1
|
Kaylan KB, Nargis T, Figatner K, Wang JE, Pratuangtham S, Chakraborty A, Casimiro I, Nadler JL, Boxer MB, Maloney DJ, Anderson RM, Mirmira RG, Tersey SA. 12-Lipoxygenase inhibition improves glucose homeostasis and obesity-associated inflammation in human gene replacement mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632274. [PMID: 39868153 PMCID: PMC11761697 DOI: 10.1101/2025.01.10.632274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Obesity-associated inflammation is characterized by macrophage infiltration into peripheral tissues, contributing to the progression of prediabetes and type 2 diabetes (T2D). The enzyme 12-lipoxygenase (12-LOX) catalyzes the formation of pro-inflammatory eicosanoids and is known to promote the migration of macrophages, yet its role in obesity-associated inflammation remains incompletely understood. Furthermore, differences between mouse and human orthologs of 12-LOX have limited efforts to study existing pharmacologic inhibitors of 12-LOX. In this study, we utilized a human gene replacement mouse model in which the gene encoding mouse 12-LOX (Alox15) is replaced by the human ALOX12 gene. As a model of obesity and dysglycemia, we administered these mice a high-fat diet. We subsequently investigated the effects of VLX-1005, a potent and selective small molecule inhibitor of human 12-LOX. Oral administration of VLX-1005 resulted in improved glucose homeostasis, decreased β cell dedifferentiation, and reduced macrophage infiltration in islets and adipose tissue. Analysis of the stromal vascular fraction from adipose tissue showed a reduction in myeloid cells and cytokine expression with VLX-1005 treatment, indicating decreased adipose tissue inflammation. In a distinct mouse model in which Alox15 was selectively deleted in myeloid cells, we observed decreased β cell dedifferentiation and reduced macrophage infiltration in both islets and adipose tissue, suggesting that the effects of VLX-1005 may relate to the inhibition of 12-LOX in macrophages. These findings highlight 12-LOX as a key factor in obesity-associated inflammation and suggest that 12-LOX inhibition could serve as a therapeutic strategy to improve glucose homeostasis and peripheral inflammation in the setting of obesity and T2D.
Collapse
Affiliation(s)
- Kerim B. Kaylan
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Titli Nargis
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Kayla Figatner
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Jiayi E. Wang
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Sarida Pratuangtham
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Advaita Chakraborty
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Isabel Casimiro
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Jerry L. Nadler
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | - Ryan M. Anderson
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah A. Tersey
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Park JE, Yoo J, Han JS. HM-Chromanone Alleviates Hyperglycemia by Activating AMPK and PI3K/AKT Pathways in Mice Fed a High-Fat Diet. Nutrients 2024; 16:3972. [PMID: 39599757 PMCID: PMC11597832 DOI: 10.3390/nu16223972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES We investigated potential antihyperglycemic effects of HM-chromanone (HMC), a homoisoflavonoid isolated from Portulaca oleracea, in mice fed a high-fat diet (HFD). METHODS Five-week-old male C57BL/6J mice (n = 24) were divided into three groups: controls, mice fed an HFD (11 weeks), and HFD-fed mice receiving HMC supplementation (8 weeks). Various analyses assessed liver and skeletal muscle proteins, pancreatic β-cell histology, blood glucose and HbA1c levels, and homeostatic index of insulin resistance (HOMA-IR). RESULTS HMC supplementation significantly reduced fasting blood glucose and postprandial blood glucose levels in HFD-fed mice. HbA1c and serum insulin levels reduced significantly, and HOMA-IR improved. Compensatory β-cell hyperplasia was reduced, and pancreatic β-cell function improved. AMP-activated protein kinase (AMPK) was significantly activated in skeletal muscle and liver tissues. IRS-1tyr612 expression increased significantly. PI3K activation and Akt phosphorylation in skeletal muscles improved insulin signaling. Forkhead box protein O1 phosphorylation increased through hepatic AMPK activation. Phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression was inhibited. Glycogen synthase kinase 3β phosphorylation increased. CONCLUSIONS HMC supplementation alleviated hyperglycemia by activating the AMPK and PI3K/Akt pathways in skeletal muscles and the AMPK pathway in the liver of HFD-fed mice.
