1
|
Manjunatha Reddy GB, Sumana K, Yogisharadhya R, Mohan HV, Lavanya VK, Chethankumar BH, Shivasharanappa N, Saminathan M, Basavaraj S, Dhama K, Bhadravati Sathish S. Structural and sequence analysis of the RPO30 gene of sheeppox and goatpox viruses from India. Vet Q 2024; 44:1-12. [PMID: 38523527 DOI: 10.1080/01652176.2024.2331524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/07/2023] [Indexed: 03/26/2024] Open
Abstract
Sheeppox and goatpox are transboundary viral diseases of sheep and goats that cause significant economic losses to small and marginal farmers worldwide, including India. Members of the genus Capripoxvirus (CaPV), namely Sheeppox virus (SPPV), Goatpox virus (GTPV), and Lumpy skin disease virus (LSDV), are antigenically similar, and species differentiation can only be accomplished using molecular approaches. The present study aimed to understand the molecular epidemiology and host specificity of SPPV and GTPV circulating in India through sequencing and structural analysis of the RNA polymerase subunit-30 kDa (RPO30) gene. A total of 29 field isolates from sheep (n = 19) and goats (n = 10) belonging to different geographical regions of India during the period: Year 2015 to 2023, were analyzed based on the sequence and structure of the full-length RPO30 gene/protein. Phylogenetically, all the CaPV isolates were separated into three major clusters: SPPV, GTPV, and LSDV. Multiple sequence alignment revealed a highly conserved RPO30 gene, with a stretch of 21 nucleotide deletion in all SPPV isolates. Additionally, the RPO30 gene of the Indian SPPV and GTPV isolates possessed several species-specific conserved signature residues/motifs that could act as genotyping markers. Secondary structure analysis of the RPO30 protein showed four α-helices, two loops, and three turns, similar to that of the E4L protein of vaccinia virus (VACV). All the isolates in the present study exhibited host preferences across different states of India. Therefore, in order to protect vulnerable small ruminants from poxviral infections, it is recommended to take into consideration a homologous vaccination strategy.
Collapse
Affiliation(s)
| | - Krishnappa Sumana
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Revanaiah Yogisharadhya
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Hosakote Venkatappa Mohan
- Veterinary College, Karnataka Veterinary, Animal & Fisheries Sciences University, Bengaluru, Karnataka, India
| | | | | | - Nayakwadi Shivasharanappa
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Mani Saminathan
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Sajjanar Basavaraj
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | |
Collapse
|
2
|
Breman FC, Haegeman A, Philips W, Krešić N, Hoffman S, De Keersmaecker SCJ, Roosens NHC, Agüero M, Villalba R, Miteva A, Ivanova E, Tasioudi KE, Chaintoutis SC, Kirtzalidou A, De Regge N. Sheeppox virus genome sequences from the European outbreaks in Spain, Bulgaria, and Greece in 2022-2024. Arch Virol 2024; 169:234. [PMID: 39476278 PMCID: PMC11525412 DOI: 10.1007/s00705-024-06165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024]
Abstract
In 2022-2024, three outbreaks of sheeppox (SPP) were reported in the European Union. These occurred in Spain, Bulgaria, and Greece and had serious economic consequences due to animal losses and trade restrictions. Five sheeppox virus (SPPV) whole-genome sequences (WGSs) were determined from samples collected during these outbreaks and analyzed in the context of all other published WGSs. Sheeppox virus strains can be divided in two, or possibly three, main groups. The isolates from the recent outbreaks belong to clade A2, which includes strains historically circulating in the Middle East and Northern Africa. Sequence divergence was low among the isolates that caused the recent European outbreaks. These results highlight the need for more regular and dense surveillance in under-sampled areas and the use of WGS to increase the chance of pinpointing the origin of an introduction, identifying potential introduction routes, and providing insights into SPPV evolution.
Collapse
Affiliation(s)
- Floris C Breman
- Sciensano (Belgium), Service of 'Exotic and Vector borne diseases' (ExoVec), Groeselenberg 99, 1180, Ukkel, Belgium.
| | - Andy Haegeman
- Sciensano (Belgium), Service of 'Exotic and Vector borne diseases' (ExoVec), Groeselenberg 99, 1180, Ukkel, Belgium
| | - Wannes Philips
- Sciensano (Belgium), Service of 'Exotic and Vector borne diseases' (ExoVec), Groeselenberg 99, 1180, Ukkel, Belgium
| | - Nina Krešić
- Sciensano (Belgium), Service of 'Exotic and Vector borne diseases' (ExoVec), Groeselenberg 99, 1180, Ukkel, Belgium
| | - Stefan Hoffman
- Sciensano (Belgium), 'Transversal activities in Applied Genomics' (TAG), Juliette Wytsmanstraat, 14 - 1050, Elsene, Belgium
| | - Sigrid C J De Keersmaecker
- Sciensano (Belgium), 'Transversal activities in Applied Genomics' (TAG), Juliette Wytsmanstraat, 14 - 1050, Elsene, Belgium
| | - Nancy H C Roosens
- Sciensano (Belgium), 'Transversal activities in Applied Genomics' (TAG), Juliette Wytsmanstraat, 14 - 1050, Elsene, Belgium
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110, Algete, Spain
| | - Ruben Villalba
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110, Algete, Spain
| | - Aleksandra Miteva
- Bulgarian Food Safety Agency, Bulevard Pencho Slaveikov 15 A, Sofia, 1606, Bulgaria
| | - Emiliya Ivanova
- Bulgarian Food Safety Agency, Bulevard Pencho Slaveikov 15 A, Sofia, 1606, Bulgaria
| | - Konstantia E Tasioudi
- Greek National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial & Exotic diseases, Directorate of Veterinary Center of Athens, Ministry of Rural Development and Food, 25, Neapoleos str, Agia Paraskevi, 15341, Athens, Greece
| | - Serafeim C Chaintoutis
- Greek National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial & Exotic diseases, Directorate of Veterinary Center of Athens, Ministry of Rural Development and Food, 25, Neapoleos str, Agia Paraskevi, 15341, Athens, Greece
| | - Aikaterini Kirtzalidou
- Greek National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial & Exotic diseases, Directorate of Veterinary Center of Athens, Ministry of Rural Development and Food, 25, Neapoleos str, Agia Paraskevi, 15341, Athens, Greece
| | - Nick De Regge
- Sciensano (Belgium), Service of 'Exotic and Vector borne diseases' (ExoVec), Groeselenberg 99, 1180, Ukkel, Belgium
| |
Collapse
|
3
|
Brown E, Ehizibolo D, Dogonyaro BB, Wungak Y, Oyekan O, Adedeji A, Ijeoma S, Atai R, Oguche M, Samson M, Rosso F, Ludi AB, Limon G, Shaw AE, Colenutt C, Gubbins S. Environmental sampling for the detection of capripox viruses and peste des petits ruminants virus in households and livestock markets in Plateau State, Nigeria. Access Microbiol 2024; 6:000872.v3. [PMID: 39430658 PMCID: PMC11488666 DOI: 10.1099/acmi.0.000872.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Multiple transboundary animal diseases (TADs) circulate in Plateau State, Nigeria, where livestock keeping is common and contributes to both the physical and socio-economic well-being of a large proportion of the population. In this study, we explored the potential for environmental sampling to detect viruses causing TADs circulating in the region. Electrostatic dust cloths were used to swab areas of the environment likely to have contact with secretions and excretions from infected animals. Samples were collected monthly from five households, one transhumance site and one livestock market in two local government areas in Plateau State between March and October 2021. These were tested for the presence of peste des petits ruminants virus (PPRV) and capripox viruses using real-time PCR. Of the 458 samples collected, 2.4% (n = 11) were positive for PPRV RNA and 1.3 % (n = 6) were positive for capripox virus DNA. A capripox differentiation assay showed that these samples were positive for sheep pox virus (n = 2), goat pox virus (n = 2) and lumpy skin disease virus (n = 2). Our results demonstrate that environmental sampling could be used as part of TAD surveillance in the area. Environmental swabs require little technical knowledge to collect and can be used to detect multiple viruses from a single sample.
Collapse
Affiliation(s)
- Emma Brown
- The Pirbright Institute, Ash Road, Pirbright, Surrey, UK
| | - David Ehizibolo
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | | | - Yiltawe Wungak
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Olumuyiwa Oyekan
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Adeyinka Adedeji
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Sandra Ijeoma
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Rebecca Atai
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Moses Oguche
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Mark Samson
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Fabrizio Rosso
- European Commission for the Control of Foot-and-Mouth Disease, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Anna B. Ludi
- The Pirbright Institute, Ash Road, Pirbright, Surrey, UK
| | - Georgina Limon
- The Pirbright Institute, Ash Road, Pirbright, Surrey, UK
| | - Andrew E. Shaw
- The Pirbright Institute, Ash Road, Pirbright, Surrey, UK
| | | | - Simon Gubbins
- The Pirbright Institute, Ash Road, Pirbright, Surrey, UK
| |
Collapse
|
4
|
Ke L, Hou G, Cao P, Ding Y, Zhao C, Wang F, Liu Y, Fan Y, Liu Q. Establishment and validation of a real-time fluorescent PCR freeze-dried type assay for 11 sheep and goats pathogens. Vet J 2024; 308:106255. [PMID: 39424126 DOI: 10.1016/j.tvjl.2024.106255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Small ruminants are economic mainstay in developing countries because of its direct contribution to food security, but the occurrence of epidemics poses a continuous threat. Early diagnosis can strengthen the prevention of zoonosis. Therefore, a high-sensitivity real-time fluorescent PCR freeze-dried type assay that can be stored and transported at room temperature was developed for 11 sheep and goats pathogens in this study. The results showed that there was no non-specific amplification in systems containing different pathogen positive controls; The areas under the ROC curves were all in the range of 0.99-1.00; The LOD counted by Digital PCR were 194, 96, 84, 40, 265, 68, 208, 236, 118, 53 and 723 copies/mL for M. ovis, Pathogenic Leptospira, C. burnetii, BTV, PPRV, Brucella, exJSRV, C. abortus, ORFV, FMDV and CPV, respectively. The coefficients of variation of both intra-group and inter-group replicate tests were less than 5.00 %; The accelerated thermostatic lyophilization test was used to predict the validity period; The LOD of each positive pathogen was still detected after 6 days at 56 ℃, suggesting that the validity period can be at least 567 days at room temperature. In this study, a high-sensitivity real-time fluorescent PCR freeze-dried type assay that can be stored and transported at room temperature was developed for 11 sheep and goats pathogens, which were Mycoplasma ovis (M. ovis), Pathogenic Leptospira, Coxiella burnetii (C. burnetii), Bluetongue virus (BTV), Peste des pestis ruminants virus (PPRV), Brucella, exogenous jaagsiekte sheep retrovirus (exJSRV), Chlamydia abortus (C. abortus), Orf virus (ORFV), Foot-and-mouth disease virus (FMDV), and Capripox virus (CPV).
Collapse
Affiliation(s)
- Liting Ke
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Guangzheng Hou
- Bioinformatics Center of Academy of Military Medical Sciences, Haidian, Beijing 100039, PR China
| | - Pengcheng Cao
- Bioinformatics Center of Academy of Military Medical Sciences, Haidian, Beijing 100039, PR China
| | - Yanlei Ding
- Bioinformatics Center of Academy of Military Medical Sciences, Haidian, Beijing 100039, PR China
| | - Changxu Zhao
- Bioinformatics Center of Academy of Military Medical Sciences, Haidian, Beijing 100039, PR China
| | - Fei Wang
- Bioinformatics Center of Academy of Military Medical Sciences, Haidian, Beijing 100039, PR China
| | - Yingqiu Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunpeng Fan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Qiqi Liu
- Bioinformatics Center of Academy of Military Medical Sciences, Haidian, Beijing 100039, PR China.
| |
Collapse
|
5
|
Ding J, Ma X, Zhang B, Wang H, Gao Y, Wang L, He M, Zhu Z, Chao X. The study on the mechanism of miR-29a in SPPV infection. Virology 2024; 600:110221. [PMID: 39357255 DOI: 10.1016/j.virol.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
The members of the miR-29 family play an important role in the process of viral infection. The sheep pox epidemic has hindered the development of the livestock industry worldwide. The aim of this study was to analyze the action mechanism of miR-29a during sheep pox virus (SPPV) infection. We found that during viral infection, miR-29a showed a trend of increasing, then decreasing, and then again increasing. It was determined that AKT3 was a target gene of miR-29a, and miR-29a might be involved in the PI3K-AKT signaling pathway. SPPV was able to inhibit cell proliferation and promote apoptosis, and miR-29a reversed the inhibition of cell proliferation by SPPV and the promotion of apoptosis. This study provides an experimental basis and theoretical foundation for the pathogenic mechanism of SPPV infection, as well as contributing to the proposal of new strategies for the development of anti-sheep-poxvirus drugs.
Collapse
Affiliation(s)
- Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China.
| | - Xiaoqin Ma
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Beibei Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Hongyu Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Yun Gao
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Lan Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Mingyu He
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Zhongzheng Zhu
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Xiaoshan Chao
- College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| |
Collapse
|
6
|
Adamu K, Abayneh T, Getachew B, Mohammed H, Deresse G, Zekarias M, Chala W, Gelaye E. Lumpy skin disease virus isolation, experimental infection, and evaluation of disease development in a calf. Sci Rep 2024; 14:20460. [PMID: 39227598 PMCID: PMC11372140 DOI: 10.1038/s41598-024-60994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/30/2024] [Indexed: 09/05/2024] Open
Abstract
Lumpy skin disease (LSD) is one of the most economically significant viral diseases of cattle caused by the Lumpy Skin Disease Virus (LSDV), classified as a member of the genus Capripoxvirus and belongs to the family Poxviridae. Nodular skin samples were collected from clinically sick cattle in the districts of Amuru and Wara Jarso Ethiopia to isolate LSD virus. The virus was isolated using primary lamb testis and kidney cells. The isolated LSDV was infected into a healthy calf while maintaining the necessary biosecurity measures to generate skin lesions and to assess disease progression using postmortem examinations. On the fourth day after virus inoculation, the calf developed typical LSD skin nodules with increased rectal temperature, which lasted until the 12th day, when they began to decrease. Viral shedding was detected in nasal, oral, and conjunctival swabs from 6 to 14 days after infection using real-time PCR. Post-mortem tissue specimens tested positive for LSD virus using real-time PCR and virus isolation. This study showed that LSDV were responsible for the LSD outbreaks, and the appearance of typical skin nodules accompanied by fever (> 39.5 °C) defined the virus's virulent status. The experimental infection with the isolated infectious LSDV could serve as a platform for future vaccine evaluation study using an LSDV challenge model.
