1
|
Li Y, Dong T, Yang F, Jin S, Xiong R, Song X, Guan C. MitoQ enhances CYP19A1 expression to stimulate WNT/β-catenin signaling pathway for promoting hair growth in androgenetic alopecia. Eur J Pharmacol 2024; 985:177094. [PMID: 39547405 DOI: 10.1016/j.ejphar.2024.177094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Increased sensitivity to androgens and androgen receptors is the underlying cause of androgenetic alopecia (AGA), a hereditary disease. Our study investigated the preventive effects of MitoQ on dihydrotestosterone (DHT)-induced mitochondrial dysfunction and subsequent hair loss from three perspectives: in vivo, in vitro, and network pharmacology. A mouse model of AGA was used to assess the effectiveness of MitoQ intervention. Seventy-five drug targets and 367 disease targets were identified through network pharmacology analysis. Molecular docking analysis revealed that the androgen receptor (AR) and CYP19A1, which are key targets of MitoQ, may play a role in AGA treatment. CYP19A1 expression was downregulated in lesions from patients with AGA compared to healthy scalp tissue, while AR expression was upregulated. Cellular tests of human dermal papilla cells (DPCs) treated with MitoQ revealed that the mRNA and protein expression of AR remained unchanged, but the mRNA expression of CYP19A1 was upregulated. Our experiments also confirmed that CYP19A1 overexpression prevented DHT-induced apoptosis and upregulated the expression levels of WNT3A and β-catenin, whereas increased apoptosis levels and the downregulation of WNT3A and β-catenin due to CYP19A1 knockdown were reduced by MitoQ. We verified that MitoQ enhanced hair growth in DHT-induced hair loss model mice and reversed DHT-induced apoptosis by enhancing the expression of CYP19A1 in DPCs and that MitoQ may act by mediating the WNT/β-catenin pathway. These findings indicate that MitoQ could be a promising intervention for AGA and that CYP19A1 may serve as a valuable therapeutic target for AGA.
Collapse
Affiliation(s)
- Yujie Li
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Tingru Dong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Fenglan Yang
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Shiyu Jin
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Renxue Xiong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China; Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China; Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China.
| | - Cuiping Guan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China; Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Ungvari A, Kiss T, Gulej R, Tarantini S, Csik B, Yabluchanskiy A, Mukli P, Csiszar A, Harris ML, Ungvari Z. Irradiation-induced hair graying in mice: an experimental model to evaluate the effectiveness of interventions targeting oxidative stress, DNA damage prevention, and cellular senescence. GeroScience 2024; 46:3105-3122. [PMID: 38182857 PMCID: PMC11009199 DOI: 10.1007/s11357-023-01042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024] Open
Abstract
Hair graying, also known as canities or achromotrichia, is a natural phenomenon associated with aging and is influenced by external factors such as stress, environmental toxicants, and radiation exposure. Understanding the mechanisms underlying hair graying is an ideal approach for developing interventions to prevent or reverse age-related changes in regenerative tissues. Hair graying induced by ionizing radiation (γ-rays or X-rays) has emerged as a valuable experimental model to investigate the molecular pathways involved in this process. In this review, we examine the existing evidence on radiation-induced hair graying, with a particular focus on the potential role of radiation-induced cellular senescence. We explore the current understanding of hair graying in aging, delve into the underlying mechanisms, and highlight the unique advantages of using ionizing-irradiation-induced hair graying as a research model. By elucidating the molecular pathways involved, we aim to deepen our understanding of hair graying and potentially identify novel therapeutic targets to address this age-related phenotypic change.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Tamas Kiss
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Boglarka Csik
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Melissa L Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zoltan Ungvari
- Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Shi Y, Wan S, Song X. Role of neurogenic inflammation in the pathogenesis of alopecia areata. J Dermatol 2024; 51:621-631. [PMID: 38605467 DOI: 10.1111/1346-8138.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Alopecia areata refers to an autoimmune illness indicated by persistent inflammation. The key requirement for alopecia areata occurrence is the disruption of immune-privileged regions within the hair follicles. Recent research has indicated that neuropeptides play a role in the damage to hair follicles by triggering neurogenic inflammation, stimulating mast cells ambient the follicles, and promoting apoptotic processes in keratinocytes. However, the exact pathogenesis of alopecia areata requires further investigation. Recently, there has been an increasing focus on understanding the mechanisms of immune diseases resulting from the interplay between the nervous and the immune system. Neurogenic inflammation due to neuroimmune disorders of the skin system may disrupt the inflammatory microenvironment of the hair follicle, which plays a crucial part in the progression of alopecia areata.
Collapse
Affiliation(s)
- Yetan Shi
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Fu S, Song X. The clinical and immunological features of alopecia areata following SARS-CoV-2 infection or COVID-19 vaccines. Expert Opin Ther Targets 2024; 28:273-282. [PMID: 38646688 DOI: 10.1080/14728222.2024.2344696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Alopecia areata (AA) is an autoimmune disease induced by viral infection or vaccination. With the increased incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the incidence of AA has also increased. Recently the incidence was found to be 7.8% from a previously reported rate of 2.1%. The physical and psychological damage caused by AA could seriously affect patients' lives, while AA is a challenging dermatological disease owing to its complex pathogenesis. AREAS COVERED This paper presents a comprehensive review of the prevalence, pathogenesis and potential therapeutic targets for AA after infection with SARS-CoV-2 or SARS-CoV-2 vaccine. EXPERT OPINION The treatment of AA remains challenging because of the complexity of its pathogenesis. For patients with AA after SARS-CoV-2 infection or vaccination, the use of sex hormones and alternative regenerative therapies may be actively considered in addition to conventional treatments. For preexisting disease, therapeutic agents should be adjusted to the patient's specific condition.
Collapse
Affiliation(s)
- Shiqi Fu
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Hangzhou, China
| |
Collapse
|
5
|
Paus R, Sevilla A, Grichnik JM. Human Hair Graying Revisited: Principles, Misconceptions, and Key Research Frontiers. J Invest Dermatol 2024; 144:474-491. [PMID: 38099887 DOI: 10.1016/j.jid.2023.09.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 02/25/2024]
Abstract
Hair graying holds psychosocial importance and serves as an excellent model for studying human pigmentation and aging in an accessible miniorgan. Current evidence suggests that graying results from an interindividually varying mixture of cumulative oxidative and DNA damage, excessive mTORC1 activity, melanocyte senescence, and inadequate production of pigmentation-promoting factors in the hair matrix. Various regulators modulate this process, including genetic factors (DNA repair defects and IRF4 sequence variation, peripheral clock genes, P-cadherin signaling, neuromediators, HGF, KIT ligand secretion, and autophagic flux. This leads to reduced MITF- and tyrosinase-controlled melanogenesis, defective melanosome transfer to precortical matrix keratinocytes, and eventual depletion of hair follicle (HF) pigmentary unit (HFPU) melanocytes and their local progenitors. Graying becomes irreversible only when bulge melanocyte stem cells are also depleted, occurring later in this process. Distinct pigmentary microenvironments are created as the HF cycles: early anagen is the most conducive phase for melanocytic reintegration and activation, and only during anagen can the phenotype of hair graying and repigmentation manifest, whereas the HFPU disassembles during catagen. The temporary reversibility of graying is highlighted by several drugs and hormones that induce repigmentation, indicating potential target pathways. We advise caution in directly applying mouse model concepts, define major open questions, and discuss future human antigraying strategies.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; CUTANEON - Skin & Hair Innovations, Hamburg, Germany; Monasterium Laboratory, Münster, Germany.