Collapse
Affiliation(s)
- Jae-eun Park
- Department of Hotel Baking Technology, Busan Health University, Busan 49318, Republic of Korea;
| | - Jeong Yoo
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea;
| | - Ji-sook Han
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
3
|
Wang Z, Dong S, Zhou W. Pancreatic stellate cells: Key players in pancreatic health and diseases (Review). Mol Med Rep 2024; 30:109. [PMID: 38695254 PMCID: PMC11082724 DOI: 10.3892/mmr.2024.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
As a pluripotent cell, activated pancreatic stellate cells (PSCs) can differentiate into various pancreatic parenchymal cells and participate in the secretion of extracellular matrix and the repair of pancreatic damage. Additionally, PSCs characteristics allow them to contribute to pancreatic inflammation and carcinogenesis. Moreover, a detailed study of the pathogenesis of activated PSCs in pancreatic disease can offer promise for the development of innovative therapeutic strategies and improved patient prognoses. Therefore, the present study review aimed to examine the involvement of activated PSCs in pancreatic diseases and elucidate the underlying mechanisms to provide a viable therapeutic strategy for the management of pancreas‑related diseases.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
4
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
He L, Zheng W, Li Z, Chen L, Kong W, Zeng T. J-shape relationship between normal fasting plasma glucose and risk of type 2 diabetes in the general population: results from two cohort studies. J Transl Med 2023; 21:175. [PMID: 36872318 PMCID: PMC9985867 DOI: 10.1186/s12967-023-04006-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Previous studies have reported that high fasting plasma glucose (FPG), even that within the normal range, is associated with the risk of type 2 diabetes (T2D). Nevertheless, these findings are limited to specific populations. Thus, studies in the general population are imperative. METHODS This study included two cohorts comprising 204 640 individuals who underwent physical examinations at the Rich Healthcare Group present at 32 locations in 11 cities of China from 2010 to 2016 and 15 464 individuals who underwent physical tests at the Murakami Memorial Hospital in Japan. Cox regression, restricted cubic spline (RCS), Kaplan-Meier (KM) curves, and subgroup analysis were used to determine the relationship between FPG and T2D. Receiver operating characteristic (ROC) curves were used to evaluate the predictive power of FPG for T2D. RESULTS The mean age of the 220 104 participants (204 640 Chinese and 15 464 Japanese participants) was 41.8 years (41.7 years for the Chinese and 43.7 years for the Japanese participants). During follow-up, 2611 individuals developed T2D (2238 Chinese and 373 Japanese participants). The RCS demonstrated a J-shaped relationship between FPG and T2D risk, with inflexion points of 4.5 and 5.2 for the Chinese and Japanese populations, respectively. Multivariate-adjusted hazard ratio (HR) was 7.75 for FPG and T2D risk after the inflexion point (7.3 for Chinese and 21.13 for Japanese participants). CONCLUSIONS In general Chinese and Japanese populations, the normal baseline FPG range showed a J-shaped relationship with the risk of T2D. Baseline FPG levels help identify individuals at high risk of T2D and may enable early primary prevention to improve their outcomes.
Collapse
Affiliation(s)
- Linfeng He
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenbin Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Gao S, Zhang Y, Liang K, Bi R, Du Y. Mesenchymal Stem Cells (MSCs): A Novel Therapy for Type 2 Diabetes. Stem Cells Int 2022; 2022:8637493. [PMID: 36045953 PMCID: PMC9424025 DOI: 10.1155/2022/8637493] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Although plenty of drugs are currently available for type 2 diabetes mellitus (T2DM), a subset of patients still failed to restore normoglycemia. Recent studies proved that symptoms of T2DM patients who are unresponsive to conventional medications could be relieved with mesenchymal stem/stromal cell (MSC) therapy. However, the lack of systematic summary and analysis for animal and clinical studies of T2DM has limited the establishment of standard guidelines in anti-T2DM MSC therapy. Besides, the therapeutic mechanisms of MSCs to combat T2DM have not been thoroughly understood. In this review, we present an overview of the current status of MSC therapy in treating T2DM for both animal studies and clinical studies. Potential mechanisms of MSC-based intervention on multiple pathological processes of T2DM, such as β-cell exhaustion, hepatic dysfunction, insulin resistance, and systemic inflammation, are also delineated. Moreover, we highlight the importance of understanding the pharmacokinetics (PK) of transplanted cells and discuss the hurdles in MSC-based T2DM therapy toward future clinical applications.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Bi
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Munekawa C, Okada H, Hamaguchi M, Habu M, Kurogi K, Murata H, Ito M, Fukui M. Fasting plasma glucose level in the range of 90-99 mg/dL and the risk of the onset of type 2 diabetes: Population-based Panasonic cohort study 2. J Diabetes Investig 2022; 13:453-459. [PMID: 34624178 PMCID: PMC8902401 DOI: 10.1111/jdi.13692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/12/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
AIM/INTRODUCTION As the association between a fasting glucose concentration of 90-99 mg/dL and the onset of type 2 diabetes is still controversial, we aimed to assess it in 37,148 Japanese individuals with a normal plasma glucose concentration. MATERIALS AND METHODS This long-term retrospective cohort study included individuals having a medical checkup at Panasonic Corporation from 2008 to 2018. In total, 1,028 participants developed type 2 diabetes. RESULTS Cox regression analyses revealed that the risk for the onset of diabetes increased by 9.0% per 1 mg/dL increase in fasting plasma glucose concentration in subjects with the concentration ranging from 90 to 99 mg/dL. Compared with individuals with a fasting glucose concentration of ≤89 mg/dL, the adjusted hazard ratios for developing diabetes were 1.53 (95% CI; 1.22-1.91), 1.76 (95% CI; 1.41-2.18), 1.89 (95% CI; 1.52-2.35), 3.17 (95% CI; 2.61-3.84), and 3.41 (95% CI; 2.79-4.15) at fasting plasma glucose concentrations of 90-91, 92-93, 94-95, 96-97, and 98-99 mg/dL, respectively. In populations with obesity, the adjusted hazards ratios for developing diabetes were 1.56 (95% CI; 1.15-2.09), 1.82 (95% CI; 1.37-2.40), 2.05 (95% CI; 1.55-2.69), 3.53 (95% CI; 2.79-4.46), and 3.28 (95% CI; 2.53-4.22) at fasting plasma glucose concentrations of 90-91, 92-93, 94-95, 96-97, and 98-99 mg/dL, respectively. CONCLUSIONS This study demonstrates that the risk of type 2 diabetes among subjects having a fasting plasma glucose concentration of 90-99 mg/dL, is progressively higher with an increasing level of fasting plasma glucose concentration in a Japanese people.