Collapse
Affiliation(s)
- Kassaye Adamu
- Virology Laboratory, Research and Development Directorate, National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia.
| | - Takele Abayneh
- Bacteriology Laboratory, Research and Development Directorate, National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Belayneh Getachew
- Virology Laboratory, Research and Development Directorate, National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Hawa Mohammed
- Virology Laboratory, Research and Development Directorate, National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Getaw Deresse
- Molecular Biology Laboratory, Research and Development Directorate, National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Mariamawit Zekarias
- Viral Vaccine Production Laboratory, Vaccine Production Directorate, National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Workisa Chala
- Viral Vaccine Quality Control Laboratory, Quality Control Directorate, National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Esayas Gelaye
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern Africa, P.O. Box 5536, Addis Ababa, Ethiopia.
| |
Collapse
|
7
|
Chala W, Adamu K, Mohammed H, Deresse G, Tesfaye S, Gelaye E. Outbreak Investigation, Isolation, and Molecular Characterization of Lumpy Skin Disease Virus in Cattle from North West Oromia Region, Ethiopia. Vet Med Int 2024; 2024:6038724. [PMID: 39184947 PMCID: PMC11343636 DOI: 10.1155/2024/6038724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024] Open
Abstract
Lumpy skin disease (LSD) is an economically significant viral disease because of its high morbidity and high production loss. Vaccination of cattle using LSD vaccines is a more effective disease preventive and control strategy in endemic countries such as Ethiopia. Despite high vaccination coverage, there is an increasing number of field reports of the disease outbreaks. Thus, an observational study was designed to investigate disease, characterize the disease-causing agent, and isolate the virus from a local isolate for future vaccine development. Wera Jarso and Amuru districts in North West Oromia were chosen based on outbreak occurrence. For this study skin, 13 pooled biopsy samples were collected from affected cattle. In this outbreak investigation, the morbidity rate was 6.50%, the mortality rate was 0.50%, and the case fatality rate was 7.77%. The virus was isolated from all skin samples on both lamb testis and lamb kidney primary cells and confirmed to be LSDV using conventional and real-time PCR genotyping. Therefore, after each suspected LSD outbreak, a molecular test should be carried out to confirm the cause of the disease, targeting the previously suggested RPO30 or GPCR genes. Further studies targeting more regions and outbreaks, including full genome sequencing to check for genetic differences between the field viruses and vaccine strains, are recommended.
Collapse
Affiliation(s)
- Workisa Chala
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Kasaye Adamu
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Hawa Mohammed
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Getaw Deresse
- National Veterinary Institute, P.O. Box 19, Bishoftu, Ethiopia
| | - Shimelis Tesfaye
- College of Veterinary Medicine and AgricultureAddis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | - Esayas Gelaye
- Food and Agriculture Organization of the United NationsSub-Regional Office for Eastern Africa, P.O. Box 5536, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Kushwaha A, Kumar A, Chandrasekhar S, Poulinlu G, Chand K, Muthuchelvan D, Venkatesan G. Baculovirus expression and purification of virion core and envelope proteins of goatpox virus to evaluate their diagnostic potential. Arch Virol 2024; 169:172. [PMID: 39096433 DOI: 10.1007/s00705-024-06079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 08/05/2024]
Abstract
Goatpox and sheeppox are highly contagious and economically important viral diseases of small ruminants. Due to the risk they pose to animal health, livestock production, and international trade, capripoxviruses are a considerable threat to the livestock economy. In this study, we expressed two core proteins (A4L and A12L) and one extracellular enveloped virion protein (A33R) of goatpox virus in a baculovirus expression vector system and evaluated their use as diagnostic antigens in ELISA. Full-length A4L, A12L, and A33R genes of the GTPV Uttarkashi strain were amplified, cloned into the pFastBac HT A donor vector, and introduced into DH10Bac cells containing a baculovirus shuttle vector plasmid to generate recombinant bacmids. The recombinant baculoviruses were produced in Sf-21 cells by transfection, and proteins were expressed in TN5 insect cells. The recombinant proteins were analysed by SDS-PAGE and confirmed by western blot, with expected sizes of ~30 kDa, ~31 kDa, and ~32 kDa for A4L, A12L, and A33R, respectively. The recombinant proteins were purified, and the immunoreactivity of the purified proteins was confirmed by western blot using anti-GTPV serum. The antigenic specificity of the expressed proteins as diagnostic antigens was evaluated by testing their reactivity with infected, vaccinated, and negative GTPV/SPPV serum in indirect ELISA, and the A33R-based indirect ELISA was optimized. The diagnostic sensitivity and specificity of the A33R-based indirect ELISA were found to be of 89% and 94% for goats and 98% and 91%, for sheep, respectively. No cross-reactivity was observed with other related viruses. The recombinant-A33R-based indirect ELISA developed in the present study shows that it has potential for the detection of antibodies in GTPV and SPPV infected/vaccinated animals.
Collapse
Affiliation(s)
- Anand Kushwaha
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital District, Uttarakhand, India
| | - Amit Kumar
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital District, Uttarakhand, India
| | - S Chandrasekhar
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital District, Uttarakhand, India
| | - G Poulinlu
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital District, Uttarakhand, India
| | - Karam Chand
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital District, Uttarakhand, India
| | | | - G Venkatesan
- FMD Laboratory, ICAR - Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka, 560024, India.
| |
Collapse
|
9
|
Agrawal I, Sharma B, Singh AP, Varga C. Geospatial Analysis of Lumpy Skin Disease Outbreaks among Cattle in Uttar Pradesh, India, 2021-2022. Pathogens 2024; 13:611. [PMID: 39204212 PMCID: PMC11357335 DOI: 10.3390/pathogens13080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
The emergence of lumpy skin disease (LSD) among cattle in India is concerning. District-level data on LSD cases in Uttar Pradesh between 2021 and 2022 were analyzed. A stepwise spatial analytical approach was followed by first constructing yearly and monthly disease maps for LSD incidence rates (IRs), then spatially interpolating the LSD IRs, followed by evaluating the global and local clustering of LSD IRs and finally conducting spatial regression modeling. Overall, 5784 LSD cases from 6 districts and 112,226 cases from 33 districts were detected in 2021 and 2022, respectively. In the incremental spatial autocorrelation analysis, the highest global clustering of LSD IRs for the 2022 outbreak was detected at 196.49 km. For the 2021 LSD outbreak, one district with high-low and nine districts with low-high LSD IRs were identified in the eastern region of the state. For the 2022 LSD outbreak, 13 districts with high-high and 7 districts with low-high LSD IRs were identified in the western part of the state. A geographically weighted regression model identified the impact of climate (temperature and humidity) and land cover (pasture, fallow, and non-agricultural land) on LSD IRs. The study results can aid animal health authorities in developing LSD prevention and control programs.
Collapse
Affiliation(s)
- Isha Agrawal
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA;
| | - Barkha Sharma
- Department of Veterinary Epidemiology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, India;
| | - Ajay Pratap Singh
- Department of Microbiology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, India;
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA;
| |
Collapse
|
10
|
Cao G, Yang N, Yang J, Li J, Wang L, Nie F, Huo D, Hou C. Label-Free and DNAzyme-Mediated Biosensor with a High Signal-to-Noise Ratio for a Lumpy Skin Disease Virus Assay. Anal Chem 2024; 96:10927-10934. [PMID: 38934225 DOI: 10.1021/acs.analchem.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lumpy skin disease virus (LSDV) is a severe and highly contagious form of cowpox. As LSDV continues to mutate and there is no vaccine and treatment in nonendemic countries, early detection of LSDV becomes an important basis for epidemic prevention and control, especially for detection of conserved sequences. A new label-free and sensitive fluorescence method was developed based on a light-up RNA aptamer for detecting LSDV. The method integrated recombinase polymerase amplification (RPA), CRISPR/Cas12a, 10-23 DNAzyme, and Baby Spinach RNA aptamer for triple cascade signal amplification. Based on highly sensitive and specific RPA and CRISPR/Cas12a, DNAzyme achieved a third signal amplification. Additionally, the Baby Spinach RNA aptamer had stronger fluorescence signals and higher quantum yields. The label-free method had ultrahigh sensitivity with the actual detection limit as 1.29 copies·μL-1. The method was 100-fold more sensitive compared to RPA with Cas12a. Moreover, it had no cross-reactivity with viruses belonging to the Capripoxvirus, such as sheep pox virus and goat pox virus with genetic homology as 97%. Furthermore, the method displayed 100% accuracy in 50 actual samples. Therefore, the method based on RPA, Cas12a, and 10-23 DNAzyme had advantages in LSDV detection and provided a new solution for LSD prevention and control.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Nannan Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Jun Yang
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Jiali Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Lin Wang
- Science and Technology Research Center of China Customs, Beijing 100026, PR China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
11
|
Manjunatha Reddy GB, Krishnappa VK, Siddalingaiah CD, Rao S, Nayakvadi S, Harlipura Basavarajappa CK, Gualti BR. Epidemiological, Pathological, and Molecular Studies on Sheeppox Disease Outbreaks in Karnataka, India. Microorganisms 2024; 12:1373. [PMID: 39065141 PMCID: PMC11279338 DOI: 10.3390/microorganisms12071373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 07/28/2024] Open
Abstract
An epidemiological study spanning twelve years has revealed that sheeppox disease is both widespread and endemic, predominantly surging during the winter and summer seasons. This investigation focused on sheeppox across 11 field outbreaks, involving 889 animals from non-migratory flocks across six districts in Karnataka, in the southern peninsula of India. Among these, 105 animals exhibited clinical signs suggestive of sheeppox, such as lesions on the body, and 95 cases were confirmed through PCR testing. The overall positivity rate for sheeppox stood at 10.68% (95 out of 889 animals). The incidence of sheeppox was notably higher in animals aged between 1 and 2 years and was more prevalent in females. Affected animals displayed symptoms including respiratory distress, weakness, fever, loss of appetite, depression, and various skin lesions ranging from papular to pock lesions across their bodies. There was a significant increase in total leukocyte count, while hemoglobin levels, red blood cell counts, and hematocrit values significantly decreased. On gross examination, sheeppox lesions, varying from vesicular to nodular forms, were predominantly found on hairless areas of the body. Microscopic examination of skin lesions revealed extensive changes, such as hyperkeratosis, parakeratosis, acanthosis, hydropic degeneration, and necrosis of epithelial cells, along with characteristic intracytoplasmic viral inclusions. The lungs exhibited type-II pneumocyte hyperplasia and proliferative bronchiolitis, also with intracytoplasmic inclusions. Confirmation of the sheeppox virus was achieved through PCR and subsequent sequence analysis. Phylogenetic analysis of the full-length P32 and RPO30 gene demonstrated homology with sheeppox isolates from various parts of India and neighboring countries, indicating that Indian sheeppox viruses are highly lineage-specific and correlate with the host of origin. Based on these findings, it is recommended to implement a homologous vaccination strategy, utilizing selective host/viral strains to enhance protection in susceptible animals.
Collapse
Affiliation(s)
| | - Varun Kumar Krishnappa
- Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University (KVAFSU), Hebbal, Bengaluru 560024, Karnataka, India; (V.K.K.)
| | - Chandan Dypasandra Siddalingaiah
- Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University (KVAFSU), Hebbal, Bengaluru 560024, Karnataka, India; (V.K.K.)
| | - Suguna Rao
- Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University (KVAFSU), Hebbal, Bengaluru 560024, Karnataka, India; (V.K.K.)
| | - Shivasharanappa Nayakvadi
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, Karnataka, India
| | | | - Baldev Raj Gualti
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, Karnataka, India
| |
Collapse
|
12
|
Kassa F, Fesseha H, Mathewos M, Getachew S, Hundessa N, Aliye S, Asefa Kebede I. Seroprevalence and risk factors of sheep and goat pox virus in selected districts of Wolaita Zone, Southern Ethiopia. J Vet Sci 2024; 25:e57. [PMID: 39083209 PMCID: PMC11291429 DOI: 10.4142/jvs.24086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 08/03/2024] Open
Abstract
IMPORTANCE Sheep and goat pox (SGP) virus infection is a highly fatal viral infection of small ruminants that causes major production losses in sheep and goats in Ethiopia while also limiting international trade. OBJECTIVE This study aimed to estimate the seroprevalence of SGP infection and assess related risk variables. METHODS A cross-sectional study was conducted from February to August 2023 on 384 serum samples taken from sheep and goats. A serum neutralization test was conducted to detect the presence of antibodies against the SGP virus in Wolaita Sodo Regional Laboratory. RESULTS The overall seroprevalence rate of SGP was 4.95%. Factors such as sheep (8.26%), female sheep and goats (7.45%), older sheep and goats (8.33%), larger flock size of sheep and goats (10.47%), poorly conditioned sheep and goats (31.58%), sheep and goats with a tick on their skin (10.38%), and animals that had not been vaccinated (5.17%) were found to have higher seroprevalence. Furthermore, the seropositivity in sheep was five times greater than in goats (adjusted odds ratio [AOR], 4.73; 95% confidence interval [CI], 1.39-15.99). Additionally, large-sized flocks of sheep and goats were more likely to be seropositive to pox disease than small-sized flocks (AOR, 6.73; 95% CI, 1.58-28.67). CONCLUSIONS AND RELEVANCE Thus, the study revealed the prevalence of SGP in the Wolaita zone. Additional research should be conducted to estimate the extent of the disease at the regional level, and management measures should be implemented to reduce the economic losses associated with this condition.
