1
|
Zhao ZZ, Guo L, Shan W, Chu CH, Zhang J. Silent signals: how N-acyl homoserine lactones drive oral microbial behaviour and health outcomes. FRONTIERS IN ORAL HEALTH 2024; 5:1484005. [PMID: 39703871 PMCID: PMC11655462 DOI: 10.3389/froh.2024.1484005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
Background N-acyl homoserine lactones (AHLs) are small signalling molecules predominantly secreted in Gram-negative bacteria. Objective The aim is to provide a comprehensive overview of AHLs in oral health. Methods Two independent researchers conducted a systematic search of English language publications up to 30 June 2024 in PubMed, Scopus and Web of Science. They screened the title and abstract to retrieve and map out relevant studies on AHLs in oral health, in order to identify key concepts, gaps in knowledge, and areas for further research. Results This study identified 127 articles and included 42 articles. These studies identified AHLs in human oral samples like saliva, dental plaque, tongue swabs, and dentin caries. The studies also found that AHLs regulate cell-to-cell communication of bacteria (quorum sensing) in mature biofilm fostering the production of virulence factors that damage the immune system. AHLs also exert biological effects on human cells and influence oral diseases such as periodontitis and oral squamous carcinoma. Researchers developed AHL inhibitors to interfere with the quorum sensing process and interrupt the communication between bacteria. These inhibitors can be classified into three main categories based on their mechanisms of action to AHLs: AHL synthesis disruptors, AHL competitive inhibitors and AHL enzymatic degraders. These AHL inhibitors can be important tools in the fight against bacterial infections, particularly those caused by Gram-negative bacteria. Conclusion The literatures indicate that AHLs, as quorum sensing molecules, influence bacterial communication. AHLs have a significant impact in bacterial pathogencity and play a potential role in the pathogenesis of oral diseases. Researchers have developed AHL inhibitors to disrupt bacterial quorum sensing, preventing bacteria from forming biofilms or expressing virulence factors. These studies on AHLs represent a new research direction to develop novel therapeutic strategies to manage oral diseases.
Collapse
Affiliation(s)
- Zelda Ziyi Zhao
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lifeng Guo
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China
| | - Wenwen Shan
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Alothaim AS, Alhoqail WA, Menakha M, Vijayakumar R. Combining molecular modelling and experimental approaches to gain mechanistic insights into the LuxP drug target in Streptococcus pyogens. J Biomol Struct Dyn 2024; 42:9494-9504. [PMID: 37642991 DOI: 10.1080/07391102.2023.2252079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Autoinducer-2 can mediate inter- and intra-species communication signal between bacteria and these signals from AI-2 is noted from limited species of bacteria. In humans, S. pyogenes is a pathogen that causes a wide range of illnesses and can survive in the host system and transmit infection. The process by which S. pyogenes acquires the competence to live and disseminate infection remains unknown. We hypothesized that AI-2 and their receptors would play a significant role during infection, and for that present investigation provides the experimental and molecular insights. In the absence of details about the receptor LuxP and LuxQ, the screening approach provides supporting insights. The evolutionary relationship and similarities of the PBP domain (Spy 1535) and the signal transmission PDZ domain (Spy 1536) were studied in relation to their counterparts in other bacteria. Molecular docking and modeling confirmed the domain-enhanced specificity for AI-2 binding. In vitro studies showed that AI-2, which is present in the cell-free supernatant of S. pyogenes, regulates luminescence in P. luminous and biofilm development in E. coli using the LuxS reporter genes. Examination of S. pyogenes gene expression revealed modulation of virulence genes when the pathogen was exposed to V. harveyi HSL and AI-2. Therefore, S. pyogenes pathogenicity is sequentially regulated by AI-2 it acquires from other commensal bacteria. Overall, this study lays the groundwork for understanding the signalling mechanism from AI-2, which are critical to the pathogenic mechanism of S. pyogenes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdulaziz S Alothaim
- Department of Biology, College of Science, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Wardah A Alhoqail
- Department of Biology, College of Education, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Muniraj Menakha
- Department of Bio-informatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Rajendran Vijayakumar
- Department of Biology, College of Science, Majmaah University, Al-Majmaah, Saudi Arabia
| |
Collapse
|
3
|
Gao S, Yuan S, Quan Y, Jin W, Shen Y, Liu B, Wang Y, Wang Y. Effects of AI-2 quorum sensing related luxS gene on Streptococcus suis formatting monosaccharide metabolism-dependent biofilm. Arch Microbiol 2024; 206:407. [PMID: 39297992 DOI: 10.1007/s00203-024-04126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Biofilm is the primary cause of persistent infections caused by Streptococcus suis (S. suis). Metabolism and AI-2 quorum sensing are intricately linked to S. suis biofilm formation. Although the role of the AI-2 quorum sensing luxS gene in S. suis biofilm has been reported, its specific regulatory mechanism remains unclear. This study explored the differences in biofilm formation and monosaccharide metabolism among the wild type (WT), luxS mutant (ΔluxS) and complement strain (CΔluxS), and Galleria mellonella larvae were used to access the effect of luxS gene deletion on the virulence of S. suis in different monosaccharide medias. The results indicated that deletion of the luxS gene further compromised the monosaccharide metabolism of S. suis, impacting its growth in media with fructose, galactose, rhamnose, and mannose as the sole carbon sources. However, no significant impact was observed in media with glucose and N-acetylglucosamine. This deletion also weakened EPS synthesis, thereby diminishing the biofilm formation capacity of S. suis. Additionally, the downregulation of adhesion gene expression due to luxS gene deletion was found to be independent of the monosaccharide medias of S. suis.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
4
|