Collapse
Affiliation(s)
- Chihiro Munekawa
- Department of Endocrinology and MetabolismGraduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroshi Okada
- Department of Diabetes and EndocrinologyMatsushita Memorial HospitalMoriguchiJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and MetabolismGraduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Momoko Habu
- Department of Diabetes and EndocrinologyMatsushita Memorial HospitalMoriguchiJapan
| | - Kazushiro Kurogi
- Department of Health Care CenterPanasonic Health Insurance OrganizationMoriguchiJapan
| | - Hiroaki Murata
- Department of Orthopaedic SurgeryMatsushita Memorial HospitalMoriguchiJapan
| | - Masato Ito
- Department of Health Care CenterPanasonic Health Insurance OrganizationMoriguchiJapan
| | - Michiaki Fukui
- Department of Endocrinology and MetabolismGraduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
8
|
Matsui T, Okada H, Hamaguchi M, Kurogi K, Murata H, Ito M, Fukui M. The association between the reduction of body weight and new-onset type 2 diabetes remission in middle-aged Japanese men: Population-based Panasonic cohort study 8. Front Endocrinol (Lausanne) 2022; 13:1019390. [PMID: 36726463 PMCID: PMC9884960 DOI: 10.3389/fendo.2022.1019390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
AIM This study aimed to investigate the association between change in body weight (BW) and type 2 diabetes remission in Japanese men with new-onset type 2 diabetes. METHODS This study enrolled 1,903 patients with new-onset type 2 diabetes between 2008 and 2013 from a medical health checkup program conducted by the Panasonic Corporation, Osaka, Japan. The baseline was defined as the year of new-onset diabetes. We assessed the type 2 diabetes remission five years after baseline and the association between the change in BW and type 2 diabetes remission using logistic regression analyses. To evaluate the predictive performance of the change in BW, we employed the receiver operating characteristic curves and the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS The BW loss was associated with type 2 diabetes remission in the participants with a BMI ≥25 kg/m2 but not in the participants with a BMI <25 kg/m2. The odds ratios were 1.96 (95% CI: 1.19-3.29) and 3.72 (95% CI: 2.14-6.59) in the participants with a loss of 5-9.9% and loss of ≥10% for five years, respectively, in the participants with a BMI ≥25 kg/m2 (reference; stable group [0.9% gain to 0.9% loss]). The AUC and cut-off values for the rate of change in BW for type 2 diabetes remission were 0.59 and 5.0%. DISCUSSION Body weight loss of ≥5% effectively achieved diabetes remission in Japanese men with a BMI ≥25 kg/m2 and new-onset type 2 diabetes.
Collapse
Affiliation(s)
- Takaaki Matsui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, Moriguchi, Japan
- *Correspondence: Hiroshi Okada,
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Kazushiro Kurogi
- Department of Health Care Center, Panasonic Health Insurance Organization, Moriguchi, Japan
| | - Hiroaki Murata
- Department of Orthopaedic Surgery, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Masato Ito
- Department of Health Care Center, Panasonic Health Insurance Organization, Moriguchi, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
9
|
Chundru SA, Harajli A, Hali M, Gleason N, Gamage S, Kowluru A. RhoG-Rac1 Signaling Pathway Mediates Metabolic Dysfunction of the Pancreatic Beta-Cells Under Chronic Hyperglycemic Conditions. Cell Physiol Biochem 2021; 55:180-192. [PMID: 33851799 PMCID: PMC11724327 DOI: 10.33594/000000354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND/AIMS Published evidence suggests regulatory roles for small G proteins (Cdc42 and Rac1) in glucose-stimulated insulin secretion (GSIS) from pancreatic beta-cells. More recent evidence suggests novel roles for these G proteins, specifically Rac1, in the induction of metabolic dysfunction of the islet beta-cell under the duress of a variety of stress conditions. However, potential upstream regulators of sustained activation of Rac1 have not been identified in the beta-cell. Recent studies in other cell types have identified RhoG, a small G protein, as an upstream regulator of Rac1 under specific experimental conditions. Herein, we examined putative roles for RhoG in islet beta-cell dysregulation induced by glucotoxic conditions. METHODS Expression of RhoG or GDIγ was suppressed by siRNA transfection using the DharmaFect1 reagent. Subcellular fractions were isolated using NE-PER Nuclear and Cytoplasmic Extraction Reagent kit. The degree of activation of Rac1 was assessed using a pull-down assay kit. Extent of cell death was quantified using a Cell Death Detection ELISAplus kit. RESULTS RhoG is expressed in human islets, rat islets, and clonal INS-1 832/13 cells. siRNA-RhoG markedly attenuated sustained activation of Rac1 and caspase-3 in INS-1 832/13 cells exposed to hyperglycemic conditions (20 mM; 24 hours). In a manner akin to Rac1, which has been shown to translocate to the nuclear fraction to induce beta-cell dysfunction under metabolic stress, a significant increase in the association of RhoG with the nuclear fraction was observed in beta-cells under the duress of metabolic stress. Interestingly, GDIγ, a known regulator of RhoG, remained associated with non-nuclear fraction under conditions RhoG and Rac1 translocated to the membrane. Lastly, siRNA-RhoG modestly attenuated pancreatic beta-cell demise induced by high glucose exposure conditions, but such an effect was not statistically significant. CONCLUSION Based on these data we conclude that RhoG-Rac1 signaling module plays critical regulatory roles in promoting mitochondrial dysfunction (caspase-3 activation) of the islet beta cell under metabolic stress.
