1
|
Gonzalez D, Bensing PC, Dixon KN, Leong KC. Cocaine diminishes consolidation of cued fear memory in female rats through interactions with ventral hippocampal D2 receptors. Pharmacol Biochem Behav 2024; 244:173863. [PMID: 39186953 DOI: 10.1016/j.pbb.2024.173863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
In addition to cocaine's addictive properties, cocaine use may lead to heightened risk-taking behavior. The disruptive effects of cocaine on aversive memory formation may underlie this behavior. The present study investigated the effects of cocaine on fear memory using a cued fear conditioning paradigm in female Sprague Dawley rats, and further determined the role of D2 receptors in modulating the effect of cocaine on cued fear expression. Animals received six evenly spaced shocks preceded by a tone. The following day, rats were returned to the fear chamber where tones, but no shocks, were delivered. In Experiment 1, separate or concurrent administrations of cocaine (15 mg/kg; i.p.) and the D2 receptor antagonist eticlopride (0.1 mg/kg; i.p.) were given immediately after conditioning trials. It was determined that cocaine administration during the consolidation period diminished the expression of cued fear during the subsequent test day. Concurrent eticlopride administration attenuated this effect, indicating the involvement of D2 receptors in the deleterious effects of cocaine on fear memory consolidation. In Experiment 2, eticlopride (0.05 μg) was infused directly into the ventral hippocampus (VH) after fear conditioning and before cocaine administration. Cocaine continued to disrupt consolidation of cued and contextual fear memory, and concurrent intra-VH eticlopride blocked this effect, thereby demonstrating that VH D2 receptors mediate cocaine-induced impairment of fear memory consolidation. Overall, the present study provides evidence that acute cocaine administration impairs aversive memory formation and establishes a potential circuit through which cocaine induces its detrimental effects on fear memory consolidation.
Collapse
Affiliation(s)
- Daniela Gonzalez
- Neuroscience Program, Trinity University, San Antonio, TX, United States of America
| | - Paige C Bensing
- Neuroscience Program, Trinity University, San Antonio, TX, United States of America
| | - Katherine N Dixon
- Neuroscience Program, Trinity University, San Antonio, TX, United States of America
| | - Kah-Chung Leong
- Neuroscience Program, Trinity University, San Antonio, TX, United States of America.
| |
Collapse
|
2
|
Mathis T, Baudin F, Mariet AS, Augustin S, Bricout M, Przegralek L, Roubeix C, Benzenine É, Blot G, Nous C, Kodjikian L, Mauget-Faÿsse M, Sahel JA, Plevin R, Zeitz C, Delarasse C, Guillonneau X, Creuzot-Garcher C, Quantin C, Hunot S, Sennlaub F. DRD2 activation inhibits choroidal neovascularization in patients with Parkinson's disease and age-related macular degeneration. J Clin Invest 2024; 134:e174199. [PMID: 39012703 PMCID: PMC11364393 DOI: 10.1172/jci174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Neovascular age-related macular degeneration (nAMD) remains a major cause of visual impairment and puts considerable burden on patients and health care systems. l-DOPA-treated Parkinson's disease (PD) patients have been shown to be partially protected from nAMD, but the mechanism remains unknown. Using murine models that combine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced (MPTP-induced) PD and laser-induced nAMD with standard PD treatment of l-DOPA/DOPA-decarboxylase inhibitor or specific dopamine receptor inhibitors, we here demonstrate that l-DOPA treatment-induced increase of dopamine-mediated dopamine receptor D2 (DRD2) signaling inhibits choroidal neovascularization independently of MPTP-associated nigrostriatal pathway lesion. Analyzing a retrospective cohort of more than 200,000 patients with nAMD receiving anti-VEGF treatment from the French nationwide insurance database, we show that DRD2 agonist-treated PD patients have a significantly delayed age of onset of nAMD and reduced need for anti-VEGF therapies, similar to the effects of the l-DOPA treatment. While providing a mechanistic explanation for an intriguing epidemiological observation, our findings suggest that systemic DRD2 agonists might constitute an adjuvant therapy to delay and reduce the need for anti-VEGF therapy in patients with nAMD.
Collapse
Affiliation(s)
- Thibaud Mathis
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Hopital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- UMR-CNRS 5510, MATEIS, Institut National des Sciences Appliquées, Université Lyon 1, Campus de la Doua, Villeurbanne, France
| | - Florian Baudin
- Service d’ophtalmologie, CHU Dijon, Dijon, France
- Ramsaysanté, Clinique d’Argonay, Argonay, France
| | - Anne-Sophie Mariet
- Service de Biostatistiques et D’Information Médicale (DIM), CHU Dijon Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
| | | | - Marion Bricout
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Hopital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- UMR-CNRS 5510, MATEIS, Institut National des Sciences Appliquées, Université Lyon 1, Campus de la Doua, Villeurbanne, France
| | | | | | - Éric Benzenine
- Service de Biostatistiques et D’Information Médicale (DIM), CHU Dijon Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
| | - Guillaume Blot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Caroline Nous
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Laurent Kodjikian
- Hopital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- UMR-CNRS 5510, MATEIS, Institut National des Sciences Appliquées, Université Lyon 1, Campus de la Doua, Villeurbanne, France
| | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robin Plevin
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Cécile Delarasse
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | | | - Catherine Quantin
- Service de Biostatistiques et D’Information Médicale (DIM), CHU Dijon Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
- Université Paris-Saclay, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), INSERM, Centre for Epidemiology and Population Health (CESP), Villejuif, France
| | - Stéphane Hunot
- Sorbonne Université, Paris Brain Institute–L’Institut du Cerveau, INSERM, CNRS, Hôpital de la Pitié Salpêtrière, Paris
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
3
|
Evangelista C, Mehrez N, Boisvert EE, Brake WG, Shizgal P. The priming effect of rewarding brain stimulation in rats depends on both the cost and strength of reward but survives blockade of D2-like dopamine receptors. Eur J Neurosci 2023; 58:3751-3784. [PMID: 37752810 DOI: 10.1111/ejn.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/18/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Receipt of an intense reward boosts motivation to work for more of that reward. This phenomenon is called the priming effect of rewards. Using a novel measurement method, we show that the priming effect of rewarding electrical brain stimulation depends on the cost, as well as on the strength, of the anticipated reward. Previous research on the priming effect of electrical brain stimulation utilized a runway paradigm in which running speed serves as the measure of motivation. In the present study, the measure of motivation was the vigour with which rats executed a two-lever response chain, in a standard operant-conditioning chamber, to earn rewarding electrical stimulation of the lateral hypothalamus. In a second experiment, we introduced a modification that entails self-administered priming stimulation and alternating blocks of primed and unprimed trials. Reliable, consistent priming effects of substantial magnitude were obtained in the modified paradigm, which is closely analogous to the runway paradigm. In a third experiment, the modified paradigm served to assess the dependence of the priming effect on dopamine D2-like receptors. The priming effect proved resilient to the effect of eticlopride, a selective D2-like receptor antagonist. These results are discussed within the framework of a new model of brain reward circuitry in which non-dopaminergic medial forebrain bundle fibers and dopamine axons provide parallel inputs to the final common paths for reward and incentive motivation.
Collapse
Affiliation(s)
- Czarina Evangelista
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montréal, Québec, Canada
| | - Norhan Mehrez
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montréal, Québec, Canada
| | - Esthelle Ewusi Boisvert
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montréal, Québec, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montréal, Québec, Canada
| | - Peter Shizgal
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Highgate Q, Abadey AA, Schenk S. Repeated eticlopride administration increases dopamine D 2 receptor expression and restores behavioral flexibility disrupted by methamphetamine exposure to male rats. Behav Brain Res 2022; 435:114064. [PMID: 35987306 DOI: 10.1016/j.bbr.2022.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
Repeated methamphetamine exposure impairs reversal learning in laboratory animals and downregulates dopamine D2 receptor expression. In the present study, we tested the possibility that repeated exposure to the dopamine D2 antagonist, eticlopride, would increase D2 receptor expression, improve behavioral flexibility and restore behavioral flexibility that was disrupted by exposure to methamphetamine in rats. Male Sprague-Dawley rats received repeated daily pretreatment with the dopamine D2 antagonist, eticlopride (0.0 or 0.3 mg/kg/day, 14 days). Three days after the last treatment, whole brain (minus olfactory bulbs and cerebellum) dopamine D2 receptor expression was measured using flow cytometry in one group and reversal learning performance was measured in another group. Reversal learning was also measured in other groups prior to and after methamphetamine exposure (0.0 or 2.0 mg/kg, 4 injections, 2 h apart, 1 day) followed by repeated eticlopride (0.0 or 0.3 mg/kg, 14 days) treatment. Eticlopride treatment increased D2 receptor expression and improved reversal learning performance. Methamphetamine impaired reversal learning performance and eticlopride treatment reversed the deficit. These results suggest that repeated administration of eticlopride can restore behavioral flexibility and that upregulation of D2 receptors might be an effective adjunct to treatment of methamphetamine misuse.
