates its expression. These data indicate that hyperinsulinemia down-regulates HNF4alpha in the liver through the up-regulation of SREBPs, thereby establishing a link between these two critical transcription factor pathways that regulate lipid and glucose metabolism in the liver. These findings also provide new insights into diabetes-associated complications such as fatty liver disease.
Collapse
Affiliation(s)
- Xuefen Xie
- Department of Physiology and Pathophysiology, Peking University, Health Sciences Center, Beijing 100083, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu HY, Collins QF, Moukdar F, Zhuo D, Han J, Hong T, Collins S, Cao W. Suppression of hepatic glucose production by human neutrophil alpha-defensins through a signaling pathway distinct from insulin. J Biol Chem 2008; 283:12056-63. [PMID: 18347011 DOI: 10.1074/jbc.m801033200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this study, we tested the hypothesis that human neutrophil alpha-defensins (HNPs) inhibit hepatic glucose production through a signaling pathway distinct from insulin. The effect of HNP-1 on fasting blood glucose levels and the expression of hepatic gluconeogenic genes was first examined. Using hyperinsulinemic-euglycemic clamps, we determined the effect of HNP-1 on endogenous glucose production, hepatic expression of key gluconeogenic genes and glucose uptake in skeletal muscle in Zucker diabetic fatty rats. In isolated primary hepatocytes, we studied the effect of HNP-1 and -2 on glucose production, expression of gluconeogenic genes, and phosphorylation of Akt, c-Src, and FoxO1. Our results show that HNP-1 reduced blood glucose levels of both normal mice and Zucker diabetic fatty rats predominantly through suppression of hepatic glucose production. HNPs inhibited glycogenolysis and gluconeogenesis in isolated hepatocytes. HNPs also suppressed expression of key gluconeogenic genes including phosphoenoylpyruvate carboxyl kinase and glucose-6-phosphatase. To investigate the mechanism, we found that HNPs stimulated phosphorylation of Akt and FoxO1 without activating IRS1. Nevertheless, HNPs activated c-Src. Blockade of c-Src activity with either a chemical inhibitor PP2 or an alternative inhibitor CSK prevented the inhibitory effect of HNPs on gluconeogenesis. Together, our results support the hypothesis that HNPs can suppress hepatic glucose production through an intracellular mechanism distinct from the classical insulin signaling pathway.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|