Gao S, Wang Y, Yuan S, Zuo J, Jin W, Shen Y, Grenier D, Yi L, Wang Y. Cooperation of quorum sensing and central carbon metabolism in the pathogenesis of Gram-positive bacteria. Microbiol Res 2024; 282:127655. [PMID: 38402726 DOI: 10.1016/j.micres.2024.127655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Quorum sensing (QS), an integral component of bacterial communication, is essential in coordinating the collective response of diverse bacterial pathogens. Central carbon metabolism (CCM), serving as the primary metabolic hub for substances such as sugars, lipids, and amino acids, plays a crucial role in the life cycle of bacteria. Pathogenic bacteria often utilize CCM to regulate population metabolism and enhance the synthesis of specific cellular structures, thereby facilitating in adaptation to the host microecological environment and expediting infection. Research has demonstrated that QS can both directly or indirectly affect the CCM of numerous pathogenic bacteria, thus altering their virulence and pathogenicity. This article reviews the interplay between QS and CCM in Gram-positive pathogenic bacteria, details the molecular mechanisms by which QS modulates CCM, and lays the groundwork for investigating bacterial pathogenicity and developing innovative infection treatment drugs.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China; College of Life Science, Luoyang Normal University, Luoyang 471934, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| |
Collapse
|
5
|
Gifford DR, Bhattacharyya A, Geim A, Marshall E, Krašovec R, Knight CG. Environmental and genetic influence on the rate and spectrum of spontaneous mutations in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001452. [PMID: 38687010 PMCID: PMC11084559 DOI: 10.1099/mic.0.001452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Spontaneous mutations are the ultimate source of novel genetic variation on which evolution operates. Although mutation rate is often discussed as a single parameter in evolution, it comprises multiple distinct types of changes at the level of DNA. Moreover, the rates of these distinct changes can be independently influenced by genomic background and environmental conditions. Using fluctuation tests, we characterized the spectrum of spontaneous mutations in Escherichia coli grown in low and high glucose environments. These conditions are known to affect the rate of spontaneous mutation in wild-type MG1655, but not in a ΔluxS deletant strain - a gene with roles in both quorum sensing and the recycling of methylation products used in E. coli's DNA repair process. We find an increase in AT>GC transitions in the low glucose environment, suggesting that processes relating to the production or repair of this mutation could drive the response of overall mutation rate to glucose concentration. Interestingly, this increase in AT>GC transitions is maintained by the glucose non-responsive ΔluxS deletant. Instead, an elevated rate of GC>TA transversions, more common in a high glucose environment, leads to a net non-responsiveness of overall mutation rate for this strain. Our results show how relatively subtle changes, such as the concentration of a carbon substrate or loss of a regulatory gene, can substantially influence the amount and nature of genetic variation available to selection.
Collapse
Affiliation(s)
- Danna R. Gifford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Anish Bhattacharyya
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alexandra Geim
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Pembroke College, University of Cambridge, Cambridge, UK
| | - Eleanor Marshall
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rok Krašovec
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Huq M, Wahid SUH, Istivan T. Biofilm Formation in Campylobacter concisus: The Role of the luxS Gene. Microorganisms 2023; 12:46. [PMID: 38257873 PMCID: PMC10820981 DOI: 10.3390/microorganisms12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Campylobacter concisus is a bacterium that inhabits human oral cavities and is an emerging intestinal tract pathogen known to be a biofilm producer and one of the bacterial species found in dental plaque. In this study, biofilms of oral and intestinal C. concisus isolates were phenotypically characterized. The role of the luxS gene, which is linked to the regulation of biofilm formation in other pathogens, was assessed in relation to the pathogenic potential of this bacterium. Biofilm formation capacity was assessed using phenotypic assays. Oral strains were shown to be the highest producers. A luxS mutant was created by inserting a kanamycin cassette within the luxS gene of the highest biofilm-forming isolate. The loss of the polar flagellum was observed with scanning and transmission electron microscopy (SEM and TEM). Furthermore, the luxS mutant exhibited a significant reduction (p < 0.05) in biofilm formation, motility, and its expression of flaB, in addition to the capability to invade intestinal epithelial cells, compared to the parental strain. The study concluded that C. concisus oral isolates are significantly higher biofilm producers than the intestinal isolates and that LuxS plays a role in biofilm formation, invasion, and motility in this bacterium.
Collapse
Affiliation(s)
- Mohsina Huq
- School of Science, STEM College, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | | | - Taghrid Istivan
- School of Science, STEM College, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| |
Collapse
|
7
|
Zhang J, Duan Z. Identification of a new probiotic strain, Lactiplantibacillus plantarum VHProbi ® V38, and its use as an oral health agent. Front Microbiol 2022; 13:1000309. [PMID: 36583042 PMCID: PMC9793799 DOI: 10.3389/fmicb.2022.1000309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Probiotics can be used to treat oral diseases such as dental caries, gingivitis, periodontitis, and halitosis. Methods This study screened for strains capable of inhibiting Streptococcus mutans,one of the primary pathogenic bacteria responsible for dental caries by agar diffusion in different samples. Strain identification was performed by 16S rDNA sequencing and the API 50CH system. The potential functions of the strains in terms of oral health properties were also tested by agglutination assays, growth inhibition assays, adhesion assays, biofilm removal assays and inhibition of adhesion in human primary gingival epithelial (HPGE) cells assays. Results This study identified a probiotic strain from fermented cabbages that has a strong inhibitory effect on Streptococcus mutans. The API 50CH system and 16S rDNA sequencing verified that this was a new strain and it was given the name, Lactiplantibacillus plantarum VHProbi®V38. Agglutination, growth inhibition and adhesion, and biofilm removal tests indicated that L. plantarum VHProbi® V38 inhibited and reduced S. mutans. This probiotic was shown to have a broad antibacterial spectrum, simultaneously inhibiting the growth of periodontal pathogenic bacteria such as Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. After 2 hours of co-cultivation with these pathogens, L. plantarum VHProbi® V38 was able to significantly reduce pathogens adhesion on human primary gingival epithelial (HPGE) cells. Discussion These findings suggest that L. plantarum VHProbi® V38 could potentially prevent and treat periodontal diseases caused by these pathogenic bacteria. L. plantarum VHProbi® V38 also adheres strongly to HPGE cells and thus has potential as an oral probiotic. This study describes new methods that can be used to aid the screening and identification of oral probiotics.