Collapse
Affiliation(s)
- Quenten Highgate
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Afnan Al Abadey
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand; Department of Zoology, University of Otago, Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
5
|
Gill KE, McGarrigle WJ, Neel AI, Tonto DOW, Greenleaf KL. D2 receptor antagonism enhances cocaine-induced behavioral sensitization in female, but not male Japanese quail ( Coturnix japonica ). Behav Pharmacol 2022; 33:355-363. [PMID: 35695537 DOI: 10.1097/fbp.0000000000000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sex differences in cocaine-induced behaviors are well established. In rodents, females show enhanced locomotion to cocaine over multiple trials compared with males, a behavioral response known as sensitization. Estradiol enhances cocaine-induced sensitization in female rats by agonizing dopaminergic activity within the brain. In female quail, cocaine does not increase locomotion regardless of increased estradiol. A higher D2:D1 dopamine receptor ratio in quail compared with rodents may explain this sex and species difference. The goal of the present work was to investigate the role of D2 receptors in cocaine-induced locomotion and sensitization in Japanese quail and to determine whether a greater D2 receptor availability contributed to the lack of cocaine-induced sensitization in female quail found in previous studies. Male and female quail were administered 0, 0.03, 0.05, or 0.07 mg/kg of eticlopride (Eti) followed by 10 mg/kg of cocaine or saline then immediately placed in open-field chambers. Distance traveled was recorded for 30 min daily for 7 days. In female quail, cocaine-induced sensitization was observed with 0.03 or 0.05 mg/kg Eti, but not in cocaine-only females. In male quail, cocaine-induced sensitization was observed similar to previous research. However, Eti did not enhance cocaine-induced locomotion or produce sensitization in male quail. The D2 receptor likely mediates cocaine's motor stimulating effects in quail. In females, this effect is more pronounced. Since high D2 availability is protective against stimulant abuse, Japanese quail may be a useful model for investigating the role of the D2 receptor in cocaine addiction, but further research is needed.
Collapse
Affiliation(s)
- Karin E Gill
- Department of Behavioral Neuroscience, Centre College, Danville, Kentucky
| | - William J McGarrigle
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, Illinois, USA
| | - Anna Isabella Neel
- Department of Behavioral Neuroscience, Centre College, Danville, Kentucky
| | - Derrick O W Tonto
- Department of Behavioral Neuroscience, Centre College, Danville, Kentucky
| | | |
Collapse
|
6
|
Marino RA, Gaprielian P, Levy R. Systemic D1-R and D2-R antagonists in Non-Human Primates Differentially Impact Learning and Memory While Impairing Motivation and Motor Performance. Eur J Neurosci 2022; 56:4121-4140. [PMID: 35746869 DOI: 10.1111/ejn.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Dopamine (DA) modulates cognition in part via differential activation of D1 and D2 receptors within the striatum and prefrontal cortex, yet evidence for cognitive impairments stemming from DA blockade or deficiency is inconsistent. Given the predominance of D1 over D2 receptors (R) in the prefrontal cortex of primates, D1-R blockade should more strongly influence frontal executive function (including working memory), while D2-R blockade should impair processes more strongly associated with the dorsal striatum (including cognitive flexibility, and learning). To test how systemic DA blockade disrupts cognition, we administered D1-R and D2-R like antagonists to healthy monkeys while they performed a series of cognitive tasks. Two selective DA receptor antagonist drugs (SCH-23390 hydrochloride: D1/D5-R antagonist; or Eticlopride hydrochloride: D2/D3-R antagonist) or placebo (0.9% saline) were systemically administered. Four tasks were used: (1) 'visually guided reaching', to test response time and accuracy, (2) 'reversal learning', to test association learning and attention, (3) 'self-ordered sequential search' to test spatial working memory, and (4) 'delayed match to sample' to test object working memory. Increased reach response times and decreased motivation to work for liquid reward was observed with both the D1/D5-R and D2/D3-R antagonists at the maximum dosages that still enabled task performance. The D2/D3-R antagonist impaired performance in the reversal learning task, while object and spatial working memory performance was not consistently affected in the tested tasks for either drug. These results are consistent with the theory that systemic D2/D3-R antagonists preferentially influence striatum processes (cognitive flexibility) while systemic D1/D5-R administration is less detrimental to frontal executive function.
Collapse
Affiliation(s)
- Robert A Marino
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Department of Surgery, Kingston General Hospital, Kingston, Ontario, Canada
| | - Pauline Gaprielian
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Ron Levy
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Department of Surgery, Kingston General Hospital, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Dagher M, Perrotta KA, Erwin SA, Hachisuka A, Iyer R, Masmanidis SC, Yang H, Andrews AM. Optogenetic Stimulation of Midbrain Dopamine Neurons Produces Striatal Serotonin Release. ACS Chem Neurosci 2022; 13:946-958. [PMID: 35312275 PMCID: PMC9040469 DOI: 10.1021/acschemneuro.1c00715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Targeting neurons with light-driven opsins is widely used to investigate cell-specific responses. We transfected midbrain dopamine neurons with the excitatory opsin Chrimson. Extracellular basal and stimulated neurotransmitter levels in the dorsal striatum were measured by microdialysis in awake mice. Optical activation of dopamine cell bodies evoked terminal dopamine release in the striatum. Multiplexed analysis of dialysate samples revealed that the evoked dopamine was accompanied by temporally coupled increases in striatal 3-methoxytyramine, an extracellular dopamine metabolite, and in serotonin. We investigated a mechanism for dopamine-serotonin interactions involving striatal dopamine receptors. However, the evoked serotonin associated with optical stimulation of dopamine neurons was not abolished by striatal D1- or D2-like receptor inhibition. Although the mechanisms underlying the coupling of striatal dopamine and serotonin remain unclear, these findings illustrate advantages of multiplexed measurements for uncovering functional interactions between neurotransmitter systems. Furthermore, they suggest that the output of optogenetic manipulations may extend beyond opsin-expressing neuronal populations.
Collapse
Affiliation(s)
- Merel Dagher
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Katie A. Perrotta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Sara A. Erwin
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Ayaka Hachisuka
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Rahul Iyer
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, 94720
| | - Sotiris C. Masmanidis
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Anne M. Andrews
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
8
|
Shaik AB, Boateng CA, Battiti FO, Bonifazi A, Cao J, Chen L, Chitsazi R, Ravi S, Lee KH, Shi L, Newman AH. Structure Activity Relationships for a Series of Eticlopride-Based Dopamine D 2/D 3 Receptor Bitopic Ligands. J Med Chem 2021; 64:15313-15333. [PMID: 34636551 PMCID: PMC9617622 DOI: 10.1021/acs.jmedchem.1c01353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The crystal structure of the dopamine D3 receptor (D3R) in complex with eticlopride inspired the design of bitopic ligands that explored (1) N-alkylation of the eticlopride's pyrrolidine ring, (2) shifting of the position of the pyrrolidine nitrogen, (3) expansion of the pyrrolidine ring system, and (4) incorporation of O-alkylations at the 4-position. Structure activity relationships (SAR) revealed that moving the N- or expanding the pyrrolidine ring was detrimental to D2R/D3R binding affinities. Small pyrrolidine N-alkyl groups were poorly tolerated, but the addition of a linker and secondary pharmacophore (SP) improved affinities. Moreover, O-alkylated analogues showed higher binding affinities compared to analogously N-alkylated compounds, e.g., O-alkylated 33 (D3R, 0.436 nM and D2R, 1.77 nM) vs the N-alkylated 11 (D3R, 6.97 nM and D2R, 25.3 nM). All lead molecules were functional D2R/D3R antagonists. Molecular models confirmed that 4-position modifications would be well-tolerated for future D2R/D3R bioconjugate tools that require long linkers and or sterically bulky groups.
Collapse
Affiliation(s)
- Anver Basha Shaik
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Comfort A. Boateng
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Jianjing Cao
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Li Chen
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Rezvan Chitsazi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Saiprasad Ravi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| |
Collapse
|
9
|
Synthesis and In Vitro Evaluation of Novel Dopamine Receptor D 2 3,4-dihydroquinolin-2(1 H)-one Derivatives Related to Aripiprazole. Biomolecules 2021; 11:biom11091262. [PMID: 34572475 PMCID: PMC8464836 DOI: 10.3390/biom11091262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022] Open
Abstract
In this pilot study, a series of new 3,4-dihydroquinolin-2(1H)-one derivatives as potential dopamine receptor D2 (D2R) modulators were synthesized and evaluated in vitro. The preliminary structure-activity relationship disclosed that compound 5e exhibited the highest D2R affinity among the newly synthesized compounds. In addition, 5e showed a very low cytotoxic profile and a high probability to cross the blood-brain barrier, which is important considering the observed affinity. However, molecular modelling simulation revealed completely different binding mode of 5e compared to USC-D301, which might be the culprit of the reduced affinity of 5e toward D2R in comparison with USC-D301.