| | - Alec Sevilla
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James M Grichnik
- Department of Dermatology & Cutaneous Surgery, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Adav SS, Ng KW. Recent omics advances in hair aging biology and hair biomarkers analysis. Ageing Res Rev 2023; 91:102041. [PMID: 37634889 DOI: 10.1016/j.arr.2023.102041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex natural process that leads to a decline in physiological functions, which is visible in signs such as hair graying, thinning, and loss. Although hair graying is characterized by a loss of pigment in the hair shaft, the underlying mechanism of age-associated hair graying is not fully understood. Hair graying and loss can have a significant impact on an individual's self-esteem and self-confidence, potentially leading to mental health problems such as depression and anxiety. Omics technologies, which have applications beyond clinical medicine, have led to the discovery of candidate hair biomarkers and may provide insight into the complex biology of hair aging and identify targets for effective therapies. This review provides an up-to-date overview of recent omics discoveries, including age-associated alterations of proteins and metabolites in the hair shaft and follicle, and highlights the significance of hair aging and graying biomarker discoveries. The decline in hair follicle stem cell activity with aging decreased the regeneration capacity of hair follicles. Cellular senescence, oxidative damage and altered extracellular matrix of hair follicle constituents characterized hair follicle and hair shaft aging and graying. The review attempts to correlate the impact of endogenous and exogenous factors on hair aging. We close by discussing the main challenges and limitations of the field, defining major open questions and offering an outlook for future research.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
7
|
Aboalola D, Aouabdi S, Ramadan M, Alghamdi T, Alsolami M, Malibari D, Alsiary R. An Update on Alopecia and its Association With Thyroid Autoimmune Diseases. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:54-59. [PMID: 38187080 PMCID: PMC10769472 DOI: 10.17925/ee.2023.19.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 01/09/2024]
Abstract
Alopecia is comorbid with several illnesses, including various autoimmune conditions such as thyroid disease. Leukocyte-mediated inflammation of hair follicles in alopecia was first described over a century ago. However, the high prevalence of the role of thyroid autoimmune disease in the pathogenesis of alopecia has only recently come to light, together with a strong association between the two. Therefore, this review focuses on articles published between 2011 and 2022 on alopecia's association with thyroid autoimmune disease, and the mechanism behind it. In addition, it highlights the link between alopecia and thyroid cancer, as patients with alopecia have increased risk of thyroid cancer. In conclusion, this comprehensive, focused, scoping review will serve as a reference highlighting recent information on alopecia, exploring its association with thyroid autoimmune diseases.
Collapse
Affiliation(s)
- Doaa Aboalola
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| | - Sihem Aouabdi
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| | - Majed Ramadan
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| | - Tariq Alghamdi
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| | - Mona Alsolami
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| | - Dalal Malibari
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| | - Rawiah Alsiary
- King Abdullah International Medical Research Center, Jeddah, Western Region, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Western Region, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Western Region, Saudi Arabia
| |
Collapse
|
8
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
9
|
The impact of perceived stress on the hair follicle: Towards solving a psychoneuroendocrine and neuroimmunological puzzle. Front Neuroendocrinol 2022; 66:101008. [PMID: 35660551 DOI: 10.1016/j.yfrne.2022.101008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
While popular belief harbors little doubt that perceived stress can cause hair loss and premature graying, the scientific evidence for this is arguably much thinner. Here, we investigate whether these phenomena are real, and show that the cyclic growth and pigmentation of the hair follicle (HF) provides a tractable model system for dissecting how perceived stress modulates aspects of human physiology. Local production of stress-associated neurohormones and neurotrophins coalesces with neurotransmitters and neuropeptides released from HF-associated sensory and autonomic nerve endings, forming a complex local stress-response system that regulates perifollicular neurogenic inflammation, interacts with the HF microbiome and controls mitochondrial function. This local system integrates into the central stress response systems, allowing the study of systemic stress responses affecting organ function by quantifying stress mediator content of hair. Focusing on selected mediators in this "brain-HF axis" under stress conditions, we distill general principles of HF dysfunction induced by perceived stress.
Collapse
|
10
|
Papaccio F, D′Arino A, Caputo S, Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants (Basel) 2022; 11:1121. [PMID: 35740018 PMCID: PMC9220264 DOI: 10.3390/antiox11061121] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Skin aging is one of the most evident signs of human aging. Modification of the skin during the life span is characterized by fine lines and wrinkling, loss of elasticity and volume, laxity, rough-textured appearance, and pallor. In contrast, photoaged skin is associated with uneven pigmentation (age spot) and is markedly wrinkled. At the cellular and molecular level, it consists of multiple interconnected processes based on biochemical reactions, genetic programs, and occurrence of external stimulation. The principal cellular perturbation in the skin driving senescence is the alteration of oxidative balance. In chronological aging, reactive oxygen species (ROS) are produced mainly through cellular oxidative metabolism during adenosine triphosphate (ATP) generation from glucose and mitochondrial dysfunction, whereas in extrinsic aging, loss of redox equilibrium is caused by environmental factors, such as ultraviolet radiation, pollution, cigarette smoking, and inadequate nutrition. During the aging process, oxidative stress is attributed to both augmented ROS production and reduced levels of enzymatic and non-enzymatic protectors. Apart from the evident appearance of structural change, throughout aging, the skin gradually loses its natural functional characteristics and regenerative potential. With aging, the skin immune system also undergoes functional senescence manifested as a reduced ability to counteract infections and augmented frequency of autoimmune and neoplastic diseases. This review proposes an update on the role of oxidative stress in the appearance of the clinical manifestation of skin aging, as well as of the molecular mechanisms that underline this natural phenomenon sometimes accelerated by external factors.
Collapse
Affiliation(s)
| | | | | | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.)
| |
Collapse
|
11
|
Wu S, Yu Y, Liu C, Zhang X, Zhu P, Peng Y, Yan X, Li Y, Hua P, Li Q, Wang S, Zhang L. Single-cell transcriptomics reveals lineage trajectory of human scalp hair follicle and informs mechanisms of hair graying. Cell Discov 2022; 8:49. [PMID: 35606346 PMCID: PMC9126928 DOI: 10.1038/s41421-022-00394-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/01/2022] [Indexed: 02/03/2023] Open
Abstract
Hair conditions, such as hair loss and graying, are prevalent human conditions. But they are often poorly controlled due to our insufficient understanding of human scalp hair follicle (hsHF) in health and disease. Here we describe a comprehensive single-cell RNA-seq (scRNA-seq) analysis on highly purified black and early-stage graying hsHFs. Based on these, a concise single-cell atlas for hsHF and its early graying changes is generated and verified using samples from multiple independent individuals. These data reveal the lineage trajectory of hsHF in unprecedented detail and uncover its multiple unexpected features not found in mouse HFs, including the presence of an innerbulge like compartment in the growing phase, lack of a discrete companion layer, and enrichment of EMT features in HF stem cells (HFSCs). Moreover, we demonstrate that besides melanocyte depletion, early-stage human hair graying is also associated with specific depletion of matrix hair progenitors but not HFSCs. The hair progenitors' depletion is accompanied by their P53 pathway activation whose pharmaceutical blockade can ameliorate hair graying in mice, enlightening a promising therapeutic avenue for this prevalent hair condition.
Collapse
Affiliation(s)
- Sijie Wu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, China
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Caiyue Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Peiying Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - You Peng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Xinyu Yan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Yin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Peng Hua
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, CAS, Shanghai, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, China.
| |
Collapse
|
12
|
Lousada MB, Lachnit T, Edelkamp J, Paus R, Bosch TCG. Hydra and the hair follicle - An unconventional comparative biology approach to exploring the human holobiont. Bioessays 2022; 44:e2100233. [PMID: 35261041 DOI: 10.1002/bies.202100233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The microbiome of human hair follicles (HFs) has emerged as an important player in different HF and skin pathologies, yet awaits in-depth exploration. This raises questions regarding the tightly linked interactions between host environment, nutrient dependency of host-associated microbes, microbial metabolism, microbe-microbe interactions and host immunity. The use of simple model systems facilitates addressing generally important questions and testing overarching, therapeutically relevant principles that likely transcend obvious interspecies differences. Here, we evaluate the potential of the freshwater polyp Hydra, to dissect fundamental principles of microbiome regulation by the host, that is the human HF. In particular, we focus on therapeutically targetable host-microbiome interactions, such as nutrient dependency, microbial interactions and host defence. Offering a new lens into the study of HF - microbiota interactions, we argue that general principles of how Hydra manages its microbiota can inform the development of novel, microbiome-targeting therapeutic interventions in human skin disease.