Collapse
Affiliation(s)
- Fentaye Kassa
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, P.O. Box 138, Ethiopia
| | - Haben Fesseha
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, P.O. Box 138, Ethiopia.
| | - Mesfin Mathewos
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, P.O. Box 138, Ethiopia
| | - Selenat Getachew
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, P.O. Box 138, Ethiopia
| | - Nato Hundessa
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, P.O. Box 138, Ethiopia
| | - Saliman Aliye
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, P.O. Box 138, Ethiopia
| | - Isayas Asefa Kebede
- School of Veterinary Medicine, Ambo University, Guder, P.O. Box 19, Ethiopia.
| |
Collapse
|
13
|
Ren S, Zhang Y, Gao X, Wang X, Tong L, Wang S, Sun Y, Yin X, Chen H. Platform establishment of the Cre-loxP recombination system for genetic manipulation of the Lumpy skin disease virus. Vet Microbiol 2024; 294:110122. [PMID: 38772074 DOI: 10.1016/j.vetmic.2024.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in Asia, including China. Genetic manipulation of the LSDV is essential for the elucidation of the pathogenic mechanism and biological function of the LSDV-encoded protein. In this study, we established a platform for the Cre-loxP recombination system under a modified early-late H5 promoter of the VACV for quick construction of the recombinant LSDV virus. The recombinant virus, LSDV-EGFP-ΔTK, was purified and obtained using serial limited dilution and picking the single cells methods. Using the lentiviral package system, a Cre recombinase enzyme stable expression MDBK cell line was established to supply the Cre recombinase for the reporter gene excision. A genetically stable, safe TK gene-deleted LSDV (LSDV-ΔTK) was constructed using homologous recombination and the Cre-loxP system. It was purified using limited dilution in the MDBK-Cre cell line. Establishing the Cre-loxP recombination system will enable sequential deletion of the interested genes from the LSDV genome and genetic manipulation of the LSDV genome, providing technical support and a platform for developing the attenuated LSDV vaccine.
Collapse
Affiliation(s)
- Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yuzhe Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Xiaolong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, PR China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Lina Tong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, PR China
| | - Shasha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| | - Haotai Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| |
Collapse
|
14
|
Villalba R, Haegeman A, Ruano MJ, Gómez MB, Cano-Gómez C, López-Herranz A, Tejero-Cavero J, Capilla J, Bascuñan MV, De Regge N, Agüero M. Lessons Learned from Active Clinical and Laboratory Surveillance during the Sheep Pox Virus Outbreak in Spain, 2022-2023. Viruses 2024; 16:1034. [PMID: 39066197 PMCID: PMC11281627 DOI: 10.3390/v16071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
In September 2022, more than 50 years after its eradication from Spain, Sheep pox virus was confirmed by laboratory analysis in sheep showing characteristic lesions. This was the start of an outbreak that lasted 9 months and infected 30 farms dispersed over two different areas, Andalusia and Castilla-La Mancha. Early after the initial confirmation, an active surveillance based on clinical inspection with laboratory confirmation of sheep with clinical signs was started in restricted areas. This allowed the confirmation of Sheep pox in 22 out of 28 suspected farms, where limited numbers of sheep with mainly erythema and papules were found, indicative of early detection. Nevertheless, to improve active surveillance and stop the outbreak, clinical inspection was reinforced by laboratory analysis in all inspected farms, even when no clinically diseased sheep were detected. Although more than 35,000 oral swabs from 335 farms were analysed by real-time PCR in pools of five, only two out of six reported outbreaks in this period were detected by laboratory analysis before clinical signs were observed. Furthermore, additional insights were gained from the extensive laboratory surveillance performed on samples collected under field conditions. No evidence of Sheep pox virus infection was found in goats. Oral swabs proved to be the sample of choice for early detection in the absence of scabs and could be tested in pools of five without extensive loss in sensitivity; serology by ELISA was not useful in outbreak detection. Finally, a non-infectious genome of the virus could be detected months after cleaning and disinfection; thus, real-time PCR results should be interpreted with caution in sentinel animals during repopulation. In conclusion, the outbreak of Sheep pox virus in Spain showed that active clinical inspection with laboratory confirmation of clinically diseased sheep via oral swab testing proved a sensitive method for detection of infected farms, providing insights in laboratory surveillance that will be helpful for other countries confronted with Sheep pox outbreaks.
Collapse
Affiliation(s)
- Rubén Villalba
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (M.J.R.); (M.B.G.); (C.C.-G.); (A.L.-H.)
| | - Andy Haegeman
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, 1180 Brussels, Belgium; (A.H.); (N.D.R.)
| | - María José Ruano
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (M.J.R.); (M.B.G.); (C.C.-G.); (A.L.-H.)
| | - María Belén Gómez
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (M.J.R.); (M.B.G.); (C.C.-G.); (A.L.-H.)
| | - Cristina Cano-Gómez
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (M.J.R.); (M.B.G.); (C.C.-G.); (A.L.-H.)
| | - Ana López-Herranz
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (M.J.R.); (M.B.G.); (C.C.-G.); (A.L.-H.)
| | - Jesús Tejero-Cavero
- Junta de Comunidades de Castilla-La Mancha, 45071 Toledo, Spain; (J.T.-C.); (J.C.); (M.V.B.)
| | - Jaime Capilla
- Junta de Comunidades de Castilla-La Mancha, 45071 Toledo, Spain; (J.T.-C.); (J.C.); (M.V.B.)
| | - María Victoria Bascuñan
- Junta de Comunidades de Castilla-La Mancha, 45071 Toledo, Spain; (J.T.-C.); (J.C.); (M.V.B.)
| | - Nick De Regge
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, 1180 Brussels, Belgium; (A.H.); (N.D.R.)
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (M.J.R.); (M.B.G.); (C.C.-G.); (A.L.-H.)
| |
Collapse
|
15
|
You T, Wang M, Zhang H, Wang X, Gao X, Yin X, Sun Y, Wang G, Chen HT, Ren S. Identification of the murine osteoblastic cell MC3T3-E1 as a permissive cell line in response to lumpy skin disease virus. J Virol Methods 2024; 326:114916. [PMID: 38479589 DOI: 10.1016/j.jviromet.2024.114916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in China. Screening suitable cells for LSDV replication is vital for future research on pathogenic mechanisms and vaccine development. Previous comparative studies have identified that the rodent-derived BHK21 is a highly susceptible cell model to LSDV infection. Using western blot, indirect immune-fluorescence assay, flow cytometry, and transmission electron microscopy methods, this study is the first to identify the murine osteoblastic cell line MC3T3-E1 as a novel permissive cell model for LSDV infection. The establishment of MC3T3-E1 as a suitable infectious cell model enhances our understanding of the species range and cell types of the permissive cells and nonpermissive that support LSDV replication. It is helpful to accelerate future research on the pathogenesis, clinical application, and vaccine development of LSDV.
Collapse
Affiliation(s)
- Ting You
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Meng Wang
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Hongqiang Zhang
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Xiaolong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, PR China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Guirong Wang
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Hao-Tai Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| | - Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| |
Collapse
|
16
|
Salauddin M, Kayesh MEH, Ahammed MS, Saha S, Hossain MG. Development of membrane protein-based vaccine against lumpy skin disease virus (LSDV) using immunoinformatic tools. Vet Med Sci 2024; 10:e1438. [PMID: 38555573 PMCID: PMC10981917 DOI: 10.1002/vms3.1438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/09/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION Lumpy skin disease, an economically significant bovine illness, is now found in previously unheard-of geographic regions. Vaccination is one of the most important ways to stop its further spread. AIM Therefore, in this study, we applied advanced immunoinformatics approaches to design and develop an effective lumpy skin disease virus (LSDV) vaccine. METHODS The membrane glycoprotein was selected for prediction of the different B- and T-cell epitopes by using the immune epitope database. The selected B- and T-cell epitopes were combined with the appropriate linkers and adjuvant resulted in a vaccine chimera construct. Bioinformatics tools were used to predict, refine and validate the 2D, 3D structures and for molecular docking with toll-like receptor 4 using different servers. The constructed vaccine candidate was further processed on the basis of antigenicity, allergenicity, solubility, different physiochemical properties and molecular docking scores. RESULTS The in silico immune simulation induced significant response for immune cells. In silico cloning and codon optimization were performed to express the vaccine candidate in Escherichia coli. This study highlights a good signal for the design of a peptide-based LSDV vaccine. CONCLUSION Thus, the present findings may indicate that the engineered multi-epitope vaccine is structurally stable and can induce a strong immune response, which should help in developing an effective vaccine towards controlling LSDV infection.
Collapse
Affiliation(s)
- Md. Salauddin
- Department of Microbiology and Public HealthKhulna Agricultural UniversityKhulnaBangladesh
| | | | - Md. Suruj Ahammed
- Department of ChemistryBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Sukumar Saha
- Department of Microbiology and HygieneBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md. Golzar Hossain
- Department of Microbiology and HygieneBangladesh Agricultural UniversityMymensinghBangladesh
| |
Collapse
|
17
|
Smaraki N, Jogi HR, Kamothi DJ, Savsani HH. An insight into emergence of lumpy skin disease virus: a threat to Indian cattle. Arch Microbiol 2024; 206:210. [PMID: 38592503 DOI: 10.1007/s00203-024-03932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
Lumpy skin disease (LSD) is a highly infectious and economically devastating viral disease of cattle. It is caused by Lumpy Skin Disease Virus (LSDV) belonging to the genus Capripoxvirus and family Poxviridae. The origin of lumpy skin disease has been traced to Zambia, (an African nation) in Southern part during the year 1929. The first reported case of LSD besides Africa was from Israel, a Middle Eastern nation, thus proving inter-continental spread. Subsequently, the disease entered Middle East, Eastern Europe and Asia with numerous outbreaks in the recent years. LSD has emerged as a significant concern in the Indian sub-continent, due to outbreaks reported in countries such as Bangladesh, India, China in 2019. In the following years, other South and East Asian countries like Taipei, Nepal, Sri Lanka, Myanmar, Bhutan, Vietnam, Hong Kong, Thailand, Malaysia, Laos, Cambodia, Pakistan, Indonesia and Singapore also faced severe outbreaks. At present, LSD is considered to be an emerging disease in the Indian sub-continent due to the recent status of disease. Considering the global scenario, LSDV is changing its transmission dynamics as evidenced by a shift in its epidemiology. As a result of high morbidity and mortality rate among cattle, the current outbreaks have been a major cause of socio-economic catastrophe. This contagious viral disease has eminent repercussions as the estimated monetary damage incurred is quite high. Despite having networked surveillance and comprehensive databases, the recurring outbreaks have raised major concern among researchers. Therefore, this review offers brief insights into the emergence of LSDV by amalgamating the newest literature related to its biology, transmission, clinico-pathology, epidemiology, prevention strategies, and economic consequences. Additionally, we have also provided the epidemiological insights of the recent outbreaks with detailed state wise studies.
Collapse
Affiliation(s)
- Nabaneeta Smaraki
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Harsh Rajeshbhai Jogi
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Dhaval J Kamothi
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - H H Savsani
- Veterinary College, Kamdhenu University, Junagadh, Gujarat, 362001, India
| |
Collapse
|
18
|
Hakobyan V, Sargsyan K, Elbakyan H, Sargsyan V, Markosyan T, Chobanyan G, Badalyan M, Kharatyan S. Duration of Immunity in Cattle to Lumpy Skin Disease Utilizing a Sheep Pox Vaccine. Vet Sci 2024; 11:164. [PMID: 38668431 PMCID: PMC11053425 DOI: 10.3390/vetsci11040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
The transmission of lumpy skin disease (LSD) occurs through ticks, mosquitoes, and flies. The most effective way to combat LSD is to conduct large-scale vaccination, covering the entire cattle population with safe and effective vaccines, while introducing restrictions on the movement of livestock. The first and only LSD cases that occurred in Armenia happened in 2015,and they were controlled with the use of a once yearly heterologous sheep pox vaccine for cattle in high-risk areas. We have previously reported on the safety and immunogenicity of this vaccine in cattle, but information on the duration of immunity is lacking. Our aim was to determine the duration of immunity to the LSD virus (LSDV) in cattle when utilizing a heterologous sheep pox vaccine. We have evaluated antibodies in cattle blood prior to and post-vaccination (1, 6, and 11 months). We have utilized an enzyme-linked immunosorbent assay to follow the development and waning of LSDV antibodies in vaccinated cattle in two age groups: 1) young unvaccinated cattle ≤12 months of age and 2) adult cattle that had previously been vaccinated. Our results were consistent with our previous study in Armenia, showing a high level of population immunity, 80.0-83.3%, in both age groups at 1 month, with a significant (p = 0.001) drop for young cattle at 6 months. Previously vaccinated adult cattle showed a longer duration of immunity at 11 months for this heterologous sheep pox vaccine. Based on these data, we advise that young cattle receive an additional booster vaccination 4-6 months after their first vaccination, and then yearly vaccinations in high-risk areas.
Collapse
Affiliation(s)
- Varduhi Hakobyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| | - Khachik Sargsyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| | - Hasmik Elbakyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| | - Vazgen Sargsyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| | - Tigran Markosyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| | - Gayane Chobanyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| | - Manvel Badalyan
- Chair of Biosciences and General Chemistry, Armenian National Agrarian University, 74 Teryan Street, Yerevan 0009, Armenia;
| | - Satenik Kharatyan
- Scientific Center for Risk Assessment and Analysis in Food Safety Area, 107/2 Masis Highway, Shengavit, Yerevan 0071, Armenia; (K.S.); (H.E.); (V.S.); (T.M.); (G.C.); (S.K.)
| |
Collapse
|
19
|
Tadesse B, Aregahagn S, Muluneh BT, Worku Y. Spatio-temporal ditribution and transmission dynamics of sheep pox and goat pox diseases in South Wollo zone north East Ethiopia. Heliyon 2024; 10:e27470. [PMID: 38486769 PMCID: PMC10937688 DOI: 10.1016/j.heliyon.2024.e27470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Sheep pox (SP) and goat pox diseases (GP) are highly transmittable, malignant systemic and economically significant caused by the genus Capripoxvirus. using The spatio-temporal distribution of SP and GP outbreaks in South Wollo zone from September 2013 to December 2019 was determined retrospectively using SP and GP outbreaks report Kombolcha regional laboratory. A follow up study was also conducted from December 2019 to March 2021 to estimate the transmission parameter of SP and GP outbreaks in South Wollo zone of Kutaber district, Amhara region. Tissue samples from outbreaks in Kundi and Haroye kebele of Kutaber district were taken to confirm the outbreak by conventional polymerase chain reaction (PCR). The transmission parameters were estimated using Generalized linear model (GLM) based on stochastic Susceptible Infected and Recovered (SIR) model. In South Wollo zone, 249 SGP outbreaks were reported from 2013 to 2019. The incidence differed between months, with a highest peak in October and November and a lowest peak in February. The basic reproduction ratios (R0) of the SGP disease outbreaks were 1.84 and 3 for Haroye and Kundi kebele outbreaks, respectively. The disease is distributed throughout the zone and the investigated active outbreaks had moderate transmission between animals. Hence, it needs a great effort which focuses on the application of control measures that reduce the transmission of the disease.
