1
|
Wolf J, Franco JA, Yip R, Dabaja MZ, Velez G, Liu F, Bassuk AG, Mruthyunjaya P, Dufour A, Mahajan VB. Liquid Biopsy Proteomics in Ophthalmology. J Proteome Res 2024; 23:511-522. [PMID: 38171013 PMCID: PMC10845144 DOI: 10.1021/acs.jproteome.3c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Minimally invasive liquid biopsies from the eye capture locally enriched fluids that contain thousands of proteins from highly specialized ocular cell types, presenting a promising alternative to solid tissue biopsies. The advantages of liquid biopsies include sampling the eye without causing irreversible functional damage, potentially better reflecting tissue heterogeneity, collecting samples in an outpatient setting, monitoring therapeutic response with sequential sampling, and even allowing examination of disease mechanisms at the cell level in living humans, an approach that we refer to as TEMPO (Tracing Expression of Multiple Protein Origins). Liquid biopsy proteomics has the potential to transform molecular diagnostics and prognostics and to assess disease mechanisms and personalized therapeutic strategies in individual patients. This review addresses opportunities, challenges, and future directions of high-resolution liquid biopsy proteomics in ophthalmology, with particular emphasis on the large-scale collection of high-quality samples, cutting edge proteomics technology, and artificial intelligence-supported data analysis.
Collapse
Affiliation(s)
- Julian Wolf
- Molecular
Surgery Laboratory, Stanford University, Palo Alto, California 94305, United States
- Department
of Ophthalmology, Byers Eye Institute, Stanford
University, Palo Alto, California 94303, United States
| | - Joel A. Franco
- Molecular
Surgery Laboratory, Stanford University, Palo Alto, California 94305, United States
- Department
of Ophthalmology, Byers Eye Institute, Stanford
University, Palo Alto, California 94303, United States
| | - Rui Yip
- Molecular
Surgery Laboratory, Stanford University, Palo Alto, California 94305, United States
- Department
of Ophthalmology, Byers Eye Institute, Stanford
University, Palo Alto, California 94303, United States
| | - Mohamed Ziad Dabaja
- Departments
of Physiology and Pharmacology & Biochemistry and Molecular Biology,
Cumming School of Medicine, University of
Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Gabriel Velez
- Molecular
Surgery Laboratory, Stanford University, Palo Alto, California 94305, United States
- Department
of Ophthalmology, Byers Eye Institute, Stanford
University, Palo Alto, California 94303, United States
| | - Fei Liu
- Department
of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Alexander G. Bassuk
- Department
of Pediatrics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Prithvi Mruthyunjaya
- Department
of Ophthalmology, Byers Eye Institute, Stanford
University, Palo Alto, California 94303, United States
| | - Antoine Dufour
- Departments
of Physiology and Pharmacology & Biochemistry and Molecular Biology,
Cumming School of Medicine, University of
Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Vinit B. Mahajan
- Molecular
Surgery Laboratory, Stanford University, Palo Alto, California 94305, United States
- Department
of Ophthalmology, Byers Eye Institute, Stanford
University, Palo Alto, California 94303, United States
- Veterans
Affairs Palo Alto Health Care System, Palo Alto, California 94304, United States
| |
Collapse
|
2
|
Li H, Niu Y, Rong A, Bi Y, Xu W, Cui H. Effect of Adjunctive Intravitreal Conbercept Injection at the End of 25G Vitrectomy on Severe Proliferative Diabetic Retinopathy: 6-Month Outcomes of a Randomised Controlled Trial. Ophthalmol Ther 2023; 12:1173-1180. [PMID: 36752956 PMCID: PMC10011228 DOI: 10.1007/s40123-023-00664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
INTRODUCTION This study aimed to evaluate the effect of pre-operative versus pre-operative plus post-operative intravitreal conbercept (IVC) injection on severe proliferative diabetic retinopathy (PDR). METHODS This was a prospective, comparative and randomised study. A total of 84 patients who underwent vitrectomy for severe PDR were included in this study. Patients were randomly divided into control (41 eyes) and experiment (43 eyes) groups. Patients in the experiment group received adjunctive pre-operative and post-operative IVC injection, whereas patients in the control group only received pre-operative IVC injection. The incidence of post-operative vitreous haemorrhage (POVH), best-corrected visual acuity (BCVA) and central retinal thickness (CRT) were determined. RESULTS The incidence of early POVH was significantly different between the two groups, but no significant difference was observed between groups at 3 and 6 months. In the experiment group, the BCVA was significantly improved 1 month after surgery when compared with the control group (p 0.019). There was no marked difference in the mean post-operative BCVA at 3 and 6 months between groups (p 0.063 and 0.082). CRT was significantly lower in the experiment group than in the control group at 1 and 3 months after surgery (p 0.037 and 0.041), but there was no significant difference at 6 months (p 0.894). CONCLUSION Additional IVC injected at the end of surgery improves the POVH and BCVA at the early stage after surgery in severe PDR, but this benefit is absent at 6 months. Further studies are needed to investigate the effect of IVC at the end of vitrectomy. TRIAL REGISTRATION chictr.org.cn identifier: ChiCTR2200060735. Retrospectively registered, register date: 9 June 2022.