Collapse
Affiliation(s)
- Sri Aneesha Chundru
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Ali Harajli
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Mirabela Hali
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Noah Gleason
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Suhadinie Gamage
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA,
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
10
|
Oxidative Stress in Cytokine-Induced Dysfunction of the Pancreatic Beta Cell: Known Knowns and Known Unknowns. Metabolites 2020; 10:metabo10120480. [PMID: 33255484 PMCID: PMC7759861 DOI: 10.3390/metabo10120480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Compelling evidence from earlier studies suggests that the pancreatic beta cell is inherently weak in its antioxidant defense mechanisms to face the burden of protecting itself against the increased intracellular oxidative stress following exposure to proinflammatory cytokines. Recent evidence implicates novel roles for nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Noxs) as contributors to the excessive intracellular oxidative stress and damage under metabolic stress conditions. This review highlights the existing evidence on the regulatory roles of at least three forms of Noxs, namely Nox1, Nox2, and Nox4, in the cascade of events leading to islet beta cell dysfunction, specifically under the duress of chronic exposure to cytokines. Potential crosstalk between key signaling pathways (e.g., inducible nitric oxide synthase [iNOS] and Noxs) in the generation and propagation of reactive molecules and metabolites leading to mitochondrial damage and cell apoptosis is discussed. Available data accrued in investigations involving small-molecule inhibitors and antioxidant protein expression methods as tools toward the prevention of cytokine-induced oxidative damage are reviewed. Lastly, current knowledge gaps in this field, and possible avenues for future research are highlighted.
Collapse
|
11
|
Esch N, Jo S, Moore M, Alejandro EU. Nutrient Sensor mTOR and OGT: Orchestrators of Organelle Homeostasis in Pancreatic β-Cells. J Diabetes Res 2020; 2020:8872639. [PMID: 33457426 PMCID: PMC7787834 DOI: 10.1155/2020/8872639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this review is to integrate the role of nutrient-sensing pathways into β-cell organelle dysfunction prompted by nutrient excess during type 2 diabetes (T2D). T2D encompasses chronic hyperglycemia, hyperlipidemia, and inflammation, which each contribute to β-cell failure. These factors can disrupt the function of critical β-cell organelles, namely, the ER, mitochondria, lysosomes, and autophagosomes. Dysfunctional organelles cause defects in insulin synthesis and secretion and activate apoptotic pathways if homeostasis is not restored. In this review, we will focus on mTORC1 and OGT, two major anabolic nutrient sensors with important roles in β-cell physiology. Though acute stimulation of these sensors frequently improves β-cell function and promotes adaptation to cell stress, chronic and sustained activity disturbs organelle homeostasis. mTORC1 and OGT regulate organelle function by influencing the expression and activities of key proteins, enzymes, and transcription factors, as well as by modulating autophagy to influence clearance of defective organelles. In addition, mTORC1 and OGT activity influence islet inflammation during T2D, which can further disrupt organelle and β-cell function. Therapies for T2D that fine-tune the activity of these nutrient sensors have yet to be developed, but the important role of mTORC1 and OGT in organelle homeostasis makes them promising targets to improve β-cell function and survival.