Collapse
|
10
|
Servonnet A, Allain F, Gravel-Chouinard A, Hernandez G, Bourdeau Caporuscio C, Legrix M, Lévesque D, Rompré PP, Samaha AN. Dopaminergic mechanisms underlying the expression of antipsychotic-induced dopamine supersensitivity in rats. Neuropharmacology 2021; 197:108747. [PMID: 34364897 DOI: 10.1016/j.neuropharm.2021.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Antipsychotic treatment can produce a dopamine-supersensitive state, potentiating the response to dopamine receptor stimulation. In both schizophrenia patients and rats, this is linked to tolerance to ongoing antipsychotic treatment. In rodents, dopamine supersensitivity is often confirmed by an exaggerated psychomotor response to d-amphetamine after discontinuation of antipsychotic exposure. Here we examined in rats the dopaminergic mechanisms mediating this enhanced behavioural response, as this could uncover pathophysiological processes underlying the expression of antipsychotic-evoked dopamine supersensitivity. Rats received 0.5 mg/kg/day haloperidol via osmotic minipump for 2 weeks, before treatment was discontinued. After cessation of antipsychotic treatment, rats showed a supersensitive psychomotor response to the D2 agonist quinpirole, but not to the D1 partial agonist SKF38393 or the dopamine reuptake blocker GBR12783. Furthermore, acute D1 receptor blockade (using SCH39166) decreased the exaggerated psychomotor response to d-amphetamine in haloperidol-pretreated rats, whereas acute D2 receptor blockade (using sulpiride) enhanced it. Thus, after discontinuation of antipsychotic treatment, D1- and D2-mediated transmission differentially modulate the expression of a supersensitive response to d-amphetamine. This supersensitive behavioural response was accompanied by enhanced GSK3β activity and suppressed ERK1/2 activity in the nucleus accumbens (but not caudate-putamen), suggesting increased mesolimbic D2 transmission. Finally, after discontinuing haloperidol treatment, neither increasing ventral midbrain dopamine impulse flow nor infusing d-amphetamine into the cerebral ventricles triggered the expression of already established dopamine supersensitivity, suggesting that peripheral effects are required. Thus, while dopamine receptor-mediated signalling regulates the expression of antipsychotic-evoked dopamine supersensitivity, a simple increase in central dopamine neurotransmission is insufficient to trigger this supersensitivity.
Collapse
Affiliation(s)
- Alice Servonnet
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada.
| | - Florence Allain
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Alice Gravel-Chouinard
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Giovanni Hernandez
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Casey Bourdeau Caporuscio
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Mathilde Legrix
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Daniel Lévesque
- Faculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Pierre-Paul Rompré
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada
| | - Anne-Noël Samaha
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4, Quebec, Canada; Groupe de recherche sur le système nerveux central, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montrea, H3T 1J4, Quebec, Canada.
| |
Collapse
|
11
|
Mejia-Gutierrez M, Vásquez-Paz BD, Fierro L, Maza JR. In Silico Repositioning of Dopamine Modulators with Possible Application to Schizophrenia: Pharmacophore Mapping, Molecular Docking and Molecular Dynamics Analysis. ACS OMEGA 2021; 6:14748-14764. [PMID: 34151057 PMCID: PMC8209794 DOI: 10.1021/acsomega.0c05984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/30/2021] [Indexed: 05/17/2023]
Abstract
We have performed theoretical calculations with 70 drugs that have been considered in 231 clinical trials as possible candidates to repurpose drugs for schizophrenia based on their interactions with the dopaminergic system. A hypothesis of shared pharmacophore features was formulated to support our calculations. To do so, we have used the crystal structure of the D2-like dopamine receptor in complex with risperidone, eticlopride, and nemonapride. Linagliptin, citalopram, flunarizine, sildenafil, minocycline, and duloxetine were the drugs that best fit with our model. Molecular docking calculations, molecular dynamics outcomes, blood-brain barrier penetration, and human intestinal absorption were studied and compared with the results. From the six drugs selected in the shared pharmacophore features input, flunarizine showed the best docking score with D2, D3, and D4 dopamine receptors and had high stability during molecular dynamics simulations. Flunarizine is a frequently used medication to treat migraines and vertigo. However, its antipsychotic properties have been previously hypothesized, particularly because of its possible ability to block the D2 dopamine receptors.
Collapse
Affiliation(s)
- Melissa Mejia-Gutierrez
- Faculty
of Natural and Exact Sciences, Department of Chemistry, and School
of Basic Sciences, Department of Physiological Sciences, Faculty of
Health, Laboratory and Research group - Pharmacology Univalle Group, Universidad del Valle, 25360 Cali, Colombia
| | - Bryan D. Vásquez-Paz
- Faculty
of Natural and Exact Sciences, Department of Chemistry, Laboratory
and Research group - Pharmacology Univalle Group, Universidad del Valle, 25360 Cali, Colombia
| | - Leonardo Fierro
- Faculty
of Health, School of Basic Sciences, Department of Physiological Sciencesh,
Laboratory and Research group - Pharmacology Univalle Group, Universidad del Valle, 25360 Cali, Colombia
| | - Julio R. Maza
- Faculty
of Basic Sciences, Department of Chemistry, Laboratory and Research
group - Organic Chemistry and Biomedical Group, Universidad del Atlántico, 081001 Puerto Colombia, Colombia
| |
Collapse
|
12
|
Horwood J, Noutahi E. Molecular Design in Synthetically Accessible Chemical Space via Deep Reinforcement Learning. ACS OMEGA 2020; 5:32984-32994. [PMID: 33403260 PMCID: PMC7774092 DOI: 10.1021/acsomega.0c04153] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
The fundamental goal of generative drug design is to propose optimized molecules that meet predefined activity, selectivity, and pharmacokinetic criteria. Despite recent progress, we argue that existing generative methods are limited in their ability to favorably shift the distributions of molecular properties during optimization. We instead propose a novel Reinforcement Learning framework for molecular design in which an agent learns to directly optimize through a space of synthetically accessible drug-like molecules. This becomes possible by defining transitions in our Markov decision process as chemical reactions and allows us to leverage synthetic routes as an inductive bias. We validate our method by demonstrating that it outperforms existing state-of-the-art approaches in the optimization of pharmacologically relevant objectives, while results on multi-objective optimization tasks suggest increased scalability to realistic pharmaceutical design problems.
Collapse
Affiliation(s)
- Julien Horwood
- InVivo
AI, Montreal, Quebec H2S 3H1, Canada
- Mila, Université de Montréal, Montreal, Quebec H2S 3H1, Canada
| | | |
Collapse
|
13
|
Ahn S, Nesbit MO, Zou H, Vacca G, Axerio-Cilies P, Van Sung T, Phillips AG. Neural bases for attenuation of morphine withdrawal by Heantos-4: role of l-tetrahydropalmatine. Sci Rep 2020; 10:21275. [PMID: 33277581 PMCID: PMC7718916 DOI: 10.1038/s41598-020-78083-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022] Open
Abstract
Severe withdrawal symptoms triggered by cessation of long-term opioid use deter many individuals from seeking treatment. Opioid substitution and α2-adrenergic agonists are the current standard of pharmacotherapy for opioid use disorder in western medicine; however, each is associated with significant complications. Heantos-4 is a non-opioid botanical formulation used to facilitate opioid detoxification in Vietnam. While ongoing clinical use continues to validate its safety and effectiveness, a mechanism of action accounting for these promising effects remains to be specified. Here, we assess the effects of Heantos-4 in a rat model of morphine-dependence and present evidence that alleviation of naloxone-precipitated somatic withdrawal signs is related to an upregulation of mesolimbic dopamine activity and a consequent reversal of a hypodopaminergic state in the nucleus accumbens, a brain region implicated in opioid withdrawal. A central dopaminergic mechanism is further supported by the identification of l-tetrahydropalmatine as a key active ingredient in Heantos-4, which crosses the blood–brain barrier and shows a therapeutic efficacy comparable to its parent formulation in attenuating withdrawal signs. The anti-hypodopaminergic effects of l-tetrahydropalmatine may be related to antagonism of the dopamine autoreceptor, thus constituting a plausible mechanism contributing to the effectiveness of Heantos-4 in facilitating opioid detoxification.