Collapse
Affiliation(s)
- Houshuo Li
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Yunli Niu
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Ao Rong
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Wei Xu
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Hongping Cui
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
3
|
Shi Q, Wang Q, Wang Z, Lu J, Wang R. Systemic inflammatory regulators and proliferative diabetic retinopathy: A bidirectional Mendelian randomization study. Front Immunol 2023; 14:1088778. [PMID: 36845092 PMCID: PMC9950638 DOI: 10.3389/fimmu.2023.1088778] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Background Increasing evidence shows that systemic inflammation is an embedded mechanism of proliferative diabetic retinopathy (PDR). However, the specific systemic inflammatory factors involved in this process remained obscure. The study aimed to identify the upstream and downstream systemic regulators of PDR by using Mendelian randomization (MR) analyses. Methods We performed a bidirectional two-sample MR analysis implementing the results from genome-wide association studies for 41 serum cytokines from 8,293 Finnish individuals, and PDR from FinnGen consortium (2,025 cases vs. 284,826 controls) and eight cohorts of European ancestry (398 cases vs. 2,848 controls), respectively. The inverse-variance-weighted method was adopted as the main MR method, and four additional MR methods (MR-Egger, weighted-median, MR-pleiotropy residual sum and outlier (MR-PRESSO), and MR-Steiger filtering methods) were used for the sensitivity analyses. Results from FinnGen and eight cohorts were pooled into a meta-analysis. Results Our results showed that genetically predicted higher stem cell growth factor-β (SCGFb) and interleukin-8 were positively associated with an elevated risk of PDR, with a combined effect of one standard deviation (SD) increase in SCGFb and interleukin-8 causing 11.8% [95% confidence interval (CI): 0.6%, 24.2%]) and 21.4% [95% CI: 3.8%, 41.9%]) higher risk of PDR, respectively. In contrast, genetically predisposition to PDR showed a positive association with the increased levels of growth-regulated oncogene-α (GROa), stromal cell-derived factor-1 alpha (SDF1a), monocyte chemotactic protein-3 (MCP3), granulocyte colony-stimulating factor (GCSF), interleukin-12p70, and interleukin-2 receptor subunit alpha (IL-2ra). Conclusions Our MR study identified two upstream regulators and six downstream effectors of PDR, providing opportunities for new therapeutic exploitation of PDR onset. Nonetheless, these nominal associations of systemic inflammatory regulators and PDR require validation in larger cohorts.
Collapse
Affiliation(s)
- Qiqin Shi
- Department of Ophthalmology, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang, China
| | - Qiangsheng Wang
- Department of Haematology, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang, China
| | - Zhenqian Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiawen Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ruobing Wang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Yue T, Shi Y, Luo S, Weng J, Wu Y, Zheng X. The role of inflammation in immune system of diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Front Immunol 2022; 13:1055087. [PMID: 36582230 PMCID: PMC9792618 DOI: 10.3389/fimmu.2022.1055087] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy is one of the most common complications of diabetes mellitus and the leading cause of low vision and blindness worldwide. Mounting evidence demonstrates that inflammation is a key mechanism driving diabetes-associated retinal disturbance, yet the pathophysiological process and molecular mechanisms of inflammation underlying diabetic retinopathy are not fully understood. Cytokines, chemokines, and adhesion molecules interact with each other to form a complex molecular network that propagates the inflammatory and pathological cascade of diabetic retinopathy. Therefore, it is important to understand and elucidate inflammation-related mechanisms behind diabetic retinopathy progression. Here, we review the current understanding of the pathology and pathogenesis of inflammation in diabetic retinopathy. In addition, we also summarize the relevant clinical trials to further suggest inflammation-targeted therapeutics for prevention and management of diabetic retinopathy.
Collapse
Affiliation(s)
- Tong Yue
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Shi
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Sihui Luo
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yali Wu
- Department of Ophthalmology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Yali Wu, ; Xueying Zheng,
| | - Xueying Zheng
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Yali Wu, ; Xueying Zheng,
| |
Collapse
|
5
|
Vitreous protein networks around ANG2 and VEGF in proliferative diabetic retinopathy and the differential effects of aflibercept versus bevacizumab pre-treatment. Sci Rep 2022; 12:21062. [PMID: 36473885 PMCID: PMC9726866 DOI: 10.1038/s41598-022-25216-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular signalling proteins interact in networks rather than in isolation. In this context we investigated vitreous protein levels, including placental growth factor (PlGF), angiopoietin-2 (ANG2) and vascular endothelial growth factor (VEGF), in patients with proliferative diabetic retinopathy (PDR) with variable disease severities, and after anti-VEGF pre-treatment. Vitreous samples of 112 consecutive patients undergoing vitrectomy for PDR and of 52 non-diabetic patients with macular holes as controls were studied. A subset of the PDR patients were treated with either aflibercept (AFB, n = 25) or bevacizumab (BVZ)/ranibizumab (RZB) (n = 13), before surgery. Antibody-based analysis of 35 proteins (growth factors and cytokines) showed a significant increase in expression levels of 27 proteins in PDR patients as compared to controls. In network analysis of co-regulated proteins, a strong correlation in expression levels between VEGF, PlGF, MCP1 and ANG2 was found, mostly clustered around ANG2. In the AFB treatment group, concentrations of several proteins were decreased, including VEGFR1, whereas interleukin 6 and 8 were increased as compared to untreated PDR patients. The observed differences in vitreous protein levels between the different treatments and untreated PDR patients may underlie differences in clinical outcomes in patients with PDR.
Collapse
|
6
|
Mason RH, Minaker SA, Lahaie Luna G, Bapat P, Farahvash A, Garg A, Bhambra N, Muni RH. Changes in aqueous and vitreous inflammatory cytokine levels in proliferative diabetic retinopathy: a systematic review and meta-analysis. Eye (Lond) 2022:10.1038/s41433-022-02127-x. [PMID: 35672457 DOI: 10.1038/s41433-022-02127-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/05/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is a major complication of diabetes mellitus, where in its most advanced form ischemic changes lead to the development of retinal neovascularization, termed proliferative diabetic retinopathy (PDR). While the development of PDR is often associated with angiogenic and inflammatory cytokines, studies differ on which cytokines are implicated in disease pathogenesis and on the strength of these associations. We therefore conducted a systematic review and meta-analysis to quantitatively assess the existing body of data on intraocular cytokines as biomarkers in PDR. METHODS A comprehensive search of the literature without year limitation was conducted to January 18, 2021, which identified 341 studies assessing vitreous or aqueous cytokine levels in PDR, accounting for 10379 eyes with PDR and 6269 eyes from healthy controls. Effect sizes were calculated as standardized mean differences (SMD) of cytokine concentrations between PDR and control patients. RESULTS Concentrations (SMD, 95% confidence interval, and p-value) of aqueous IL-1β, IL-6, IL-8, MCP-1, TNF-α, and VEGF, and vitreous IL-2, IL-4, IL-6, IL-8, angiopoietin-2, eotaxin, erythropoietin, GM-CSF, GRO, HMGB-1, IFN-γ, IGF, IP-10, MCP-1, MIP-1, MMP-9, PDGF-AA, PlGF, sCD40L, SDF-1, sICAM-1, sVEGFR, TIMP, TNF-α, and VEGF were significantly higher in patients with PDR when compared to healthy nondiabetic controls. For all other cytokines no differences, failed sensitivity analyses or insufficient data were found. CONCLUSIONS This extensive list of cytokines speaks to the complexity of PDR pathogenesis, and informs future investigations into disease pathogenesis, prognosis, and management.