Collapse
Affiliation(s)
- Nicholas Esch
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mackenzie Moore
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emilyn U. Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Tersey SA, Levasseur EM, Syed F, Farb TB, Orr KS, Nelson JB, Shaw JL, Bokvist K, Mather KJ, Mirmira RG. Episodic β-cell death and dedifferentiation during diet-induced obesity and dysglycemia in male mice. FASEB J 2018; 32:fj201800150RR. [PMID: 29812970 PMCID: PMC6181632 DOI: 10.1096/fj.201800150rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/07/2018] [Indexed: 01/06/2023]
Abstract
Loss of functional islet β-cell mass through cellular death or dedifferentiation is thought to lead to dysglycemia during the progression from obesity to type 2 diabetes. To assess these processes in a mouse model of obesity, we performed measures of circulating cell-free differentially methylated insulin II ( Ins2) DNA as a biomarker of β-cell death and aldehyde dehydrogenase 1 family member A3 (ALDH1A3) and forkhead box 01 (Foxo1) immunostaining as markers of β-cell dedifferentiation. Eight-week-old, C57BL/6J mice were fed a low-fat diet (LFD; 10% kcal from fat) or a high-fat diet (HFD; 60% kcal from fat) and were followed longitudinally for up to 13 wk to measure glycemic control and β-cell mass, death, and dedifferentiation. Compared with LFD controls, β-cell mass increased during the feeding period in HFD animals, and statistically greater β-cell death (unmethylated Ins2) was detectable at 2 and 6 wk after diet initiation. Those times correspond to periods when significant step increases in fasting glucose and glucose intolerance, respectively, were detected. ALDH1A3 and Foxo1 immunostaining of the pancreas revealed evidence of β-cell dedifferentiation by 13 wk when fed an HFD, but not in LFD controls. In conclusion, early episodic β-cell death may be a feature of cellular turnover correlated with changes in glycemia during β-cell mass accrual in obesity, whereas β-cell dedifferentiation may be a feature seen later in established disease.-Tersey, S. A., Levasseur, E. M., Syed, F., Farb, T. B., Orr, K. S., Nelson, J. B., Shaw, J. L., Bokvist, K., Mather, K. J., Mirmira, R. G. Episodic β-cell death and dedifferentiation during diet-induced obesity and dysglycemia in male mice.
Collapse
Affiliation(s)
- Sarah A. Tersey
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Esther M. Levasseur
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas B. Farb
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Kara S. Orr
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jennifer B. Nelson
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Janice L. Shaw
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Krister Bokvist
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Kieren J. Mather
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Urakami T. Pediatric Type 2 Diabetes in Japan: Similarities and Differences from Type 2 Diabetes in Other Pediatric Populations. Curr Diab Rep 2018; 18:29. [PMID: 29671100 DOI: 10.1007/s11892-018-0999-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To review clinical characteristics of pediatric type 2 diabetes in Japan. RECENT FINDINGS It is well recognized that Asian populations, particularly the Japanese, have a higher incidence of childhood type 2 diabetes. Of note, most Asian populations show a higher incidence of pediatric type 2 diabetes than that of type 1 diabetes. However, a current report in the USA demonstrated a dramatic increase in the incidence of young people with type 2 diabetes in recent years. The USA could have a much higher incidence of type 2 diabetes than Japan, possibly due to environmental and behavioral factors. The clinical features of Japanese young people with type 2 diabetes might have some differences from type 2 diabetes in other pediatric populations. Japanese children with type 2 diabetes are likely to be thinner than Caucasian children. Approximately 10-15% Japanese patients with type 2 diabetes exhibit normal weight with milder insulin resistance and substantial insulin secretion failure. Autoimmunity is not associated with the etiology of type 2 diabetes. Some genetic background and environmental factors, different from those in Caucasians, could play a role in the development of type 2 diabetes in Japanese children. Considering these characteristics, we must consider adequate therapy and management for young people with type 2 diabetes.
Collapse
Affiliation(s)
- Tatsuhiko Urakami
- Department of Pediatrics, Nihon University School of Medicine, 1-6 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8309, Japan.
| |
Collapse
|
14
|
Affiliation(s)
- Mi Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea.
| |
Collapse
|
15
|
Kulkarni AA, Conteh AM, Sorrell CA, Mirmira A, Tersey SA, Mirmira RG, Linnemann AK, Anderson RM. An In Vivo Zebrafish Model for Interrogating ROS-Mediated Pancreatic β-Cell Injury, Response, and Prevention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1324739. [PMID: 29785241 PMCID: PMC5896207 DOI: 10.1155/2018/1324739] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/23/2018] [Indexed: 01/10/2023]
Abstract
It is well known that a chronic state of elevated reactive oxygen species (ROS) in pancreatic β-cells impairs their ability to release insulin in response to elevated plasma glucose. Moreover, at its extreme, unmitigated ROS drives regulated cell death. This dysfunctional state of ROS buildup can result both from genetic predisposition and environmental factors such as obesity and overnutrition. Importantly, excessive ROS buildup may underlie metabolic pathologies such as type 2 diabetes mellitus. The ability to monitor ROS dynamics in β-cells in situ and to manipulate it via genetic, pharmacological, and environmental means would accelerate the development of novel therapeutics that could abate this pathology. Currently, there is a lack of models with these attributes that are available to the field. In this study, we use a zebrafish model to demonstrate that ROS can be generated in a β-cell-specific manner using a hybrid chemical genetic approach. Using a transgenic nitroreductase-expressing zebrafish line, Tg(ins:Flag-NTR)s950 , treated with the prodrug metronidazole (MTZ), we found that ROS is rapidly and explicitly generated in β-cells. Furthermore, the level of ROS generated was proportional to the dosage of prodrug added to the system. At high doses of MTZ, caspase 3 was rapidly cleaved, β-cells underwent regulated cell death, and macrophages were recruited to the islet to phagocytose the debris. Based on our findings, we propose a model for the mechanism of NTR/MTZ action in transgenic eukaryotic cells and demonstrate the robust utility of this system to model ROS-related disease pathology.
