1
|
Zhang L, Zhao S, Wang Y. Diannexin alleviates myocardial ischemia-reperfusion injury by orchestrating cardiomyocyte oxidative damage, macrophage polarization and fibrotic process by TLR4-NF-kB-mediated inactivation of NLRP3 inflammasome. Int Immunopharmacol 2024; 130:111668. [PMID: 38417368 DOI: 10.1016/j.intimp.2024.111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024]
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a pathogenic mechanism of myocardial infarction and heart failure, constituting a major health concern globally. Diannexin is a homodimer of recombinant human annexin V and elicits important roles in several I/R injuries. Nevertheless, its function in MI/R remains elusive. Here, Diannexin alleviated simulated I/R (SI/R)-induced cardiomyocyte death and oxidative injury by increasing cell viability and inhibiting cell apoptosis, ROS, lactate dehydrogenase, malondialdehyde production and anti-oxidative SOD activity. Diannexin inhibited SI/R-induced expression of fibrotic protein collagen I and collagen III. Furthermore, Diannexin suppressed LPS-induced macrophage polarization towards pro-inflammatory M1-like phenotype and enhanced IL-4-evoked anti-inflammatory M2 polarization. Concomitantly, Diannexin inhibited SI/R exposure-induced macrophage polarization to M1 subtypes. Importantly, conditioned medium (CM) from SI/R-stimulated macrophages evoked cardiomyocyte apoptosis, which was reversed when cells were co-cultured with CM from Diannexin-treated macrophages under SI/R conditions. Mechanically, the activation of TLR4/NF-κB/NLRP3 inflammasome signaling in SI/R-treated cells was mitigated by Diannexin. Reactivating this pathway antagonized the protective effects of Diannexin on SI/R-induced cardiomyocyte oxidative injury, fibrotic protein expression and macrophage polarization and M1 macrophage-induced apoptosis of cardiomyocytes. In vivo, Diannexin alleviated abnormal cardiac structure, dysfunction and collagen position in MI/R mice. Additionally, Diannexin reduced M1-polarized and elevated M2-polarized macrophages in heart tissues at five days post-MI/R. The activation of TLR4/NF-κB/NLRP3 inflammasome pathway in MI/R mice was attenuated after Diannexin administration. Together, Diannexin may alleviate the development of MI/R injury by directly regulating cardiomyocyte oxidative injury, fibrotic potential and indirectly affecting macrophage polarization-mediated cardiomyocyte apoptosis, indicating a promising therapeutic strategy for MI/R.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Clinical Laboratory Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Songlin Zhao
- Department of Clinical Laboratory Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yaqi Wang
- Department of Clinical Laboratory Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
2
|
Abstract
The cytokine storm (CS) in hyperinflammation is characterized by high levels of cytokines, extreme activation of innate as well as adaptive immune cells and initiation of apoptosis. High levels of apoptotic cells overwhelm the proper recognition and removal system of these cells. Phosphatidylserine on the apoptotic cell surface, which normally provides a recognition signal for removal, becomes a target for hemostatic proteins and secretory phospholipase A2. The dysregulation of these normal pathways in hemostasis and the inflammasome result in a prothrombotic state, cellular death, and end-organ damage. In this review, we provide the argument that this imbalance in recognition and removal is a common denominator regardless of the inflammatory trigger. The complex reaction of the immune defense system in hyperinflammation leads to self-inflicted damage. This common endpoint may provide additional options to monitor the progression of the inflammatory syndrome, predict severity, and may add to possible treatment strategies.
Collapse
|
3
|
Long-circulating XTEN864-annexin A5 fusion protein for phosphatidylserine-related therapeutic applications. Apoptosis 2021; 26:534-547. [PMID: 34405304 PMCID: PMC8370750 DOI: 10.1007/s10495-021-01686-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 01/21/2023]
Abstract
Annexin A5 (anxA5) is a marker for apoptosis, but has also therapeutic potential in cardiovascular diseases, cancer, and, due to apoptotic mimicry, against dangerous viruses, which is limited by the short blood circulation. An 864-amino-acid XTEN polypeptide was fused to anxA5. XTEN864-anxA5 was expressed in Escherichia coli and purified using XTEN as tag. XTEN864-anxA5 was coupled with DTPA and indium-111. After intravenous or subcutaneous injection of 111In-XTEN864-anxA5, mouse blood samples were collected for blood half-life determination and organ samples for biodistribution using a gamma counter. XTEN864-anxA5 was labeled with 6S-IDCC to confirm binding to apoptotic cells using flow cytometry. To demonstrate targeting of atherosclerotic plaques, XTEN864-anxA5 was labeled with MeCAT(Ho) and administered intravenously to atherosclerotic ApoE−/− mice. MeCAT(Ho)-XTEN864-anxA5 was detected together with MeCAT(Tm)-MAC-2 macrophage antibodies by imaging mass cytometry (CyTOF) of aortic root sections. The ability of anxA5 to bind apoptotic cells was not affected by XTEN864. The blood half-life of XTEN864-anxA5 was 13 h in mice after IV injection, markedly longer than the 7-min half-life of anxA5. 96 h after injection, highest amounts of XTEN864-anxA5 were found in liver, spleen, and kidney. XTEN864-anxA5 was found to target the adventitia adjacent to atherosclerotic plaques. XTEN864-anxA5 is a long-circulating fusion protein that can be efficiently produced in E. coli and potentially circulates in humans for several days, making it a promising therapeutic drug.