Collapse
Affiliation(s)
- Ryan H Mason
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Samuel A Minaker
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | | | - Priya Bapat
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Armin Farahvash
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Anubhav Garg
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Nishaant Bhambra
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Rajeev H Muni
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada.
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Kensington Vision and Research Centre, Toronto, ON, Canada.
- University of Toronto/Kensington Health Ophthalmology Biobank and Cytokine Laboratory, Toronto, ON, Canada.
| |
Collapse
|
7
|
Minaker SA, Mason RH, Lahaie Luna G, Farahvash A, Garg A, Bhambra N, Bapat P, Muni RH. Changes in aqueous and vitreous inflammatory cytokine levels in diabetic macular oedema: a systematic review and meta-analysis. Acta Ophthalmol 2022; 100:e53-e70. [PMID: 33945678 DOI: 10.1111/aos.14891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/15/2022]
Abstract
Diabetic macular oedema (DME) is considered a chronic inflammatory disease associated with aberrations in many intraocular cytokines. Studies assessing the role of these cytokines as biomarkers in the diagnosis and management of DME have demonstrated inconsistent findings. We quantitatively summarized data related to 116 candidate aqueous and vitreous inflammatory cytokines as biomarkers in DME. A systematic search without year limitation was performed up to 19 October 2020. Studies were included if they provided data on aqueous or vitreous cytokine concentrations in patients with DME. Effect sizes were generated as standardized mean differences (SMDs) of cytokine concentrations between patients with DME and controls. Data were extracted from 128 studies that included 4163 study eyes with DME and 1281 control eyes. Concentrations (standard mean difference, 95% confidence interval and p-value) of aqueous IL-6 (1.28, 0.57-2.00, p = 0.004), IL-8 (1.06, 0.74-1.39, p < 0.00001), MCP-1 (1.36, 0.57-2.16, p = 0.0008) and VEGF (1.31, 1.01-1.62, p < 0.00001) and vitreous VEGF (2.27, 1.55-2.99, p < 0.00001) were significantly higher in patients with DME (n = 4163) compared to healthy controls (n = 1281). No differences, failed sensitivity analyses or insufficient data were found between patients with DME and healthy controls for the concentrations of the remaining cytokines. This analysis implicates multiple cytokine biomarker candidates other than VEGF in DME and clarifies previously reported inconsistent associations. As the therapeutic options for DME expand to include multiple agents with multiple targets, it will be critical to manage the treatment burden with tailored therapy that optimizes outcomes and minimizes treatment burden. Intraocular cytokines have the promise of providing a robust individualized assessment of disease status and response to therapy. We have identified key candidate cytokines that may serve as biomarkers in individualized treatment algorithms.
Collapse
Affiliation(s)
- Samuel A. Minaker
- Department of Ophthalmology St. Michael’s Hospital/Unity Health Toronto Toronto Canada
- Department of Ophthalmology & Vision Sciences University of Toronto Toronto Canada
- Kensington Vision and Research Centre Toronto Canada
| | - Ryan H. Mason
- Department of Ophthalmology St. Michael’s Hospital/Unity Health Toronto Toronto Canada
- Department of Ophthalmology & Vision Sciences University of Toronto Toronto Canada
- Kensington Vision and Research Centre Toronto Canada
| | | | - Armin Farahvash
- Department of Ophthalmology St. Michael’s Hospital/Unity Health Toronto Toronto Canada
- Department of Ophthalmology & Vision Sciences University of Toronto Toronto Canada
- Kensington Vision and Research Centre Toronto Canada
| | - Anubhav Garg
- Department of Ophthalmology St. Michael’s Hospital/Unity Health Toronto Toronto Canada
- Department of Ophthalmology & Vision Sciences University of Toronto Toronto Canada
- Kensington Vision and Research Centre Toronto Canada
| | - Nishaant Bhambra
- Department of Ophthalmology St. Michael’s Hospital/Unity Health Toronto Toronto Canada
- Department of Ophthalmology & Vision Sciences University of Toronto Toronto Canada
- Kensington Vision and Research Centre Toronto Canada
| | - Priya Bapat
- Department of Ophthalmology St. Michael’s Hospital/Unity Health Toronto Toronto Canada
- Department of Ophthalmology & Vision Sciences University of Toronto Toronto Canada
- Kensington Vision and Research Centre Toronto Canada
| | - Rajeev H. Muni
- Department of Ophthalmology St. Michael’s Hospital/Unity Health Toronto Toronto Canada
- Department of Ophthalmology & Vision Sciences University of Toronto Toronto Canada
- Kensington Vision and Research Centre Toronto Canada
- University of Toronto/Kensington Health Ophthalmology Biobank and Cytokine Laboratory Toronto Canada
| |
Collapse
|
8
|
Sheemar A, Soni D, Takkar B, Basu S, Venkatesh P. Inflammatory mediators in diabetic retinopathy: Deriving clinicopathological correlations for potential targeted therapy. Indian J Ophthalmol 2021; 69:3035-3049. [PMID: 34708739 PMCID: PMC8725076 DOI: 10.4103/ijo.ijo_1326_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
The role of inflammation in diabetic retinopathy (DR) is well-established and dysregulation of a large number of inflammatory mediators is known. These include cytokines, chemokines, growth factors, mediators of proteogenesis, and pro-apoptotic molecules. This para-inflammation as a response is not directed to a particular pathogen or antigen but is rather directed toward the by-products of the diabetic milieu. The inflammatory mediators take part in cascades that result in cellular level responses like neurodegeneration, pericyte loss, leakage, capillary drop out, neovascularization, etc. There are multiple overlaps between the inflammatory pathways occurring within the diabetic retina due to a large number of mediators, their varied sources, and cross-interactions. This makes understanding the role of inflammation in clinical manifestations of DR difficult. Currently, mediator-based therapy for DR is being evaluated for interventions that target a specific step of the inflammatory cascade. We reviewed the role of inflammation in DR and derived a simplified clinicopathological correlation between the sources and stimuli of inflammation, the inflammatory mediators and pathways, and the clinical manifestations of DR. By doing so, we deliberate mediator-specific therapy for DR. The cross-interactions between inflammatory mediators and the molecular cycles influencing the inflammatory cascades are crucial challenges to such an approach. Future research should be directed to assess the feasibility of the pathology-based therapy for DR.
