1
|
Ergünay K, Polat C, Özkul A. Vector-borne viruses in Turkey: A systematic review and bibliography. Antiviral Res 2020; 183:104934. [PMID: 32949637 DOI: 10.1016/j.antiviral.2020.104934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022]
Abstract
Turkey serves as a natural hub for the dissemination of vector-borne viruses and provides many suitable habitats with diverse ecologies for introduction and establishment of new pathogens. This manuscript provides an updated systematic review and meta-analysis of the vector-borne viruses documented in Turkey. Following web-based identification, screening and eligibility evaluation, 291 published reports were reviewed. The publications were categorized and listed as a supplementary bibliography accompanying the manuscript. In brief, Crimean-Congo hemorrhagic fever virus (CCHFV) and West Nile virus (WNV) are currently documented as prominent tick and mosquito-borne viral pathogens in Turkey. CCHFV produces a significant number of infections annually, with severe outcome or death in a portion of cases. WNV gained attention following the clustering of cases in 2010. Exposure and infections with sandfly-borne phleboviruses, such as Toscana virus, are indigenous and widespread. Epidemiology, risk factors, symptomatic infections in susceptible hosts, vectors and reservoirs for these pathogens have been explored in detail. Detection of novel viruses in mosquitoes, sandflies and ticks from several regions is of particular interest, despite scarce information on their epidemiology and pathogenicity in vertebrates. Introduction and emergence of viruses transmitted by invasive Aedes mosquitoes constitute a threat, albeit only imported infections have so far been documented. Detection of Rift valley fever virus exposure is also of concern, due to its detrimental effects on livestock and spillover infections in humans. Vigilance to identify and diagnose probable cases as well as vector surveillance for established and potential pathogens is therefore, imperative.
Collapse
Affiliation(s)
- Koray Ergünay
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara, 06100, Turkey.
| | - Ceylan Polat
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara, 06100, Turkey
| | - Aykut Özkul
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara, 06110, Turkey
| |
Collapse
|
2
|
Bilgin Z, Turan N, Cizmecigil UY, Altan E, Esatgil MU, Yilmaz A, Aydin O, Kocazeybek B, Richt JA, Yilmaz H. Investigation of Vector-Borne Viruses in Ticks, Mosquitos, and Ruminants in the Thrace District of Turkey. Vector Borne Zoonotic Dis 2020; 20:670-679. [PMID: 32397953 DOI: 10.1089/vbz.2019.2532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a considerable increase in vector-borne zoonotic diseases around the world, including Turkey, such as Crimean-Congo hemorrhagic fever (CCHF), tick borne encephalitis (TBE), Rift Valley fever (RVF), and West Nile fever (WNF), causing disease and death in humans and animals and significant economical losses. Hence, the aim of this study was to investigate the presence of CCHF virus (CCHFV) and TBE virus (TBEV) in ticks and RVF virus (RVFV) and WNF virus (WNV) in mosquitos, as well as in sheep and cattle, in the Thrace district of the Marmara region, which borders Bulgaria and Greece. Buffy-coat samples from 86 cattle and 81 sheep, as well as 563 ticks and 7390 mosquitos, were collected and examined by quantitative real-time RT-PCR for the presence of CCHFV, TBEV, RVFV, and WNV. All buffy-coat samples from cattle and sheep were negative for these viruses. Similarly, all tick samples were negative for CCHFV-RNA and TBEV-RNA. Among 245 pools representing 7390 mosquitos, only 1 pool sample was found to be positive for WNV-RNA and was confirmed by sequencing. Phylogenetic analysis revealed that it was WNV lineage-2. No RVFV-RNA was detected in the 245 mosquito pools. In conclusion, results of this study indicate that CCHFV, TBEV, and RVFV are not present in livestock and respective vectors in the Thrace district of Marmara region of Turkey, whereas WNV-RNA was found in mosquitos from this region.