Collapse
Affiliation(s)
- Soyon Ahn
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Maya O Nesbit
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Haiyan Zou
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Giada Vacca
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Peter Axerio-Cilies
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Anthony G Phillips
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada.
| |
Collapse
|
14
|
Tong Z, Zhou Y, Wang J. Identification and Functional Analysis of Long Non-coding RNAs in Autism Spectrum Disorders. Front Genet 2020; 11:849. [PMID: 33193567 PMCID: PMC7525012 DOI: 10.3389/fgene.2020.00849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Genetic and environmental factors, alone or in combination, contribute to the pathogenesis of autism spectrum disorder (ASD). Although many protein-coding genes have now been identified as disease risk genes for ASD, a detailed illustration of long non-coding RNAs (lncRNAs) associated with ASD remains elusive. In this study, we first identified ASD-related lncRNAs based on genomic variant data of individuals with ASD from a twin study. In total, 532 ASD-related lncRNAs were identified, and 86.7% of these ASD-related lncRNAs were further validated by an independent copy number variant (CNV) dataset. Then, the functions and associated biological pathways of ASD-related lncRNAs were explored by enrichment analysis of their three different types of functional neighbor genes (i.e., genomic neighbors, competing endogenous RNA (ceRNA) neighbors, and gene co-expression neighbors in the cortex). The results have shown that most of the functional neighbor genes of ASD-related lncRNAs were enriched in nervous system development, inflammatory responses, and transcriptional regulation. Moreover, we explored the differential functions of ASD-related lncRNAs in distinct brain regions by using gene co-expression network analysis based on tissue-specific gene expression profiles. As a set, ASD-related lncRNAs were mainly associated with nervous system development and dopaminergic synapse in the cortex, but associated with transcriptional regulation in the cerebellum. In addition, a functional network analysis was conducted for the highly reliable functional neighbor genes of ASD-related lncRNAs. We found that all the highly reliable functional neighbor genes were connected in a single functional network, which provided additional clues for the action mechanisms of ASD-related lncRNAs. Finally, we predicted several potential drugs based on the enrichment of drug-induced pathway sets in the ASD-altered biological pathway list. Among these drugs, several (e.g., amoxapine, piperine, and diflunisal) were partly supported by the previous reports. In conclusion, ASD-related lncRNAs participated in the pathogenesis of ASD through various known biological pathways, which may be differential in distinct brain regions. Detailed investigation into ASD-related lncRNAs can provide clues for developing potential ASD diagnosis biomarkers and therapy.
Collapse
Affiliation(s)
- Zhan Tong
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Juan Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China.,Autism Research Center of Peking University Health Science Center, Peking University, Beijing, China
| |
Collapse
|
15
|
Schildt A, de Vries EFJ, Willemsen ATM, Giacobbo BL, Moraga-Amaro R, Sijbesma JWA, van Waarde A, Sossi V, Dierckx RAJO, Doorduin J. Effect of Dopamine D 2 Receptor Antagonists on [ 18F]-FEOBV Binding. Mol Pharm 2020; 17:865-872. [PMID: 32011892 PMCID: PMC7054895 DOI: 10.1021/acs.molpharmaceut.9b01129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
interaction of dopaminergic and cholinergic neurotransmission
in, e.g., Parkinson’s disease has been well established. Here,
D2 receptor antagonists were used to assess changes in
[18F]-FEOBV binding to the vesicular acetylcholine transporter
(VAChT) in rodents using positron emission tomography (PET). After
pretreatment with either 10 mg/kg haloperidol, 1 mg/kg raclopride,
or vehicle, 90 min dynamic PET scans were performed with arterial
blood sampling. The net influx rate (Ki) was obtained from Patlak graphical analysis, using a metabolite-corrected
plasma input function and dynamic PET data. [18F]-FEOBV
concentration in whole-blood or plasma and the metabolite-corrected
plasma input function were not significantly changed by the pretreatments
(adjusted p > 0.07, Cohen’s d 0.28–1.89) while the area-under-the-curve (AUC) of the parent
fraction of [18F]-FEOBV was significantly higher after
haloperidol treatment (adjusted p = 0.022, Cohen’s d = 2.51) than in controls. Compared to controls, the AUC
of [18F]-FEOBV, normalized for injected dose and body weight,
was nonsignificantly increased in the striatum after haloperidol (adjusted p = 0.4, Cohen’s d = 1.77) and raclopride
(adjusted p = 0.052, Cohen’s d = 1.49) treatment, respectively. No changes in the AUC of [18F]-FEOBV were found in the cerebellum (Cohen’s d 0.63–0.74). Raclopride treatment nonsignificantly
increased Ki in the striatum 1.3-fold
compared to control rats (adjusted p = 0.1, Cohen’s d = 1.1) while it reduced Ki in the cerebellum by 28% (adjusted p = 0.0004,
Cohen’s d = 2.2) compared to control rats.
Pretreatment with haloperidol led to a nonsignificant reduction in Ki in the striatum (10%, adjusted p = 1, Cohen’s d = 0.44) and a 40–50%
lower Ki than controls in all other brain
regions (adjusted p < 0.0005, Cohen’s d = 3.3–4.7). The changes in Ki induced by the selective D2 receptor antagonist
raclopride can in part be quantified using [18F]-FEOBV
PET imaging. Haloperidol, a nonselective D2/σ receptor
antagonist, either paradoxically decreased cholinergic activity or
blocked off-target [18F]-FEOBV binding to σ receptors.
Hence, further studies evaluating the binding of [18F]-FEOBV
to σ receptors using selective σ receptor ligands are
necessary.
Collapse
Affiliation(s)
- Anna Schildt
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands.,Department of Physics and Astronomy, University of British Columbia, 143-2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Antoon T M Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Bruno Lima Giacobbo
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Jürgen W A Sijbesma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, 143-2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| |
Collapse
|
16
|
Gienger M, Hübner H, Löber S, König B, Gmeiner P. Structure-based development of caged dopamine D 2/D 3 receptor antagonists. Sci Rep 2020; 10:829. [PMID: 31965029 PMCID: PMC6972920 DOI: 10.1038/s41598-020-57770-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
Dopamine is a neurotransmitter of great physiological relevance. Disorders in dopaminergic signal transduction are associated with psychiatric and neurological pathologies such as Parkinson’s disease, schizophrenia and substance abuse. Therefore, a detailed understanding of dopaminergic neurotransmission may provide access to novel therapeutic strategies for the treatment of these diseases. Caged compounds with photoremovable groups represent molecular tools to investigate a biological target with high spatiotemporal resolution. Based on the crystal structure of the D3 receptor in complex with eticlopride, we have developed caged D2/D3 receptor ligands by rational design. We initially found that eticlopride, a widely used D2/D3 receptor antagonist, was photolabile and therefore is not suitable for caging. Subtle structural modification of the pharmacophore led us to the photostable antagonist dechloroeticlopride, which was chemically transformed into caged ligands. Among those, the 2-nitrobenzyl derivative 4 (MG307) showed excellent photochemical stability, pharmacological behavior and decaging properties when interacting with dopamine receptor-expressing cells.
Collapse
Affiliation(s)
- Marie Gienger
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Stefan Löber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany.
| |
Collapse
|
17
|
Chacho NM, Adams E, Stairs DJ. Enrichment-induced differences in methamphetamine drug discrimination in male rats. Pharmacol Biochem Behav 2019; 179:80-88. [PMID: 30794848 DOI: 10.1016/j.pbb.2019.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
Rats raised in an enriched environment show a decrease in sensitivity to the subjective effects of the psychostimulant d-amphetamine. The purpose of the present study was to determine if environmental enrichment during development alters the subjective effects of the more commonly abused drug methamphetamine. Male Sprague-Dawley rats were raised in either an enriched (EC) or an isolated condition (IC). EC and IC rats were trained on a two-lever operant procedure to discriminate 1.0 mg/kg (i.p.) methamphetamine from saline. Following acquisition of the discrimination a methamphetamine generalization curve (0.1-1.0 mg/kg) was determined. The antagonistic effects of dopamine D1 receptor antagonist SCH23390 (0.0075-0.06 mg/kg) and the dopamine D2 receptor antagonist eticlopride (0.01-0.3 mg/kg) were also tested. Finally, the ability of nicotine (0.05-0.5 mg/kg) to generalize and the ability of the nicotinic receptor antagonist mecamylamine (0.125-0.5 mg/kg) to antagonize the discriminative stimulus effects of methamphetamine were determined. EC rats were less sensitive to discriminative stimulus effects of methamphetamine compared to IC rats at a low 0.3 mg/kg dose and showed full antagonism of methamphetamine discrimination following SCH23390 compared to IC rats. There were no environmentally-induced differences in the effects of eticlopride. Nicotine only partially generalized to the effects of methamphetamine in both EC and IC rats. While mecamylamine failed to antagonize the effects of methamphetamine in either EC or IC rats. These results suggest that environmental enrichment decreases sensitivity to the discriminative effects of methamphetamine and the differences may be mediated through changes in the D1 dopamine receptor.