Collapse
Affiliation(s)
- Abhishek Sheemar
- Department of Ophthalmology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Deepak Soni
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Brijesh Takkar
- Smt. Kanuri Santhamma Center for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
- Indian Health Outcomes, Public Health and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Soumyava Basu
- Uveitis Service, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Pradeep Venkatesh
- Dr.R.P.Centre for Ophthalmic Sciences, All India Institute of Medical Science, New Delhi, India
| |
Collapse
|
9
|
Van Bergen T, Hu TT, Little K, De Groef L, Moons L, Stitt AW, Vermassen E, Feyen JHM. Targeting Plasma Kallikrein With a Novel Bicyclic Peptide Inhibitor (THR-149) Reduces Retinal Thickening in a Diabetic Rat Model. Invest Ophthalmol Vis Sci 2021; 62:18. [PMID: 34677569 PMCID: PMC8556562 DOI: 10.1167/iovs.62.13.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the effect of plasma kallikrein (PKal)-inhibition by THR-149 on preventing key pathologies associated with diabetic macular edema (DME) in a rat model. Methods Following streptozotocin-induced diabetes, THR-149 or its vehicle was administered in the rat via either a single intravitreal injection or three consecutive intravitreal injections (with a 1-week interval; both, 12.5 µg/eye). At 4 weeks post-diabetes, the effect of all groups was compared by histological analysis of Iba1-positive retinal inflammatory cells, inflammatory cytokines, vimentin-positive Müller cells, inwardly rectifying potassium and water homeostasis-related channels (Kir4.1 and AQP4, respectively), vascular leakage (fluorescein isothiocyanate-labeled bovine serum albumin), and retinal thickness. Results Single or repeated THR-149 injections resulted in reduced inflammation, as depicted by decreasing numbers and activation state of immune cells and IL-6 cytokine levels in the diabetic retina. The processes of reactive gliosis, vessel leakage, and retinal thickening were only significantly reduced after multiple THR-149 administrations. Individual retinal layer analysis showed that repeated THR-149 injections significantly decreased diabetes-induced thickening of the inner plexiform, inner nuclear, outer nuclear, and photoreceptor layers. At the glial-vascular interface, reduced Kir4.1-channel levels in the diabetic retina were restored to control non-diabetic levels in the presence of THR-149. In contrast, little or no effect of THR-149 was observed on the AQP4-channel levels. Conclusions These data demonstrate that repeated THR-149 administration reduces several DME-related key pathologies such as retinal thickening and neuropil disruption in the diabetic rat. These observations indicate that modulation of the PKal pathway using THR-149 has clinical potential to treat patients with DME.
Collapse
Affiliation(s)
| | | | - Karis Little
- Queen's University Belfast, Belfast, United Kingdom
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Alan W. Stitt
- Oxurion NV, Heverlee, Belgium
- Queen's University Belfast, Belfast, United Kingdom
| | | | | |
Collapse
|
10
|
Midena E, Frizziero L, Midena G, Pilotto E. Intraocular fluid biomarkers (liquid biopsy) in human diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2021; 259:3549-3560. [PMID: 34216255 PMCID: PMC8589786 DOI: 10.1007/s00417-021-05285-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose This article aims to review the impact of detecting and quantifying intraocular biomarkers (liquid biopsy) in both aqueous and vitreous humor in eyes of people affected by diabetes mellitus. Methods This is a detailed review about aqueous and/or vitreous humor sampling in human diabetic eyes for proteomic and/or metabolomic analysis contributing to the understanding of the pathophysiology and treatment effects of diabetic retinopathy. Results Aqueous and vitreous humor molecular biomarkers proved to be directly correlated to each other and valuable to study retinal conditions. Moreover, proteomic and metabolomic analysis showed that the biomarkers of neuroinflammation, neurodegeneration, and vasculopathy are detectable in intraocular fluids and that their concentration changes in different stages of disease, and in response to treatment of all diabetic retinopathy aspects, mainly diabetic macular edema and proliferative retinopathy. Conclusions Liquid biopsy offers the possibility to improve our knowledge of intraocular eye disease induced by diabetes mellitus. The exact quantification of intraocular biomarkers contributes to the precision medicine approach even in the diabetic retinopathy scenario. The diffusion of this approach should be encouraged to have quantifiable information directly from the human model, which may be coupled with imaging data.
![]()
Collapse
Affiliation(s)
- Edoardo Midena
- Department of Neuroscience-Ophthalmology, University of Padova, Padova, Italy. .,IRCCS-Fondazione Bietti, Rome, Italy.
| | - Luisa Frizziero
- Department of Neuroscience-Ophthalmology, University of Padova, Padova, Italy
| | | | - Elisabetta Pilotto
- Department of Neuroscience-Ophthalmology, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Kim D, Choi SW, Cho J, Been JH, Choi K, Jiang W, Han J, Oh J, Park C, Choi S, Seo S, Kim KL, Suh W, Lee SK, Kim S. Discovery of Novel Small-Molecule Antiangiogenesis Agents to Treat Diabetic Retinopathy. J Med Chem 2021; 64:5535-5550. [PMID: 33902285 DOI: 10.1021/acs.jmedchem.0c01965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetic retinopathy is the leading cause of blindness which is associated with excessive angiogenesis. Using the structure of wondonin marine natural products, we previously created a scaffold to develop a novel type of antiangiogenesis agent that possesses minimized cytotoxicity. To overcome its poor pharmaceutical properties, we further modified the structure. A new scaffold was derived in which the stereogenic carbon was changed to nitrogen and the 1,2,3-triazole ring was replaced by an alkyl chain. By comparing the bioactivity versus cytotoxicity, compound 31 was selected, which has improved aqueous solubility and an enhanced selectivity index. Mechanistically, 31 suppressed angiopoietin-2 (ANGPT2) expression induced by high glucose in retinal cells and exhibited in vivo antiangiogenic activity in choroidal neovascularization and oxygen-induced retinopathy mouse models. These results suggest the potential of 31 as a lead to develop antiangiogenic small-molecule drugs to treat diabetic retinopathy and as a chemical tool to elucidate new mechanisms of angiogenesis.