Collapse
Affiliation(s)
- Marta B Lousada
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Janin Edelkamp
- Monasterium Laboratory Skin & Hair Research, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| |
Collapse
|
13
|
Melatonin and the Programming of Stem Cells. Int J Mol Sci 2022; 23:ijms23041971. [PMID: 35216086 PMCID: PMC8879213 DOI: 10.3390/ijms23041971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Melatonin interacts with various types of stem cells, in multiple ways that comprise stimulation of proliferation, maintenance of stemness and self-renewal, protection of survival, and programming toward functionally different cell lineages. These various properties are frequently intertwined but may not be always jointly present. Melatonin typically stimulates proliferation and transition to the mature cell type. For all sufficiently studied stem or progenitor cells, melatonin’s signaling pathways leading to expression of respective morphogenetic factors are discussed. The focus of this article will be laid on the aspect of programming, particularly in pluripotent cells. This is especially but not exclusively the case in neural stem cells (NSCs) and mesenchymal stem cells (MSCs). Concerning developmental bifurcations, decisions are not exclusively made by melatonin alone. In MSCs, melatonin promotes adipogenesis in a Wnt (Wingless-Integration-1)-independent mode, but chondrogenesis and osteogenesis Wnt-dependently. Melatonin upregulates Wnt, but not in the adipogenic lineage. This decision seems to depend on microenvironment and epigenetic memory. The decision for chondrogenesis instead of osteogenesis, both being Wnt-dependent, seems to involve fibroblast growth factor receptor 3. Stem cell-specific differences in melatonin and Wnt receptors, and contributions of transcription factors and noncoding RNAs are outlined, as well as possibilities and the medical importance of re-programming for transdifferentiation.
Collapse
|
14
|
Modulation of dermal equivalent of hypothalamus-pituitary-adrenal axis in mastocytosis. Postepy Dermatol Alergol 2021; 38:461-472. [PMID: 34377129 PMCID: PMC8330854 DOI: 10.5114/ada.2021.107933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction Mastocytosis is a rare disease characterized by abnormal growth and accumulation of tissue mast cells (MC) in one or more organ systems and is classified as being either cutaneous mastocytosis (CM) or systemic mastocytosis (SM). In the pioneer studies of Slominski's group, a fully functional hypothalamic-pituitary-adrenal axis equivalent has been discovered in various tissues, including skin. Aim In the present study we investigated potential involvement of hypothalamus-pituitary-adrenal (HPA) cutaneous equivalent in ongoing mastocytosis. Material and methods The expression of HPA elements: CRH, UCN1, UCN2, UCN3, CRHR1, POMC, MC1R, MC2R and NR3C1 was assessed for their mRNA level in skin biopsies of adult patients with mastocytosis and healthy donors (n = 16 and 19, respectively), while CRH, UCN1, CRHR1, ACTH and MC1R were selected for immunostaining assay (n = 13 and 7, respectively). The expression of CRH receptor 1 (CRHR1) isomers was investigated by RT-PCR. The ELISA was used for detection of cortisol, CRH, UCN and ACTH in the serum. Results The decrease in the expression of HPA element of skin equivalent was observed on both mRNA and protein levels, however quantification of immunohistochemical data was impeded due to melanin in epidermis. Furthermore, we observed infiltration of dermis with HPA elements overexpressing mononuclear cells, which is in the agreement with an in vitro study showing a high expression of HPA elements by mast cells. Conclusions Taken together, it was confirmed that the expression elements of HPA was modulated in mastocytosis, thus the potential involvement of general and local stress responses in its pathogenesis should be postulated and further investigated.
Collapse
|
15
|
Rosenberg AM, Rausser S, Ren J, Mosharov EV, Sturm G, Ogden RT, Patel P, Kumar Soni R, Lacefield C, Tobin DJ, Paus R, Picard M. Quantitative mapping of human hair greying and reversal in relation to life stress. eLife 2021; 10:67437. [PMID: 34155974 PMCID: PMC8219384 DOI: 10.7554/elife.67437] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hair greying is a hallmark of aging generally believed to be irreversible and linked to psychological stress. Methods: Here, we develop an approach to profile hair pigmentation patterns (HPPs) along individual human hair shafts, producing quantifiable physical timescales of rapid greying transitions. Results: Using this method, we show white/grey hairs that naturally regain pigmentation across sex, ethnicities, ages, and body regions, thereby quantitatively defining the reversibility of greying in humans. Molecularly, grey hairs upregulate proteins related to energy metabolism, mitochondria, and antioxidant defenses. Combining HPP profiling and proteomics on single hairs, we also report hair greying and reversal that can occur in parallel with psychological stressors. To generalize these observations, we develop a computational simulation, which suggests a threshold-based mechanism for the temporary reversibility of greying. Conclusions: Overall, this new method to quantitatively map recent life history in HPPs provides an opportunity to longitudinally examine the influence of recent life exposures on human biology. Funding: This work was supported by the Wharton Fund and NIH grants GM119793, MH119336, and AG066828 (MP). Hair greying is a visible sign of aging that affects everyone. The loss of hair color is due to the loss of melanin, a pigment found in the skin, eyes and hair. Research in mice suggests stress may accelerate hair greying, but there is no definitive research on this in humans. This is because there are no research tools to precisely map stress and hair color over time. But, just like tree rings hold information about past decades, and rocks hold information about past centuries, hairs hold information about past months and years. Hair growth is an active process that happens under the skin inside hair follicles. It demands lots of energy, supplied by structures inside cells called mitochondria. While hairs are growing, cells receive chemical and electrical signals from inside the body, including stress hormones. It is possible that these exposures change proteins and other molecules laid down in the growing hair shaft. As the hair grows out of the scalp, it hardens, preserving these molecules into a stable form. This preservation is visible as patterns of pigmentation. Examining single-hairs and matching the patterns to life events could allow researchers to look back in time through a person’s biological history. Rosenberg et al. report a new way to digitize and measure small changes in color along single human hairs. This method revealed that some white hairs naturally regain their color, something that had not been reported in a cohort of healthy individuals before. Aligning the hair pigmentation patterns with recent reports of stress in the hair donors’ lives showed striking associations. When one donor reported an increase in stress, a hair lost its pigment. When the donor reported a reduction in stress, the same hair regained its pigment. Rosenberg et al. mapped hundreds of proteins inside the hairs to show that white hairs contained more proteins linked to mitochondria and energy use. This suggests that metabolism and mitochondria may play a role in hair greying. To explore these observations in more detail Rosenberg et al. developed a mathematical model that simulates the greying of a whole head of hair over a lifetime, an experiment impossible to do with living people. The model suggested that there might be a threshold for temporary greying; if hairs are about to go grey anyway, a stressful event might trigger that change earlier. And when the stressful event ends, if a hair is just above the threshold, then it could revert back to dark. The new method for measuring small changes in hair coloring opens up the possibility of using hair pigmentation patterns like tree rings. This could track the influence of past life events on human biology. In the future, monitoring hair pigmentation patterns could provide a way to trace the effectiveness of treatments aimed at reducing stress or slowing the aging process. Understanding how ‘old’ white hairs regain their ‘young’ pigmented state could also reveal new information about the malleability of human aging more generally.