Collapse
Affiliation(s)
- Abhishek A. Kulkarni
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Abass M. Conteh
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cody A. Sorrell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anjali Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah A. Tersey
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amelia K. Linnemann
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryan M. Anderson
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Hernandez-Perez M, Chopra G, Fine J, Conteh AM, Anderson RM, Linnemann AK, Benjamin C, Nelson JB, Benninger KS, Nadler JL, Maloney DJ, Tersey SA, Mirmira RG. Inhibition of 12/15-Lipoxygenase Protects Against β-Cell Oxidative Stress and Glycemic Deterioration in Mouse Models of Type 1 Diabetes. Diabetes 2017; 66:2875-2887. [PMID: 28842399 PMCID: PMC5652601 DOI: 10.2337/db17-0215] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
Abstract
Islet β-cell dysfunction and aggressive macrophage activity are early features in the pathogenesis of type 1 diabetes (T1D). 12/15-Lipoxygenase (12/15-LOX) is induced in β-cells and macrophages during T1D and produces proinflammatory lipids and lipid peroxides that exacerbate β-cell dysfunction and macrophage activity. Inhibition of 12/15-LOX provides a potential therapeutic approach to prevent glycemic deterioration in T1D. Two inhibitors recently identified by our groups through screening efforts, ML127 and ML351, have been shown to selectively target 12/15-LOX with high potency. Only ML351 exhibited no apparent toxicity across a range of concentrations in mouse islets, and molecular modeling has suggested reduced promiscuity of ML351 compared with ML127. In mouse islets, incubation with ML351 improved glucose-stimulated insulin secretion in the presence of proinflammatory cytokines and triggered gene expression pathways responsive to oxidative stress and cell death. Consistent with a role for 12/15-LOX in promoting oxidative stress, its chemical inhibition reduced production of reactive oxygen species in both mouse and human islets in vitro. In a streptozotocin-induced model of T1D in mice, ML351 prevented the development of diabetes, with coincident enhancement of nuclear Nrf2 in islet cells, reduced β-cell oxidative stress, and preservation of β-cell mass. In the nonobese diabetic mouse model of T1D, administration of ML351 during the prediabetic phase prevented dysglycemia, reduced β-cell oxidative stress, and increased the proportion of anti-inflammatory macrophages in insulitis. The data provide the first evidence to date that small molecules that target 12/15-LOX can prevent progression of β-cell dysfunction and glycemic deterioration in models of T1D.
Collapse
Affiliation(s)
- Marimar Hernandez-Perez
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Gaurav Chopra
- Department of Chemistry, Purdue Institute for Drug Discovery; Purdue Center for Cancer Research; Purdue Institute for Inflammation, Immunology and Infectious Disease; and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN
| | - Jonathan Fine
- Department of Chemistry, Purdue Institute for Drug Discovery; Purdue Center for Cancer Research; Purdue Institute for Inflammation, Immunology and Infectious Disease; and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN
| | - Abass M. Conteh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Ryan M. Anderson
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Amelia K. Linnemann
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Chanelle Benjamin
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Jennifer B. Nelson
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Kara S. Benninger
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Jerry L. Nadler
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Sarah A. Tersey
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Raghavendra G. Mirmira
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
17
|
Abstract
Type 2 diabetes (T2DM) is one of the most serious global health problems and is mainly a result of the drastic increase in East Asia, which includes over a fourth of the global diabetes population. Lifestyle factors and ethnicity are two determinants in the etiology of T2DM, and lifestyle changes such as higher fat intake and less physical activity link readily to T2DM in East Asians. It is widely recognized that T2DM in East Asians is characterized primarily by β cell dysfunction, which is evident immediately after ingestion of glucose or meal, and less adiposity compared to the disease in Caucasians. These pathophysiological differences have an important impact on therapeutic approaches. Here, we revisit the pathogenesis of T2DM in light of β cell dysfunction versus insulin resistance in East Asians and discuss ethnic differences in the contributions of insulin secretion and insulin resistance, together with incretin secretin and action, to glucose intolerance.
Collapse
Affiliation(s)
- Daisuke Yabe
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka, 553-0003, Japan,
| | | | | | | |
Collapse
|
18
|
Watada H, Fujitani Y. Minireview: Autophagy in pancreatic β-cells and its implication in diabetes. Mol Endocrinol 2015; 29:338-48. [PMID: 25633274 DOI: 10.1210/me.2014-1367] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a conserved system for the degradation of cytoplasmic proteins and organelles. During insulin resistance, in which insulin secretion is enhanced and β-cell mass is increased owing to changes in the expression and function of various proteins in pancreatic β-cells, autophagic activity appears to also be enhanced to adapt to the dynamic changes occurring in β-cells. Indeed, defective autophagy in β-cells recapitulates several features that are observed in islets during the development of type 2 diabetes mellitus. In addition, the dyregulation of autophagic activity appears to occur in the β-cells of type 2 diabetic model mice and type 2 diabetes mellitus patients. These lines of evidence suggest that autophagic failure may be implicated in the pathophysiology of type 2 diabetes mellitus. In this review, we summarized the recent findings regarding how autophagy in β-cells is regulated and how dysfunction of the autophagic machinery may lead to the dysfunction of β-cells.