Collapse
|
4
|
Kuypers FA, Rostad CA, Anderson EJ, Chahroudi A, Jaggi P, Wrammert J, Mantus G, Basu R, Harris F, Hanberry B, Camacho-Gonzalez A, Manoranjithan S, Vos M, Brown LA, Morris CR. Secretory phospholipase A2 in SARS-CoV-2 infection and multisystem inflammatory syndrome in children (MIS-C). Exp Biol Med (Maywood) 2021; 246:2543-2552. [PMID: 34255566 PMCID: PMC8649422 DOI: 10.1177/15353702211028560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Secretory phospholipase 2 (sPLA2) acts as a mediator between proximal and distal events of the inflammatory cascade. Its role in SARS-CoV-2 infection is unknown, but could contribute to COVID-19 inflammasome activation and cellular damage. We present the first report of plasma sPLA2 levels in adults and children with COVID-19 compared with controls. Currently asymptomatic adults with a history of recent COVID-19 infection (≥4 weeks before) identified by SARS-CoV-2 IgG antibodies had sPLA2 levels similar to those who were seronegative (9 ± 6 vs.17 ± 28 ng/mL, P = 0.26). In contrast, children hospitalized with severe COVID-19 had significantly elevated sPLA2 compared with those with mild or asymptomatic SARS-CoV-2 infection (269 ± 137 vs. 2 ± 3 ng/mL, P = 0.01). Among children hospitalized with multisystem inflammatory syndrome in children (MIS-C), all had severe disease requiring pediatric intensive care unit (PICU) admission. sPLA2 levels were significantly higher in those with acute illness <10 days versus convalescent disease ≥10 days (540 ± 510 vs. 2 ± 1, P = 0.04). Thus, sPLA2 levels correlated with COVID-19 severity and acute MIS-C in children, implicating a role in inflammasome activation and disease pathogenesis. sPLA2 may be a useful biomarker to stratify risk and guide patient management for children with acute COVID-19 and MIS-C. Therapeutic compounds targeting sPLA2 and inflammasome activation warrant consideration.
Collapse
Affiliation(s)
- Frans A Kuypers
- Division of Hematology, Department of Pediatrics, University of California, San Francisco, CA 94609, USA
| | - Christina A Rostad
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Evan J Anderson
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA.,Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ann Chahroudi
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Preeti Jaggi
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Grace Mantus
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rajit Basu
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Frank Harris
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Bradley Hanberry
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Andres Camacho-Gonzalez
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | | | - Miriam Vos
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Clinical and Translational Research, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Lou Ann Brown
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Claudia R Morris
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Clinical and Translational Research, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Potiris A, Manousopoulou A, Zouridis A, Sarli PM, Pervanidou P, Eliades G, Perrea DN, Deligeoroglou E, Garbis SD, Eleftheriades M. The Effect of Prenatal Food Restriction on Brain Proteome in Appropriately Grown and Growth Restricted Male Wistar Rats. Front Neurosci 2021; 15:665354. [PMID: 33935642 PMCID: PMC8079747 DOI: 10.3389/fnins.2021.665354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Fetal growth restriction (FGR) has been associated with a higher risk of developing adverse perinatal outcomes and distinct neurodevelopmental and neurobehavioral disorders. The aim of the present study was to investigate the impact of prenatal food restriction on the brain proteome in both FGR and appropriately grown rats and to identify potential pathways connecting maternal malnutrition with altered brain development. Methods Ten time-dated pregnant Wistar rats were housed individually at their 12th day of gestation. On the 15th day of gestation, the rats were randomly divided into two groups, namely the food restricted one (n = 6) and the control group (n = 4). From days 15 to 21 the control group had unlimited access to food and the food restricted group was given half the amount of food that was on average consumed by the control group, based on measurements taken place the day before. On the 21st day of gestation, all rats delivered spontaneously and after birth all newborn pups of the food restricted group were weighed and matched as appropriately grown (non-FGR) or growth restricted (FGR) and brain tissues were immediately collected. A multiplex experiment was performed analyzing brain tissues from 4 FGR, 4 non-FGR, and 3 control male offspring. Differentially expressed proteins (DEPs) were subjected to bioinformatics analysis in order to identify over-represented processes. Results Proteomic analysis resulted in the profiling of 3,964 proteins. Gene ontology analysis of the common DEPs using DAVID (https://david.ncifcrf.gov/) showed significant enrichment for terms related to cellular morphology, learning, memory and positive regulation of NF-kappaB signaling. Ingenuity Pathway Analysis showed significant induction of inflammation in FGR pups, whereas significant induction of cell migration and cell spreading were observed in non-FGR pups. Conclusion This study demonstrated that in both FGR and non-FGR neonates, a range of adaptive neurodevelopmental processes takes place, which may result in altered cellular morphology, chronic stress, poor memory and learning outcomes. Furthermore, this study highlighted that not only FGR, but also appropriately grown pups, which have been exposed to prenatal food deprivation may be at increased risk for impaired cognitive and developmental outcomes.