Collapse
Affiliation(s)
- Ayelet M Rosenberg
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Shannon Rausser
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Junting Ren
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - R Todd Ogden
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Purvi Patel
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Clay Lacefield
- New York State Psychiatric Institute, New York, United States
| | - Desmond J Tobin
- UCD Charles Institute of Dermatology & UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States.,Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom.,Monasterium Laboratory, Münster, Germany
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States.,Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
16
|
Tiede S, Hundt JE, Paus R. UDP-GlcNAc-1-Phosphotransferase Is a Clinically Important Regulator of Human and Mouse Hair Pigmentation. J Invest Dermatol 2021; 141:2957-2965.e5. [PMID: 34116066 DOI: 10.1016/j.jid.2021.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022]
Abstract
UDP-GlcNAc-1-phosphotransferase, a product of two separate genes (GNPTAB, GNPTG), is essential for the sorting and transportation of lysosomal enzymes to lysosomes. GNPTAB gene defects cause extracellular missorting of lysosomal enzymes resulting in lysosomal storage diseases, namely mucolipidosis type II and mucolipidosis type III alpha/beta, which is associated with hair discoloration. Yet, the physiological functions of GNPTAB in the control of hair follicle (HF) pigmentation remain unknown. To elucidate these, we have silenced GNPTAB in organ-cultured human HFs as a human ex vivo model for mucolipidosis type II. GNPTAB silencing profoundly inhibited intrafollicular melanin production, the correct sorting of melanosomes, tyrosinase activity, and HMB45 expression in the HF pigmentary unit and altered HF melanocyte morphology in situ. In isolated primary human HF melanocytes, GNPTAB knockdown significantly reduced melanogenesis, tyrosinase activity, and correct tyrosinase protein sorting as well as POMC expression and caused the expected lysosomal enzyme missorting in vitro. Moreover, transgenic mice overexpressing an inserted missense mutation corresponding to that seen in human mucolipidosis type II and mucolipidosis type III alpha/beta showed significantly reduced HF pigmentation, thus corroborating the in vivo relevance of our ex vivo and in vitro findings in the human system. This identifies GNPTAB as a clinically important enzymatic control of human HF pigmentation, likely by directly controlling tyrosinase sorting and POMC transcription in HF melanocytes.
Collapse
Affiliation(s)
- Stephan Tiede
- International Center for Lysosomal Disorders, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; University Children's Research at Kinder-UKE, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom; The NIHR Biomedical Research Centre, Manchester, United Kingdom; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA; Monasterium Laboratory, Münster, Germany.
| |
Collapse
|
17
|
Stone RC, Aviv A, Paus R. Telomere Dynamics and Telomerase in the Biology of Hair Follicles and their Stem Cells as a Model for Aging Research. J Invest Dermatol 2021; 141:1031-1040. [PMID: 33509633 DOI: 10.1016/j.jid.2020.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
In this review, we propose that telomere length dynamics play an important but underinvestigated role in the biology of the hair follicle (HF), a prototypic, cyclically remodeled miniorgan that shows an intriguing aging pattern in humans. Whereas the HF pigmentary unit ages quickly, its epithelial stem cell (ESC) component and regenerative capacity are surprisingly aging resistant. Telomerase-deficient mice with short telomeres display an aging phenotype of hair graying and hair loss that is attributed to impaired HF ESC mobilization. Yet, it remains unclear whether the function of telomerase and telomeres in murine HF biology translate to the human system. Therefore, we propose new directions for future telomere research of the human HF. Such research may guide the development of novel treatments for selected disorders of human hair growth or pigmentation (e.g., chemotherapy-induced alopecia, telogen effluvium, androgenetic alopecia, cicatricial alopecia, graying). It might also increase the understanding of the global role of telomeres in aging-related human disease.
Collapse
Affiliation(s)
- Rivka C Stone
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Abraham Aviv
- The Center of Human Development and Aging, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom; Monasterium Laboratory, Münster, Germany
| |
Collapse
|
18
|
O'Sullivan JDB, Nicu C, Picard M, Chéret J, Bedogni B, Tobin DJ, Paus R. The biology of human hair greying. Biol Rev Camb Philos Soc 2020; 96:107-128. [PMID: 32965076 DOI: 10.1111/brv.12648] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Hair greying (canities) is one of the earliest, most visible ageing-associated phenomena, whose modulation by genetic, psychoemotional, oxidative, senescence-associated, metabolic and nutritional factors has long attracted skin biologists, dermatologists, and industry. Greying is of profound psychological and commercial relevance in increasingly ageing populations. In addition, the onset and perpetuation of defective melanin production in the human anagen hair follicle pigmentary unit (HFPU) provides a superb model for interrogating the molecular mechanisms of ageing in a complex human mini-organ, and greying-associated defects in bulge melanocyte stem cells (MSCs) represent an intriguing system of neural crest-derived stem cell senescence. Here, we emphasize that human greying invariably begins with the gradual decline in melanogenesis, including reduced tyrosinase activity, defective melanosome transfer and apoptosis of HFPU melanocytes, and is thus a primary event of the anagen hair bulb, not the bulge. Eventually, the bulge MSC pool becomes depleted as well, at which stage greying becomes largely irreversible. There is still no universally accepted model of human hair greying, and the extent of genetic contributions to greying remains unclear. However, oxidative damage likely is a crucial driver of greying via its disruption of HFPU melanocyte survival, MSC maintenance, and of the enzymatic apparatus of melanogenesis itself. While neuroendocrine factors [e.g. alpha melanocyte-stimulating hormone (α-MSH), adrenocorticotropic hormone (ACTH), ß-endorphin, corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH)], and micropthalmia-associated transcription factor (MITF) are well-known regulators of human hair follicle melanocytes and melanogenesis, how exactly these and other factors [e.g. thyroid hormones, hepatocyte growth factor (HGF), P-cadherin, peripheral clock activity] modulate greying requires more detailed study. Other important open questions include how HFPU melanocytes age intrinsically, how psychoemotional stress impacts this process, and how current insights into the gerontobiology of the human HFPU can best be translated into retardation or reversal of greying.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Carina Nicu
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Martin Picard
- Departments of Psychiatry and Neurology, Columbia University Irving Medical Center, 622 W 168th Street, PH1540N, New York, 10032, U.S.A
| | - Jérémy Chéret
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Barbara Bedogni
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland
| | - Ralf Paus
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A.,Monasterium Laboratory, Skin & Hair Research Solutions GmbH, Münster, D-48149, Germany.,Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, M13 9PT, U.K
| |
Collapse
|
19
|
Abstract
Signalling from the sympathetic nervous system of mice subjected to stress leads to the depletion of a stem-cell population in their hair follicles. This discovery sheds light on why stress turns hair prematurely grey.
Collapse
|
20
|
Pigmentation Effect of Rice Bran Extract in Hair Follicle-Like Tissue and Organ Culture Models. Tissue Eng Regen Med 2019; 17:15-23. [PMID: 32002839 DOI: 10.1007/s13770-019-00220-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Melanogenesis is a biological process resulting in the production of melanin pigment, which plays an important role in the prevention of sun-induced skin injury and determines the hair and skin color. Melanin has the ability to block ultraviolet radiation and scavenge free oxygen radicals, thus protecting the skin from their harmful effects. Agents that increase melanin synthesis in melanocytes may reduce the risk of photodamage and skin cancer. Hence, various approaches have been proposed to increase the synthesis of melanin. METHODS The current study aimed to develop a three-dimensional hair follicle-like tissue (HFLT) model with human dermal papilla, melanocytes, and outer root sheaths cells. This model showed enhanced melanogenesis-related protein expression after rice bran ash extract (RBE) treatment. Next, we investigated the melanogenic effect of RBE in the HFLT and compared the results to those of hair follicle (HF) organ culture model. RESULTS RBE was found to significantly increase the expression of microphthalmia-associated transcription factor, a key transcription factor involved in melanin production, in both HFLT and organ culture models. Results showed that melanogenesis-related protein expression levels were higher in the RBE group compared to those in the control group. Similar results were obtained by immunohistochemistry. CONCLUSION Our data suggested that RBE promotes melanin biosynthesis. Taken together, this simple in vitro HFLT model system has the potential to provide significant insights into the underlying molecular mechanisms of HF melanogenesis, and hence can be used for controlled evaluation of the efficacy of new materials for melanogenesis.