Collapse
Affiliation(s)
- Hirotaka Watada
- Department of Metabolism and Endocrinology (H.W., Y.F.), Centers for Molecular Diabetology (H.W., Y.F.) and Therapeutic Innovations in Diabetes (H.W.), and Japan Science and Technology Agency (JST)-CREST Program (Y.F.), Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | | |
Collapse
|
19
|
Urakami T, Kuwabara R, Habu M, Yoshida A, Okuno M, Suzuki J, Takahashi S, Mugishima H. Pharmacologic treatment strategies in children with type 2 diabetes mellitus. CLINICAL PEDIATRIC ENDOCRINOLOGY : CASE REPORTS AND CLINICAL INVESTIGATIONS : OFFICIAL JOURNAL OF THE JAPANESE SOCIETY FOR PEDIATRIC ENDOCRINOLOGY 2013; 22:9-14. [PMID: 23966754 DOI: 10.1292/cpe.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022]
Abstract
We treated 80 obese and 28 nonobese children diagnosed as having type 2 diabetes mellitus (T2DM). Among these patients, 26 obese and 23 nonobese children were assigned to pharmacologic therapies during the course of diabetes. Pharmacologic therapies were started if the HbA1c (NGSP) value exceeded 7.0% despite dietary and exercise management. For the 26 obese patients, metformin alone or in combination with an additional medication was frequently used. Only 2 patients independently received sulfonylureas (SUs) in the form of glimepiride. In addition, 9 patients were treated with basal insulin supported with oral hypoglycemic drugs (OHDs) or biphasic premix insulin. On the other hand, the 23 nonobese patients were frequently treated with insulin alone or in combination with an additional medication followed by SUs. The nonobese patients tended to require pharmacologic therapies, in particular insulin, at an earlier stage of diabetes as compared with the obese patients. New antidiabetic drugs, DPP-4 inhibitors and GLP-1 receptor agonists, seemed to exert positive effects on glycemic control without occurrence of hypoglycemic episodes in some patients regardless of the type of diabetes. These results suggest that pharmacologic treatment strategies in childhood T2DM should be tailored to individual patient characteristics.
Collapse
Affiliation(s)
- Tatsuhiko Urakami
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Urakami T, Kuwabara R, Habu M, Yoshida A, Okuno M, Suzuki J, Takahashi S, Mugishima H. Pharmacologic treatment strategies in children with type 2 diabetes mellitus. Clin Pediatr Endocrinol 2013. [PMID: 23966754 DOI: 10.1292/cpe.22.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We treated 80 obese and 28 nonobese children diagnosed as having type 2 diabetes mellitus (T2DM). Among these patients, 26 obese and 23 nonobese children were assigned to pharmacologic therapies during the course of diabetes. Pharmacologic therapies were started if the HbA1c (NGSP) value exceeded 7.0% despite dietary and exercise management. For the 26 obese patients, metformin alone or in combination with an additional medication was frequently used. Only 2 patients independently received sulfonylureas (SUs) in the form of glimepiride. In addition, 9 patients were treated with basal insulin supported with oral hypoglycemic drugs (OHDs) or biphasic premix insulin. On the other hand, the 23 nonobese patients were frequently treated with insulin alone or in combination with an additional medication followed by SUs. The nonobese patients tended to require pharmacologic therapies, in particular insulin, at an earlier stage of diabetes as compared with the obese patients. New antidiabetic drugs, DPP-4 inhibitors and GLP-1 receptor agonists, seemed to exert positive effects on glycemic control without occurrence of hypoglycemic episodes in some patients regardless of the type of diabetes. These results suggest that pharmacologic treatment strategies in childhood T2DM should be tailored to individual patient characteristics.
Collapse
Affiliation(s)
- Tatsuhiko Urakami
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nishiki Y, Adewola A, Hatanaka M, Templin AT, Maier B, Mirmira RG. Translational control of inducible nitric oxide synthase by p38 MAPK in islet β-cells. Mol Endocrinol 2013; 27:336-49. [PMID: 23250488 PMCID: PMC3683810 DOI: 10.1210/me.2012-1230] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/19/2012] [Indexed: 01/04/2023] Open
Abstract
The MAPKs are transducers of extracellular signals such as proinflammatory cytokines. In islet β-cells, cytokines acutely activate expression of the Nos2 gene encoding inducible nitric oxide synthase (iNOS), which ultimately impairs insulin release. Because iNOS production can also be regulated posttranscriptionally, we asked whether MAPKs participate in posttranscriptional regulatory events in β-cells and primary islets in response to cytokine signaling. We show that cytokines acutely reduce cellular oxygen consumption rate and impair aconitase activity. Inhibition of iNOS with l-NMMA or inhibition of Nos2 mRNA translation with GC7 [an inhibitor of eukaryotic translation initiation factor 5A (eIF5A) activity] reversed these defects, as did inhibition of p38 MAPK by PD169316. Although inhibition of p38 had no effect on the nuclear translocation of nuclear factor κB or the abundance of Nos2 transcripts during the immediate period after cytokine exposure, its inhibition or knockdown resulted in significant reduction in iNOS protein, a finding suggestive of a permissive role for p38 in Nos2 translation. Polyribosomal profiling experiments using INS-1 β-cells revealed that Nos2 mRNA remained associated with polyribosomes in the setting of p38 inhibition, in a manner similar to that seen with blockade of translational elongation by cycloheximide. Consistent with a role in translational elongation, p38 activity is required in part for the activation of the translational factor eIF5A by promoting its hypusination. Our results suggest a novel signaling pathway in β-cells in which p38 MAPK promotes translation elongation of Nos2 mRNA via regulation of eIF5A hypusination.