Collapse
Affiliation(s)
- Nicole M Chacho
- Creighton University, Department of Psychological Science, United States of America
| | - Emily Adams
- Creighton University, Department of Psychological Science, United States of America
| | - Dustin J Stairs
- Creighton University, Department of Psychological Science, United States of America.
| |
Collapse
|
18
|
Apostolou T, Moschopoulou G, Kolotourou E, Kintzios S. Assessment of in vitro dopamine-neuroblastoma cell interactions with a bioelectric biosensor: perspective for a novel in vitro functional assay for dopamine agonist/antagonist activity. Talanta 2017; 170:69-73. [PMID: 28501215 DOI: 10.1016/j.talanta.2017.03.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Current receptor-binding assays for dopamine do not measure the in vitro whole cellular response against dopamine or potential agonist/antagonist molecules. We herewith report the development of a novel functional assay concept for studying the in vitro interaction of the neurotransmitter dopamine with neural cells bearing dopamine receptors. The concept is based on the ultra-rapid measurement of changes in the electric properties of cultured N2a mouse neuroblastoma cells (corresponding to cumulative changes of the cell membrane potential). A close relationship between cumulative cell membrane potential and dopamine concentration was observed. Membrane depolarization was observed at nanomolar dopamine concentrations, while hyperpolarization was associated with micromolar ones. Treatment with the dopamine D2-receptor antagonist eticlopride resulted to a concentration-dependent membrane depolarization. Treatment with sodium chloride caused considerable weakening of the dopamine-associated hyperpolarization effect. The observed bioelectric response to dopamine was highly inversely correlated with the pattern of dopamine release-uptake balance by N2a cells, as determined with cyclic voltammetry. The bioelectric approach was also used to evaluate the dopaminergic activity of chaste tree (Vitex agnus-castus) extracts. The novel assay concept offers promising perspectives for the development of advanced companion diagnostics system for the high throughput, fast functional characterization of neurotransmitter agonists and antagonists.
Collapse
Affiliation(s)
- Theofylaktos Apostolou
- Laboratory of Cell Technology, Faculty of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Georgia Moschopoulou
- Laboratory of Cell Technology, Faculty of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Evdokia Kolotourou
- Laboratory of Cell Technology, Faculty of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Faculty of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
19
|
Robles CF, Johnson AW. Disruptions in effort-based decision-making and consummatory behavior following antagonism of the dopamine D2 receptor. Behav Brain Res 2016; 320:431-439. [PMID: 27984049 DOI: 10.1016/j.bbr.2016.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023]
Abstract
Dopamine is known to influence motivational processes, however the precise role of this neurotransmitter remains a contentious issue. In the current study we sought to further characterize dopamine signaling in reward-based decision-making and consummatory behavior in mice, via lateral ventricle infusion of the dopamine D2 receptor antagonist eticlopride. In Experiment 1, we examined effort-based decision-making, in which mice had a choice between one lever, where a single response led to the delivery of a low value reward (2% sucrose); and a second lever, which led to a higher value reward (20% sucrose) that gradually required more effort to obtain. As the response schedule for the high value reward became more strict, low dose (4μg in 0.5μl) central infusions of eticlopride biased preference away from the high value reward, and toward the lever that led to the low value reward. Similarly, a higher dose of eticlopride (8μg in 0.5μl) also disrupted choice responding for the high value reward, however it did so by increasing omissions. In Experiment 2, we assessed the effects of eticlopride on consumption of 20% sucrose. The antagonist led to a dose-dependent reduction in intake, and through an analysis of licking microstructure, it was revealed that this in part reflected a reduction in the motivation to engage in consummatory behavior, rather than alterations in the evaluation of the reward. These results suggest that disruptions in D2 receptor signaling reduce the willingness to engage in effortful operant responding and consumption of a desirable outcome.
Collapse
Affiliation(s)
- Cindee F Robles
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
20
|
Butini S, Nikolic K, Kassel S, Brückmann H, Filipic S, Agbaba D, Gemma S, Brogi S, Brindisi M, Campiani G, Stark H. Polypharmacology of dopamine receptor ligands. Prog Neurobiol 2016; 142:68-103. [PMID: 27234980 DOI: 10.1016/j.pneurobio.2016.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 01/11/2023]
Abstract
Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular.
Collapse
Affiliation(s)
- S Butini
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - K Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Kassel
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - H Brückmann
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - S Filipic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - D Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Gemma
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - S Brogi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - M Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - G Campiani
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - H Stark
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
21
|
Soto PL, Hiranita T, Grandy DK, Katz JL. Choice for response alternatives differing in reinforcement frequency in dopamine D2 receptor mutant and Swiss-Webster mice. Psychopharmacology (Berl) 2014; 231:3169-77. [PMID: 24682471 DOI: 10.1007/s00213-014-3495-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE A previous study showed that dopamine (DA) D2 receptors (D2Rs) are involved in the reinforcing effectiveness of food, but the specific involvement of DA D2Rs in choice among food reinforcers remains unclear. OBJECTIVES The current study used genetic and pharmacological approaches to assess the role of D2Rs in choice among food-reinforcement frequencies using the generalized matching law (GML), which specifies that logged response and time allocation ratios vary linearly with logged reinforcer ratios. METHODS Congenic D2R knockout (KO) and wild-type (WT) mice were exposed to concurrent variable-interval schedules of reinforcement with scheduled relative-reinforcement rates from 4:1 to 1:4. Effects of the D2R antagonist (-)-eticlopride (0.1-1.0 mg/kg) were assessed in Swiss-Webster mice. RESULTS Response and time allocation ratios were related to obtained reinforcement ratios as predicted by the GML. GML fits accounted for ≥ 92 % of the variance in allocation ratios and did not differ in D2R KO and WT mice. Similarly, there were no significant effects of (-)-eticlopride dose on GML fits, despite effects on overall response rates. CONCLUSIONS The current results demonstrate that neither deletion nor acute blockade of D2Rs affects choice among response alternatives varying in food-reinforcement frequencies. Because previously published results suggest a role of D2Rs in choice between response alternatives differing in reinforcer magnitude and delay or magnitude and probability, the current findings suggest that D2Rs play a role in choice only among certain parameters of reinforcement. Furthermore, these findings suggest parameters of reinforcement may only be fungible in a complex manner.
Collapse
Affiliation(s)
- Paul L Soto
- Department of Educational Psychology and Leadership, Texas Tech University, Lubbock, TX, 79410, USA,
| | | | | | | |
Collapse
|
22
|
Puig MV, Miller EK. Neural Substrates of Dopamine D2 Receptor Modulated Executive Functions in the Monkey Prefrontal Cortex. Cereb Cortex 2014; 25:2980-7. [PMID: 24814093 DOI: 10.1093/cercor/bhu096] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dopamine D2 receptors (D2R) play a major role in cognition, mood and motor movements. Their blockade by antipsychotic drugs reduces hallucinatory and delusional behaviors in schizophrenia, but often fails to alleviate affective and cognitive dysfunctions. The prefrontal cortex (PFC) expresses D2R and is altered in schizophrenia. We investigated how D2R modulate behavior and PFC function in monkeys. Two monkeys learned new and performed highly familiar visuomotor associations, where each cue was associated with a saccade to a right or left target. We recorded neural spikes and local field potentials from multiple electrodes while injecting the D2R antagonist eticlopride in the lateral PFC. Blocking prefrontal D2R impaired associative learning and cognitive flexibility, reduced motivation, but left the performance of familiar associations intact. Eticlopride reduced saccade-direction selectivity of prefrontal neurons, leading to a decrease in neural information about the associations, and an increase in alpha oscillations. These results, together with our recent study using a D1R antagonist, suggest that D1R and D2R in the primate lateral PFC cooperate to modulate several executive functions. Our findings help to gain insight into why antipsychotic drugs, with strong antagonistic actions on D2R, fail to ameliorate cognitive and emotional deficits in schizophrenia.
Collapse
Affiliation(s)
- M Victoria Puig
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Anderberg RH, Anefors C, Bergquist F, Nissbrandt H, Skibicka KP. Dopamine signaling in the amygdala, increased by food ingestion and GLP-1, regulates feeding behavior. Physiol Behav 2014; 136:135-44. [PMID: 24560840 DOI: 10.1016/j.physbeh.2014.02.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/11/2022]
Abstract
Mesolimbic dopamine plays a critical role in food-related reward processing and learning. The literature focuses primarily on the nucleus accumbens as the key dopaminergic target in which enhanced dopamine signaling is associated with reward. Here, we demonstrate a novel neurobiological mechanism by which dopamine transmission in the amygdala regulates food intake and reward. We show that food intake was associated with increased dopamine turnover in the amygdala. Next, we assess the impact of direct intra-amygdala D1 and D2 receptor activation on food intake and sucrose-driven progressive ratio operant conditioning in rats. Amygdala D2 receptor activation reduced food intake and operant behavior for sucrose, whereas D2 receptor blockade increased food intake but surprisingly reduced operant behavior. In contrast, D1 receptor stimulation or blockade did not alter feeding or operant conditioning for food. The glucagon-like peptide 1 (GLP-1) system, a target for type 2 diabetes treatment, in addition to regulating glucose homeostasis, also reduces food intake. We found that central GLP-1R receptor activation is associated with elevated dopamine turnover in the amygdala, and that part of the anorexic effect of GLP-1 is mediated by D2 receptor signaling in the amygdala. Our findings indicate that amygdala dopamine signaling is activated by both food intake and the anorexic brain-gut peptide GLP-1 and that amygdala D2 receptor activation is necessary and sufficient to change feeding behavior. Collectively these studies indicate a novel mechanism by which the dopamine system affects feeding-oriented behavior at the level of the amygdala.