Collapse
|
21
|
Effects of the selective TrkA agonist gambogic amide on pigmentation and growth of human hair follicles in vitro. PLoS One 2019; 14:e0221757. [PMID: 31465471 PMCID: PMC6715186 DOI: 10.1371/journal.pone.0221757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
The human hair follicle is a neuroendocrine mini-organ that can be used to study aging processes in vitro. Neurotrophins maintain homeostasis in hair biology via the Trk-family of receptors. TrkA, the high affinity receptor for nerve growth factor (NGF), is expressed in hair follicle melanocytes and keratinocytes, where it regulates proliferation, differentiation and apoptosis and may thereby play a role in hair pigmentation and growth. We investigated TrkA expression during the human hair cycle and the effects of a selective high affinity TrkA agonist, Gambogic Amide, on hair pigmentation and hair growth in human hair follicles in vitro. In human scalp skin, TrkA expression was strongest in proliferating melanocytes re-establishing the pigmentary unit in the hair bulb during the early hair growth phase, anagen. During high anagen and in the de-composing pigmentary-unit of the regression phase, catagen, bulb-melanocytes lost TrkA expression and only undifferentiated outer root sheath melanocytes maintained it. In cultured human anagen hair follicles, Gambogic Amide was able to prevent gradual pigment loss, while it stimulated hair shaft elongation. This was achieved by increased melanocyte activation, migration and dendricity, highlighted by distinct c-KIT-expression in melanocyte sub-populations. Our results suggest that Gambogic Amide can maintain hair follicle pigmentation by acting on undifferentiated melanocytes residing in the outer root sheath and making them migrate to establish the pigmentary-unit. This suggests that the selective TrkA agonist Gambogic Amide acts as an anti-hair greying and hair growth promoting molecule in vitro.
Collapse
|
22
|
Bian Y, Wei G, Song X, Yuan L, Chen H, Ni T, Lu D. Global downregulation of pigmentation-associated genes in human premature hair graying. Exp Ther Med 2019; 18:1155-1163. [PMID: 31316609 PMCID: PMC6601371 DOI: 10.3892/etm.2019.7663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Premature hair graying, or canities, is a complex multi-factorial process with negative effects on affected individuals. The aim of the present study was to investigate the possible underlying mechanisms of premature hair graying at the genetic level. A total of 5 unrelated Han Chinese individuals presenting with premature hair graying (25–40 years old, with >1% hair affected) were enrolled in the present study. RNA sequencing was performed to identify gene expression changes between the follicular cells of grey and black hair from the cohort. A total of 127 differentially expressed genes (DEGs) were identified. These DEGs were overrepresented in categories associated with the pigmentation pathway, with a decreased expression of key genes responsible for melanin synthesis. Of note, the decreased expression of certain transcription factors and the increased expression of certain precursor microRNAs observed may explain for the downregulation of certain other DEGs, which were identified as their targets via Starbase v2 and Integrated Motif Activity Response Analysis. The DEGs were also enriched in terms associated with the nervous system, indicating that neural disturbances may also have certain roles in premature hair graying. Of note, five of the downregulated DEGs were associated with aging according to the JenAge Aging Factor Database. To the best of our knowledge, the present study was the first genome-wide survey of the gene expression profile associated with premature hair graying. Dysfunction of the melanin biosynthesis pathway is probably the direct cause of hair graying and the present results provide valuable clues for further functional and mechanistic investigation.
Collapse
Affiliation(s)
- Yunmeng Bian
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, P.R. China
| | - Li Yuan
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| |
Collapse
|
23
|
Wang Q, Wu H, Zhou J, Pei S, Li J, Cai Y, Shang J. Involvement of the central hypothalamic-pituitary-adrenal axis in hair growth and melanogenesis among different mouse strains. PLoS One 2018; 13:e0202955. [PMID: 30356231 PMCID: PMC6200183 DOI: 10.1371/journal.pone.0202955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/13/2018] [Indexed: 11/26/2022] Open
Abstract
Stress has been demonstrated to play an important role in hair follicle function and the pathogenesis of some hair disorders. The central hypothalamic-pituitary-adrenal (HPA) axis is activated by stress stimuli, synthesizes and releases various components and eventually induces the pathogenesis and recurrence of peripheral diseases. Our aim is to compare the different responses under exposure of stress in hair follicle function among different mouse strains, and to detect the involvement of the central HPA axis after stress in hair follicle growth and melanogenesis. In this study, we exposed different mouse strains (C57BL/6, CBA/J, C3H/HeN, BALB/c and ICR) to a 21-day chronic restraint stress protocol and selected C57BL/6, CBA/J and BALB/c mice for further study because of their significant behavioral alterations. Then, we evaluated and compared the different responses and sensitivity to chronic restraint stress in hair follicle function and central HPA axis among the selected strains. The results showed that expression of POMC, CRF and GR mRNA and protein and serum levels of corticosterone were inhibited in response to stress. These findings suggested that chronic restraint stress may inhibit hair follicle growth and melanogenesis via regulating the key elements of the central HPA axis. In addition, the results revealed different mouse strains exhibit different responses in the central HPA axis and hair follicle after stress exposure. C57BL/6 might be the most sensitive strain among the three strains tested as well as an appropriate strain to study possible pathophysiological mechanisms by which the nervous system influences skin function and screen dermatological drugs suitable for psychotherapy. We believe the current study will provide some useful information for researchers who are interested in the bidirectional communication between the nervous and skin systems and the management of stress-induced cutaneous diseases.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Huali Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jia Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siran Pei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- * E-mail:
| |
Collapse
|
24
|
Jo SK, Lee JY, Lee Y, Kim CD, Lee JH, Lee YH. Three Streams for the Mechanism of Hair Graying. Ann Dermatol 2018; 30:397-401. [PMID: 30065578 PMCID: PMC6029974 DOI: 10.5021/ad.2018.30.4.397] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hair graying is an obvious sign of human aging. Although graying has been investigated extensively, the mechanism remains unclear. Here, we reviewed previous studies on the mechanism of graying and seek to offer some new insights. The traditional view is that hair graying is caused by exhaustion of the pigmentary potential of the melanocytes of hair bulbs. Melanocyte dysfunction may be attributable to the effects of toxic reactive oxygen species on melanocyte nuclei and mitochondria. A recent study suggests that bulge melanocyte stem cells (MSCs) are the key cells in play. Graying may be caused by defective MSC self-maintenance, not by any deficiency in bulbar melanocytes. Our previous study suggested that graying may be principally attributable to active hair growth. Active hair growth may produce oxidative or genotoxic stress in hair bulge. These internal stress may cause eventually depletion of MSC in the hair follicles. Taken together, hair graying may be caused by MSC depletion by genotoxic stress in the hair bulge. Hair graying may also be sometimes caused by dysfunction of the melanocytes by oxidative stress in the hair bulb. In addition, hair graying may be attributable to MSC depletion by active hair growth.