Collapse
Affiliation(s)
- Yurika Nishiki
- Department of Pediatrics and the Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Templin AT, Maier B, Nishiki Y, Tersey SA, Mirmira RG. Deoxyhypusine synthase haploinsufficiency attenuates acute cytokine signaling. Cell Cycle 2011; 10:1043-9. [PMID: 21389784 PMCID: PMC3100881 DOI: 10.4161/cc.10.7.15206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 11/19/2022] Open
Abstract
Deoxyhypusine synthase (DHS) catalyzes the post-translational formation of the amino acid hypusine. Hypusine is unique to the eukaryotic translational initiation factor 5A (eIF5A), and is required for its functions in mRNA shuttling, translational elongation, and stress granule formation. In recent studies, we showed that DHS promotes cytokine and ER stress signaling in the islet β cell and thereby contributes to its dysfunction in the setting of diabetes mellitus. Here, we review the evidence supporting a role for DHS (and hypusinated eIF5A) in cellular stress responses, and provide new data on the phenotype of DHS knockout mice. We show that homozygous knockout mice are embryonic lethal, but heterozygous knockout mice appear normal with no evidence of growth or metabolic deficiencies. Mouse embryonic fibroblasts from heterozygous knockout mice attenuate acute cytokine signaling, as evidenced by reduced production of inducible nitric oxide synthase, but show no statistically significant defects in proliferation or cell cycle progression. Our data are discussed with respect to the utility of sub-maximal inhibition of DHS in the setting of inflammatory states, such as diabetes mellitus.
Collapse
Affiliation(s)
- Andrew T Templin
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN USA
| | | | | | | | | |
Collapse
|
24
|
Robbins RD, Tersey SA, Ogihara T, Gupta D, Farb TB, Ficorilli J, Bokvist K, Maier B, Mirmira RG. Inhibition of deoxyhypusine synthase enhances islet {beta} cell function and survival in the setting of endoplasmic reticulum stress and type 2 diabetes. J Biol Chem 2010; 285:39943-52. [PMID: 20956533 PMCID: PMC3000976 DOI: 10.1074/jbc.m110.170142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/04/2010] [Indexed: 01/09/2023] Open
Abstract
Islet β cell dysfunction resulting from inflammation, ER stress, and oxidative stress is a key determinant in the progression from insulin resistance to type 2 diabetes mellitus. It was recently shown that the enzyme deoxyhypusine synthase (DHS) promotes early cytokine-induced inflammation in the β cell. DHS catalyzes the conversion of lysine to hypusine, an amino acid that is unique to the translational elongation factor eIF5A. Here, we sought to determine whether DHS activity contributes to β cell dysfunction in models of type 2 diabetes in mice and β cell lines. A 2-week treatment of obese diabetic C57BLKS/J-db/db mice with the DHS inhibitor GC7 resulted in improved glucose tolerance, increased insulin release, and enhanced β cell mass. Thapsigargin treatment of β cells in vitro induces a picture of ER stress and apoptosis similar to that seen in db/db mice; in this setting, DHS inhibition led to a block in CHOP (CAAT/enhancer binding protein homologous protein) production despite >30-fold activation of Chop gene transcription. Blockage of CHOP translation resulted in reduction of downstream caspase-3 cleavage and near-complete protection of cells from apoptotic death. DHS inhibition appeared to prevent the cytoplasmic co-localization of eIF5A with the ER, possibly precluding the participation of eIF5A in translational elongation at ER-based ribosomes. We conclude that hypusination by DHS is required for the ongoing production of proteins, particularly CHOP, in response to ER stress in the β cell.
Collapse
Affiliation(s)
- Reiesha D. Robbins
- From the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22904
| | - Sarah A. Tersey
- the Department of Pediatrics and the Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Takeshi Ogihara
- the Department of Pediatrics and the Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Dhananjay Gupta
- the Department of Pediatrics and the Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Thomas B. Farb
- the Lilly Research Labs, Eli Lilly and Company, Indianapolis, Indiana 46285, and
| | - James Ficorilli
- the Lilly Research Labs, Eli Lilly and Company, Indianapolis, Indiana 46285, and
| | - Krister Bokvist
- the Lilly Research Labs, Eli Lilly and Company, Indianapolis, Indiana 46285, and
| | - Bernhard Maier
- the Department of Pediatrics and the Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Raghavendra G. Mirmira
- the Department of Pediatrics and the Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- the Departments of Medicine and of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|