Collapse
Affiliation(s)
- Zahide Bilgin
- Department of Parasitology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Utku Y Cizmecigil
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Eda Altan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meltem Ulutas Esatgil
- Department of Parasitology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bekir Kocazeybek
- Department of Microbiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
3
|
Tekin S, Dowd SE, Davinic M, Bursali A, Keskin A. Pyrosequencing based assessment of bacterial diversity in Turkish Rhipicephalus annulatus and Dermacentor marginatus ticks (Acari: Ixodidae). Parasitol Res 2017; 116:1055-1061. [DOI: 10.1007/s00436-017-5387-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/16/2017] [Indexed: 11/25/2022]
|
4
|
Inci A, Yildirim A, Duzlu O, Doganay M, Aksoy S. Tick-Borne Diseases in Turkey: A Review Based on One Health Perspective. PLoS Negl Trop Dis 2016; 10:e0005021. [PMID: 27977689 PMCID: PMC5158090 DOI: 10.1371/journal.pntd.0005021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The importance of tick-borne diseases is increasing all over the world, including Turkey. Global warming, environmental and ecological changes and the existence of suitable habitats increase the impact of ticks and result in frequent emergence or re-emergence of tick-borne diseases (TBDs) with zoonotic characteristics. In Turkey, almost 19 TBDs have been reported in animals and men, involving four protozoa (babesiosis, theileriosis, cytauxzoonosis, hepatozoonosis), one filarial nematode (acanthocheilonemasis), ten bacterial agents (anaplasmosis, ehrlichiosis, aegyptianellosis, tick-borne typhus, Candidatus Rickettsia vini, Lyme borreliosis, tick-borne relapsing fever [TBRF], tularaemia, bartonellosis, and hemoplasmosis), and four viral infections (tick-borne encephalitis [TBE], Crimean-Congo Haemorrhagic Fever [CCHF], louping-ill [LI], and lumpy skin disease [LSD]). The growing number of TBD cases, in particular the fatal viral epidemics in humans, have led to increased public awareness and concern against TBDs in recent years. The World Health Organization (WHO) has developed a new political concept, called the "One Health" initiative, which is especially relevant for developing strategies against tick infestations and TBD control in humans and animals. It would be beneficial for Turkey to adopt this new strategy and establish specific research and control programs in coordination with international organizations like WHO, the World Organization for Animal Health (OIE), the Food and Agriculture Organization (FAO), the Centers for Disease Control and Prevention (CDC), and the European Center for Disease Prevention and Control (ECDC) to combat TBDs based on the "One Health Initiative" concept. In this article, we review the occurrence of primary TBDs in man and animals in Turkey in light of the "One Health" perspective.
Collapse
Affiliation(s)
- Abdullah Inci
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
- Vectors and Vector-Borne Diseases Implementation and Research Centre, University of Erciyes, Kayseri, Turkey
| | - Alparslan Yildirim
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
- Vectors and Vector-Borne Diseases Implementation and Research Centre, University of Erciyes, Kayseri, Turkey
| | - Onder Duzlu
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
- Vectors and Vector-Borne Diseases Implementation and Research Centre, University of Erciyes, Kayseri, Turkey
| | - Mehmet Doganay
- Vectors and Vector-Borne Diseases Implementation and Research Centre, University of Erciyes, Kayseri, Turkey
- Department of Infection Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
5
|
|
6
|
Ocal M, Orsten S, Inkaya AC, Yetim E, Acar NP, Alp S, Kasap OE, Gunay F, Arsava EM, Alten B, Ozkul A, Us D, Niedrig M, Ergunay K. Ongoing activity of Toscana virus genotype A and West Nile virus lineage 1 strains in Turkey: a clinical and field survey. Zoonoses Public Health 2013; 61:480-91. [PMID: 25285941 DOI: 10.1111/zph.12096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Indexed: 12/30/2022]
Abstract