Collapse
Affiliation(s)
- Donghwa Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Sang Won Choi
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jihee Cho
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jae-Hui Been
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Kyoungsun Choi
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Wenzhe Jiang
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jaeho Han
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jedo Oh
- Hana Pharmaceutical Co., Pangyo 13486, Korea
| | | | | | - Songyi Seo
- Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Koung Li Kim
- Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Wonhee Suh
- Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
Lei J, Ding G, Xie A, Hu Y, Gao N, Fan X. Aqueous humor monocyte chemoattractant protein-1 predicted long-term visual outcome of proliferative diabetic retinopathy undergone intravitreal injection of bevacizumab and vitrectomy. PLoS One 2021; 16:e0248235. [PMID: 33667285 PMCID: PMC7935263 DOI: 10.1371/journal.pone.0248235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 01/19/2023] Open
Abstract
PURPOSE We aim to investigate the risk factors associated with the prognosis of proliferative diabetic retinopathy (PDR) after a sequential treatment of intravitreal injection of bevacizumab (IVB) and pars plana vitrectomy (PPV). METHODS In this cohort study, 63 eyes from 55 patients (21 females) diagnosed with PDR, who needed PPV for non-clearing vitreous hemorrhage or fibrovascular membrane proliferation were enrolled. All the eyes underwent IVB followed by PPV. Anterior chamber tap was performed at the beginning of both procedures to evaluate the concentration of vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and monocyte chemoattractant protein (MCP)-1. RESULTS Forty-seven patients (54 eyes) were followed over six months, averaging 12±5 (6-19) months. The concentration of VEGF significantly decreased after IVB (P<0.001), while other cytokines did not change significantly. The aqueous humor level of IL-8 after IVB (R = 0.378, P = 0.033), MCP-1 before (R = 0.368, P = 0.021) and after (R = 0.368, P = 0.038) IVB, and combined phacoemulsification (R = 0.293, P = 0.032) was correlated with the logMAR visual acuity at the last follow-up. Multivariate analysis showed that MCP-1 was the predictor for a worse visual outcome (B = 0.108, 95% CI 0.013-0.202; P = 0.027). CONCLUSIONS MCP-1 was a predictor for the unfavorable visual outcome of PDR after IVB pretreatment and PPV.
Collapse
Affiliation(s)
- Jianqin Lei
- Department of Ophthalmology, 1st affiliated hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guolong Ding
- Department of Ophthalmology, Xi'an No. 1 hospital, Xi'an, China
| | - Anming Xie
- Department of Ophthalmology, 1st affiliated hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yaguang Hu
- Department of Ophthalmology, 1st affiliated hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ning Gao
- Department of Ophthalmology, 1st affiliated hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaojuan Fan
- Department of Ophthalmology, 1st affiliated hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Gui F, You Z, Fu S, Wu H, Zhang Y. Endothelial Dysfunction in Diabetic Retinopathy. Front Endocrinol (Lausanne) 2020; 11:591. [PMID: 33013692 PMCID: PMC7499433 DOI: 10.3389/fendo.2020.00591] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR) is a diabetic complication which affects retinal function and results in severe loss of vision and relevant retinal diseases. Retinal vascular dysfunction caused by multifactors, such as advanced glycosylation end products and receptors, pro-inflammatory cytokines and chemokines, proliferator-activated receptor-γ disruption, growth factors, oxidative stress, and microRNA. These factors promote retinal endothelial dysfunction, which results in the development of DR. In this review, we summarize the contributors in the pathophysiology of DR for a better understanding of the molecular and cellular mechanism in the development of DR with a special emphasis on retinal endothelial dysfunction.
Collapse
|
14
|
Wang N, Zhang C, Xu Y, Li S, Tan HY, Xia W, Feng Y. OMICs approaches-assisted identification of macrophages-derived MIP-1γ as the therapeutic target of botanical products TNTL in diabetic retinopathy. Cell Commun Signal 2019; 17:81. [PMID: 31331327 PMCID: PMC6647109 DOI: 10.1186/s12964-019-0396-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
Background Inflammatory reaction in the dysfunction of retinal endotheliocytes has been considered to play a vital role in diabetic retinopathy (DR). Anti-inflammatory therapy so far gains poor outcome as DR treatment. This study aims to identify a novel therapeutic target of DR from the OMICs studies of a traditional anti-DR botanical products TNTL. Methods Hyperglycemic mice were treated with TNTL. The anti-hyperglycemic effect of TNTL was validated to confirm the biological consistency of the herbal products from batches. Improvement of DR by TNTL was examined by various assays on the retina. Next-generation transcriptome sequencing and cytokine array was used to identify the therapeutic targets. In vitro study was performed to validate the target. Results We observed that TNTL at its high doses possessed anti-hyperglycemic effect in murine type I diabetic model, while at its doses without reducing blood glucose, it suppressed DR incidence. TNTL restored the blood-retina barrier integrity, suppressed retinal neovascularization, and attenuated the retinal ganglion cell degeneration. Transcriptomic analysis on the retina tissue of hyperglycemic mice with or without TNTL revealed that the inflammatory retina microenvironment was significantly repressed. TNTL treatment suppressed pro-inflammatory macrophages in the retina, which resulted in the inactivation of endothelial cell migration, restoration of endothelial cell monolayer integrity, and prevention of leakage. Cytokine array analysis suggested that TNTL could significantly inhibit the secretion of MIP1γ from pro-inflammatory macrophages. Prevention of endothelial dysfunction by TNTL may be mediated by the inhibition of MIP1γ/CCR1 axis. More specifically, TNTL suppressed MIP1γ release from pro-inflammatory macrophages, which in turn inhibited the activation of CCR1-associated signaling pathways in endothelial cells. Conclusion Our findings demonstrated that TNTL might be an alternative treatment to DR, and the primary source of potential drug candidates against DR targeting MIP1γ/CCR1 axis in the retinal microenvironment.