Collapse
Affiliation(s)
- Seong Kyeong Jo
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ji Yeon Lee
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Young Ho Lee
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
25
|
Liao S, Lv J, Zhou J, Kalavagunta PK, Shang J. Effects of two chronic stresses on mental state and hair follicle melanogenesis in mice. Exp Dermatol 2017; 26:1083-1090. [DOI: 10.1111/exd.13380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Sha Liao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research; China Pharmaceutical University; Nanjing China
- Key Laboratory of Resource Biology and Biotechnology in Western China; Ministry of Education; Northwest University; Xi'an China
| | - Jinpeng Lv
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research; China Pharmaceutical University; Nanjing China
| | - Jia Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research; China Pharmaceutical University; Nanjing China
| | - Praveen Kumar Kalavagunta
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research; China Pharmaceutical University; Nanjing China
| | - Jing Shang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research; China Pharmaceutical University; Nanjing China
| |
Collapse
|
26
|
Jadkauskaite L, Coulombe PA, Schäfer M, Dinkova-Kostova AT, Paus R, Haslam IS. Oxidative stress management in the hair follicle: Could targeting NRF2 counter age-related hair disorders and beyond? Bioessays 2017; 39. [PMID: 28685843 DOI: 10.1002/bies.201700029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Widespread expression of the transcription factor, nuclear factor (erythroid-derived 2)-like 2 (NRF2), which maintains redox homeostasis, has recently been identified in the hair follicle (HF). Small molecule activators of NRF2 may therefore be useful in the management of HF pathologies associated with redox imbalance, ranging from HF greying and HF ageing via androgenetic alopecia and alopecia areata to chemotherapy-induced hair loss. Indeed, NRF2 activation has been shown to prevent peroxide-induced hair growth inhibition. Multiple parameters can increase the levels of reactive oxygen species in the HF, for example melanogenesis, depilation-induced trauma, neurogenic and autoimmune inflammation, toxic drugs, environmental stressors such as UV irradiation, genetic defects and aging-associated mitochondrial dysfunction. In this review, the potential mechanisms whereby NRF2 activation could prove beneficial in treatment of redox-associated HF disorders are therefore discussed.
Collapse
Affiliation(s)
- Laura Jadkauskaite
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthias Schäfer
- Department of Biology, Institute of Molecular Health Sciences, Swiss Institute of Technology (ETH), Zürich, Switzerland
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| | - Iain S Haslam
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK.,Department of Biological Sciences, School of Applied Science, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
27
|
Peters EMJ, Müller Y, Snaga W, Fliege H, Reißhauer A, Schmidt-Rose T, Max H, Schweiger D, Rose M, Kruse J. Hair and stress: A pilot study of hair and cytokine balance alteration in healthy young women under major exam stress. PLoS One 2017; 12:e0175904. [PMID: 28423056 PMCID: PMC5397031 DOI: 10.1371/journal.pone.0175904] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/02/2017] [Indexed: 12/25/2022] Open
Abstract
Mouse models show that experimental stress mimicking prolonged life-stress exposure enhances neurogenic inflammation, induces adaptive immunity cytokine-imbalance characterized by a shift to Type 1 T-helper cell cytokines and increases apoptosis of epithelial cells. This affects hair growth in otherwise healthy animals. In this study, we investigate whether a prolonged naturalistic life-stress exposure affects cytokine balance and hair parameters in healthy humans. 33 (18 exam, 15 comparison) female medical students with comparable sociobiological status were analyzed during a stressful final examination period, at three points in time (T) 12 weeks apart. T1 was before start of the learning period, T2 between the three-day written exam and an oral examination, and T3 after a 12 week rest and recovery from the stress of the examination period. Assessments included: self-reported distress and coping strategies (Perceived Stress Questionnaire [PSQ], Trier Inventory for the Assessment of Chronic Stress [TICS]), COPE), cytokines in supernatants of stimulated peripheral blood mononucleocytes (PBMCs), and trichogram (hair cycle and pigmentation analysis). Comparison between students participating in the final medical exam at T2 and non-exam students, revealed significantly higher stress perception in exam students. Time-wise comparison revealed that stress level, TH1/TH2 cytokine balance and hair parameters changed significantly from T1 to T2 in the exam group, but not the control. However, no group differences were found for cytokine balance or hair parameters at T2. The study concludes that in humans, naturalistic stress, as perceived during participation in a major medical exam, has the potential to shift the immune response to TH1 and transiently hamper hair growth, but these changes stay within a physiological range. Findings are instructive for patients suffering from hair loss in times of high stress. Replication in larger and more diverse sample populations is required, to assess suitability of trichogram analysis as biological outcome for stress studies.
Collapse
Affiliation(s)
- Eva M. J. Peters
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for General Internal Medicine, Psychosomatics and Psychotherapy: Psycho-Neuro-Immunology Skin Research Group, Berlin, Germany
- Justus-Liebig-University, Department of Psychosomatics and Psychotherapy, Psychoneuroimmunology Laboratory, Gießen, Germany
- * E-mail:
| | - Yvonne Müller
- Justus-Liebig-University, Department of Psychosomatics and Psychotherapy, Psychoneuroimmunology Laboratory, Gießen, Germany
| | - Wenke Snaga
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for General Internal Medicine, Psychosomatics and Psychotherapy: Psycho-Neuro-Immunology Skin Research Group, Berlin, Germany
| | - Herbert Fliege
- Foreign Office, Health Service, Psychosocial Counseling, Auswärtiges Amt, Berlin, Germany
| | - Anett Reißhauer
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for Physical Medicine and Rehabilitation, Berlin, Germany
| | | | | | | | - Matthias Rose
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for General Internal Medicine, Psychosomatics and Psychotherapy: Psycho-Neuro-Immunology Skin Research Group, Berlin, Germany
| | - Johannes Kruse
- Justus-Liebig-University, Department of Psychosomatics and Psychotherapy, Psychoneuroimmunology Laboratory, Gießen, Germany
| |
Collapse
|
28
|
Haslam IS, Jadkauskaite L, Szabó IL, Staege S, Hesebeck-Brinckmann J, Jenkins G, Bhogal RK, Lim FL, Farjo N, Farjo B, Bíró T, Schäfer M, Paus R. Oxidative Damage Control in a Human (Mini-) Organ: Nrf2 Activation Protects against Oxidative Stress-Induced Hair Growth Inhibition. J Invest Dermatol 2017; 137:295-304. [DOI: 10.1016/j.jid.2016.08.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/08/2023]
|
29
|
Paus R. Exploring the “brain-skin connection”: Leads and lessons from the hair follicle. Curr Res Transl Med 2016; 64:207-214. [DOI: 10.1016/j.retram.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022]
|
30
|
Paus R, Burgoa I, Platt CI, Griffiths T, Poblet E, Izeta A. Biology of the eyelash hair follicle: an enigma in plain sight. Br J Dermatol 2016; 174:741-52. [PMID: 26452071 DOI: 10.1111/bjd.14217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 01/19/2023]
Abstract
Because of their crucial impact on our perception of beauty, eyelashes constitute a prime target for the cosmetic industry. However, when compared with other hair shafts and the mini-organs that produce them [eyelash hair follicles (ELHFs)], knowledge on the biology underlying growth and pigmentation of eyelashes is still rudimentary. This is due in part to the extremely restricted availability of human ELHFs for experimental study, underappreciation of their important sensory and protective functions and insufficient interest in understanding why they are distinct from scalp hair follicles (HFs) (e.g. ELHFs produce shorter hair shafts, do not possess an arrector pili muscle, have a shorter hair cycle and undergo greying significantly later than scalp HFs). Here we synthesize the limited current knowledge on the biology of ELHFs, in humans and other species, their role in health and disease, the known similarities with and differences from other HF populations, and their intrinsic interethnic variations. We define major open questions in the biology of these intriguing mini-organs and conclude by proposing future research directions. These include dissecting the molecular and cellular mechanisms that underlie trichomegaly and the development of in vitro models in order to interrogate the distinct molecular controls of ELHF growth, cycling and pigmentation and to probe novel strategies for the therapeutic and cosmetic manipulation of ELHFs beyond prostaglandin receptor stimulation.