Toscana virus (TOSV), West Nile virus (WNV) and tickborne encephalitis virus (TBEV) are among major viral pathogens causing febrile disease and meningitis/encephalitis. The impact of these viruses was investigated at a referral centre in Ankara Province, Central Anatolia in 2012, where previous reports suggested virus circulation but with scarce information on clinical cases and vector activity. Serum and/or cerebrospinal fluid samples from 94 individuals were evaluated, in addition to field-collected arthropod specimens that included 767 sandflies and 239 mosquitoes. Viral nucleic acids in clinical samples and arthropods were sought via specific and generic nested/real-time PCRs, and antibody responses in clinical samples were investigated via commercial indirect immunofluorescence tests (IIFTs) and virus neutralization. A WNV antigen assay was also employed for mosquitoes. WNV neuroinvasive disease has been identified in a 63-year-old male via RNA detection, and the WNV strain was characterized as lineage 1. TOSV infections were diagnosed in six individuals (6.3%) via RNA or IgM detection. Partial sequences in a 23-year-old female, presented with fever and transient pancytopenia, were characterized as TOSV genotype A. Febrile disease with arthralgia and/or peripheral cranial nerve involvement was noted in cases with TOSV infections. Previous WNV and TOSV exposures have been observed in 5.3% and 2.1% of the subjects, respectively. No confirmed TBEV exposure could be identified. Morphological identification of the field-collected mosquitoes revealed Culex pipiens sensu lato (74.4%), Anopheles maculipennis (20.9%), An. claviger (2.1%) and others. Sandfly species were determined as Phlebotomus papatasi (36.2%), P. halepensis (27.3%), P. major s. l. (19.3%), P. sergenti (8.9%), P. perfiliewi (4.4%), P. simici (2.6%) and others. Viral infections in arthropods could not be demonstrated. TOSV genotype A and WNV lineage 1 activity have been demonstrated as well as serologically proven exposure in patients. Presence of sandfly and mosquito species capable of virus transmission has also been revealed.
Collapse
Affiliation(s)
- M Ocal
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Beck C, Jimenez-Clavero MA, Leblond A, Durand B, Nowotny N, Leparc-Goffart I, Zientara S, Jourdain E, Lecollinet S. Flaviviruses in Europe: complex circulation patterns and their consequences for the diagnosis and control of West Nile disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6049-83. [PMID: 24225644 PMCID: PMC3863887 DOI: 10.3390/ijerph10116049] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
In Europe, many flaviviruses are endemic (West Nile, Usutu, tick-borne encephalitis viruses) or occasionally imported (dengue, yellow fever viruses). Due to the temporal and geographical co-circulation of flaviviruses in Europe, flavivirus differentiation by diagnostic tests is crucial in the adaptation of surveillance and control efforts. Serological diagnosis of flavivirus infections is complicated by the antigenic similarities among the Flavivirus genus. Indeed, most flavivirus antibodies are directed against the highly immunogenic envelope protein, which contains both flavivirus cross-reactive and virus-specific epitopes. Serological assay results should thus be interpreted with care and confirmed by comparative neutralization tests using a panel of viruses known to circulate in Europe. However, antibody cross-reactivity could be advantageous in efforts to control emerging flaviviruses because it ensures partial cross-protection. In contrast, it might also facilitate subsequent diseases, through a phenomenon called antibody-dependent enhancement mainly described for dengue virus infections. Here, we review the serological methods commonly used in WNV diagnosis and surveillance in Europe. By examining past and current epidemiological situations in different European countries, we present the challenges involved in interpreting flavivirus serological tests and setting up appropriate surveillance programs; we also address the consequences of flavivirus circulation and vaccination for host immunity.