Collapse
Affiliation(s)
- Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 1/F, 10 Sassoon Road, Pokfulam, Hong Kong, S.A.R., China
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, 1/F, 10 Sassoon Road, Pokfulam, Hong Kong, S.A.R., China
| | - Yu Xu
- School of Chinese Medicine, The University of Hong Kong, 1/F, 10 Sassoon Road, Pokfulam, Hong Kong, S.A.R., China
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, 1/F, 10 Sassoon Road, Pokfulam, Hong Kong, S.A.R., China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, 1/F, 10 Sassoon Road, Pokfulam, Hong Kong, S.A.R., China
| | - Wen Xia
- Joint Research Center for National and Local Miao Drug, Anshun, Guizhou Province, People's Republic of China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 1/F, 10 Sassoon Road, Pokfulam, Hong Kong, S.A.R., China.
| |
Collapse
|
15
|
Akhtar-Schäfer I, Wang L, Krohne TU, Xu H, Langmann T. Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Mol Med 2019; 10:emmm.201708259. [PMID: 30224384 PMCID: PMC6180304 DOI: 10.15252/emmm.201708259] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review highlights the role of three key immune pathways in the pathophysiology of major retinal degenerative diseases including diabetic retinopathy, age‐related macular degeneration, and rare retinal dystrophies. We first discuss the mechanisms how loss of retinal homeostasis evokes an unbalanced retinal immune reaction involving responses of local microglia and recruited macrophages, activity of the alternative complement system, and inflammasome assembly in the retinal pigment epithelium. Presenting these key mechanisms as complementary targets, we specifically emphasize the concept of immunomodulation as potential treatment strategy to prevent or delay vision loss. Promising molecules are ligands for phagocyte receptors, specific inhibitors of complement activation products, and inflammasome inhibitors. We comprehensively summarize the scientific evidence for this strategy from preclinical animal models, human ocular tissue analyses, and clinical trials evolving in the last few years.
Collapse
Affiliation(s)
- Isha Akhtar-Schäfer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Luping Wang
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Tim U Krohne
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Heping Xu
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany .,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm Res 2019; 36:40. [PMID: 30673862 PMCID: PMC6344398 DOI: 10.1007/s11095-019-2569-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Biomarkers provide a powerful and dynamic approach to improve our understanding of the mechanisms underlying ocular diseases with applications in diagnosis, disease modulation or for predicting and monitoring of clinical response to treatment. Defined as measurable indicator of normal or pathological processes, biomarker evaluation has been used extensively in drug development within clinical settings to better comprehend effectiveness of treatment in ocular diseases. Biomarkers in the eye have the advantage of access to multiple ocular matrices via minimally invasive methods. Repeat sampling for biomarker assessment has enabled reproducible objective measures of disease process or biological responses to a drug treatment. This review describes the usage of biomarkers with respect to four commonly sampled ocular matrices in clinic: tears, conjunctiva, aqueous humor and vitreous. Issues that affect the evaluation of biomarkers are discussed along with opportunities to leverage biomarkers such that ultimately, they can be used for customized targeted therapy.
Collapse
|
17
|
Aqueous humor pentraxin-3 levels in patients with diabetes mellitus. Eye (Lond) 2017; 31:1463-1467. [PMID: 28574494 DOI: 10.1038/eye.2017.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/02/2017] [Indexed: 12/28/2022] Open
Abstract
PurposeTo evaluate aqueous humor (AH) pentraxin-3 (PTX3) levels in diabetic patients with and without diabetic retinopathy (DR).MethodsIn this prospective study, patients undergoing cataract surgery were enrolled. The study group was composed of 26 type-2 diabetic patients without DR (group 1), 32 diabetic patients with DR (group 2) and 29 age-matched subjects without any systemic disease (group 3). Fifteen proliferative DR (PDR) and 17 non-proliferative DR (NPDR) patients were enrolled in Group 2. HbA1c levels and duration of diabetes were noted. AH samples were obtained from anterior chamber at the beginning of cataract surgery and PTX3 levels were analyzed with Elisa kit.ResultsBaseline demographic characteristics were similar between groups. The mean duration of diabetes was 11.9±7.9 years in group 1 and 15.8±7.8 years in group 2 (P=0.11). The mean plasma HbA1c levels in group 1 was 9.1±2.6 and 8.2±2.4 in group 2 (P=0.36). PTX3 levels were 5.75±0.41 in group 1, 6.11±1.47 in group 2 and 4.93±0.84 ng/ml in group 3 (P=0.01). PTX3 levels in group 2 were higher than in group 1 and 3 (P=0.06 and P=0.01, respectively). There was no correlation between HbA1c and PTX3 levels (P=0.06 r=0.57, P=0.19 r=0.3, respectively). The mean PTX3 was 6.6±0.3 in PDR group and 5.6±0.5 ng/ml in NPDR group (P=0.04).ConclusionsPTX3 is an important marker especially for vascular endothelial damage. Since diabetic vascular changes are dependent on endothelial cell damage, high levels of AH PTX3 of DR patients may indicate the importance of PTX3 protein in the pathogenesis of DR.