Collapse
Affiliation(s)
- Belege Tadesse
- Wollo University, School of Veterinary Medicine, P.O. Box. 1145, Dessie, Ethiopia
| | - Sileshi Aregahagn
- Wollo University, School of Veterinary Medicine, P.O. Box. 1145, Dessie, Ethiopia
- Kombolcha College of Agriculture Affliated to Wollo University, Kombolcha, Ethiopia
| | - Bethelihem Tegegne Muluneh
- Department of Veterinary Laboratory Technology, College of Agriculture, Food and Climate Science, Injibara University, Injibara, Ethiopia
| | - Yalelet Worku
- Wollo University, School of Veterinary Medicine, P.O. Box. 1145, Dessie, Ethiopia
| |
Collapse
|
20
|
Sendow I, Meki IK, Dharmayanti NLPI, Hoerudin H, Ratnawati A, Settypalli TBK, Ahmed HO, Nuradji H, Saepulloh M, Adji RS, Fairusya N, Sari F, Anindita K, Cattoli G, Lamien CE. Molecular characterization of recombinant LSDV isolates from 2022 outbreak in Indonesia through phylogenetic networks and whole-genome SNP-based analysis. BMC Genomics 2024; 25:240. [PMID: 38438878 PMCID: PMC10913250 DOI: 10.1186/s12864-024-10169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024] Open
Abstract
Lumpy skin disease (LSD) is a transboundary viral disease of cattle and water buffaloes caused by the LSD virus, leading to high morbidity, low mortality, and a significant economic impact. Initially endemic to Africa only, LSD has spread to the Middle East, Europe, and Asia in the past decade. The most effective control strategy for LSD is the vaccination of cattle with live-attenuated LSDV vaccines. Consequently, the emergence of two groups of LSDV strains in Asian countries, one closely related to the ancient Kenyan LSDV isolates and the second made of recombinant viruses with a backbone of Neethling-vaccine and field isolates, emphasized the need for constant molecular surveillance. This current study investigated the first outbreak of LSD in Indonesia in 2022. Molecular characterization of the isolate circulating in the country based on selected LSDV-marker genes: RPO30, GPCR, EEV glycoprotein gene, and B22R, as well as whole genome analysis using several analytical tools, indicated the Indonesia LSDV isolate as a recombinant of LSDV_Neethling_vaccine_LW_1959 and LSDV_NI-2490. The analysis clustered the Indonesia_LSDV with the previously reported LSDV recombinants circulating in East and Southeast Asia, but different from the recombinant viruses in Russia and the field isolates in South-Asian countries. Additionally, this study has demonstrated alternative accurate ways of LSDV whole genome analysis and clustering of isolates, including the recombinants, instead of whole-genome phylogenetic tree analysis. These data will strengthen our understanding of the pathogens' origin, the extent of their spread, and determination of suitable control measures required.
Collapse
Affiliation(s)
- Indrawati Sendow
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Irene Kasindi Meki
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, A-1400, Vienna, P.O. Box 100, Austria.
| | - Ni Luh Putu Indi Dharmayanti
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Heri Hoerudin
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Atik Ratnawati
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Tirumala Bharani K Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, A-1400, Vienna, P.O. Box 100, Austria
| | - Hatem Ouled Ahmed
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, A-1400, Vienna, P.O. Box 100, Austria
| | - Harimurti Nuradji
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Muharam Saepulloh
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Rahmat Setya Adji
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Nuha Fairusya
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | | | | | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, A-1400, Vienna, P.O. Box 100, Austria
| | - Charles Euloge Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, A-1400, Vienna, P.O. Box 100, Austria
| |
Collapse
|
21
|
Yadav P, Kumar A, Nath SS, Devasurmutt Y, Shashidhar G, Joshi M, Puvar A, Sharma S, Raval J, Pandit R, Chavda P, Nagaraj S, Revanaiah Y, Patil D, Raval SK, Raval J, Kanani A, Thakar F, Kumar N, Reddy GBM, Joshi C, Gulati BR, Tatu U. Unravelling the genomic origins of lumpy skin disease virus in recent outbreaks. BMC Genomics 2024; 25:196. [PMID: 38373902 PMCID: PMC10875885 DOI: 10.1186/s12864-024-10061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Lumpy skin disease virus (LSDV) belongs to the genus Capripoxvirus and family Poxviridae. LSDV was endemic in most of Africa, the Middle East and Turkey, but since 2015, several outbreaks have been reported in other countries. In this study, we used whole genome sequencing approach to investigate the origin of the outbreak and understand the genomic landscape of the virus. Our study showed that the LSDV strain of 2022 outbreak exhibited many genetic variations compared to the Reference Neethling strain sequence and the previous field strains. A total of 1819 variations were found in 22 genome sequences, which includes 399 extragenic mutations, 153 insertion frameshift mutations, 234 deletion frameshift mutations, 271 Single nucleotide polymorphisms (SNPs) and 762 silent SNPs. Thirty-eight genes have more than 2 variations per gene, and these genes belong to viral-core proteins, viral binding proteins, replication, and RNA polymerase proteins. We highlight the importance of several SNPs in various genes, which may play an essential role in the pathogenesis of LSDV. Phylogenetic analysis performed on all whole genome sequences of LSDV showed two types of variants in India. One group of the variant with fewer mutations was found to lie closer to the LSDV 2019 strain from Ranchi while the other group clustered with previous Russian outbreaks from 2015. Our study highlights the importance of genomic characterization of viral outbreaks to not only monitor the frequency of mutations but also address its role in pathogenesis of LSDV as the outbreak continues.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Ankeet Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Sujith S Nath
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Yashas Devasurmutt
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, 382011, India
| | - Apurvasinh Puvar
- Gujarat Biotechnology Research Centre, Gandhinagar, 382011, India
| | - Sonal Sharma
- Gujarat Biotechnology Research Centre, Gandhinagar, 382011, India
| | - Janvi Raval
- Gujarat Biotechnology Research Centre, Gandhinagar, 382011, India
| | | | - Priyank Chavda
- Gujarat Biotechnology Research Centre, Gandhinagar, 382011, India
| | - Sudeep Nagaraj
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, 560064, India
| | - Yogisharadhya Revanaiah
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, 560064, India
| | - Deepak Patil
- Kamdhenu University, Gandhinagar, Gujarat, India
| | - S K Raval
- Kamdhenu University, Gandhinagar, Gujarat, India
| | - Jigar Raval
- Kamdhenu University, Gandhinagar, Gujarat, India
| | | | | | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-NRC on Equines, Sirsa Road, Hisar, Haryana, 125001, India
| | | | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, 382011, India
| | - Baldev Raj Gulati
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, 560064, India
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
22
|
Sharko FS, Mazloum A, Krotova AO, Byadovskaya OP, Prokhvatilova LB, Chvala IA, Zolotikov UE, Kozlova AD, Krylova AS, Grosfeld EV, Prokopenko AV, Korzhenkov AA, Patrushev MV, Namsaraev ZB, Sprygin AV, Toshchakov SV. Metagenomic profiling of viral and microbial communities from the pox lesions of lumpy skin disease virus and sheeppox virus-infected hosts. Front Vet Sci 2024; 11:1321202. [PMID: 38420205 PMCID: PMC10899707 DOI: 10.3389/fvets.2024.1321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction It has been recognized that capripoxvirus infections have a strong cutaneous tropism with the manifestation of skin lesions in the form of nodules and scabs in the respective hosts, followed by necrosis and sloughing off. Considering that the skin microbiota is a complex community of commensal bacteria, fungi and viruses that are influenced by infections leading to pathological states, there is no evidence on how the skin microbiome is affected during capripoxvirus pathogenesis. Methods In this study, shotgun metagenomic sequencing was used to investigate the microbiome in pox lesions from hosts infected with lumpy skin disease virus and sheep pox virus. Results The analysis revealed a high degree of variability in bacterial community structures across affected skin samples, indicating the importance of specific commensal microorganisms colonizing individual hosts. The most common and abundant bacteria found in scab samples were Fusobacterium necrophorum, Streptococcus dysgalactiae, Helcococcus ovis and Trueperella pyogenes, irrespective of host. Bacterial reads belonging to the genera Moraxella, Mannheimia, Corynebacterium, Staphylococcus and Micrococcus were identified. Discussion This study is the first to investigate capripox virus-associated changes in the skin microbiome using whole-genome metagenomic profiling. The findings will provide a basis for further investigation into capripoxvirus pathogenesis. In addition, this study highlights the challenge of selecting an optimal bioinformatics approach for the analysis of metagenomic data in clinical and veterinary practice. For example, direct classification of reads using a kmer-based algorithm resulted in a significant number of systematic false positives, which may be attributed to the peculiarities of the algorithm and database selection. On the contrary, the process of de novo assembly requires a large number of target reads from the symbiotic microbial community. In this work, the obtained sequencing data were processed by three different approaches, including direct classification of reads based on k-mers, mapping of reads to a marker gene database, and de novo assembly and binning of metagenomic contigs. The advantages and disadvantages of these techniques and their practicality in veterinary settings are discussed in relation to the results obtained.
Collapse
Affiliation(s)
- Fedor S. Sharko
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Ali Mazloum
- Federal Center for Animal Health FGBI ARRIAH, Vladimir, Russia
| | | | | | | | - Ilya A. Chvala
- Federal Center for Animal Health FGBI ARRIAH, Vladimir, Russia
| | | | | | | | - Erika V. Grosfeld
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | | | | | | | | | | | | |
Collapse
|
23
|
Yadav D, Rao GSNK, Paliwal D, Singh A, Alam A, Sharma PK, Surendra AV, Varshney P, Kumar Y. Cracking the Code of Lumpy Skin Disease: Identifying Causes, Symptoms and Treatment Options for Livestock Farmers. Infect Disord Drug Targets 2024; 24:e150124225632. [PMID: 38231058 DOI: 10.2174/0118715265261364231120053105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 01/18/2024]
Abstract
The novel bovine viral infection known as lumpy skin disease is common in most African and Middle Eastern countries, with a significant likelihood of disease transfer to Asia and Europe. Recent rapid disease spread in formerly disease-free zones highlights the need of understanding disease limits and distribution mechanisms. Capripox virus, the causal agent, may also cause sheeppox and Goatpox. Even though the virus is expelled through several bodily fluids and excretions, the most common causes of infection include sperm and skin sores. Thus, vulnerable hosts are mostly infected mechanically by hematophagous arthropods such as biting flies, mosquitoes, and ticks. As a result, milk production lowers, abortions, permanent or temporary sterility, hide damage, and mortality occur, contributing to a massive financial loss for countries that raise cattle. These illnesses are economically significant because they affect international trade. The spread of Capripox viruses appears to be spreading because to a lack of effectual vaccinations and poverty in rural areas. Lumpy skin disease has reached historic levels; as a consequence, vaccination remains the only viable option to keep the illness from spreading in endemic as well as newly impacted areas. This study is intended to offer a full update on existing knowledge of the disease's pathological characteristics, mechanisms of spread, transmission, control measures, and available vaccinations.
Collapse
Affiliation(s)
- Devdhar Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - G S N Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| | - Deepika Paliwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Amit Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Amareswarapu V Surendra
- K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prachi Varshney
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Yogesh Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
24
|
Ntombela N, Matsiela M, Zuma S, Hiralal S, Naicker L, Mokoena N, Khoza T. Production of recombinant lumpy skin disease virus A27L and L1R proteins for application in diagnostics and vaccine development. Vaccine X 2023; 15:100384. [PMID: 37736535 PMCID: PMC10509699 DOI: 10.1016/j.jvacx.2023.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Vaccination using live attenuated vaccines (LAVs) is considered the most effective method for control of lumpy skin disease (LSD). However, this method is limited by safety concerns, with reports of adverse reactions following vaccination. This study evaluates A27L and L1R which are essential proteins for virus attachment and membrane fusion as recombinant sub-unit vaccines against LSD. These proteins were recombinantly expressed in Escherichia coli and purified using affinity chromatography. Purified proteins were formulated individually (A27L or L1R) and in combination (A27L and L1R) with 10% (w/w) Montanide™ Gel 01 PR adjuvant at a final antigen dose of 20 µg per protein. The safety and immunogenicity of these formulations were evaluated in rabbits in a 42-day clinical trial. Animals were vaccinated on day 0 and boost injection administered 21 days later. No reduced morbidity, increased temperature and any other clinical signs were recorded in vaccinated animals for all three vaccine formulations. The highest neutralizing antibody response was detected on day 42 post-primary vaccination for all formulations when using serum neutralising assay. The neutralisation data correlates with antibody titres quantified using a whole cell ELISA. Evaluating the combination of A27L and L1R as potential diagnostic reagents showed highest sensitivity for detection of antibodies against LSD when compared to individual proteins. This study reports the immunogenicity of recombinant A27L and L1R combination for successful application in LSD vaccine development. Furthermore, these proteins demonstrated the potential use in LSD diagnostics.