Collapse
|
8
|
Fixed Orthodontic Treatment Increases Cariogenicity and Virulence Gene Expression in Dental Biofilm. J Clin Med 2022; 11:jcm11195860. [PMID: 36233727 PMCID: PMC9571576 DOI: 10.3390/jcm11195860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Dental caries commonly occurs during orthodontic treatment because fixed appliances can impede effective oral hygiene practices. This study investigated the effects of fixed orthodontic treatment on dental biofilm maturity and virulence gene (gtfB, ldh, brpA, spaP, luxS, and gbpB) expression. Methods: Dental biofilms and virulence gene expression were determined in 24 orthodontic patients before and after treatment of ≥6 months. A three-tone disclosing gel was used to stain dental biofilm and assess its maturity by its color change—pink (new dental biofilm), purple (mature dental biofilm), and light blue (cariogenic dental biofilm). Gene expression levels were determined using real-time PCR. Results: After fixed orthodontic appliance insertion, the percentage of new dental biofilm decreased, whereas that of cariogenic dental biofilm significantly increased (p < 0.05). There was no significant difference in the percentage of mature dental biofilm (p > 0.05). Fixed orthodontic appliances increased gtfB, ldh, brpA, and gbpB gene expression above 1.5-fold in dental biofilm. In contrast, there was no change in spaP or luxS gene expression after treatment. Conclusions: Fixed orthodontic appliance insertion induced ecological changes and cariogenic virulence gene expression in dental biofilm.
Collapse
|
9
|
Lu Y, Lei L, Deng Y, Zhang H, Xia M, Wei X, Yang Y, Hu T. RNase III coding genes modulate the cross-kingdom biofilm of Streptococcus mutans and Candida albicans. Front Microbiol 2022; 13:957879. [PMID: 36246231 PMCID: PMC9563999 DOI: 10.3389/fmicb.2022.957879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Streptococcus mutans constantly coexists with Candida albicans in plaque biofilms of early childhood caries (ECC). The progression of ECC can be influenced by the interactions between S. mutans and C. albicans through exopolysaccharides (EPS). Our previous studies have shown that rnc, the gene encoding ribonuclease III (RNase III), is implicated in the cariogenicity of S. mutans by regulating EPS metabolism. The DCR1 gene in C. albicans encodes the sole functional RNase III and is capable of producing non-coding RNAs. However, whether rnc or DCR1 can regulate the structure or cariogenic virulence of the cross-kingdom biofilm of S. mutans and C. albicans is not yet well understood. By using gene disruption or overexpression assays, this study aims to investigate the roles of rnc and DCR1 in modulating the biological characteristics of dual-species biofilms of S. mutans and C. albicans and to reveal the molecular mechanism of regulation. The morphology, biomass, EPS content, and lactic acid production of the dual-species biofilm were assessed. Quantitative real-time polymerase chain reaction (qRT-PCR) and transcriptomic profiling were performed to unravel the alteration of C. albicans virulence. We found that both rnc and DCR1 could regulate the biological traits of cross-kingdom biofilms. The rnc gene prominently contributed to the formation of dual-species biofilms by positively modulating the extracellular polysaccharide synthesis, leading to increased biomass, biofilm roughness, and acid production. Changes in the microecological system probably impacted the virulence as well as polysaccharide or pyruvate metabolism pathways of C. albicans, which facilitated the assembly of a cariogenic cross-kingdom biofilm and the generation of an augmented acidic milieu. These results may provide an avenue for exploring new targets for the effective prevention and treatment of ECC.
Collapse
Affiliation(s)
- Yangyu Lu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yalan Deng
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongyu Zhang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengying Xia
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xi Wei
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Yingming Yang,
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Tao Hu,
| |
Collapse
|
10
|
Zhang B, Jiang C, Cao H, Zeng W, Ren J, Hu Y, Li W, He Q. Transcriptome analysis of heat resistance regulated by quorum sensing system in Glaesserella parasuis. Front Microbiol 2022; 13:968460. [PMID: 36033895 PMCID: PMC9403865 DOI: 10.3389/fmicb.2022.968460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The ability of bacteria to resist heat shock allows them to adapt to different environments. In addition, heat shock resistance is known for their virulence. Our previous study showed that the AI-2/luxS quorum sensing system affects the growth characteristics, biofilm formation, and virulence of Glaesserella parasuis. The resistance of quorum sensing system deficient G. parasuis to heat shock was obviously weaker than that of wild type strain. However, the regulatory mechanism of this phenotype remains unclear. To illustrate the regulatory mechanism by which the quorum sensing system provides resistance to heat shock, the transcriptomes of wild type (GPS2), ΔluxS, and luxS complemented (C-luxS) strains were analyzed. Four hundred forty-four differentially expressed genes were identified in quorum sensing system deficient G. parasuis, which participated in multiple regulatory pathways. Furthermore, we found that G. parasuis regulates the expression of rseA, rpoE, rseB, degS, clpP, and htrA genes to resist heat shock via the quorum sensing system. We further confirmed that rseA and rpoE genes exerted an opposite regulatory effect on heat shock resistance. In conclusion, the findings of this study provide a novel insight into how the quorum sensing system affects the transcriptome of G. parasuis and regulates its heat shock resistance property.