Collapse
Affiliation(s)
- Anastasios Potiris
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antigoni Manousopoulou
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Andreas Zouridis
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polyxeni-Maria Sarli
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Pervanidou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Eliades
- Biomaterials Laboratory, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Deligeoroglou
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros D Garbis
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
de Jong RCM, Pluijmert NJ, de Vries MR, Pettersson K, Atsma DE, Jukema JW, Quax PHA. Annexin A5 reduces infarct size and improves cardiac function after myocardial ischemia-reperfusion injury by suppression of the cardiac inflammatory response. Sci Rep 2018; 8:6753. [PMID: 29712962 PMCID: PMC5928225 DOI: 10.1038/s41598-018-25143-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 04/11/2018] [Indexed: 02/02/2023] Open
Abstract
Annexin A5 (AnxA5) is known to have anti-inflammatory and anti-apoptotic properties. Inflammation and apoptosis are key processes in post-ischemic cardiac remodeling. In this study, we investigated the effect of AnxA5 on left ventricular (LV) function and remodeling three weeks after myocardial ischemia-reperfusion (MI-R) injury in hypercholesterolemic ApoE*3-Leiden mice. Using a mouse model for MI-R injury, we demonstrate AnxA5 treatment resulted in a 27% reduction of contrast-enhanced MRI assessed infarct size (IS). End-diastolic and end-systolic volumes were decreased by 22% and 38%, respectively. LV ejection fraction was increased by 29% in the AnxA5 group compared to vehicle. Following AnxA5 treatment LV fibrous content after three weeks was reduced by 42%, which was accompanied by an increase in LV wall thickness of the infarcted area by 17%. Two days and three weeks after MI-R injury the number of cardiac macrophages was significantly reduced in both the infarct area and border zones following AnxA5 treatment compared to vehicle treatment. Finally, we found that AnxA5 stimulation leads to a reduction of IL-6 production in bone-marrow derived macrophages in vitro. AnxA5 treatment attenuates the post-ischemic inflammatory response and ameliorates LV remodeling which improves cardiac function three weeks after MI-R injury in hypercholesterolemic ApoE*3-Leiden mice.
Collapse
Affiliation(s)
- Rob C M de Jong
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Niek J Pluijmert
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
7
|
Kloner RA, Dai W, Hale SL. No-Reflow Phenomenon. A New Target for Therapy of Acute Myocardial Infarction Independent of Myocardial Infarct Size. J Cardiovasc Pharmacol Ther 2018; 23:273-276. [DOI: 10.1177/1074248418764467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Robert A. Kloner
- Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA
- Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, USA
| | - Wangde Dai
- Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA
- Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, USA
| | - Sharon L. Hale
- Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA
| |
Collapse
|
8
|
Bern MM. Extracellular vesicles: how they interact with endothelium, potentially contributing to metastatic cancer cell implants. Clin Transl Med 2017; 6:33. [PMID: 28933058 PMCID: PMC5607152 DOI: 10.1186/s40169-017-0165-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/13/2017] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are blebs of cellular membranes, which entrap small portions of subjacent cytosol. They are released from a variety of cells, circulate in the blood for an unknown length of time and come to rest on endothelial surfaces. They contribute to an array of physiologic pathways, the complexity of which is still being investigated. They contribute to metastatic malignant cell implants and tumor-related angiogenesis, possibly abetted by the tissue factor that they carry. It is thought that the adherence of the EV to endothelium is dependent upon a combination of their P-selectin glycoprotein ligand-1 and exposed phosphatidylserine, the latter of which is normally hidden on the inner bilayer of the intact cellular membrane. This manuscript reviews what is known about EV origins, their clearance from the circulation and how they contribute to malignant cell implants upon endothelium surfaces and subsequent tumor growth.