Collapse
Affiliation(s)
- Nomfundo Ntombela
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
| | - Matome Matsiela
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
- Onderstepoort Biological Products (SOC. Ltd), 100, Old, Soutpan Road, Onderstepoort, 0110, Pretoria, South Africa
| | - Sbahle Zuma
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
| | - Suhavna Hiralal
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
| | - Leeann Naicker
- Onderstepoort Biological Products (SOC. Ltd), 100, Old, Soutpan Road, Onderstepoort, 0110, Pretoria, South Africa
| | - Nobalanda Mokoena
- Onderstepoort Biological Products (SOC. Ltd), 100, Old, Soutpan Road, Onderstepoort, 0110, Pretoria, South Africa
| | - Thandeka Khoza
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
| |
Collapse
|
25
|
Mazloum A, Van Schalkwyk A, Babiuk S, Venter E, Wallace DB, Sprygin A. Lumpy skin disease: history, current understanding and research gaps in the context of recent geographic expansion. Front Microbiol 2023; 14:1266759. [PMID: 38029115 PMCID: PMC10652407 DOI: 10.3389/fmicb.2023.1266759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Lumpy skin disease is recognized as a transboundary and emerging disease of cattle, buffaloes and other wild ruminants. Being initially restricted to Africa, and since 1989 the Middle East, the unprecedented recent spread across Eurasia demonstrates how underestimated and neglected this disease is. The initial identification of the causative agent of LSD as a poxvirus called LSD virus, was well as findings on LSDV transmission and epidemiology were pioneered at Onderstepoort, South Africa, from as early as the 1940s by researchers such as Weiss, Haig and Alexander. As more data emerges from an ever-increasing number of epidemiological studies, previously emphasized research gaps are being revisited and discussed. The currently available knowledge is in agreement with the previously described South African research experience that LSDV transmission can occur by multiple routes, including indirect contact, shared water sources and arthropods. The virus population is prone to molecular evolution, generating novel phylogenetically distinct variants resulting from a diverse range of selective pressures, including recombination between field and homologous vaccine strains in cell culture that produce virulent recombinants which pose diagnostic challenges. Host restriction is not limited to livestock, with certain wild ruminants being susceptible, with unknown consequences for the epidemiology of the disease.
Collapse
Affiliation(s)
- Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Antoinette Van Schalkwyk
- Agricultural Research Council – Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Estelle Venter
- College of Public Health, Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD, Australia
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - David B. Wallace
- Agricultural Research Council – Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | |
Collapse
|
26
|
Punyapornwithaya V, Salvador R, Modethed W, Arjkumpa O, Jarassaeng C, Limon G, Gubbins S. Estimating the Transmission Kernel for Lumpy Skin Disease Virus from Data on Outbreaks in Thailand in 2021. Viruses 2023; 15:2196. [PMID: 38005874 PMCID: PMC10675364 DOI: 10.3390/v15112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Nationwide outbreaks of lumpy skin disease (LSD) were observed in Thailand in 2021. A better understanding of its disease transmission is crucial. This study utilized a kernel-based approach to characterize the transmission of LSD between cattle herds. Outbreak data from the Khon Kaen and Lamphun provinces in Thailand were used to estimate transmission kernels for each province. The results showed that the majority of herd-to-herd transmission occurs over short distances. For Khon Kaen, the median transmission distance from the donor herd was estimated to be between 0.3 and 0.8 km, while for Lamphun, it ranged from 0.2 to 0.6 km. The results imply the critical role that insects may play as vectors in the transmission of LSD within the two study areas. This is the first study to estimate transmission kernels from data on LSD outbreaks in Thailand. The findings from this study offer valuable insights into the spatial transmission of this disease, which will be useful in developing prevention and control strategies.
Collapse
Affiliation(s)
- Veerasak Punyapornwithaya
- Research Center of Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai 50100, Thailand;
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Roderick Salvador
- College of Veterinary Science and Medicine, Central Luzon State University, Science City of Muñoz, Nueva Ecija 3120, Philippines;
| | - Wittawat Modethed
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Orapun Arjkumpa
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen 40260, Thailand;
| | - Chaiwat Jarassaeng
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Georgina Limon
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK;
| | - Simon Gubbins
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK;
| |
Collapse
|
27
|
Zhai Q, Zhou X, Du L, Yang N, Lou Y, Liu J, Zhai S. A Real-Time Recombinase Polymerase Amplification Assay for Specific Detection of Lumpy Skin Disease Virus. Vet Sci 2023; 10:625. [PMID: 37888577 PMCID: PMC10611296 DOI: 10.3390/vetsci10100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Lumpy skin disease virus (LSDV) infection, accompanied by loss of hide quality, poor reproductive efficiency, consistent degenerative emaciation, and milk yield reduction of animals, causes severe economic implications in endemic zones. The heterologous attenuated goat pox (GTPV) vaccine (AV41 strain) was used in China to prevent LSDV infection. Only a few LSDV detection methods that distinguish LSDV from GTPV vaccine strains have been reported before. For simple, rapid, and specific detection of LSDV, the real-time recombinase polymerase amplification (RPA) method was established with the specific primers and probes designed according to the conserved regions of ORF132 gene sequences. The assay could be finished within 20 min at a constant temperature (39 °C). This method had a limit of detection (LOD) of 15 copies/μL for LSDV and no cross-reaction with the nucleic acids of goat pox virus, infectious bovine rhinotracheitis virus, Pasteurella multocida, and bovine healthy tissue. Furthermore, 43 clinical samples were detected by this method and the real-time PCR recommended by the World Organisation for Animal Health (WOAH), with a kappa value, was 0.94. These results demonstrated that the real-time RPA method for detecting LSDV developed in this study was characterized by high sensitivity and specificity, which has wide application value in the clinical diagnosis and detection of LSDV in China.
Collapse
Affiliation(s)
- Qi Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (Q.Z.); (X.Z.)
| | - Xia Zhou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (Q.Z.); (X.Z.)
| | - Liyin Du
- Zijin Animal Disease Prevention and Control Center, Zijin 517400, China;
| | - Nan Yang
- Zhengzhou Zhongdao Biotechnology Co., Ltd., Zhengzhou 451000, China;
| | - Yakun Lou
- Zhengzhou Zhongdao Biotechnology Co., Ltd., Zhengzhou 451000, China;
| | - Jianying Liu
- Guangdong Agricultural Technology Extension Center, Guangzhou 510520, China
| | - Shaolun Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (Q.Z.); (X.Z.)
| |
Collapse
|
28
|
Wen J, Yin X, Zhang X, Lan D, Liu J, Song X, Sun Y, Cao J. Development of a Real-Time qPCR Method for the Clinical Sample Detection of Capripox Virus. Microorganisms 2023; 11:2476. [PMID: 37894134 PMCID: PMC10608805 DOI: 10.3390/microorganisms11102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Capripox viruses (CaPVs), including sheep pox virus (SPV), goat pox virus (GPV), and lumpy skin disease virus (LSDV), are the cause of sheep pox (SPP), goat pox (GTP), and lumpy skin disease (LSD) in cattle. These diseases are of great economic significance to farmers, as they are endemic on farms and are a major constraint to international trade in livestock and their products. Capripoxvirus (CaPV) infections produce similar symptoms in sheep and goats, and the three viruses cannot be distinguished serologically. In this study, we developed a real-time quantitative polymerase chain reaction (qPCR) method for identifying CaPV in goats, sheep, and cattle. Clinical samples were tested and verified. The developed assay was highly specific for target viruses, including GPVSPV and LSDV, which had no cross-reaction with other viruses causing similar clinical symptoms. An artificially synthesized positive control plasmid using the CaPV 32 gene inserted into the vector pMD19-T was used as a template, and the correlation coefficient of the linear regression curve (R2) was 0.9916, the estimated amplification efficiency (E) was 96.06%, and the sensitivity (limit of detection, LOD) was 3.80 copies per reaction. Using the clinical samples as a template, the limit of detection (LOD) was 4.91 × 10-5 ng per reaction (1.60 × 10-5-2.13 × 10-3 ng, 95% confidence interval (CI)), which means that this method was one of the most sensitive detection assays for CaPVs. A total of 85 clinical samples from CaPV-infected animals (goats, sheep, and cattle) and 50 clinical samples from healthy animals were used to test and compare the diagnostic results using the Synergy Brands (SYBR) Green-based PCR method recommended by the World Organization of Animal Health (WOAH). Both diagnostic sensitivity (DSe) (95.8-100%, 95% CI) and diagnostic specificity (DSp) (92.9-100%, 95% CI) results of the real-time quantitative PCR (qPCR) and SYBR Green PCR were 100%, and the kappa value (κ) was 1.0 (1-1, 95% CI). In summary, the assay established based on TaqMan probes was advantageous in high specificity, sensitivity, and general applicability and could be a competitive candidate tool for the diagnosis of CaPV in clinically suspected animals.
Collapse
Affiliation(s)
- Jiaxin Wen
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China; (J.W.); (X.Y.); (X.Z.)
| | - Xinying Yin
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China; (J.W.); (X.Y.); (X.Z.)
| | - Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China; (J.W.); (X.Y.); (X.Z.)
| | - Desong Lan
- Liaoning Center for Animal Disease Control and Prevention, Shenyang 110164, China;
| | - Junshan Liu
- School of Mechanical Engineering, Faculty of Mechanical Engineering, Materials and Energy, Dalian University of Technology, Dalian 116024, China;
| | - Xiaohui Song
- China Animal Disease Prevention Control Center, Beijing 100125, China;
| | - Yu Sun
- China Animal Disease Prevention Control Center, Beijing 100125, China;
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China; (J.W.); (X.Y.); (X.Z.)
| |
Collapse
|
29
|
Liu L, Wang J, Nie F, Li R, Gao Y, Sun X, Yuan W, Wang J. Development of the isothermal recombinase polymerase amplification assays for rapid detection of the genus Capripoxvirus. J Virol Methods 2023; 320:114788. [PMID: 37517457 DOI: 10.1016/j.jviromet.2023.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Sheeppox virus (SPPV), goatpox virus (GTPV) and lumpy skin disease virus (LSDV) belong to the genus Capripoxvirus (CaPV), and are important pathogens of sheep, goat and cattle, respectively. Rapid and reliable detection of CaPV is critical to prevent its spread and promote its eradication. This study aimed to develop the recombinase polymerase amplification (RPA) assays combined with real-time fluorescence (real-time RPA) and naked-eye visible lateral flow strip (LFS RPA) for rapid detection of CaPV. Both developed RPA assays worked well at 39 °C within 20 min. They were highly specific for the detection of GTPV, SPPV and LSDV, while no cross-reactivity was observed for other non-targeted pathogens and genomic DNA of goat, sheep and cattle. The limit of detection for real-time RPA and LFS RPA were 1.0 × 102 and 1.0 × 101 copies per reaction, respectively. In the artificially contaminated samples with GTPV, the detection results of RPA assays were consistent with those of real-time PCR. For 15 clinical samples, LSDV was detected by real-time RPA, LFS RPA and real-time PCR in 13, 15 and 15 samples, respectively. The developed RPA assays were specific, sensitive, and user-friendly for the rapid detection of CaPV, and could be a better alternative method applied in low-resources settings.
Collapse
Affiliation(s)
- Libing Liu
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Jinfeng Wang
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Fuping Nie
- Technology Center of Chongqing Customs, Chongqing 400020, China
| | - Ruiwen Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yixiang Gao
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Xiaoxia Sun
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Jianchang Wang
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China.
| |
Collapse
|
30
|
Susanti T, Susetya H, Widayani P, Fitria Y, Pambudi GT. Risk factors, logistic model, and vulnerability mapping of lumpy skin disease in livestock at the farm level in Indragiri Hulu District, Riau Province, Indonesia, in 2022. Vet World 2023; 16:2071-2079. [PMID: 38023269 PMCID: PMC10668545 DOI: 10.14202/vetworld.2023.2071-2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Lumpy skin disease (LSD) is an emerging epidemic in livestock in Indonesia. It was first reported in the Indragiri Hulu Regency of Riau Province, which has more cases than the surrounding regencies. This study aimed to identify the risk factors and generate a logistic regression model and vulnerability map of LSD in the Indragiri Hulu Regency. Materials and Methods We used a structured questionnaire to interview the case and control farm owners to evaluate the risk factors. We evaluated 244 samples, consisting of 122 case and control farm samples each. At the cattle farm level, the risk factor data related to LSD were analyzed using descriptive statistics, bivariate analysis with Chi-square, and odds ratio, while the logistic model was derived using multivariate logistic regression analysis. Using variables, such as the number of cases and risk factor variables included in the model logistic, and the temperature, humidity, and rainfall data from the Meteorology, Climatology, and Geophysical Agency, we analyzed the vulnerability map of LSD in the regency using scoring, weighting, and overlay methods. Results Ten significant risk factors were associated with LSD occurrence. The LSD model obtained from the logistic regression analysis was LSD (Y) = -3.92095 + 1.13107 (number of cattle >3) + 1.50070 (grazing cattle together with other farmers' cattle) + 1.03500 (poor management of farm waste/dirt) + 2.49242 (presence of livestock collectors/traders near the farm location) + 1.40543 (introduction of new livestock) + 2.15196 (lack of vector control measures on the farm). The LSD vulnerability map indicated that the villages with high vulnerability levels were Rantau Bakung, Kuantan Babu, and Sungai Lala in the Rengat Barat, Rengat, and Sungai Lala subdistricts, respectively. Conclusion We found 10 significant risk factors associated with LSD occurrence. The LSD model included the number of cattle (>3), cograzing with other farmers' cattle, poor management of farm waste/dirt, the presence of livestock collectors/traders near the farm, introduction of new livestock, and lack of vector control measures on the farm. The LSD vulnerability map indicated that villages with high vulnerability levels included Rantau Bakung in the Rengat Barat subdistrict, Kuantan Babu in the Rengat subdistrict, and Sungai Lala in the Sungai Lala subdistrict.