Collapse
Affiliation(s)
- Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Changsheng Jiang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Hua Cao
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Jingping Ren
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yaofang Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Qigai He,
| |
Collapse
|
11
|
Liu D, Ge S, Wang Z, Li M, Zhuang W, Yang P, Chen Y, Ying H. Identification of a sensor histidine kinase (BfcK) controlling biofilm formation in Clostridium acetobutylicum. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Zhang Q, Ma Q, Wang Y, Wu H, Zou J. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int J Oral Sci 2021; 13:30. [PMID: 34588414 PMCID: PMC8481554 DOI: 10.1038/s41368-021-00137-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
Glucosyltransferases (Gtfs) play critical roles in the etiology and pathogenesis of Streptococcus mutans (S. mutans)- mediated dental caries including early childhood caries. Gtfs enhance the biofilm formation and promotes colonization of cariogenic bacteria by generating biofilm extracellular polysaccharides (EPSs), the key virulence property in the cariogenic process. Therefore, Gtfs have become an appealing target for effective therapeutic interventions that inhibit cariogenic biofilms. Importantly, targeting Gtfs selectively impairs the S. mutans virulence without affecting S. mutans existence or the existence of other species in the oral cavity. Over the past decade, numerous Gtfs inhibitory molecules have been identified, mainly including natural and synthetic compounds and their derivatives, antibodies, and metal ions. These therapeutic agents exert their inhibitory role in inhibiting the expression gtf genes and the activities and secretion of Gtfs enzymes with a wide range of sensitivity and effectiveness. Understanding molecular mechanisms of inhibiting Gtfs will contribute to instructing drug combination strategies, which is more effective for inhibiting Gtfs than one drug or class of drugs. This review highlights our current understanding of Gtfs activities and their potential utility, and discusses challenges and opportunities for future exploration of Gtfs as a therapeutic target.
Collapse
Affiliation(s)
- Qiong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, USA.
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Lu Y, Zhang H, Li M, Mao M, Song J, Deng Y, Lei L, Yang Y, Hu T. The rnc gene regulates the microstructure of exopolysaccharide in the biofilm of Streptococcus mutans through the β-monosaccharides. Caries Res 2021; 55:534-545. [PMID: 34348276 DOI: 10.1159/000518462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/11/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yangyu Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Hongyu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Meng Li
- Department of Pediatric Dentistry, Orange Dental Technology Co., Ltd., Shanghai, China
| | - Mengying Mao
- Shanghai Key Laboratory of Stomatology, Department of Endodontics, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jiaqi Song
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Yalan Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
14
|
Ellepola K, Huang X, Riley RP, Bitoun JP, Wen ZT. Streptococcus mutans Lacking sufCDSUB Is Viable, but Displays Major Defects in Growth, Stress Tolerance Responses and Biofilm Formation. Front Microbiol 2021; 12:671533. [PMID: 34248879 PMCID: PMC8264796 DOI: 10.3389/fmicb.2021.671533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans appears to possess a sole iron-sulfur (Fe-S) cluster biosynthesis system encoded by the sufCDSUB cluster. This study was designed to examine the role of sufCDSUB in S. mutans physiology. Allelic exchange mutants deficient of the whole sufCDSUB cluster and in individual genes were constructed. Compared to the wild-type, UA159, the sufCDSUB-deficient mutant, Δsuf::kanr, had a significantly reduced growth rate, especially in medium with the absence of isoleucine, leucine or glutamate/glutamine, amino acids that require Fe-S clusters for biosynthesis and when grown with medium adjusted to pH 6.0 and under oxidative and nitrosative stress conditions. Relative to UA159, Δsuf::kanr had major defects in stress tolerance responses with reduced survival rate of > 2-logs following incubation at low pH environment or after hydrogen peroxide challenge. When compared to UA159, Δsuf::kanr tended to form aggregates in broth medium and accumulated significantly less biofilm. As shown by luciferase reporter fusion assays, the expression of sufCDSUB was elevated by > 5.4-fold when the reporter strain was transferred from iron sufficient medium to iron-limiting medium. Oxidative stress induced by methyl viologen increased sufCDSUB expression by > 2-fold, and incubation in a low pH environment led to reduction of sufCDSUB expression by > 7-fold. These results suggest that lacking of SufCDSUB in S. mutans causes major defects in various cellular processes of the deficient mutant, including growth, stress tolerance responses and biofilm formation. In addition, the viability of the deficient mutant also suggests that SUF, the sole Fe-S cluster machinery identified is non-essential in S. mutans, which is not known in any other bacterium lacking the NIF and/or ISC system. However, how the bacterium compensates the Fe-S deficiency and if any novel Fe-S assembly systems exist in this bacterium await further investigation.