Collapse
Affiliation(s)
- Rozita H Anderberg
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Christine Anefors
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Filip Bergquist
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Hans Nissbrandt
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
24
|
Central manipulation of dopamine receptors attenuates the orexigenic action of ghrelin. Psychopharmacology (Berl) 2013. [PMID: 23624808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
OBJECTIVE Recent evidence suggests that ghrelin, a peptidic hormone stimulating food intake, interacts with the dopamine signaling. This interaction has been demonstrated to modulate several effects of ghrelin, such as locomotor activity, memory, and food intake. Ghrelin increases dopamine levels in the shell of the nucleus accumbens stimulating food intake, while ablation of the ghrelin receptor attenuates the hypophagia caused by the activation of dopamine receptor 2. However, it is not known whether the orexigenic action of ghrelin is due to changes in central dopamine receptors. MATERIALS AND METHODS We used Sprague-Dawley rats injected with different dopamine receptor agonists, antagonists, and ghrelin. RESULTS We demonstrate that the specific central blockade of dopamine receptor 1, 2, and 3 (D1, D2, and D3, respectively) reduces the orexigenic action of ghrelin. Similarly, specific central stimulation, either singly of dopamine receptor 1 or dopamine receptors 2 and 3 simultaneously, causes a significant decrease in ghrelin-induced food intake. Co-stimulation of all three receptors (D1, D2, and D3) also led to a marked attenuation in ghrelin-induced food intake. Importantly, the reduction in ghrelin-induced feeding was not caused by malaise or any type of behavioral alteration. CONCLUSION Taken together, these data indicate that dopamine receptors play an important role in acute stimulation of feeding behavior induced by central injection of ghrelin.
Collapse
|
25
|
Paulke A, Kremer C, Wunder C, Achenbach J, Djahanschiri B, Elias A, Schwed JS, Hübner H, Gmeiner P, Proschak E, Toennes SW, Stark H. Argyreia nervosa (Burm. f.): receptor profiling of lysergic acid amide and other potential psychedelic LSD-like compounds by computational and binding assay approaches. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:492-497. [PMID: 23665164 DOI: 10.1016/j.jep.2013.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The convolvulacea Argyreia nervosa (Burm. f.) is well known as an important medical plant in the traditional Ayurvedic system of medicine and it is used in numerous diseases (e.g. nervousness, bronchitis, tuberculosis, arthritis, and diabetes). Additionally, in the Indian state of Assam and in other regions Argyreia nervosa is part of the traditional tribal medicine (e.g. the Santali people, the Lodhas, and others). In the western hemisphere, Argyreia nervosa has been brought in attention as so called "legal high". In this context, the seeds are used as source of the psychoactive ergotalkaloid lysergic acid amide (LSA), which is considered as the main active ingredient. AIM OF THE STUDY As the chemical structure of LSA is very similar to that of lysergic acid diethylamide (LSD), the seeds of Argyreia nervosa (Burm. f.) are often considered as natural substitute of LSD. In the present study, LSA and LSD have been compared concerning their potential pharmacological profiles based on the receptor binding affinities since our recent human study with four volunteers on p.o. application of Argyreia nervosa seeds has led to some ambiguous effects. MATERIAL AND METHODS In an initial step computer-aided in silico prediction models on receptor binding were employed to screen for serotonin, norepinephrine, dopamine, muscarine, and histamine receptor subtypes as potential targets for LSA. In addition, this screening was extended to accompany ergotalkaloids of Argyreia nervosa (Burm. f.). In a verification step, selected LSA screening results were confirmed by in vitro binding assays with some extensions to LSD. RESULTS In the in silico model LSA exhibited the highest affinity with a pKi of about 8.0 at α1A, and α1B. Clear affinity with pKi>7 was predicted for 5-HT1A, 5-HT1B, 5-HT1D, 5-HT6, 5-HT7, and D2. From these receptors the 5-HT1D subtype exhibited the highest pKi with 7.98 in the prediction model. From the other ergotalkaloids, agroclavine and festuclavine also seemed to be highly affine to the 5-HT1D-receptor with pKi>8. In general, the ergotalkaloids of Argyreia nervosa seem to prefer serotonin and dopamine receptors (pKi>7). However, with exception of ergometrine/ergometrinine only for 5-HT3A, and histamine H2 and H4 no affinities were predicted. Compared to LSD, LSA exhibited lower binding affinities in the in vitro binding assays for all tested receptor subtypes. However, with a pKi of 7.99, 7.56, and 7.21 a clear affinity for 5-HT1A, 5-HT2, and α2 could be demonstrated. For DA receptor subtypes and the α1-receptor the pKi ranged from 6.05 to 6.85. CONCLUSION Since the psychedelic activity of LSA in the recent human study was weak and although LSA from Argyreia nervosa is often considered as natural exchange for LSD, LSA should not be regarded as LSD-like psychedelic drug. However, vegetative side effects and psychotropic effects may be triggered by serotonin or dopamine receptor subtypes.
Collapse
Affiliation(s)
- Alexander Paulke
- Institute of Legal Medicine, Goethe University of Frankfurt/Main, Kennedyallee 104, D-60596 Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bonito-Oliva A, Pallottino S, Bertran-Gonzalez J, Girault JA, Valjent E, Fisone G. Haloperidol promotes mTORC1-dependent phosphorylation of ribosomal protein S6 via dopamine- and cAMP-regulated phosphoprotein of 32 kDa and inhibition of protein phosphatase-1. Neuropharmacology 2013; 72:197-203. [PMID: 23643747 DOI: 10.1016/j.neuropharm.2013.04.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 12/18/2022]
Abstract
The ribosomal protein S6 (rpS6) is a component of the small 40S ribosomal subunit, involved in multiple physiological functions. Here, we examined the effects produced by haloperidol, a typical antipsychotic drug, on the phosphorylation of rpS6 at Ser240/244 in the striatum, a brain region involved in neurodegenerative and neuropsychiatric disorders. We found that administration of haloperidol increased Ser240/244 phosphorylation in a subpopulation of GABA-ergic medium spiny neurons (MSNs), which preferentially express dopamine D2 receptors (D2Rs). This effect was abolished by rapamycin, an inhibitor of the mammalian target of rapamycin complex 1 (mTORC1), or by PF470867, a selective inhibitor of the p70 ribosomal S6 kinase 1 (S6K1). We also found that the effect of haloperidol on Ser240/244 phosphorylation was prevented by functional inactivation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), an endogenous inhibitor of protein phosphatase-1 (PP-1). In line with this observation, incubation of striatal slices with okadaic acid and calyculin A, two inhibitors of PP-1, increased Ser240/244 phosphorylation. These results show that haloperidol promotes mTORC1- and S6K1-dependent phosphorylation of rpS6 at Ser240/244, in a subpopulation of striatal MSNs expressing D2Rs. They also indicate that this effect is exerted by suppressing dephosphorylation at Ser240/244, through PKA-dependent activation of DARPP-32 and inhibition of PP-1.
Collapse
|
27
|
Central manipulation of dopamine receptors attenuates the orexigenic action of ghrelin. Psychopharmacology (Berl) 2013; 229:275-83. [PMID: 23624808 DOI: 10.1007/s00213-013-3096-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Recent evidence suggests that ghrelin, a peptidic hormone stimulating food intake, interacts with the dopamine signaling. This interaction has been demonstrated to modulate several effects of ghrelin, such as locomotor activity, memory, and food intake. Ghrelin increases dopamine levels in the shell of the nucleus accumbens stimulating food intake, while ablation of the ghrelin receptor attenuates the hypophagia caused by the activation of dopamine receptor 2. However, it is not known whether the orexigenic action of ghrelin is due to changes in central dopamine receptors. MATERIALS AND METHODS We used Sprague-Dawley rats injected with different dopamine receptor agonists, antagonists, and ghrelin. RESULTS We demonstrate that the specific central blockade of dopamine receptor 1, 2, and 3 (D1, D2, and D3, respectively) reduces the orexigenic action of ghrelin. Similarly, specific central stimulation, either singly of dopamine receptor 1 or dopamine receptors 2 and 3 simultaneously, causes a significant decrease in ghrelin-induced food intake. Co-stimulation of all three receptors (D1, D2, and D3) also led to a marked attenuation in ghrelin-induced food intake. Importantly, the reduction in ghrelin-induced feeding was not caused by malaise or any type of behavioral alteration. CONCLUSION Taken together, these data indicate that dopamine receptors play an important role in acute stimulation of feeding behavior induced by central injection of ghrelin.