Collapse
Affiliation(s)
- Tri Susanti
- Department of Epidemiology and Veterinary Public Health, Graduate Student of Veterinary Science, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
- Disease Investigation Centre of Bukittinggi, Bukittinggi, Indonesia
| | - Heru Susetya
- Department of Epidemiology and Veterinary Public Health, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Prima Widayani
- Department of Geographical Information Science, Faculty of Geography, Gadjah Mada University, Yogyakarta, Indonesia
| | - Yul Fitria
- Disease Investigation Centre of Bukittinggi, Bukittinggi, Indonesia
| | | |
Collapse
|
31
|
Sprygin A, Mazloum A, Van Schalkwyk A, Krotova A, Bydovskaya O, Prokhvatilova L, Chvala I. Development and application of a real-time polymerase chain reaction assay to detect lumpy skin disease virus belonging to the Kenyan sheep and goat pox group. BMC Res Notes 2023; 16:247. [PMID: 37777780 PMCID: PMC10543856 DOI: 10.1186/s13104-023-06502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023] Open
Abstract
Lumpy skin disease (LSD) outbreaks in Southeast and South Asia are attributed to different lineages of LSD virus (LSDV). Variants belonging to the novel recombinant cluster 2.5 circulate in China and Thailand, while a Kenyan sheep and goat pox (KSGP) strain from cluster 1.1 circulates in India, Pakistan, and Bangladesh. The clusters representing these circulating strains are vastly different. However, if their distribution encroaches into each other's ranges, it will be impossible to differentiate between them due to the lack of suitable molecular tools. Thus, fit-for-purpose molecular tools are in demand to effectively and timeously diagnose and investigate the epidemiology of LSDVs in a region. These could significantly contribute to the phylogenetic delineation of LSDVs and the development of preventive measures against transboundary spillovers. This work aimed to develop a real-time polymerase chain reaction assay targeting open reading frame LW032, capable of specifically detecting KSGP-related isolates and recombinant LSDV strains containing the KSGP backbone. The analytical specificity was proven against the widest possible panel of recombinant vaccine-like LSDV strains known to date. The amplification efficiency was 91.08%, and the assay repeatability had a cycle threshold variation of 0.56-1.1 over five repetitions across three runs. This KSGP-specific assay is reliable and fast and is recommended for use in LSDV epidemiological studies where the accurate detection of KSGP genetic signatures is a priority, particularly in regions where KSGP-like and other lineages are circulating.
Collapse
Affiliation(s)
| | - Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Antoinette Van Schalkwyk
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | | | | | | | - Ilya Chvala
- Federal Center for Animal Health, Vladimir, Russia
| |
Collapse
|
32
|
Hall RN, Torpy JR, Nye R, Zalcman E, Cowled BD. A quantitative risk assessment for the incursion of lumpy skin disease virus into Australia via long-distance windborne dispersal of arthropod vectors. Prev Vet Med 2023; 218:105990. [PMID: 37597306 DOI: 10.1016/j.prevetmed.2023.105990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
Lumpy skin disease (LSD) is an infectious disease of cattle and water buffalo caused by lumpy skin disease virus (LSDV). It is primarily transmitted mechanically by biting insects. LSDV has spread from Africa to the Middle-East, the Balkans, Caucasus, Russia, Kazakhstan, China, Asia and India, suggesting that a wide variety of arthropod vectors are capable of mechanical transmission. In 2022, LSD was detected in Indonesia, heightening awareness for Australia's livestock industries. To better understand the risk of LSDV incursion to Australia we undertook a quantitative risk assessment (QRA) looking at windborne dispersal of arthropod vectors, assuming a hypothetical situation where LSD is endemic in south-east Asia and Papua New Guinea. We estimated the risk of LSDV incursion to be low, with a median incursion rate of one incursion every 403 years, based on a model where several infectious insects (i.e. a 'small batch' of 3-5) must bite a single bovine to transmit infection. The incursion risk increases substantially to one incursion every 7-8 years if a bite from a single insect is sufficient for transmission. The risk becomes negligible (one incursion every 20,706 years) if bites from many insects (i.e. a 'large batch' of 30-50 insects) are necessary. Critically, several of our parameter estimates were highly uncertain during sensitivity analyses. Thus, a key outcome of this QRA was to better prioritise surveillance activities and to understand the key research gaps associated with LSDV in the Australasian context. The current literature shows that multiple vectors are required for successful bovine-to-vector transmission of LSDV, suggesting that our estimate of one outbreak every 403 years more accurately represents the risk to Australia; however, the role of single insects in transmission has not yet been evaluated. Similarly, attempts to transmit LSDV between bovines by Culicoides have not been successful, although midges were the highest risk vector category in our model due to the high vector-to-host ratio for midges compared to other vector categories. Our findings provide further insight into the risk of LSD to Australian cattle industries and identify the Tiwi Islands and areas east of Darwin as priority regions for LSDV surveillance, especially between December and March.
Collapse
Affiliation(s)
- Robyn N Hall
- Ausvet Pty Ltd, 5 Shuffrey St, Fremantle, Western Australia, 6160, Australia.
| | - James R Torpy
- Ausvet Pty Ltd, 5 Shuffrey St, Fremantle, Western Australia, 6160, Australia
| | - Rachel Nye
- Ausvet Pty Ltd, 5 Shuffrey St, Fremantle, Western Australia, 6160, Australia
| | - Emma Zalcman
- Ausvet Pty Ltd, 5 Shuffrey St, Fremantle, Western Australia, 6160, Australia
| | - Brendan D Cowled
- Ausvet Pty Ltd, 5 Shuffrey St, Fremantle, Western Australia, 6160, Australia
| |
Collapse
|
33
|
Akther M, Akter SH, Sarker S, Aleri JW, Annandale H, Abraham S, Uddin JM. Global Burden of Lumpy Skin Disease, Outbreaks, and Future Challenges. Viruses 2023; 15:1861. [PMID: 37766268 PMCID: PMC10535115 DOI: 10.3390/v15091861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Lumpy skin disease (LSD), a current global concern, causes economic devastation in livestock industries, with cattle and water buffalo reported to have higher morbidity and lower mortality rates. LSD is caused by lumpy skin disease virus (LSDV), a member of the Poxviridae family. It is an enzootic, rapidly explorative and sometimes fatal infection, characterized by multiple raised nodules on the skin of infected animals. It was first reported in Zambia in 1929 and is considered endemic in Africa south of the Sahara desert. It has gradually spread beyond Africa into the Middle East, with periodic occurrences in Asian and East European countries. Recently, it has been spreading in most Asian countries including far East Asia and threatens incursion to LSD-free countries. Rapid and accurate diagnostic capabilities, virus identification, vaccine development, vector control, regional and international collaborations and effective biosecurity policies are important for the control, prevention, and eradication of LSD infections. This review critically evaluates the global burden of LSD, the chronological historical outbreaks of LSD, and future directions for collaborative global actions.
Collapse
Affiliation(s)
- Mahfuza Akther
- Department of Pathology and Parasitology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh;
| | - Syeda Hasina Akter
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (J.W.A.); (H.A.)
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4814, Australia;
| | - Joshua W. Aleri
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (J.W.A.); (H.A.)
| | - Henry Annandale
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (J.W.A.); (H.A.)
| | - Sam Abraham
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Jasim M. Uddin
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (J.W.A.); (H.A.)
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| |
Collapse
|
34
|
Rhazi H, Tifrouin I, Mikou K, Belayadi O, Safini N, Alhyane M, Tadlaoui KO, Lenk M, Elharrak M. Poxvirus sensitivity of a novel diploid sheep embryonic heart cell line. Arch Virol 2023; 168:232. [PMID: 37594542 DOI: 10.1007/s00705-023-05855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Lumpy skin disease virus (LSDV), camelpox virus (CPV), and orf virus (ORFV) are members of the family Poxviridae. These viruses are usually isolated or produced in embryonated eggs or primary cells because continuous cell lines are less sensitive to infection. Disadvantages of the use of eggs or primary cells include limited availability, potential endogenous contaminants, and a limited ability to perform multiple passages. In this study, we developed a diploid cell culture from sheep embryonic hearts (EHs) and demonstrated its high proliferative and long-term storage capacities. In addition, we demonstrated its sensitivity to representatives of three genera of the family Poxviridae: Capripoxvirus (LSDV), Orthopoxvirus (CPV), and Parapoxvirus (ORFV). The cell culture had a doubling time of 24 h and reached 40 passages with satisfactory yield. This is comparable to that observed in primary lamb testis (LT) cells at passage 5 (P5). After infection, each poxvirus titer was 7.0-7.6 log TCID50/mL for up to five passages and approximately 6.8, 6.4, and 5.6 for the three viruses at P6-P25, P30, and P40, respectively. The sensitivity of sheep EH cells to poxvirus infection did not decrease after long-term storage in liquid nitrogen and was higher than that of primary LT cells, which are used for capripoxvirus and parapoxvirus detection and growth, and Vero cells, which are used for orthopoxvirus detection and growth. Thus, EH diploid cells are useful for poxvirus isolation and production without embryonated eggs or primary cells.
Collapse
Affiliation(s)
- Halima Rhazi
- Laboratory of Functional and Environmental Ecology, Faculty of Sciences and Technology Sidi Mohammed, Ben Abdellah University, BP 2202, Imouzzer Road, Fez, Morocco.
- Laboratory of Research and Development Virology, MCI Animal Health, B.P: 278, Lot. 157, Zone Industrielle Sud-Ouest (ERAC), 28810, Mohammedia, Morocco.
| | - Ikram Tifrouin
- Laboratory of Research and Development Virology, MCI Animal Health, B.P: 278, Lot. 157, Zone Industrielle Sud-Ouest (ERAC), 28810, Mohammedia, Morocco
| | - Karima Mikou
- Laboratory of Functional and Environmental Ecology, Faculty of Sciences and Technology Sidi Mohammed, Ben Abdellah University, BP 2202, Imouzzer Road, Fez, Morocco
| | - Oumaima Belayadi
- Laboratory of Research and Development Virology, MCI Animal Health, B.P: 278, Lot. 157, Zone Industrielle Sud-Ouest (ERAC), 28810, Mohammedia, Morocco
| | - Najete Safini
- Laboratory of Research and Development Virology, MCI Animal Health, B.P: 278, Lot. 157, Zone Industrielle Sud-Ouest (ERAC), 28810, Mohammedia, Morocco
| | - Meryem Alhyane
- Laboratory of Research and Development Virology, MCI Animal Health, B.P: 278, Lot. 157, Zone Industrielle Sud-Ouest (ERAC), 28810, Mohammedia, Morocco
| | - Khalid Omari Tadlaoui
- Laboratory of Research and Development Virology, MCI Animal Health, B.P: 278, Lot. 157, Zone Industrielle Sud-Ouest (ERAC), 28810, Mohammedia, Morocco
| | - Matthias Lenk
- Department of Experimental Animal Facilities and Biorisk Management, Collection of Cell Lines in Veterinary Medicine, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Mehdi Elharrak
- Laboratory of Research and Development Virology, MCI Animal Health, B.P: 278, Lot. 157, Zone Industrielle Sud-Ouest (ERAC), 28810, Mohammedia, Morocco
| |
Collapse
|
35
|
Moje N, Bari FD, Urge B, Demissie E. Assessment of Humoral Immune Response in Pre- and Post-Vaccinated Cattle Against Lumpy Skin Disease. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2023; 14:133-143. [PMID: 37576102 PMCID: PMC10422966 DOI: 10.2147/vmrr.s403127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Introduction Lumpy skin disease (LSD) is viral disease affecting cattle production and productivity in Ethiopia. As a prevention method, vaccinations have been used for a long period with a questionable output due to the existence of LSD outbreaks in vaccinated herds in different parts of Ethiopia. Methods A longitudinal study was performed from October 2019 to April 2020 with the objective of assessing the humoral immune response of cattle with a serum neutralization test (SNT) from different management systems in central Ethiopia. In this study, theserum was collected from 113 cattle (extensive (60/113) and intensive (53/113) management systems) before and after vaccination. Results and Discussion From collected sera, a limited number of cattle had seroconversion before vaccination (7.08%). On the other hand, it is obvious the seroconversion rises post vaccination. Accordingly, seroconversion starts to increase after a week (8.85% at 7 dpv) post-vaccination which proceeds to significantly increase at 30 days post vaccination (dpv) (41.65% (25/60)). Furthermore, the risk factor study before and after vaccination showed intensively managed cattle with significantly higher levels of antibody titer at 7 dpv (OR = 1.17; 95% CI = 0.22, 6.2; p = 0.016) and 30 dpv (OR = 3.67; 95% CI = 1.1, 12.29; p = 0.035) compared with that of extensively managed cattle. The other animal-related risk factor that showed a significant difference was breeds and a specific age group ([4½, 7] years) at 15 dpv (OR = 6.69; 95% CI = 2.02, 22.08; p = 0.002) and 30 dpv (OR = 4.24; 95% CI = 1.22, 14.71; p = 0.023); respectively. Conclusion This study showed an overall lower antibody detection across the study, posing a question on the current LSD-vaccine efficacy. Therefore, a circulating strain of LSDV should be cross-checked with the vaccine strain and adaptations should be made from it.
Collapse
Affiliation(s)
- Nebyou Moje
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Fufa Dawo Bari
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Beksisa Urge
- Holeta and Debre Zeit Agricultural Research Centers, EIAR, Oromia, Ethiopia
| | - Ejigayehu Demissie
- Holeta and Debre Zeit Agricultural Research Centers, EIAR, Oromia, Ethiopia
| |
Collapse
|
36
|
Ayaz Kök S, Üstün S, Taşkent Sezgin H. Diagnosis of Ruminant Viral Diseases with Loop-Mediated Isothermal Amplification. Mol Biotechnol 2023; 65:1228-1241. [PMID: 36719638 PMCID: PMC9888337 DOI: 10.1007/s12033-023-00674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Infectious diseases in livestock industry are major problems for animal health, food safety, and the economy. Zoonotic diseases from farm animals are significant threat to human population as well. These are notifiable diseases listed by the World Organization for Animal Health (OIE). Rapid diagnostic methods can help keep infectious diseases under control in herds. Loop-mediated isothermal amplification (LAMP) is a simple and rapid nucleic acid amplification method that is studied widely for detection of many infectious diseases in the field. LAMP allows biosensing of target DNA or RNA under isothermal conditions with high specificity in a short period of time. An untrained user can analyze results based on color change or turbidity. Here we review LAMP assays to diagnose OIE notifiable ruminant viral diseases in literature highlighting properties of LAMP method considering what is expected from an efficient, field usable diagnostic test.