Collapse
Affiliation(s)
- Murray M Bern
- University of New Mexico Comprehensive Cancer Center, 1201 Camino de Salud, Albuquerque, NM, 87131, USA.
| |
Collapse
|
9
|
Combes V, Latham SL, Wen B, Allison AC, Grau GER. DIANNEXIN DOWN-MODULATES TNF-INDUCED ENDOTHELIAL MICROPARTICLE RELEASE BY BLOCKING MEMBRANE BUDDING PROCESS. INTERNATIONAL JOURNAL OF INNOVATIVE MEDICINE AND HEALTH SCIENCE 2016; 7:1-11. [PMID: 28149531 PMCID: PMC5279986 DOI: 10.20530/ijimhs_7_1-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Microparticles are now recognised as true biological effectors with a role in immunopathology through their ability to disseminate functional properties. Diannexin, a homodimer of annexin V, binds to PS with a higher affinity and longer blood half-life than the monomer, inhibits prothrombinase complex activity thereby diminishing coagulation and reperfusion injury mediators and prevent microvesicle-mediated material transfer. Our aim was to determine if Diannexin could modulate microparticle production by endothelial cells by interacting with the phosphatidylserine exposure occurring during the release of these vesicles. RESULTS In this study we showed that fluorescently labelled Diannexin binds to calcimycin-activated endothelial cells but not to resting cells. After overnight incubation, Diannexin enters cells and their released MP carry Diannexin. Some Diannexin seems to be processed via early endosomes and later is found in lysosomes. Both unlabelled Diannexin and fluorescent Diannexin inhibit MP release from TNF-activated endothelial cells. However, Diannexin treatment does not prevent endothelial activation by TNF. In addition, the inhibitory effect of Diannexin on MP release could be observed when cells were pre-, concomitantly or post-treated with cytokines. Scanning electron microscopy showed differences in the numbers and types of protuberances at the cell surface when cells were treated or not with Diannexin. Finally, there is no apparent congruency between fluorescent Diannexin labelling and surface protuberances as shown by correlative microscopy. CONCLUSIONS Altogether these data suggest that Diannexin can inhibit endothelial vesiculation by binding PS present either at the cell surface or at the level of the inner leaflet of the plasma membrane.
Collapse
Affiliation(s)
- Valéry Combes
- Vascular Immunology Unit, Faculty of Medicine & Bosch Institute, The University of Sydney, Medical Foundation Building, 92-94 Parramatta Road, Camperdown NSW 2006, Australia
- School of Life Sciences, The University of Technology, Sydney, Ultimo NSW 2007, Australia
| | - Sharissa L. Latham
- Vascular Immunology Unit, Faculty of Medicine & Bosch Institute, The University of Sydney, Medical Foundation Building, 92-94 Parramatta Road, Camperdown NSW 2006, Australia
| | - Beryl Wen
- Vascular Immunology Unit, Faculty of Medicine & Bosch Institute, The University of Sydney, Medical Foundation Building, 92-94 Parramatta Road, Camperdown NSW 2006, Australia
| | | | - Georges E. R. Grau
- Vascular Immunology Unit, Faculty of Medicine & Bosch Institute, The University of Sydney, Medical Foundation Building, 92-94 Parramatta Road, Camperdown NSW 2006, Australia
| |
Collapse
|
10
|
Hashimoto K, Kim H, Oishi H, Chen M, Iskender I, Sakamoto J, Ohsumi A, Guan Z, Hwang D, Waddell TK, Cypel M, Liu M, Keshavjee S. Annexin V homodimer protects against ischemia reperfusion-induced acute lung injury in lung transplantation. J Thorac Cardiovasc Surg 2015; 151:861-869. [PMID: 26725713 DOI: 10.1016/j.jtcvs.2015.10.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/01/2015] [Accepted: 10/18/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We hypothesized that administration of a homodimer of recombinant annexin V, diannexin, could shield phosphatidylserine on the endothelium, and inhibit leukocyte and platelet adhesion, thereby potentially reducing ischemia reperfusion injury (IRI) in lung transplantation. This hypothesis was tested using a rat syngeneic single left-lung transplant model. METHODS Rats were randomly assigned to receive diannexin (DN group; n = 10) or normal saline (control group; n = 10). Diannexin (1000 μg/kg) was administered to the donor lung in the pulmonary