Collapse
|
28
|
Paine TA, Asinof SK, Diehl GW, Frackman A, Leffler J. Medial prefrontal cortex lesions impair decision-making on a rodent gambling task: reversal by D1 receptor antagonist administration. Behav Brain Res 2013; 243:247-54. [PMID: 23354057 PMCID: PMC3633084 DOI: 10.1016/j.bbr.2013.01.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/28/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022]
Abstract
Decision-making is a complex cognitive process that is impaired in a number of psychiatric disorders. In the laboratory, decision-making is frequently assessed using "gambling" tasks that are designed to simulate real-life decisions in terms of uncertainty, reward and punishment. Here, we investigate whether lesions of the medial prefrontal cortex (PFC) cause impairments in decision-making using a rodent gambling task (rGT). In this task, rats have to decide between 1 of 4 possible options: 2 options are considered "advantageous" and lead to greater net rewards (food pellets) than the other 2 "disadvantageous" options. Once rats attained stable levels of performance on the rGT they underwent sham or excitoxic lesions of the medial PFC and were allowed to recover for 1 week. Following recovery, rats were retrained for 5 days and then the effects of a dopamine D1-like receptor antagonist (SCH23390) or a D2-like receptor antagonist (haloperidol) on performance were assessed. Lesioned rats exhibited impaired decision-making: they made fewer advantageous choices and chose the most optimal choice less frequently than did sham-operated rats. Administration of SCH23390 (0.03 mg/kg), but not haloperidol (0.015-0.03 mg/kg) attenuated the lesion-induced decision-making deficit. These results indicate that the medial PFC is important for decision-making and that excessive signaling at D1 receptors may contribute to decision-making impairments.
Collapse
Affiliation(s)
- Tracie A Paine
- Department of Neuroscience, Oberlin College, Oberlin, OH 44074, United States.
| | | | | | | | | |
Collapse
|
29
|
Maheux J, St-Hilaire M, Voyer D, Tirotta E, Borrelli E, Rouillard C, Rompré PP, Lévesque D. Dopamine D(2) Antagonist-Induced Striatal Nur77 Expression Requires Activation of mGlu5 Receptors by Cortical Afferents. Front Pharmacol 2012; 3:153. [PMID: 22912617 PMCID: PMC3418524 DOI: 10.3389/fphar.2012.00153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/25/2012] [Indexed: 01/03/2023] Open
Abstract
Dopamine D2 receptor antagonists modulate gene transcription in the striatum. However, the molecular mechanism underlying this effect remains elusive. Here we used the expression of Nur77, a transcription factor of the orphan nuclear receptor family, as readout to explore the role of dopamine, glutamate, and adenosine receptors in the effect of a dopamine D2 antagonist in the striatum. First, we investigated D2 antagonist-induced Nur77 mRNA in D2L receptor knockout mice. Surprisingly, deletion of the D2L receptor isoform did not reduce eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Next, we tested if an ibotenic acid-induced cortical lesion could block the effect of eticlopride on Nur77 expression. Cortical lesions strongly reduced eticlopride-induced striatal upregulation of Nur77 mRNA. Then, we investigated if glutamatergic neurotransmission could modulate eticlopride-induced Nur77 expression. A combination of a metabotropic glutamate type 5 (mGlu5) and adenosine A2A receptor antagonists abolished eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Direct modulation of Nur77 expression by striatal glutamate and adenosine receptors was confirmed using corticostriatal organotypic cultures. Taken together, these results indicate that blockade of postsynaptic D2 receptors is not sufficient to trigger striatal transcriptional activity and that interaction with corticostriatal presynaptic D2 receptors and subsequent activation of postsynaptic glutamate and adenosine receptors in the striatum is required. Thus, these results uncover an unappreciated role of presynaptic D2 heteroreceptors and support a prominent role of glutamate in the effect of D2 antagonists.
Collapse
Affiliation(s)
- Jérôme Maheux
- Faculté de Pharmacie, Université de Montréal Montréal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhu G, Huang Y, Chen Y, Zhuang Y, Behnisch T. MPTP modulates hippocampal synaptic transmission and activity-dependent synaptic plasticity via dopamine receptors. J Neurochem 2012; 122:582-93. [PMID: 22651101 DOI: 10.1111/j.1471-4159.2012.07815.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD)-like symptoms and cognitive deficits are inducible by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Since cognitive abilities, including memory formations rely also on hippocampus, we set out to clarify the effects of MPTP on hippocampal physiology. We show that bath-application of MPTP (25 μM) to acute hippocampal slices enhanced AMPA receptor-mediated field excitatory postsynaptic potentials (AMPAr-fEPSPs) transiently, whereas N-methyl-D-aspartate (NMDA) receptor-mediated fEPSPs (NMDAr-fEPSPs) were facilitated persistently. The MPTP-mediated transient AMPAr-fEPSP facilitation was antagonized by the dopamine D2-like receptor antagonists, eticlopride (1 μM) and sulpiride (1 and 40 μM). In contrast, the persistent enhancement of NMDAr-fEPSPs was prevented by the dopamine D1-like receptor antagonist SCH23390 (10 μM). In addition, we show that MPTP decreased paired-pulse facilitation of fEPSPs and mEPSCs frequency. Regarding activity-dependent synaptic plasticity, 25 μM MPTP transformed short-term potentiation (STP) into a long-term potentiation (LTP) and caused a slow onset potentiation of a non-tetanized synaptic input after induction of LTP in a second synaptic input. This heterosynaptic slow onset potentiation required activation of dopamine D1-like and NMDA-receptors. We conclude that acute MPTP application affects basal synaptic transmission by modulation of presynaptic vesicle release and facilitates NMDAr-fEPSPs as well as activity-dependent homo- and heterosynaptic plasticity under participation of dopamine receptors.
Collapse
Affiliation(s)
- Guoqi Zhu
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
31
|
Li W, Doyon WM, Dani JA. Quantitative unit classification of ventral tegmental area neurons in vivo. J Neurophysiol 2012; 107:2808-20. [PMID: 22378178 DOI: 10.1152/jn.00575.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons in the ventral tegmental area (VTA) synthesize several major neurotransmitters, including dopamine (DA), GABA, and glutamate. To classify VTA single-unit neural activity from freely moving rats, we used hierarchical agglomerative clustering and probability distributions as quantitative methods. After many parameters were examined, a firing rate of 10 Hz emerged as a transition frequency between clusters of low-firing and high-firing neurons. To form a subgroup identified as high-firing neurons with GABAergic characteristics, the high-firing classification was sorted by spike duration. To form a subgroup identified as putative DA neurons, the low-firing classification was sorted by DA D2-type receptor pharmacological responses to quinpirole and eticlopride. Putative DA neurons were inhibited by the D2-type receptor agonist quinpirole and returned to near-baseline firing rates or higher following the D2-type receptor antagonist eticlopride. Other unit types showed different responses to these D2-type receptor drugs. A multidimensional comparison of neural properties indicated that these subgroups often clustered independently of each other with minimal overlap. Firing pattern variability reliably distinguished putative DA neurons from other unit types. A combination of phasic burst properties and a low skew in the interspike interval distribution produced a neural population that was comparable to the one sorted by D2 pharmacology. These findings provide a quantitative statistical approach for the classification of VTA neurons in unanesthetized animals.
Collapse
Affiliation(s)
- Wei Li
- Center on Addiction, Learning, Memory, Department of Neuroscience, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
32
|
Dopamine receptors and Parkinson's disease. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2011; 2011:403039. [PMID: 25954517 PMCID: PMC4411877 DOI: 10.1155/2011/403039] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/04/2011] [Accepted: 04/12/2011] [Indexed: 01/03/2023]
Abstract
Parkinson's disease (PD) is a progressive extrapyramidal motor
disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic) neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa) significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS). In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.
Collapse
|
33
|
Obiol-Pardo C, López L, Pastor M, Selent J. Progress in the structural prediction of G protein-coupled receptors: D3 receptor in complex with eticlopride. Proteins 2011; 79:1695-703. [PMID: 21491496 DOI: 10.1002/prot.23021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/04/2011] [Accepted: 02/12/2011] [Indexed: 11/06/2022]
Abstract
Predicting the three-dimensional structure of ligand-receptor complexes involving G protein-coupled receptors (GPCRs) is still a challenging task in rational drug design. To evaluate the reliability of the GPCR structural prediction, only a couple of community-wide assessments have been carried out. Our participation in the last edition, DOCK2010, involved the blind prediction of the dopaminergic D(3) receptor in complex with the D(2)/D(3) selective antagonist eticlopride for which the crystal structure has been recently released. Here, we describe a methodology that succeeded to produce a correctly predicted eticlopride-D(3) receptor complex out of three submitted models. Ranking the obtained models in the correct order is the main challenge due to subtle structural differences in the complex that are not sufficiently captured by conventional scoring functions. Importantly, our work reveals that a correct ranking is obtained by including a more sophisticated description of conformational ligand energy on binding. All in all, this case study highlights the current progress in modeling GPCR complexes and underlines that in silico modeling can be a valuable complement in GPCR drug discovery.