Collapse
Affiliation(s)
- Sanem Ayaz Kök
- Biotechnology Interdisciplinary Program, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430
- New Era Biotechnology, Teknopark İzmir, Gülbahçe, Urla, İzmir, Turkey, 35430
| | - Selcen Üstün
- Bioengineering Department, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430
| | - Hümeyra Taşkent Sezgin
- Biotechnology Interdisciplinary Program, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430.
- New Era Biotechnology, Teknopark İzmir, Gülbahçe, Urla, İzmir, Turkey, 35430.
- Bioengineering Department, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430.
| |
Collapse
|
37
|
Ren S, Chen H, Yuan L, Yang X, Afera TB, Rehman ZU, Wang H, Wang X, Ma C, Lin Y, Qiu X, Yin X, Sun Y. Phylogenetic and pathogenic characterization of lumpy skin disease virus circulating in China. Virology 2023; 585:127-138. [PMID: 37336054 DOI: 10.1016/j.virol.2023.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The genomic characterization of emerging pathogens is critical for unraveling their origin and tracking their dissemination. Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in Asia including China. Although the first Lumpy skin disease (LSD) outbreak was reported in 2019, the origin, transmission, and evolutionary trajectory of LSDV in China have remained obscure. The viral genome of a circulating LSDV strain in China, abbreviated LSDV/FJ/CHA/2021, was sequenced using the next-generation sequencing technique. The morphology and cytoplasmic viral factory of these LSDV isolates were observed using transmission electron microscopy. Subsequently, the genomic characterization of this LSDV isolate was systematically analyzed for the first time using the bioinformatics software. The current study revealed that several mutations in the genome of LSDV isolates circulating in China were identified using single nucleotide polymorphisms (SNPs) analysis, an instrument to evaluate for continuous adaptive evaluation of a virus. Furthermore, phylogenomic analysis was used to identify the lineage using the whole genome sequences of 44 LSDV isolates. The result revealed that the isolates from China were closely similar to that of the LSDV isolates from Vietnam, which are divided into a monophyletic lineage sub-group I. The SNPs and Simplot analysis indicate no significant occurrence of the recombinant event on the genome of LSDV isolates in China. Notably, the live virus challenge experiment demonstrated that the pathogenic characterization of this LSDV isolate belongs to a virulent strain. Collectively, we gain the first insight into the evolutionary trajectory, spatiotemporal transmission, and pathogenic characterization of circulating LSDV in China. This study provides a unique reference for risk assessment, guiding diagnostics, and prevention in epizootic and non-epizootic areas.
Collapse
Affiliation(s)
- Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China
| | - Haotai Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China.
| | - Lvfeng Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China
| | - Xue Yang
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Tadele Berihun Afera
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China
| | - Zaib Ur Rehman
- Department of Poultry Science, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Huibao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China
| | - Chunling Ma
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yuguang Lin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China; Laboratory of Veterinary Microbiology, College of Animal Science and Technology, Tarim University, Alar, 843300, PR China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China.
| |
Collapse
|
38
|
Ma C, Ren S, Afera TB, Yang X, Lin Y, Gao X, Wang F, Qiu X, Wang X, Yin X, Sun Y, Wan X, Chen HT. The comparative study revealed that the hTERT-CSF cell line was the most susceptible cell to the Lumpy skin disease virus infection among eleven cells. J Virol Methods 2023; 317:114745. [PMID: 37121353 DOI: 10.1016/j.jviromet.2023.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in Asia, including China. Improving the propagation of LSDV is important for diagnostics and vaccine production. Our study identified and compared the LSDV susceptibility of eleven standard cells using western blot, indirect immune-fluorescence assay, quantitative PCR, and 50% tissue culture infectious dose. Our finding revealed that the LSDV strain could infect five cell lines and show a cytopathic effect. Furthermore, the hTERT-CSF cell line had the highest level of virus in the five cell models, followed by BHK-21, MDBK, Vero, and hTERT-ST. Hence, hTERT-CSF could be used as a candidate cell line for basic and applied research, clinical application, and LSDV vaccine development, providing a vital reference in LSDV and other viruses.
Collapse
Affiliation(s)
- Chunling Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P.R. China; Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P.R. China.
| | - Tadele Berihun Afera
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P.R. China
| | - Xue Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P.R. China
| | - Yugang Lin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P.R. China; Laboratory of Veterinary Microbiology, College of Animal Science and Technology, Tarim University, Alar 843300, P.R. China
| | - Xiaohong Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P.R. China
| | - Fangping Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P.R. China; Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, P.R. China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P.R. China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P.R. China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P.R. China
| | - Xuerui Wan
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, P.R. China.
| | - Hao-Tai Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P.R. China.
| |
Collapse
|
39
|
Omoniwa DO, Meki IK, Kudi CA, Sackey AK, Aminu M, Adedeji AJ, Meseko CA, Luka PD, Asala OO, Adole JA, Atai RB, Atuman YJ, Settypalli TBK, Cattoli G, Lamien CE. Poxvirus Infections in Dairy Farms and Transhumance Cattle Herds in Nigeria. Viruses 2023; 15:v15051051. [PMID: 37243137 DOI: 10.3390/v15051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Lumpy Skin disease (LSD) is an economically important disease in cattle caused by the LSD virus (LSDV) of the genus Capripoxvirus, while pseudocowpox (PCP) is a widely distributed zoonotic cattle disease caused by the PCP virus (PCPV) of the genus Parapoxvirus. Though both viral pox infections are reportedly present in Nigeria, similarities in their clinical presentation and limited access to laboratories often lead to misdiagnosis in the field. This study investigated suspected LSD outbreaks in organized and transhumance cattle herds in Nigeria in 2020. A total of 42 scab/skin biopsy samples were collected from 16 outbreaks of suspected LSD in five northern States of Nigeria. The samples were analyzed using a high-resolution multiplex melting (HRM) assay to differentiate poxviruses belonging to Orthopoxvirus, Capripoxvirus, and Parapoxvirus genera. LSDV was characterized using four gene segments, namely the RNA polymerase 30 kDa subunit (RPO30), G-protein-coupled receptor (GPCR), the extracellular enveloped virus (EEV) glycoprotein and CaPV homolog of the variola virus B22R. Likewise, the partial B2L gene of PCPV was also analyzed. Nineteen samples (45.2%) were positive according to the HRM assay for LSDV, and five (11.9%) were co-infected with LSDV and PCPV. The multiple sequence alignments of the GPCR, EEV, and B22R showed 100% similarity among the Nigerian LSDV samples, unlike the RPO30 phylogeny, which showed two clusters. Some of the Nigerian LSDVs clustered within LSDV SG II were with commonly circulating LSDV field isolates in Africa, the Middle East, and Europe, while the remaining Nigerian LSDVs produced a unique sub-group. The B2L sequences of Nigerian PCPVs were 100% identical and clustered within the PCPV group containing cattle/Reindeer isolates, close to PCPVs from Zambia and Botswana. The results show the diversity of Nigerian LSDV strains. This paper also reports the first documented co-infection of LSDV and PCPV in Nigeria.
Collapse
Affiliation(s)
- David Oludare Omoniwa
- Department of Veterinary Medicine, Surgery and Radiology, University of Jos, Jos 930001, Plateau State, Nigeria
- Department of Veterinary Medicine, Ahmadu Bello University, Zaria 810211, Kaduna State, Nigeria
| | - Irene Kasindi Meki
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria
| | - Caleb Ayuba Kudi
- Department of Veterinary Medicine, Ahmadu Bello University, Zaria 810211, Kaduna State, Nigeria
| | - Anthony Kojo Sackey
- Department of Veterinary Medicine, Ahmadu Bello University, Zaria 810211, Kaduna State, Nigeria
| | - Maryam Aminu
- Department of Microbiology, Ahmadu Bello University, Zaria 810211, Kaduna State, Nigeria
| | | | | | - Pam Dachung Luka
- National Veterinary Research Institute, Vom 930103, Plateau State, Nigeria
| | | | - Jolly Amoche Adole
- National Veterinary Research Institute, Vom 930103, Plateau State, Nigeria
| | | | - Yakubu Joel Atuman
- National Veterinary Research Institute, Vom 930103, Plateau State, Nigeria
| | - Tirumala Bharani Kumar Settypalli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria
| | - Charles Euloge Lamien
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria
| |
Collapse
|
40
|
Wolff J, Beer M, Hoffmann B. Cross-Protection of an Inactivated and a Live-Attenuated Lumpy Skin Disease Virus Vaccine against Sheeppox Virus Infections in Sheep. Vaccines (Basel) 2023; 11:vaccines11040763. [PMID: 37112675 PMCID: PMC10143431 DOI: 10.3390/vaccines11040763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Sheeppox virus (SPPV) (genus Capripoxvirus, family Poxviridae) infections are a highly virulent and contagious disease of sheep with a high morbidity and mortality, especially in naïve populations and young animals. For the control of SPPV, homologous and heterologous live-attenuated vaccines are commercially available. In our study, we compared a commercially available live-attenuated lumpy skin disease virus (LSDV) vaccine strain (Lumpyvax) with our recently developed inactivated LSDV vaccine candidate regarding their protective efficacy against SPPV in sheep. Both vaccines were proven to be safe in sheep, and neither clinical signs nor viremia could be detected after vaccination and challenge infection. However, the local replication of the challenge virus in the nasal mucosa of previously vaccinated animals was observed. Because of the advantages of an inactivated vaccine and its heterologous protection efficacy against SPPV in sheep, our inactivated LSDV vaccine candidate is a promising additional tool for the prevention and control of SPPV outbreaks in the future.
Collapse
Affiliation(s)
- Janika Wolff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
41
|
The emergence of novel Iranian variants in sheeppox and goatpox viral envelope proteins with remarkably altered putative binding affinities with the host receptor. Virus Genes 2023; 59:437-448. [PMID: 36913064 DOI: 10.1007/s11262-023-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
The outbreak of Sheep and goat pox (SGP) viral infections have increasingly been reported despite vaccinating the majority of sheep populations in Iran. The objective of this study was to predict the impacts of the SGP P32/envelope variations on the binding with host receptors as a candidate tool to assess this outbreak. The targeted gene was amplified in a total of 101 viral samples, and the PCR products were subjected to Sanger sequencing. The polymorphism and phylogenetic interactions of the identified variants were assessed. Molecular docking was performed between the identified P32 variants and the host receptor and the effects of these variants were evaluated. Eighteen variations were identified in the investigated P32 gene with variable silent and missense effects on the envelope protein. Five groups (G1-G5) of amino acid variations were identified. While there were no amino acid variations in the G1 (wild-type) viral protein, G2, G3, G4, and G5 proteins had seven, nine, twelve, and fourteen SNPs, respectively. Based on the observed amino acid substitutions, multiple distinct phylogenetic places were occupied from the identified viral groups. Dramatic alterations were identified between G2, G4, and G5 variants with their proteoglycan receptor, while the highest binding was revealed between goatpox G5 variant with the same receptor. It was suggested that the higher severity of goatpox viral infection originated from its higher affinity to bind with its cognate receptor. This firm binding may be explained by the observed higher severity of the SGP cases from which G5 samples were isolated.
Collapse
|
42
|
Du G, Wu J, Zhang C, Cao X, Li L, He J, Zhang Y, Shang Y. Generation and application of immortalized sertoli cell line from sheep testis. J Virol Methods 2023; 316:114727. [PMID: 36990185 DOI: 10.1016/j.jviromet.2023.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Primary sheep testicular Sertoli cells (STSCs) are ideal for investigating the molecular and pathogenic processes of capripoxvirus. However, the high cost of isolation and culture of primary STSCs, time-consuming operation, and short lifespan greatly limit their real-world application. In our study, the primary STSCs were isolated and immortalized by transfection of a lentiviral recombinant plasmid containing simian virus 40 (SV40) large T antigen. Androgen-binding protein (ABP) and vimentin (VIM) protein expression, SV40 large T antigen activity, proliferation assays, and apoptosis analysis results showed that immortalized large T antigen STSCs (TSTSCs) still had the same physiological characteristics and biological functions as primary STSCs. Moreover, immortalized TSTSCs had strong anti-apoptosis ability, extended lifespan, and enhanced proliferative activity compared to primary STSCs, which had not transformed in vitro and showed any signs of malignancy phenotype in nude mice. Besides, immortalized TSTSCs were susceptible to goatpox virus (GTPV), lumpy skin disease virus (LSDV), and Orf virus (ORFV). In conclusion, immortalized TSTSCs are useful in vitro models to study GTPV, LSDV, and ORFV in a wide range of ways, suggesting that it can be safely used in virus isolation, vaccine and drug screening studies in future.
Collapse
Affiliation(s)
- Guoyu Du
- State Key Laboratory for Animal Disease Control and Prevention,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Department of Veterinary Obstetrics, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jinyan Wu
- State Key Laboratory for Animal Disease Control and Prevention,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Cheng Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research (CAAS), China
| | - Xiaoan Cao
- State Key Laboratory for Animal Disease Control and Prevention,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Lingxia Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yong Zhang
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| |
Collapse
|
43
|
Datten B, Chaudhary AA, Sharma S, Singh L, Rawat KD, Ashraf MS, Alneghery LM, Aladwani MO, Rudayni HA, Dayal D, Kumar S, Chaubey KK. An Extensive Examination of the Warning Signs, Symptoms, Diagnosis, Available Therapies, and Prognosis for Lumpy Skin Disease. Viruses 2023; 15:v15030604. [PMID: 36992313 PMCID: PMC10058328 DOI: 10.3390/v15030604] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
The lumpy skin disease virus (LSDV) infects cattle and buffalo and causes lumpy skin disease (LSD). It affects the lymph nodes of the sick animals, causing them to enlarge and appear as lumps (cutaneous nodules) that are 2–5 cm in diameter on their heads, necks, limbs, udders, genitalia, and perinea. A high temperature, a sharp drop in milk supply, discharge from the eyes and nose, salivation, a loss of appetite, depression, damaged hides, and emaciation are further warning signs and symptoms. As per the Food and Agriculture Organization (FAO), the incubation period, or the time between an infection and symptoms, is approximately 28 days. Infected animals can transfer the virus by direct contact with the vectors, direct virus secretion from mouth or nose, shared feeding and watering troughs, and even artificial insemination. The World Organization for Animal Health (WOAH) and the FAO both warn that the spread of illnesses could lead to serious economic losses. This illness reduces cow’s milk production because oral ulcers make the animal weak and lead them to lose their appetite. There are many diagnostics available for LSDV. However, very few tests yield accurate findings. The best methods for preventing and controlling the lumpy skin condition include vaccination and movement restrictions. As a specific cure is not available, the only available treatment for this illness is supportive care for cattle. Recently, India has developed a homologous, live-attenuated vaccine, Lumpi-ProVacInd, which is specifically intended to protect animals against the LSD virus. This study’s primary goal is to accumulate data on symptoms, the most accurate method of diagnosis, treatments, and controls to stop infections from spreading as well as to explore future possibilities for the management of LSDV.