Collapse
|
18
|
Dong L, Bai J, Jiang X, Yang MM, Zheng Y, Zhang H, Lin D. The gene polymorphisms of IL-8(-251T/A) and IP-10(-1596C/T) are associated with susceptibility and progression of type 2 diabetic retinopathy in northern Chinese population. Eye (Lond) 2016; 31:601-607. [PMID: 27935598 DOI: 10.1038/eye.2016.287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022] Open
Abstract
PurposeThe aim of the present study is to investigate the association of the polymorphism of two genes in CXC chemokine family, interleukin-8 (IL-8) and interferon-inducible protein 10 (IP-10), with both susceptibility and progression of DR in T2D population of northern China.Patients and methodsA total of 1043 eligible type 2 diabetic patients from Heilongjiang of northern China were recruited for this study. They were grouped into: with diabetic retinopathy (DR, 528 cases) and without diabetic retinopathy (DNR, 515 cases). Single nucleotide polymorphism (SNP) genotyping of IL-8(-251T/A) and IP-10(-1596C/T) was performed by polymerase chain reaction. Multivariate analysis and stepwise multiple logistic progression analysis were conducted to evaluate the association between gene SNP and DR susceptibility and progression. Pooled odds ratio (OR) with 95% confidence interval (CI) was applied to assess the strength of the association among study groups.ResultsThe occurring of IL-8(-251) AA genotype was correlated with susceptibility (OR: 2.286, 95% CI: 1.382-3.782, P=0.001) and progression of high-risk proliferative diabetic retinopathy (PDR) (OR: 0.354, 95% CI: 0.162-0.770, P=0.009). Reversely, T allele of IP-10 (-1596) C/T was correlated with a reduced risk of DR (OR: 0.341, 95% CI: 0.249-0.466, P<0.001). However, gene polymorphisms of IL-8-251T/A and IP-10-1596C/T were not associated with diabetic macular edema (DME)(P>0.05).ConclusionsAA genotype of IL-8-251T/A was closely correlated to DR and high-risk proliferative diabetic retinopathy (PDR). -1596T allele of the IP-10 is a beneficial genotype for DR.
Collapse
Affiliation(s)
- L Dong
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - J Bai
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - X Jiang
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - M-M Yang
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Y Zheng
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - H Zhang
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - D Lin
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
19
|
The Vitreomacular Interface in Diabetic Retinopathy. J Ophthalmol 2015; 2015:392983. [PMID: 26425349 PMCID: PMC4573635 DOI: 10.1155/2015/392983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/11/2015] [Indexed: 12/19/2022] Open
Abstract
Diabetic retinopathy (DR) is a leading health concern and a major cause of blindness. DR can be complicated by scar tissue formation, macular edema, and tractional retinal detachment. Optical coherence tomography has found that patients with DR often have diffuse retinal thickening, cystoid macular edema, posterior hyaloid traction, and tractional retinal detachment. Newer imaging techniques can even detect fine tangential folds and serous macular detachment. The interplay of the vitreous and the retina in the progression of DR involves multiple chemokine and other regulatory factors including VEGF. Understanding the cells infiltrating pathologic membranes at the vitreomacular interface has opened up the possibility of new targets for pharmacotherapy. Vitrectomies for DR remain a vital tool to help relieve tension on the macula by removing membranes, improving edema absorption, and eliminating the scaffold for new membrane formation. Newer treatments such as triamcinolone acetonide and VEGF inhibitors have become essential as a rapid way to control DR at the vitreomacular interface, improve macular edema, and reduce retinal neovascularization. These treatments alone, and in conjunction with PRP, help to prevent worsening of the VMI in patients with DR.
Collapse
|
20
|
Narumi M, Nishitsuka K, Yamakawa M, Yamashita H. A survey of vitreous cell components performed using liquid-based cytology. Acta Ophthalmol 2015; 93:e386-e390. [PMID: 25752226 DOI: 10.1111/aos.12623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/31/2014] [Indexed: 01/02/2023]
Abstract
PURPOSE To confirm the efficacy of liquid-based cytology (LBC) method in the observation of vitreous cells in various vitreoretinal diseases in human. METHODS Vitreous fluid samples from 30 eyes were obtained by 23-gauge 3-port pars plana vitrectomy. After making three ports, we collected vitreous specimen from the core vitreous cavity without infusion. We divided the samples into a quiescent group and an active group based on clinical signs of inflammation. To confirm availability of LBC preparation slides for immunostaining, we also performed immunocytochemistry (ICC) for CD68, RPE65 and DEC-205 (CD205) using LBC slides of 10 cell-rich cases including retinal detachment and endophthalmitis. RESULTS Using LBC method, small amounts of vitreous cells were observed efficiently. Vitreous cells were observed in inflammatory quiescent cases including macular pucker and macular hole. The number of vitreous cells increased significantly in the cases with clinically active inflammation (2297 versus 207 cells/ml, respectively, p < 0.01, Mann-Whitney U-test). The ICC results showed the presence of CD68(+) cells in all 10 cases. Large numbers of DEC-205(+) cells were observed in one case with infectious endophthalmitis. In the cases with retinal detachment, the predominant cell type was RPE65(+) . Neutrophils and lymphocytes were also observed. CONCLUSIONS The LBC method makes it possible to examine vitreous specimens easily and efficiently, facilitating the expedient diagnosis of vitreoretinal diseases, and the preparation slides are available for immunocytochemistry. This study also showed that vitreoretinal disease involves the migration of various types of cells including macrophages, neutrophils, lymphocytes, RPE65(+) pigmented cells and DEC-205(+) cells.