Collapse
Affiliation(s)
- Kassapa Ellepola
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Xiaochang Huang
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ryan P Riley
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob P Bitoun
- Department of Microbiology, Tulane University, New Orleans, LA, United States
| | - Zezhang Tom Wen
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
15
|
Li J, Wang Y, Du Y, Zhang H, Fan Q, Sun L, Yi L, Wang S, Wang Y. mRNA-Seq reveals the quorum sensing system luxS gene contributes to the environmental fitness of Streptococcus suis type 2. BMC Microbiol 2021; 21:111. [PMID: 33849451 PMCID: PMC8045309 DOI: 10.1186/s12866-021-02170-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Background Streptococcus suis type 2 (SS2) is an important zoonotic pathogen. We have previously reported the structure of LuxS protein and found that the luxS gene is closely related to biofilm, virulence gene expression and drug resistance of SS2. However, the mechanism of luxS mediated SS2 stress response is unclear. Therefore, this experiment performed stress response to luxS mutant (ΔluxS) and complement strain (CΔluxS), overexpression strain (luxS+) and wild-type SS2 strain HA9801, and analyzed the differential phenotypes in combination with transcriptome data. Results The results indicate that the luxS gene deletion causes a wide range of phenotypic changes, including chain length. RNA sequencing identified 278 lx-regulated genes, of which 179 were up-regulated and 99 were down-regulated. Differential genes focus on bacterial growth, stress response, metabolic mechanisms and drug tolerance. Multiple mitotic genes were down-regulated; while the ABC transporter system genes, cobalamin /Fe3+-iron carrier ABC transporter ATPase and oxidative stress regulators were up-regulated. The inactivation of the luxS gene caused a significant reduction in the growth and survival in the acid (pH = 3.0, 4.0, 5.0) and iron (100 mM iron chelator 2,2′-dipyridyl) stress environments. However, the mutant strain ΔluxS showed increased antioxidant activity to H2O2 (58.8 mmol/L). Conclusions The luxS gene in SS2 appears to play roles in iron metabolism and protective responses to acidic and oxidative environmental conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02170-w.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yanbin Du
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Liyun Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China. .,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
16
|
Zhang Y, Zhu Y, Zuo Y, Tang C, Zhou F, Cui X, Wang L. Effects of Rhein-8-O-β-D-glucopyranoside on the Biofilm Formation of Streptococcus mutans. Curr Microbiol 2020; 78:323-328. [PMID: 33128581 DOI: 10.1007/s00284-020-02248-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
Dental caries is the most frequent biofilm-related human infectious disease in the oral cavity. Streptococcus mutans is one of the primary etiological agents of dental caries. The aim of our study was to investigate the effects of rhein-8-O-β-D-glucopyranoside (Rg) on the development of S. mutans biofilms. Growth curves were generated, and biofilm oxygen sensitivity was detected after Rg treatment. The expression levels of luxS, brpA, ffh, recA, nth, and smx were analyzed by real-time PCR. The trypan blue exclusion assay was used to measure the effect of Rg on monocyte viability. The results showed that Rg could significantly inhibit the growth of S. mutans and suppress the biofilm formation of S. mutans in a concentration-dependent manner. In Rg-treated biofilms, the expression levels of luxS, brpA, ffh, recA, nth, and smx were all decreased. Our results further showed that Rg was nontoxic, as Rg did not affect monocyte viability or lactate dehydrogenase activity in the exposed cells. These results suggested that Rg inhibited the biofilm formation of S. mutans, and the decrease in luxS, brpA, ffh, recA, nth, and smx expression might contribute to the antibacterial effects of Rg.
Collapse
Affiliation(s)
- Yaochao Zhang
- College of Stomatology, Xi'an Medical University, South 2nd Ring Road NO.168, Yan ta District, Xi'an, Shaanxi Province, China.
| | - Yong Zhu
- College of Stomatology, Xi'an Medical University, South 2nd Ring Road NO.168, Yan ta District, Xi'an, Shaanxi Province, China
| | - Yanping Zuo
- College of Stomatology, Xi'an Medical University, South 2nd Ring Road NO.168, Yan ta District, Xi'an, Shaanxi Province, China
| | - Chengfang Tang
- College of Stomatology, Xi'an Medical University, South 2nd Ring Road NO.168, Yan ta District, Xi'an, Shaanxi Province, China
| | - Fang Zhou
- College of Stomatology, Xi'an Medical University, South 2nd Ring Road NO.168, Yan ta District, Xi'an, Shaanxi Province, China
| | - Xiaoming Cui
- College of Stomatology, Xi'an Medical University, South 2nd Ring Road NO.168, Yan ta District, Xi'an, Shaanxi Province, China
| | - Lin Wang
- College of Stomatology, Xi'an Medical University, South 2nd Ring Road NO.168, Yan ta District, Xi'an, Shaanxi Province, China
| |
Collapse
|
17
|
Park OJ, Jung S, Park T, Kim AR, Lee D, Jung Ji H, Seong Seo H, Yun CH, Hyun Han S. Enhanced biofilm formation of Streptococcus gordonii with lipoprotein deficiency. Mol Oral Microbiol 2020; 35:271-278. [PMID: 33063478 DOI: 10.1111/omi.12319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/18/2020] [Accepted: 10/10/2020] [Indexed: 02/01/2023]
Abstract