Collapse
Affiliation(s)
- R Paus
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, University of Münster, Münster, Germany
| | - I Burgoa
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Instituto Biodonostia, Hospital Universitario Donostia, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain
| | - C I Platt
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K
| | - T Griffiths
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K
| | - E Poblet
- Department of Pathology, Hospital Universitario Reina Sofía, Murcia, Spain
| | - A Izeta
- Instituto Biodonostia, Hospital Universitario Donostia, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain
| |
Collapse
|
31
|
Hardman JA, Tobin DJ, Haslam IS, Farjo N, Farjo B, Al-Nuaimi Y, Grimaldi B, Paus R. The peripheral clock regulates human pigmentation. J Invest Dermatol 2015; 135:1053-1064. [PMID: 25310406 DOI: 10.1038/jid.2014.442] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/15/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022]
Abstract
Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan A Hardman
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Doctoral Training Centre in Integrative Systems Biology, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Desmond J Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, UK
| | - Iain S Haslam
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | | | | | - Yusur Al-Nuaimi
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Benedetto Grimaldi
- Department of Drug Discovery and Development, Instituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Ralf Paus
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Muenster, Muenster, Germany.
| |
Collapse
|
32
|
Paus R, Langan EA, Vidali S, Ramot Y, Andersen B. Neuroendocrinology of the hair follicle: principles and clinical perspectives. Trends Mol Med 2014; 20:559-70. [DOI: 10.1016/j.molmed.2014.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022]
|
33
|
Ramot Y, Paus R. Harnessing neuroendocrine controls of keratin expression: A new therapeutic strategy for skin diseases? Bioessays 2014; 36:672-86. [DOI: 10.1002/bies.201400006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuval Ramot
- Department of Dermatology; Hadassah - Hebrew University Medical Center; Jerusalem Israel
| | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Laboratory for Hair Research and Regenerative Medicine, Department of Dermatology; University of Münster; Münster Germany
| |
Collapse
|
34
|
Böhm M, Bodó E, Funk W, Paus R. α-Melanocyte-stimulating hormone: a protective peptide against chemotherapy-induced hair follicle damage? Br J Dermatol 2014; 170:956-60. [DOI: 10.1111/bjd.12759] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2013] [Indexed: 12/28/2022]
Affiliation(s)
- M. Böhm
- Department of Dermatology; University of Münster; Von Esmarch-Street 58 D-48149 Münster Germany
| | - E. Bodó
- Department of Dermatology; University of Lübeck; Lübeck Germany
- Agricultural and Molecular Research Institute; College of Nyíregyháza; Nyíregyháza Hungary
| | - W. Funk
- Klinik Dr Kozlowski; Munich Germany
| | - R. Paus
- Department of Dermatology; University of Lübeck; Lübeck Germany
- School of Translational Medicine; University of Manchester; Manchester U.K
| |
Collapse
|
35
|
Hypothalamic–Pituitary–Thyroid Axis Hormones Stimulate Mitochondrial Function and Biogenesis in Human Hair Follicles. J Invest Dermatol 2014; 134:33-42. [DOI: 10.1038/jid.2013.286] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/29/2013] [Accepted: 05/31/2013] [Indexed: 12/22/2022]
|
36
|
Buffoli B, Rinaldi F, Labanca M, Sorbellini E, Trink A, Guanziroli E, Rezzani R, Rodella LF. The human hair: from anatomy to physiology. Int J Dermatol 2013; 53:331-41. [DOI: 10.1111/ijd.12362] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Barbara Buffoli
- Section of Anatomy and Physiopathology; Department of Clinical and Experimental Sciences; University of Brescia; Brescia Italy
| | | | - Mauro Labanca
- Section of Anatomy and Physiopathology; Department of Clinical and Experimental Sciences; University of Brescia; Brescia Italy
| | | | | | | | - Rita Rezzani
- Section of Anatomy and Physiopathology; Department of Clinical and Experimental Sciences; University of Brescia; Brescia Italy
| | - Luigi F. Rodella
- Section of Anatomy and Physiopathology; Department of Clinical and Experimental Sciences; University of Brescia; Brescia Italy
| |
Collapse
|
37
|
Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev 2013; 34:827-84. [PMID: 23939821 PMCID: PMC3857130 DOI: 10.1210/er.2012-1092] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 08/02/2013] [Indexed: 02/08/2023]
Abstract
The discovery of corticotropin-releasing factor (CRF) or CRH defining the upper regulatory arm of the hypothalamic-pituitary-adrenal (HPA) axis, along with the identification of the corresponding receptors (CRFRs 1 and 2), represents a milestone in our understanding of central mechanisms regulating body and local homeostasis. We focused on the CRF-led signaling systems in the skin and offer a model for regulation of peripheral homeostasis based on the interaction of CRF and the structurally related urocortins with corresponding receptors and the resulting direct or indirect phenotypic effects that include regulation of epidermal barrier function, skin immune, pigmentary, adnexal, and dermal functions necessary to maintain local and systemic homeostasis. The regulatory modes of action include the classical CRF-led cutaneous equivalent of the central HPA axis, the expression and function of CRF and related peptides, and the stimulation of pro-opiomelanocortin peptides or cytokines. The key regulatory role is assigned to the CRFR-1α receptor, with other isoforms having modulatory effects. CRF can be released from sensory nerves and immune cells in response to emotional and environmental stressors. The expression sequence of peptides includes urocortin/CRF→pro-opiomelanocortin→ACTH, MSH, and β-endorphin. Expression of these peptides and of CRFR-1α is environmentally regulated, and their dysfunction can lead to skin and systemic diseases. Environmentally stressed skin can activate both the central and local HPA axis through either sensory nerves or humoral factors to turn on homeostatic responses counteracting cutaneous and systemic environmental damage. CRF and CRFR-1 may constitute novel targets through the use of specific agonists or antagonists, especially for therapy of skin diseases that worsen with stress, such as atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Andrzej T Slominski
- MD, PhD, Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center; 930 Madison Avenue, Suite 500, Memphis, Tennessee 38163.
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Topobiology of human pigmentation: P-cadherin selectively stimulates hair follicle melanogenesis. J Invest Dermatol 2013; 133:1591-600. [PMID: 23334344 DOI: 10.1038/jid.2013.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
P-cadherin serves as a major topobiological cue in mammalian epithelium. In human hair follicles (HFs), it is prominently expressed in the inner hair matrix that harbors the HF pigmentary unit. However, the role of P-cadherin in normal human pigmentation remains unknown. As patients with mutations in the gene that encodes P-cadherin show hypotrichosis and fair hair, we explored the hypothesis that P-cadherin may control HF pigmentation. When P-cadherin was silenced in melanogenically active organ-cultured human scalp HFs, this significantly reduced HF melanogenesis and tyrosinase activity as well as gene and/or protein expression of gp100, stem cell factor, c-Kit, and microphthalmia-associated transcription factor (MITF), both in situ and in isolated human HF melanocytes. Instead, epidermal pigmentation was unaffected by P-cadherin knockdown in organ-cultured human skin. In hair matrix keratinocytes, P-cadherin silencing reduced plasma membrane β-catenin, whereas glycogen synthase kinase 3 beta (GSK3β) and phospho-β-catenin expression were significantly upregulated. This suggests that P-cadherin-GSK3β/Wnt signaling is required for maintaining the expression of MITF to sustain intrafollicular melanogenesis. Thus, P-cadherin-mediated signaling is a melanocyte subtype-specific topobiological regulator of normal human pigmentation, possibly via GSK3β-mediated canonical Wnt signaling.