Collapse
Affiliation(s)
- Bharti Datten
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, Haryana, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, Haryana, India
| | - Lokender Singh
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, Haryana, India
| | - Krishna Dutta Rawat
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Mohammad Saquib Ashraf
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Riyadh ELM University, Riyadh 12734, Saudi Arabia
| | - Lina M. Alneghery
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Malak O. Aladwani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Deen Dayal
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sanjay Kumar
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park-III, Greater Noida 201310, Uttar Pradesh, India
- Correspondence: or (S.K.); (K.K.C.)
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Correspondence: or (S.K.); (K.K.C.)
| |
Collapse
|
44
|
Duration of Immunity Induced after Vaccination of Cattle with a Live Attenuated or Inactivated Lumpy Skin Disease Virus Vaccine. Microorganisms 2023; 11:microorganisms11010210. [PMID: 36677502 PMCID: PMC9864976 DOI: 10.3390/microorganisms11010210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Vaccines have proven themselves as an efficient way to control and eradicate lumpy skin disease (LSD). In addition to the safety and efficacy aspects, it is important to know the duration for which the vaccines confer protective immunity, as this impacts the design of an efficient control and eradication program. We evaluated the duration of immunity induced by a live attenuated vaccine (LSDV LAV) and an inactivated vaccine (LSDV Inac), both based on LSDV. Cattle were vaccinated and challenged after 6, 12 and 18 months for LSDV LAV or after 6 and 12 months for the LSDV Inac. The LSDV LAV elicited a strong immune response and protection for up to 18 months, as no clinical signs or viremia could be observed after a viral LSDV challenge in any of the vaccinated animals. A good immune response and protection were similarly seen for the LSDV Inac after 6 months. However, two animals developed clinical signs and viremia when challenged after 12 months. In conclusion, our data support the annual booster vaccination when using the live attenuated vaccine, as recommended by the manufacturer, which could potentially even be prolonged. In contrast, a bi-annual vaccination seems necessary when using the inactivated vaccine.
Collapse
|
45
|
Ahmad W, Shabbir MAB, Ahmad M, Omer MO, Mushtaq RMZ, Aroosa S, Iqbal A, Majeed A. Insights into the Prognostic Role of Serum Interleukin-6 and Hematobiochemical Alterations in Cattle during Recent Outbreaks of Lumpy Skin Disease in Lodhran District, Pakistan. Vaccines (Basel) 2023; 11:vaccines11010113. [PMID: 36679958 PMCID: PMC9866640 DOI: 10.3390/vaccines11010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Lumpy skin disease (LSD) is a highly infectious disease of cattle caused by a virus of the Poxviridae family, genus Capripoxvirus. The present study was designed to determine the prognostic ability of serum IL-6 in LSD using a binary logistic regression model at baseline sampling. A 17-day cohort study was conducted on a recent outbreak of LSD among cattle in the Lodhran District of Punjab, Pakistan. Infected cattle were divided into two categories based on their clinical status on day 17 as recovered (n = 33) or unrecovered (n = 17). Nodular lesions and scab specimens (n = 50) were used for the isolation of the lumpy skin disease virus and were confirmed by PCR. In recovered animals, hematological results showed marked leukocytosis, eosinophilia, lymphocytosis, neutrophilia, and monocytopenia. However, marked erythrocytosis, leukopenia, and thrombocytopenia were observed in the unrecovered animals at the final sampling point of the study. Serum levels of total protein, albumin, and glucose were significantly higher in the recovered animals. Meanwhile, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, creatinine phosphokinase, total bilirubin, and direct bilirubin were found considerably higher in the unrecovered group. Receiver-operating characteristic curve analysis for serum IL-6 at baseline predicts the extended clinical conditions at the cut-off value of 85.16 pg/mL (55% specificity, 94% sensitivity, area under the curve 0.8039, respectively). In conclusion, the disease-induced hematological and biochemical alterations were significantly ameliorated in the recovered animals. In addition, the study revealed that serum IL-6 can be used as a valid marker for predicting the clinical worsening of LSD in cattle.
Collapse
Affiliation(s)
- Waqas Ahmad
- Department of Pathology, University of Veterinary and Animal Sciences Lahore, Lahore 54000, Pakistan
| | - Muhammad Abu Bakr Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences Lahore, Lahore 54000, Pakistan
| | - Mehmood Ahmad
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences Lahore, Lahore 54000, Pakistan
- Department of Pharmacology, Riphah International University, Lahore 54000, Pakistan
- Correspondence:
| | - Muhammad Ovais Omer
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences Lahore, Lahore 54000, Pakistan
| | | | - Sadaf Aroosa
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences Lahore, Lahore 54000, Pakistan
| | - Asif Iqbal
- Department of Parasitology, Riphah International University, Lahore 54000, Pakistan
| | - Arfa Majeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences Lahore, Lahore 54000, Pakistan
| |
Collapse
|
46
|
The Characterization and Differentiation of Recombinant Lumpy Skin Disease Isolates Using a Region within ORF134. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent description and characterization of several novel and unique lumpy skin disease virus (LSDV) strains have revealed the inadequacy of current techniques for differentiating between vaccine- and wild-type viruses. The lack of reliable sequencing targets for promptly distinguishing circulating recombinant vaccine-like strains (RVLSs) highlights the need to develop a single and simple differentiation tool. In this study, we analyzed the available LSDV whole-genome sequences and identified a 705-bp region in open reading frame (ORF) LW134. Based on a single run of nucleotide sequencing and phylogenetic analysis, the region with 13 informative single nucleotide polymorphisms (SNPs) was capable of accurately segregating the novel RVLSs into the same five clusters previously confirmed by whole-genome sequencing. In addition, archived RVLSs from Russia were analyzed for further characterization using the newly described single PCR and sequencing assay. The ORF LW134 assay identified one archived RVLS as a novel cluster distinct from the previously described five clusters, while clustering the remaining samples into previously designated lineages, demonstrating the reliability of the assay. The novel PCR and sequencing assays described in this study have great potential for accurately delineating the molecular and evolutionary affiliation of circulating RVLSs.
Collapse
|
47
|
Dubie T, Dagnew B, Hamid M, Bizuayehu F, Fentahun G. Seroprevalence and associated risk factors of pox infection among sheep and goats in selected districts of Afar region, Ethiopia. Heliyon 2022; 8:e12394. [PMID: 36590490 PMCID: PMC9801102 DOI: 10.1016/j.heliyon.2022.e12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/23/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Sheep and goat pox virus infection is highly devastating viral disease of small ruminants that cause severe production losses in sheep and goats in Ethiopia and also limits international trade. A cross-sectional study was employed with the objective to estimate the seroprevalence of pox infection and to assess associated risk factors during the study period, February to April, 2020. A total of 384 serum samples were collected from apparently healthy sheep and goats. Serum neutralization test was used to detect the presence of antibodies against pox virus at national veterinary institute. Descriptive statistics, univariable and Multivariable logistic analyses were used in this study. Results The overall animal level seroprevalence of sheep and goat pox virus was found to be 15.36% (n = 59/384) and species level prevalence rate was found to be 14.5% (n = 16/110) in sheep and 15.69% (n = 43/274) in goats in the study areas. Among the associated factors considered in this study, sex (P = 0.010), age (P = 0.012) and herd size (P = 0.029) were found to be statistically associated with seropositivity of pox infection in multivariable logistic regression. The odds of seropositivity in female animals were 3.9 times more likely to develop pox infection than male animals (AOR = 2.2; 95% CI = 1.203-4.015%) and the odds of young animals were 2.14 times more likely to be seropositive to pox infection than old aged animals (AOR = 2.14; 95% CI = 1.169-3.633%). Moreover, the odds of large-sized flocks of animals were 3.10 times more likely to be seropositive to pox disease than small-sized flocks (AOR = 3.10; 95% CI = 1.30-4.42%). Conclusion This study finding revealed that sheep and goat pox virus is prevalent and widespread diseases of small ruminant in afar region. Therefore, further study should be carried out to estimate region wise magnitude of the disease and control measures should be put in place to minimize the economic losses associated with this disease.
Collapse
Affiliation(s)
- Teshager Dubie
- College of Veterinary Medicine, Samara University, P.O. Box 132, Semera, Ethiopia
| | - Betelhem Dagnew
- College of Veterinary Medicine, Samara University, P.O. Box 132, Semera, Ethiopia
| | - Muhammed Hamid
- College of Veterinary Medicine, Samara University, P.O. Box 132, Semera, Ethiopia
| | - Fanuel Bizuayehu
- College of Veterinary Medicine, Samara University, P.O. Box 132, Semera, Ethiopia
| | - Gizachew Fentahun
- College of Veterinary Medicine, Samara University, P.O. Box 132, Semera, Ethiopia
| |
Collapse
|
48
|
Matsiela MS, Naicker L, Dibakwane VS, Ntombela N, Khoza T, Mokoena N. Improved safety profile of inactivated Neethling strain of the Lumpy Skin Disease Vaccine. Vaccine X 2022; 12:100209. [PMID: 36051749 PMCID: PMC9424558 DOI: 10.1016/j.jvacx.2022.100209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
The Lumpy Skin Disease Virus (LSDV) Neethling vaccine strains have been used for decades for prophylactic immunization of domestic ruminants against the disease. Commercial products against Lumpy skin disease are supplied as live attenuated vaccines and often are associated with adverse reactions warranting studies towards development of safe and efficacious vaccine alternatives. The present study was designed to investigate the ability of Montanide™ Gel 01 PR adjuvanted inactivated Neethling vaccine strain of the lumpy skin disease to induce immune response in rabbits. Complete virus inactivation was achieved following treatment of live vaccine strain with binary ethyleneimine (BEI) at 2 mM final concentration. Inactivated virus antigen, formulated with Montanide™ Gel 01 was injected at 1,00E + 05 and 1,00E + 06 TCID50 per dose in rabbits. The second injection with same vaccine dosages was administered 21 days after the primary vaccination. Rabbits that received a 1,00E + 05 TCID50/dose of inactivated LSDV vaccine formulation induced maximum neutralizing antibody titres on day 13 post second vaccinations. Rabbits vaccinated and prime boosted with the 1,00E + 06 TCID50/dose of inactivated LSDV vaccine formulation, induced neutralizing antibody titres on day 14 after first vaccination. The maximum antibody titres for the 1,00E + 06 TCID50/dose of the inactivated LSDV vaccine formulation was obtained on day 35 post vaccination. The 1,00E + 06 TCID50 dose of the inactivated LSDV vaccine Montanide™ Gel-01 PR formulation induced higher neutralizing antibodies. The MontanideTM Gel-01 PR offers safer profile to oil adjuvants and can be developed further to protect target animals against LSDV in non-endemic areas.
Collapse
|
49
|
Khalafalla A. Lumpy Skin Disease: An Economically Significant Emerging Disease. Vet Med Sci 2022. [DOI: 10.5772/intechopen.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lumpy skin disease (LSD) is a severe viral disease of cattle caused by the lumpy skin disease virus (LSDV), a member of the Capripoxvirus genus of the poxviridae family. Fever and flat disk-like skin nodules on the skin characterize the disease. It can also lead to death and significant economic losses, especially in herds, that have never been exposed to the virus. Blood-feeding insects, such as specific types of flies, mosquitoes, and ticks, are thought to be the primary vectors of LSDV transmission. Most African and middle eastern countries have a high prevalence of lumpy skin disease. The disease extended to southeast Europe, the Balkans, and the Caucasus in 2015 and 2016 and is still spreading throughout Asia. The World Organization for Animal Health [WOAH] has designated LSD as a notifiable illness due to the likelihood of fast transmission. The rapid spread of disease in formerly disease-free areas emphasizes the need to know the disease epidemiology and the virus’s interaction with its host. This chapter aims to provide the latest developments in the etiology, epidemiology, diagnosis, and control of LSD.
Collapse
|
50
|
The Development of a Real-Time PCR Assay for Specific Detection of the NISKHI Sheep Pox Vaccine Virus Strain DNA. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sheep pox (SPP) constitutes a global animal health scourge, despite the numerous efforts targeting the eradication of the disease implemented in affected countries. An efficient control and eradication strategy incorporates the use of live attenuated vaccines, which in turn requires a method for differentiation between vaccinated and infected sheep. The NISKHI live attenuated SPP vaccine (LAV) is abundantly used in Russia, Kazakhstan and other Central Asian countries. This study describes the development and evaluation of a real-time PCR with a high-resolution melting assay, capable of differentiating the NISKHI vaccine virus from circulating virulent field strains. The RNA polymerase subunit RPO132 gene contains a unique single nucleotide polymorphism (SNP) capable of altering the melting curves of amplicons from LAV and virulent field isolates circulating in the region. The melting temperature (Tm) of field isolates ranged from 75.47 °C ± 0.04 to 75.86 °C ± 0.08, while the vaccine strain averaged 76.46 °C ± 0.12. Subsequent evaluation of this assay demonstrated that the recent SPP outbreaks in central Russia may be attributed to virulent field isolates. This robust assay was proven to consistently and differentially detect the NISKHI LAV strain when analyzing clinical samples from affected sheep.
Collapse
|