Streptococcus gordonii is a commensal Gram-positive bacterium that acts as an opportunistic pathogen that can cause apical periodontitis, endocarditis, and pneumonia. Biofilm formation of bacteria is important for the initiation and progression of such diseases. Although lipoproteins play key roles in physiological functions, the role of lipoproteins of S. gordonii in its biofilm formation has not been clearly understood. In this study, we investigated the role of lipoproteins of S. gordonii in the bacterial biofilm formation using its lipoprotein-deficient strain (Δlgt). The S. gordonii Δlgt exhibited increased biofilm formation on the human dentin slices or on the polystyrene surfaces compared to the wild-type strain, while its growth rate did not differ from that of the wild-type. In addition, the S. gordonii Δlgt strain exhibited the enhanced LuxS mRNA expression and AI-2 production, which is known to be a positive regulator of biofilm formation, compared to the wild-type. Concordantly, the augmented biofilm formation of S. gordonii Δlgt was attenuated by an AI-2 inhibitor, D-ribose. In addition, lipoproteins from purified S. gordonii inhibited the biofilm formation of S. gordonii wild-type and Δlgt. Taken together, these results suggest that lipoprotein-deficient S. gordonii form biofilms more effectively than the wild-type strain, which might be related to the AI-2 quorum-sensing system.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Solmin Jung
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Taehwan Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - A Reum Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Ji
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
18
|
de Alvarenga JA, de Barros PP, de Camargo Ribeiro F, Rossoni RD, Garcia MT, Dos Santos Velloso M, Shukla S, Fuchs BB, Shukla A, Mylonakis E, Junqueira JC. Probiotic Effects of Lactobacillus paracasei 28.4 to Inhibit Streptococcus mutans in a Gellan-Based Formulation. Probiotics Antimicrob Proteins 2020; 13:506-517. [PMID: 32980974 DOI: 10.1007/s12602-020-09712-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2020] [Indexed: 12/21/2022]
Abstract
Streptococcus mutans is considered to be a major bacterium involved in dental caries, and the control of virulence mechanisms is fundamental to prevent disease. Probiotics present a promising preventive method; however, the use of probiotics requires its incorporation into delivery materials to facilitate oral colonization. Thus, we performed a comprehensive study examining preventive effects of Lactobacillus paracasei 28.4-enriched gellan hydrogel materials to inhibit S. mutans in planktonic and biofilm states, addressing its influence in the production of extracellular polysaccharides (EPS) and altered gene expression of several cariogenic virulence factors. L. paracasei 28.4, a strain isolated from the oral cavity of a caries-free individual, was incorporated in three gellan hydrogels (0.5%, 0.75%, and 1% w/v). The pretreatment with probiotic-gellan formulations provided a release of L. paracasei cells over 24 h that was sufficient to inhibit the planktonic growth of S. mutans, independent of the gellan concentrations and pH variations. This pretreatment also had inhibitory activity against S. mutans biofilms, exhibiting a reduction of 0.57 to 1.54 log10 in CFU/mL (p < 0.0001) and a decrease of 68.8 to 71.3% in total biomass (p < 0.0001) compared with the control group. These inhibitory effects were associated with the decreased production of EPS by 80% (p < 0.0001) and the downregulation of luxS, brpA, gbpB, and gtfB genes. The gellan formulation containing L. paracasei 28.4 exhibited probiotic effects for preventing S. mutans growth, biofilm formation, and production of cariogenic factors to suggest possible use in tooth decay prevention.
Collapse
Affiliation(s)
- Janaína Araújo de Alvarenga
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Marisol Dos Santos Velloso
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Shashank Shukla
- School of Engineering, Brown University, Providence, RI, USA
| | - Beth Burgwyn Fuchs
- Rhode Island Hospital, Alpert Medical School & Brown University, Providence, RI, USA
| | - Anita Shukla
- School of Engineering, Brown University, Providence, RI, USA
| | - Eleftherios Mylonakis
- Rhode Island Hospital, Alpert Medical School & Brown University, Providence, RI, USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| |
Collapse
|
19
|
Balasubramanian AR, Vasudevan S, Shanmugam K, Lévesque CM, Solomon AP, Neelakantan P. Combinatorial effects of trans-cinnamaldehyde with fluoride and chlorhexidine on Streptococcus mutans. J Appl Microbiol 2020; 130:382-393. [PMID: 32707601 DOI: 10.1111/jam.14794] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 01/03/2023]
Abstract
AIMS The aim of this study was to investigate the effects of trans-cinnamaldehyde (TC) and its synergistic activity with chlorhexidine (CHX) and fluoride against Streptococcus mutans. METHODS AND RESULTS Streptococcus mutans UA159 was treated with TC alone and in combination with CHX or sodium fluoride. The synergy profile was analysed using the Zero Interaction Potency model. TC showed strong synergism (synergy score of 21·697) with CHX, but additive effect (synergy score of 5·298) with fluoride. TC and the combinations were tested for acid production (glycolytic pH drop) and biofilm formation by S. mutans, and nitric oxide production in macrophages. TC significantly inhibited sucrose-dependent biofilm formation and acid production by S. mutans. Mechanistic studies were carried out by qRT-PCR-based transcriptomic studies which showed that TC acts by impairing genes related to metabolism, quorum sensing, bacteriocin expression, stress tolerance and biofilm formation. CONCLUSIONS trans-Cinnamaldehyde potentiates CHX and sodium fluoride in inhibiting S. mutans biofilms and virulence through multiple mechanisms. This study sheds significant new light on the potential to develop TC as an anti-caries treatment. SIGNIFICANCE AND IMPACT OF THE STUDY Oral diseases were classified as a 'silent epidemic' in the US Surgeon General's Report on Oral Health. Two decades later, >4 billion people are still affected worldwide by caries, having significant effects on the quality of life. There is an urgent need to develop novel compounds and strategies to combat dental caries. Here, we prove that TC downregulates multiple pathways and potentiates the CHX and fluoride to prevent S. mutans biofilms and virulence. This study sheds significant new light on the potential to develop TC in combination with CHX or fluoride as novel treatments to arrest dental caries.