Collapse
|
40
|
Holub B, Kloepper J, Tóth B, Bíro T, Kofler B, Paus R. The neuropeptide galanin is a novel inhibitor of human hair growth. Br J Dermatol 2012; 167:10-6. [DOI: 10.1111/j.1365-2133.2012.10890.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
|
42
|
Ito S, Wakamatsu K. Diversity of human hair pigmentation as studied by chemical analysis of eumelanin and pheomelanin. J Eur Acad Dermatol Venereol 2012; 25:1369-80. [PMID: 22077870 DOI: 10.1111/j.1468-3083.2011.04278.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hair colour is one of the most conspicuous phenotypes in humans, ranging from black, brown, blond to red. This diversity arises mostly from the quantity and ratio of the black-dark brown eumelanin and the reddish-brown pheomelanin. To study the chemical basis underlying the diversity of hair colour, we have developed several chemical methods to quantify those two pigments. Alkaline H(2) O(2) oxidation affords pyrrole-2,3,5-tricarboxylic acid (PTCA) as a eumelanin marker and thiazole-2,4,5-tricarboxylic acid (TTCA) as a pheomelanin marker. Pheomelanin can also be analysed as 4-amino-3-hydroxyphenylalanine (4-AHP) after hydroiodic acid hydrolysis. Using those methods, we evaluated the contents of eumelanin and pheomelanin (the 'chemical' phenotype) in human hairs of black, dark brown, brown, light brown, blond and red colour (the 'visual' phenotype). Eumelanin contents decrease in that order, with a trace but constant level of pheomelanin, except for red hair which contains about equal levels of pheomelanin and eumelanin. Thus, the chemical phenotype correlates well with the visual phenotype. The genotype of melanocortin-1 receptor (MC1R), a gene regulating the red hair phenotype, is predictive of hair melanin expressed as the log value of eumelanin to pheomelanin ratio, with a dosage effect evident. Hair melanin contents were also analysed in patients with various hypopigmentary disorders including Hermansky-Pudlak syndrome, Menkes disease, proopiomelanocortin deficiency, cystinosis, malnutrition and trace metal deficiency. The chemical phenotype helped evaluate the precise effects of each disease on pigmentation. In studies of human hair, the chemical phenotype will find more and more application as an objective measure of pigmentation.
Collapse
Affiliation(s)
- S Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan.
| | | |
Collapse
|
43
|
Choi HI, Choi GI, Kim EK, Choi YJ, Sohn KC, Lee Y, Kim CD, Yoon TJ, Sohn HJ, Han SH, Kim S, Lee JH, Lee YH. Hair greying is associated with active hair growth. Br J Dermatol 2012; 165:1183-9. [PMID: 21916889 DOI: 10.1111/j.1365-2133.2011.10625.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hair greying is an obvious sign of ageing in humans. White (nonpigmented) hair is thicker than black (pigmented) hair. The growth rate of white hair is also significantly higher than that of black hair. However, the mechanism underlying this is largely unknown. OBJECTIVES To examine the association between hair greying and hair growth patterns by evaluating expression of the genes or proteins related to hair growth in white and black hairs. METHODS Morphological characteristics were observed in eyebrow and scalp hairs. The differential expression of genes was analysed in black and white hairs from human scalp by a microarray analysis. Reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry for genes and proteins related to hair growth were performed in black and white hairs. RESULTS Keratin and keratin-associated protein (KRTAP) genes in white hair were upregulated at least two-fold in comparison with black hair in a microarray analysis. Upregulation of selected keratin genes and KRTAP4 isoform genes in white hair was validated by RT-PCR. Immunoreactivity for KRT6, KRT14/16 and KRT25 was increased in the hair follicle of white hair compared with black hair. Gene expression of fibroblast growth factor 5 (FGF5) was downregulated in white hair compared with black hair. However, gene expression of FGF7 was upregulated in white hair compared with black hair. CONCLUSIONS Expression of genes and proteins associated with active hair growth is upregulated in white (nonpigmented) hair compared with black (pigmented) hair. These results suggest that hair greying is associated with active hair growth.
Collapse
Affiliation(s)
- H I Choi
- Department of Anatomy, Chungnam National University, 55, Munhwa-ro, Daejeon 301-747, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gáspár E, Nguyen-Thi KT, Hardenbicker C, Tiede S, Plate C, Bodó E, Knuever J, Funk W, Bíró T, Paus R. Thyrotropin-releasing hormone selectively stimulates human hair follicle pigmentation. J Invest Dermatol 2011; 131:2368-77. [PMID: 21956127 DOI: 10.1038/jid.2011.221] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In amphibians, thyrotropin-releasing hormone (TRH) stimulates skin melanophores by inducing secretion of α-melanocyte-stimulating hormone in the pituitary gland. However, it is unknown whether this tripeptide neurohormone exerts any direct effects on pigment cells, namely, on human melanocytes, under physiological conditions. Therefore, we have investigated whether TRH stimulates pigment production in organ-cultured human hair follicles (HFs), the epithelium of which expresses both TRH and its receptor, and/or in full-thickness human skin in situ. TRH stimulated melanin synthesis, tyrosinase transcription and activity, melanosome formation, melanocyte dendricity, gp100 immunoreactivity, and microphthalmia-associated transcription factor expression in human HFs in a pituitary gland-independent manner. TRH also stimulated proliferation, gp100 expression, tyrosinase activity, and dendricity of isolated human HF melanocytes. However, intraepidermal melanogenesis was unaffected. As TRH upregulated the intrafollicular production of "pituitary" neurohormones (proopiomelanocortin transcription and ACTH immunoreactivity) and as agouti-signaling protein counteracted TRH-induced HF pigmentation, these pigmentary TRH effects may be mediated in part by locally generated melanocortins and/or by MC-1 signaling. Our study introduces TRH as a novel, potent, selective, and evolutionarily highly conserved neuroendocrine factor controlling human pigmentation in situ. This physiologically relevant and melanocyte sub-population-specific neuroendocrine control of human pigmentation deserves clinical exploration, e.g., for preventing or reversing hair graying.
Collapse
Affiliation(s)
- Erzsébet Gáspár
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ramot Y, Tiede S, Bíró T, Abu Bakar MH, Sugawara K, Philpott MP, Harrison W, Pietilä M, Paus R. Spermidine promotes human hair growth and is a novel modulator of human epithelial stem cell functions. PLoS One 2011; 6:e22564. [PMID: 21818338 PMCID: PMC3144892 DOI: 10.1371/journal.pone.0022564] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/24/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Rapidly regenerating tissues need sufficient polyamine synthesis. Since the hair follicle (HF) is a highly proliferative mini-organ, polyamines may also be important for normal hair growth. However, the role of polyamines in human HF biology and their effect on HF epithelial stem cells in situ remains largely unknown. METHODS AND FINDINGS We have studied the effects of the prototypic polyamine, spermidine (0.1-1 µM), on human scalp HFs and human HF epithelial stem cells in serum-free organ culture. Under these conditions, spermidine promoted hair shaft elongation and prolonged hair growth (anagen). Spermidine also upregulated expression of the epithelial stem cell-associated keratins K15 and K19, and dose-dependently modulated K15 promoter activity in situ and the colony forming efficiency, proliferation and K15 expression of isolated human K15-GFP+ cells in vitro. Inhibiting the rate-limiting enzyme of polyamine synthesis, ornithine decarboyxlase (ODC), downregulated intrafollicular K15 expression. In primary human epidermal keratinocytes, spermidine slightly promoted entry into the S/G2-M phases of the cell cycle. By microarray analysis of human HF mRNA extracts, spermidine upregulated several key target genes implicated e.g. in the control of cell adherence and migration (POP3), or endoplasmic reticulum and mitochondrial functions (SYVN1, NACA and SLC25A3). Excess spermidine may restrict further intrafollicular polyamine synthesis by inhibiting ODC gene and protein expression in the HF's companion layer in situ. CONCLUSIONS These physiologically and clinically relevant data provide the first direct evidence that spermidine is a potent stimulator of human hair growth and a previously unknown modulator of human epithelial stem cell biology.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang L, Million M, Rivier J, Rivier C, Craft N, Stenzel-Poore MP, Taché Y. CRF receptor antagonist astressin-B reverses and prevents alopecia in CRF over-expressing mice. PLoS One 2011; 6:e16377. [PMID: 21359208 DOI: 10.1371/journal.pone.0016377] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/13/2010] [Indexed: 01/13/2023] Open
Abstract
Corticotropin-releasing factor (CRF) signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE)-mice that display phenotypes of Cushing's syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse) injected peripherally once a day for 5 days in 4-9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF₂ receptor antagonist, astressin₂-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress.
Collapse
Affiliation(s)
- Lixin Wang
- Division of Digestive Diseases, Department of Medicine, CURE and Center for Neurobiological Stress, David Geffen School of Medicine at University of California Los Angeles, VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | | | | | | | | | | | | |
Collapse
|