Collapse
Affiliation(s)
- Mari Narumi
- Department of Ophthalmology and Visual Sciences; Yamagata University Faculty of Medicine; Yamagata Japan
| | - Koichi Nishitsuka
- Department of Ophthalmology and Visual Sciences; Yamagata University Faculty of Medicine; Yamagata Japan
| | - Mitsunori Yamakawa
- Department of Diagnostic Pathology; Yamagata University Faculty of Medicine; Yamagata Japan
| | - Hidetoshi Yamashita
- Department of Ophthalmology and Visual Sciences; Yamagata University Faculty of Medicine; Yamagata Japan
| |
Collapse
|
21
|
Murakami T, Uji A, Ogino K, Unoki N, Yoshitake S, Dodo Y, Horii T, Nishijima K, Yoshimura N. Macular morphologic findings on optical coherence tomography after microincision vitrectomy for proliferative diabetic retinopathy. Jpn J Ophthalmol 2015; 59:236-43. [DOI: 10.1007/s10384-015-0382-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/06/2015] [Indexed: 11/24/2022]
|
22
|
Wang J, Chen S, Jiang F, You C, Mao C, Yu J, Han J, Zhang Z, Yan H. Vitreous and plasma VEGF levels as predictive factors in the progression of proliferative diabetic retinopathy after vitrectomy. PLoS One 2014; 9:e110531. [PMID: 25329921 PMCID: PMC4199758 DOI: 10.1371/journal.pone.0110531] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/23/2014] [Indexed: 11/21/2022] Open
Abstract
Purpose To investigate the vitreous and plasma levels of vascular endothelial growth factor (VEGF) in patients with proliferative diabetic retinopathy (PDR) and to determine whether they predict a disease prognosis after primary vitrectomy. Methods Fifty patients (50 eyes) with PDR who underwent pars plana vitrectomy (PPV) and 56 healthy controls (56 eyes) were enrolled in this retrospective study. Clinical data were collected and analyzed. Vitreous and plasma VEGF concentrations were measured using enzyme-linked immunosorbent assays. VEGF levels and clinical data were compared and analyzed to see if they provide a prognosis of PDR progression after primary vitrectomy at more than 6 months follow-up. Correlation of VEGF concentrations between vitreous fluid and plasma was analyzed. Results The average BCVA was significantly improved after surgery (P<0.001). Vitreous and plasma VEGF levels were significantly elevated in PDR patients than those in healthy controls (Pvitreous<0.001; Pplasma<0.001). Both vitreous and plasma VEGF levels were significantly higher in PDR progression group than in stable group (Pvitreous<0.001; Pplasma = 0.004). Multivariate logistic regression analyses showed that the increased vitreous VEGF level was associated with the progression of PDR after primary PPV (OR = 1.539; P = 0.036). Vitreous VEGF level was positively associated with plasma VEGF level in PDR patients (P<0.001). Conclusion The increased VEGF level in vitreous fluid may be identified as a significant predictive factor for the outcome of vitrectomy in patients with PDR.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Caiyun You
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunjie Mao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jindong Han
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhuhong Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- * E-mail:
| |
Collapse
|
23
|
Simvastatin increases circulating endothelial progenitor cells and reduces the formation and progression of diabetic retinopathy in rats. Exp Eye Res 2012; 105:1-8. [DOI: 10.1016/j.exer.2012.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/18/2012] [Accepted: 09/30/2012] [Indexed: 11/16/2022]
|
24
|
Intravitreal bevacizumab increases intraocular interleukin-6 levels at 1day after injection in patients with proliferative diabetic retinopathy. Cytokine 2012; 60:535-9. [DOI: 10.1016/j.cyto.2012.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 12/18/2022]
|
25
|
Rangasamy S, McGuire PG, Das A. Diabetic retinopathy and inflammation: novel therapeutic targets. Middle East Afr J Ophthalmol 2012; 19:52-9. [PMID: 22346115 PMCID: PMC3277025 DOI: 10.4103/0974-9233.92116] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most anti-vascular endothelial growth factor (VEGF) therapies in diabetic macular edema are not as robust as in proliferative diabetic retinopathy. Although the VEGF appears to be a good target in diabetic macular edema, the anti-VEGF therapies appear to be of transient benefit as the edema recurs within a few weeks, and repeated injections are necessary. There is new evidence that indicates 'retinal inflammation' as an important player in the pathogenesis of diabetic retinopathy. There are common sets of inflammatory cytokines that are upregulated in both the serum and vitreous and aqueous samples, in subjects with diabetic retinopathy, and these cytokines can have multiple interactions to impact the pathogenesis of the disease. The key inflammatory events involved in the blood retinal barrier (BRB) alteration appear to be: (1) Increased expression of endothelial adhesion molecules such as ICAM1, VCAM1, PECAM-1, and P-selectin, (2) adhesion of leukocytes to the endothelium, (3) release of inflammatory chemokines, cytokines, and vascular permeability factors, (4) alteration of adherens and tight junctional proteins between the endothelial cells, and (5) infiltration of leukocytes into the neuro-retina, resulting in the alteration of the blood retinal barrier (diapedesis). VEGF inhibition itself may not achieve neutralization of other inflammatory molecules involved in the inflammatory cascade of the breakdown of the BRB. It is possible that the novel selective inhibitors of the inflammatory cascade (like angiopoietin-2, TNFα, and chemokines) may be useful therapeutic agents in the treatment of diabetic macular edema (DME), either alone or in combination with the anti-VEGF drugs.
Collapse
Affiliation(s)
- Sampathkumar Rangasamy
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | | | | |
Collapse
|
26
|
Zhou J, Wang S, Xia X. Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy. Curr Eye Res 2012; 37:416-20. [PMID: 22409294 DOI: 10.3109/02713683.2012.661114] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Inflammatory reaction has been shown to involve the progress of type 2 (non-insulin-dependent) diabetes. We, therefore, examined the effects of inflammatory cytokines and angiogenic factors in the pathogenesis of proliferative diabetic retinopathy (PDR) in type 2 diabetes. PATIENTS AND METHODS Vitreous fluid samples were obtained by vitrectomy from 62 eyes of PDR patients with type 2 diabetes and from 20 eyes of age-matched non-diabetic patients. The concentrations of interleukin 1 beta (IL1B), IL6, IL8, IL10, chemokine (C-C motif) ligand 2 (CCL2), endothelin 1 (EDN1), vascular endothelial growth factor (VEGF), and tumor necrosis factor (TNF) in the vitreous samples were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The concentrations of LI1B, IL6, IL8, CCL2, EDN1, VEGF, and TNF in the vitreous samples were considerably higher in PDR patients in comparison with the controls. However, the level of IL10 in PDR patients was similar to that obtained in the controls. Analysis of the correlations of the studied factors revealed the correlation of VEGF and IL6, VEGF and EDN1, IL8 and CCL2, and EDN1 and TNF in PDR patients. In addition, a significant positive correlation was observed between vitreous TNF as well as EDN1 and serum HbA(1)c levels in PDR patients. CONCLUSIONS The inflammatory cytokines and angiogenic factors IL1B, IL6, IL8, CCL2, EDN1, VEGF, and TNF are increased in the vitreous of PDR patients without an increase in IL-10. These results add support to the role of inflammatory cytokines and angiogenic factors in the genesis of PDR. Understanding the implication of these cytokines may provide diagnostic tools and therapeutic targets for treatment and prevention of PDR.
Collapse
Affiliation(s)
- Jinzi Zhou
- Department of Ophthalmology, Huaian No.1 People's Hospital Affiliated to Nanjing Medical University, Huaian, Jiangsu, PR China.
| | | | | |
Collapse
|