Collapse
Affiliation(s)
- A R Balasubramanian
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - S Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - K Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - C M Lévesque
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - A P Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - P Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
20
|
Muras A, Otero-Casal P, Blanc V, Otero A. Acyl homoserine lactone-mediated quorum sensing in the oral cavity: a paradigm revisited. Sci Rep 2020; 10:9800. [PMID: 32555242 PMCID: PMC7300016 DOI: 10.1038/s41598-020-66704-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
Acyl homoserine lactones (AHLs), the quorum sensing (QS) signals produced by Gram-negative bacteria, are currently considered to play a minor role in the development of oral biofilm since their production by oral pathogens has not been ascertained thus far. However, we report the presence of AHLs in different oral samples and their production by the oral pathogen Porphyromonas gingivalis. The importance of AHLs is further supported by a very high prevalence of AHL-degradation capability, up to 60%, among bacteria isolated from dental plaque and saliva samples. Furthermore, the wide-spectrum AHL-lactonase Aii20J significantly inhibited oral biofilm formation in different in vitro biofilm models and caused important changes in bacterial composition. Besides, the inhibitory effect of Aii20J on a mixed biofilm of 6 oral pathogens was verified using confocal microscopy. Much more research is needed in order to be able to associate specific AHLs with oral pathologies and to individuate the key actors in AHL-mediated QS processes in dental plaque formation. However, these results indicate a higher relevance of the AHLs in the oral cavity than generally accepted thus far and suggest the potential use of inhibitory strategies against these signals for the prevention and treatment of oral diseases.
Collapse
Affiliation(s)
- Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Departamento de Ciruxía e Especialidade Médico-Cirúrxica, Facultade de Medicina e Odontoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Unit of Oral Health, C.S. Santa Comba-Negreira, SERGAS, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Dentaid S.L., Barcelona, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
21
|
Short-Chain N-Acylhomoserine Lactone Quorum-Sensing Molecules Promote Periodontal Pathogens in In Vitro Oral Biofilms. Appl Environ Microbiol 2020; 86:AEM.01941-19. [PMID: 31757829 DOI: 10.1128/aem.01941-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Acylhomoserine lactones (AHLs), the quorum-sensing (QS) signals produced by a range of Gram-negative bacteria, are involved in biofilm formation in many pathogenic and environmental bacteria. Nevertheless, the current paradigm excludes a role of AHLs in dental plaque formation, while other QS signals, such as AI-2 and autoinducer peptides, have been demonstrated to play an important role in biofilm formation and virulence-related gene expression in oral pathogens. In the present work, we have explored the effect of externally added AHLs on in vitro oral biofilm models for commensal, cariogenic, and periodontal dental plaque. While little effect on bacterial growth was observed, some AHLs specifically affected the lactic acid production and protease activity of the biofilms. Most importantly, the analysis of bacterial diversity in the biofilms showed that the addition of C6-homoserine lactone (C6-HSL) results in a shift toward a periodontal bacterial composition profile by increasing the relative presence of the orange-complex bacteria Peptostreptococcus and Prevotella These results point to a relevant role of AHL-mediated QS in dental plaque formation and might be involved in the development of dysbiosis, the mechanism of which should be further investigated. This finding potentially opens new opportunities for the prevention or treatment of the periodontal disease.IMPORTANCE Dental plaque is omnipresent in healthy oral cavities and part of our commensal microbial colonization. At the same time, dental plaque is the cause of the most common human diseases, caries and gum disease. Dental plaque consists of billions of microbes attached to the surface of your teeth. Communication among these microbes is pivotal for development of these complex communities yet poorly studied in dental plaque. In the present study, we show that a specific communication molecule induces changes within the community related to the development of gum disease. This finding suggests that interfering with microbial communication may represent an interesting novel strategy to prevent gum disease that should be further investigated.
Collapse
|
22
|
Yang Y, Mao M, Lei L, Li M, Yin J, Ma X, Tao X, Yang Y, Hu T. Regulation of water-soluble glucan synthesis by the Streptococcus mutans dexA gene effects biofilm aggregation and cariogenic pathogenicity. Mol Oral Microbiol 2019; 34:51-63. [PMID: 30659765 DOI: 10.1111/omi.12253] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 02/05/2023]
Abstract
The cariogenic pathogen Streptococcus mutans effectively utilizes dietary sucrose for the synthesis of exopolysaccharides (EPS), which act as a scaffold for its biofilm and thus contribute to its cariogenic pathogenicity. Dextranase (Dex), which is a type of glucanase, participates in the degradation of water-soluble glucan (WSG); however, the structural features of the EPS regulated by the dexAgene have received limited attention. Our recent studies reported novel protocols to fractionate and analyzed the structural characteristics of glucans from S mutans biofilms. In this study, we identify the role of the S mutans dexAgene in dextran-dependent aggregation in biofilm formation. Our results show that deletion of dexA (SmudexA) results in increased transcription of EPS synthesis-related genes, including gtfB, gtfD, and ftf. Interestingly, we reveal that inactivating the dexA gene may lead to elevated WSG synthesis in S mutans , which results in dysregulated cariogenicity in vivo. Furthermore, structural analysis provides new insights regarding the lack of mannose monosaccharides, especially in the WSG synthesis of the SmudexA mutants. The biofilm phenotypes that are associated with the reduced glucose monosaccharide composition in both WSG and water-insoluble glucan shift the dental biofilm to reduce the cariogenic incidence of the SmudexA mutants. Taken together, these data reveal that EPS synthesis fine-tuning by the dexA gene results in a densely packed EPS matrix that may impede the glucose metabolism of WSG, thereby leading to the lack of an energy source for the bacteria. These results highlight dexA targeting as a potentially effective tool in dental caries management.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Mengying Mao
- Shanghai Ninth People's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaxin Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinrong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiang Tao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. The Biology of Streptococcus mutans. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0051-2018. [PMID: 30657107 PMCID: PMC6615571 DOI: 10.1128/microbiolspec.gpp3-0051-2018] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
As a major etiological agent of human dental caries, Streptococcus mutans resides primarily in biofilms that form on the tooth surfaces, also known as dental plaque. In addition to caries, S. mutans is responsible for cases of infective endocarditis with a subset of strains being indirectly implicated with the onset of additional extraoral pathologies. During the past 4 decades, functional studies of S. mutans have focused on understanding the molecular mechanisms the organism employs to form robust biofilms on tooth surfaces, to rapidly metabolize a wide variety of carbohydrates obtained from the host diet, and to survive numerous (and frequent) environmental challenges encountered in oral biofilms. In these areas of research, S. mutans has served as a model organism for ground-breaking new discoveries that have, at times, challenged long-standing dogmas based on bacterial paradigms such as Escherichia coli and Bacillus subtilis. In addition to sections dedicated to carbohydrate metabolism, biofilm formation, and stress responses, this article discusses newer developments in S. mutans biology research, namely, how S. mutans interspecies and cross-kingdom interactions dictate the development and pathogenic potential of oral biofilms and how next-generation sequencing technologies have led to a much better understanding of the physiology and diversity of S. mutans as a species.