flush solution, and to the recipient intravenously, 5 minutes after initiation of reperfusion. Grafts were reperfused for 2 hours. RESULTS The transplanted grafts in the DN group performed significantly better in gas exchange with higher partial pressure of oxygen (control group: 179 ± 121 vs DN group: 330 ± 54 mm Hg; P = .007) and lower partial pressure of carbon dioxide (control: 55.1 ± 26 vs DN: 34.2 ± 11 mm Hg; P = .04), as well as lower peak airway pressure (control: 20.5 ± 8.5 vs DN: 12.0 ± 7.9 cm H2O; P = .035) after 2 hours of reperfusion. Wet-to-dry lung weight ratio (P = .054), and alveolar fibrin deposition score (P = .04), were reduced in the DN group. Caspase-cleaved cytokeratin 18 in plasma (a marker of epithelial apoptosis) was significantly reduced in the DN group (P = .013). Furthermore, gene-expression levels of proinflammatory cytokines in the transplanted graft, including interleukin-6 (P = .04) and macrophage inflammatory protein 2 (P = .03) were significantly decreased in the DN group. CONCLUSIONS A homodimer of recombinant annexin V reduced ischemia reperfusion injury in a lung transplant animal model, by reducing cell death and tissue inflammation.
Collapse
Affiliation(s)
- Kohei Hashimoto
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hyunhee Kim
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hisashi Oishi
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Manyin Chen
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ilker Iskender
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jin Sakamoto
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Akihiro Ohsumi
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Zehong Guan
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David Hwang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas K Waddell
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Kuypers FA. Hemoglobin S Polymerization and Red Cell Membrane Changes. Hematol Oncol Clin North Am 2014; 28:155-79. [DOI: 10.1016/j.hoc.2013.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Rand ML, Wang H, Pluthero FG, Stafford AR, Ni R, Vaezzadeh N, Allison AC, Kahr WHA, Weitz JI, Gross PL. Diannexin, an annexin A5 homodimer, binds phosphatidylserine with high affinity and is a potent inhibitor of platelet-mediated events during thrombus formation. J Thromb Haemost 2012; 10:1109-19. [PMID: 22463102 DOI: 10.1111/j.1538-7836.2012.04716.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Shielding of procoagulant phosphatidylserine (PS) with annexin A5 attenuates thrombosis, but annexin A5 (35.7 kDa) is rapidly cleared from the circulation. In contrast, Diannexin, a 73.1 kDa homodimer of annexin A5, has an extended half-life. OBJECTIVES To quantify the affinity of Diannexin for PS, examine its interaction with activated platelets and determine its effects on platelet-mediated events during thrombus formation. METHODS The affinities of Diannexin and annexin A5 for PS-containing lipid bilayers were compared using surface plasmon resonance, and binding to activated platelets was assessed by flow cytometry. Calibrated automated thrombography and thromboelastography were employed to study the effects of Diannexin on thrombin generation and platelet-fibrin clot formation, respectively, whereas intravital videomicroscopy was used to examine its effect on platelet accumulation and activation after laser-induced injury to murine cremaster arterioles, and a tail tip bleeding model was used to explore its effects on hemostasis. RESULTS Diannexin and annexin A5 bind PS with K(D) values of 0.6 and 5 nm, respectively, and both bind to the same subpopulation of PS-exposing platelets. Diannexin inhibited thrombin generation and platelet-fibrin clot formation in vitro at 10 nm (P<0.05-0.001 compared with control), and reduced platelet accumulation at 1 μg g(-1) (P<0.05) and activation at 0.25 μg g(-1) (P<0.001) in experimentally induced arterial thrombi in mice while increasing blood loss at 1 μg g(-1) (P<0.01). CONCLUSIONS Diannexin binds to PS with high affinity and is a potent inhibitor of platelet-mediated events during thrombus formation.
Collapse
Affiliation(s)
- M L Rand
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|