Collapse
Affiliation(s)
- Cristian Obiol-Pardo
- Research Programme on Biomedical Informatics, GRIB, IMIM/Universitat Pompeu Fabra, PRBB, Dr Aiguader 88, E-08003 Barcelona, Spain
| | | | | | | |
Collapse
|
34
|
Al-Azzawi H, Yacqub-Usman K, Richardson A, Hofland LJ, Clayton RN, Farrell WE. Reversal of endogenous dopamine receptor silencing in pituitary cells augments receptor-mediated apoptosis. Endocrinology 2011; 152:364-73. [PMID: 21177832 DOI: 10.1210/en.2010-0886] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dopamine (DA)-agonist targeting of the DA D(2) receptor (D2R) in prolactinomas is the first-line treatment choice for suppression of prolactin and induction of tumor shrinkage. Resistance to DA agonists seems to be related to receptor number. Using the MMQ and GH3 pituitary cell lines, that either do or do not express D2R, respectively, we explored the epigenetic profile associated with the presence or absence of D2R in these cells lines. These studies led us to explore pharmacological strategies designed to restore receptor expression and thereby potentially augment DA agonist-mediated apoptosis. We show in GH3 cells that the D2R harbors increased CpG island-associated methylation and enrichment for histone H3K27me3. Conversely, MMQ cells and normal pituitaries show enrichment for H3K9Ac and barely detectable H3K27me3. Coculture of GH3 cells with the demethylating agent zebularine and the histone deacetylase inhibitor trichostatin A was responsible for a decrease in CpG island methylation and enrichment for the histone H3K9Ac mark. In addition, challenge of GH3 cells with zebularine alone or coculture with both agents led to expression of endogenous D2R in these cells. Induced expression D2R in GH3 cells was associated with a significant increase in apoptosis indices to challenge with either DA or bromocriptine. Specificity of a receptor-mediated response was established in coincubations with specific D2R antagonist and siRNA approaches in GH3 cell and D2R expressing MMQ cell lines. These studies point to the potential efficacy of combined treatment with epigenetic drugs and DA agonists for the medical management of different pituitary tumor subtypes, resistant to conventional therapies.
Collapse
Affiliation(s)
- Haneen Al-Azzawi
- Human Disease and Genomics Group, Institute of Science and Technology in Medicine, School of Medicine, Keele University, Stoke on Trent, Staffordshire ST4 7QB United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Anterior hypothalamic dopamine D2 receptors modulate adolescent anabolic/androgenic steroid-induced offensive aggression in the Syrian hamster. Behav Pharmacol 2010; 21:314-22. [PMID: 20555255 DOI: 10.1097/fbp.0b013e32833b10f1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the Syrian hamster, treatment with anabolic/androgenic steroids (AAS) throughout adolescence increases dopamine and D2 receptor expression in the anterior hypothalamus (AH), a brain region implicated in the control of aggression. D2 receptor antagonists have reduced aggression in various species and animal models. However, these studies used systemic administration of drugs and reported concomitant changes in mobility. These data complicate the question of whether pharmacology targeting D2 receptors is specific to aggression or whether these drugs exert their antiaggressive effects through nonspecific mechanisms. To resolve this discrepancy, the current studies investigate whether administration of the D2 receptor antagonist eticlopride (0.01-10.0 microg in a final volume of 0.5 microl) into the AH modulates AAS-induced aggression. Antagonism of AH D2 receptors effectively suppressed AAS-induced aggression beginning at the 0.1 microg dose, with higher doses producing a floor effect, when compared with AAS-treated animals injected with saline into the AH. Importantly, these reductions in aggressive responding occurred in the absence of changes in locomotor behavior. Our findings identify a neuroanatomical locus where D2 receptor antagonism suppresses adolescent AAS-induced aggression in the absence of alterations to general mobility.
Collapse
|
36
|
Schwartzer JJ, Melloni RH. Dopamine activity in the lateral anterior hypothalamus modulates AAS-induced aggression through D2 but not D5 receptors. Behav Neurosci 2010; 124:645-55. [PMID: 20939664 PMCID: PMC3131052 DOI: 10.1037/a0020899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Treatment with anabolic-androgenic steroids (AAS) throughout adolescence facilitates offensive aggression in Syrian hamsters. In the anterior hypothalamus (AH), the dopaminergic neural system undergoes alterations after repeated exposure to AAS, producing elevated aggression. Previously, systemic administration of selective dopamine receptor antagonists has been shown to reduce aggression in various species and animal models. However, these reductions in aggression occur with concomitant alterations in general arousal and mobility. Therefore, to control for these systemic effects, the current studies utilized microinjection techniques to determine the effects of local antagonism of D2 and D5 receptors in the AH on adolescent AAS-induced aggression. Male Syrian hamsters were treated with AAS throughout adolescence and tested for aggression after local infusion of the D2 antagonist eticlopride, or the D5 antagonist SCH-23390, into the AH. Treatment with eticlopride showed dose-dependent suppression of aggressive behavior in the absence of changes in mobility. Conversely, while injection of SCH-23390 suppressed aggressive behavior, these reductions were met with alterations in social interest and locomotor behavior. To elucidate a plausible mechanism for the observed D5 receptor mediation of AAS-induced aggression, brains of AAS and sesame oil-treated animals were processed for double-label immunofluorescence of GAD₆₇ (a marker for GABA production) and D5 receptors in the lateral subdivision of the AH (LAH). Results indicate a sparse distribution of GAD₆₇ neurons colocalized with D5 receptors in the LAH. Together, these results indicate that D5 receptors in the LAH modulate non-GABAergic pathways that indirectly influence aggression control, while D2 receptors have a direct influence on AAS-induced aggression.
Collapse
Affiliation(s)
- Jared J. Schwartzer
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Richard H. Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| |
Collapse
|
37
|
D2 antagonist during development decreases anxiety and infanticidal behavior in adult female prairie voles (Microtus ochrogaster). Behav Brain Res 2010; 210:127-30. [PMID: 20152865 DOI: 10.1016/j.bbr.2010.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/25/2010] [Accepted: 02/02/2010] [Indexed: 12/01/2022]
Abstract
On postnatal day 8, prairie vole pups were randomly assigned a treatment of 1mg/kg SKF38393 (D1 agonist), quinpirole (D2 agonist), SCH23390 (D1 antagonist), eticlopride (D2 antagonist), or saline vehicle. As adults, females treated with eticlopride exhibited reduced anxiety-like behavior in an elevated plus maze and a reduction in infanticidal behavior. These behavioral effects were not seen in males. These data demonstrate that a single exposure to a D2 antagonist during development can have persistent, sex-specific effects on behavior into adulthood.
Collapse
|
38
|
Darmopil S, Martín AB, De Diego IR, Ares S, Moratalla R. Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry 2009; 66:603-13. [PMID: 19520364 DOI: 10.1016/j.biopsych.2009.04.025] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/07/2009] [Accepted: 04/17/2009] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pharmacologic studies have implicated dopamine D1-like receptors in the development of dopamine precursor molecule 3,4-dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesias and associated molecular changes in hemiparkinsonian mice. However, pharmacologic agents for D1 or D2 receptors also recognize other receptor family members. Genetic inactivation of the dopamine D1 or D2 receptor was used to define the involvement of these receptor subtypes. METHODS During a 3-week period of daily L-DOPA treatment (25 mg/kg), mice were examined for development of contralateral turning behavior and dyskinesias. L-DOPA-induced changes in expression of signaling molecules and other proteins in the lesioned striatum were examined immunohistochemically. RESULTS Chronic L-DOPA treatment gradually induced rotational behavior and dyskinesia in wildtype hemiparkinsonian mice. Dyskinetic symptoms were associated with increased FosB and dynorphin expression, phosphorylation of extracellular signal-regulated kinase, and phosphoacetylation of histone 3 (H3) in the lesioned striatum. These molecular changes were restricted to striatal areas with complete dopaminergic denervation and occurred only in dynorphin-containing neurons of the direct pathway. D1 receptor inactivation abolished L-DOPA-induced dyskinesias and associated molecular changes. Inactivation of the D2 receptor had no significant effect on the behavioral or molecular response to chronic L-DOPA. CONCLUSIONS Our results demonstrate that the dopamine D1 receptor is critical for the development of L-DOPA-induced dyskinesias in mice and in the underlying molecular changes in the denervated striatum and that the D2 receptor has little or no involvement. In addition, we demonstrate that H3 phosphoacetylation is blocked by D1 receptor inactivation, suggesting that inhibitors of H3 acetylation and/or phosphorylation may be useful in preventing or reversing dyskinesia.
Collapse
Affiliation(s)
- Sanja Darmopil
- Cajal Institute, Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|