Collapse
Affiliation(s)
- Cécile Beck
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| | | | - Agnès Leblond
- Département Hippique, VetAgroSup, Marcy l’Etoile 69280, France; E-Mail:
- UR346, INRA, Saint Genès Champanelle 63122, France; E-Mail:
| | - Benoît Durand
- Epidemiology Unit, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mail:
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna 1210, Austria; E-Mail:
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | | | - Stéphan Zientara
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| | - Elsa Jourdain
- UR346, INRA, Saint Genès Champanelle 63122, France; E-Mail:
| | - Sylvie Lecollinet
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| |
Collapse
|
8
|
Zavadska D, Anca I, André F, Bakir M, Chlibek R, Čižman M, Ivaskeviciene I, Mangarov A, Mészner Z, Pokorn M, Prymula R, Richter D, Salman N, Šimurka P, Tamm E, Tešović G, Urbancikova I, Usonis V. Recommendations for tick-borne encephalitis vaccination from the Central European Vaccination Awareness Group (CEVAG). Hum Vaccin Immunother 2013; 9:362-74. [PMID: 23291941 PMCID: PMC3859759 DOI: 10.4161/hv.22766] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/27/2012] [Accepted: 11/03/2012] [Indexed: 12/13/2022] Open
Abstract
Tick-borne encephalitis (TBE) is a viral neurological zoonotic disease transmitted to humans by ticks or by consumption of unpasteurized dairy products from infected cows, goats, or sheep. TBE is highly endemic in areas of Central and Eastern Europe and Russia where it is a major public health concern. However, it is difficult to diagnose TBE as clinical manifestations tend to be relatively nonspecific and a standardized case definition does not exist across the region. TBE is becoming more important in Europe due to the appearance of new endemic areas. Few Central European Vaccination Awareness Group (CEVAG) member countries have implemented universal vaccination programmes against TBE and vaccination coverage is not considered sufficient to control the disease. When implemented, immunization strategies only apply to risk groups under certain conditions, with no harmonized recommendations available to date across the region. Effective vaccination programmes are essential in preventing the burden of TBE. This review examines the current situation of TBE in CEVAG countries and contains recommendations for the vaccination of children and high-risk groups. For countries at very high risk of TBE infections, CEVAG strongly recommends the introduction of universal TBE vaccination in children > 1 y of age onwards. For countries with a very low risk of TBE, recommendations should only apply to those traveling to endemic areas. Overall, it is generally accepted that each country should be free to make its own decision based on regional epidemiological data and the vaccination calendar, although recommendations should be made, especially for those living in endemic areas.
Collapse
Affiliation(s)
- Dace Zavadska
- Department of Pediatrics; Riga Stradins University; Riga, Latvia
| | - Ioana Anca
- Carol Davila University of Medicine and Pharmacy; Institute for Mother and Child Care; Bucharest, Romania
| | | | - Mustafa Bakir
- Department of Pediatrics; Division of Pediatric Infectious Diseases; Marmara University School of Medicine; Istanbul, Turkey
| | - Roman Chlibek
- Faculty of Military Health Sciences; University of Defence; Hradec Kralove, Czech Republic
| | - Milan Čižman
- Department of Infectious Diseases; University Medical Centre; Ljubljana, Slovenia
| | - Inga Ivaskeviciene
- Faculty of Medicine; Vilnius University Clinic of Children’s Diseases; Vilnius, Lithuania
| | | | | | - Marko Pokorn
- Department of Infectious Diseases; University Medical Centre; Ljubljana, Slovenia
| | - Roman Prymula
- Faculty of Military Health Sciences; University of Defence; Hradec Kralove, Czech Republic
- University Hospital; Hradec Kralove, Czech Republic
| | - Darko Richter
- Department of Pediatrics; University Hospital Center; Zagreb, Croatia
| | - Nuran Salman
- Division of Infectious Disease and Clinical Microbiology; University of Istanbul; Istanbul Turkey
| | - Pavol Šimurka
- Pediatric Clinic; Faculty Hospital; University of Trencin; Trenčín, Slovakia
| | - Eda Tamm
- Children’s Clinic of Tartu University Hospital; Tartu, Estonia
| | - Goran Tešović
- Paediatric Infectious Diseases Department; University of Zagreb School of Medicine; Zagreb, Croatia
| | - Ingrid Urbancikova
- Department of Paediatric Infectious Diseases; Children’s Faculty Hospital; Košice, Slovakia
| | - Vytautas Usonis
- Faculty of Medicine; Vilnius University Clinic of Children’s Diseases; Vilnius, Lithuania
| |
Collapse
|
9
|
Ergunay K, Sayiner AA, Litzba N, Lederer S, Charrel R, Kreher P, Us D, Niedrig M, Ozkul A, Hascelik G. Multicentre evaluation of central nervous system infections due to Flavi and Phleboviruses in Turkey. J Infect 2012; 65:343-9. [DOI: 10.1016/j.jinf.2012.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/29/2012] [Accepted: 05/09/2012] [Indexed: 12/30/2022]
|
10
|
Dobler G, Gniel D, Petermann R, Pfeffer M. Epidemiology and distribution of tick-borne encephalitis. Wien Med Wochenschr 2012; 162:230-8. [DOI: 10.1007/s10354-012-0100-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/19/2012] [Indexed: 12/14/2022]
|