Collapse
Affiliation(s)
- J A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - S R Palmer
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH 43210
| | - L Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - Z T Wen
- Department of Comprehensive Dentistry and Biomaterials and Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - J K Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - I A Freires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - J Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - L J Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| |
Collapse
|
24
|
Di Domenico EG, Cavallo I, Bordignon V, D'Agosto G, Pontone M, Trento E, Gallo MT, Prignano G, Pimpinelli F, Toma L, Ensoli F. The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis. Front Neurol 2018; 9:1048. [PMID: 30559713 PMCID: PMC6287027 DOI: 10.3389/fneur.2018.01048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023] Open
Abstract
Lyme borreliosis (LB) is the most common tick-borne disease caused by the spirochete Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe and Asia, respectively. The infection affects multiple organ systems, including the skin, joints, and the nervous system. Lyme neuroborreliosis (LNB) is the most dangerous manifestation of Lyme disease, occurring in 10-15% of infected individuals. During the course of the infection, bacteria migrate through the host tissues altering the coagulation and fibrinolysis pathways and the immune response, reaching the central nervous system (CNS) within 2 weeks after the bite of an infected tick. The early treatment with oral antimicrobials is effective in the majority of patients with LNB. Nevertheless, persistent forms of LNB are relatively common, despite targeted antibiotic therapy. It has been observed that the antibiotic resistance and the reoccurrence of Lyme disease are associated with biofilm-like aggregates in B. burgdorferi, B. afzelii, and B. garinii, both in vitro and in vivo, allowing Borrelia spp. to resist to adverse environmental conditions. Indeed, the increased tolerance to antibiotics described in the persisting forms of Borrelia spp., is strongly reminiscent of biofilm growing bacteria, suggesting a possible role of biofilm aggregates in the development of the different manifestations of Lyme disease including LNB.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Martina Pontone
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Elisabetta Trento
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Maria Teresa Gallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
25
|
Wang Y, Costin S, Zhang JF, Liao S, Wen ZT, Lallier T, Yu Q, Xu X. Synthesis, antibacterial activity, and biocompatibility of new antibacterial dental monomers. AMERICAN JOURNAL OF DENTISTRY 2018; 31:17B-23B. [PMID: 31099208 PMCID: PMC7161594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
PURPOSE To synthesize a small library of antibacterial dental monomers based on quaternary ammonium salts and to test their antibacterial activity against cariogenic bacteria. METHODS Five new antibacterial monomers were synthesized and characterized by NMR, IR and HRMS. RESULTS Cytotoxicity assays using human gingival fibroblast cells showed that these new antibacterial monomers were biocompatible at concentrations of 10⁻⁵ M and displayed less cytotoxicity than BisGMA, a common dental monomer. When analyzed in vitro, all new monomers demonstrated strong inhibitory activity against biofilm formation by cariogenic Streptococcus mutans and Lactobacillus casei. Results indicated that antibacterial monomers containing a long alkyl (i.e. hexadecyl) chain are superior to their shorter-chain counterparts. The cross-linking monomers based on glycerol dimethacrylate also consistently outperformed their monomethacrylate analogs. Finally, the ammonium salts containing the dimethylbenzyl moiety were superior to the similar structures containing 1,4-diazabicyclo[2.2.2]octane (DABCO) in some cases. CLINICAL SIGNIFICANCE All five new monomers were deemed biocompatible at concentrations of 10⁻⁵ M or less, and most had better biocompatibility than BisGMA. Dimethacrylate monomers 5 and 6 generally demonstrated high antibacterial activities, with the highest activity shown for the most lipophilic monomer 6, and these new antibacterial monomers have potential future application in dental composites and bonding agents.
Collapse
Affiliation(s)
- Yapin Wang
- Department of Comprehensive Dentistry & Biomaterials, School of Dentistry, Louisiana State University Health-New Orleans, New Orleans, Louisiana, USA
| | - Stephen Costin
- Department of Comprehensive Dentistry & Biomaterials, School of Dentistry, Louisiana State University Health-New Orleans, New Orleans, Louisiana, USA
| | - Jian-Feng Zhang
- Department of Comprehensive Dentistry & Biomaterials, School of Dentistry, Louisiana State University Health-New Orleans, New Orleans, Louisiana, USA
| | - Sumei Liao
- Department of Comprehensive Dentistry & Biomaterials, School of Dentistry, Louisiana State University Health-New Orleans, New Orleans, Louisiana, USA
| | - Zezhang T Wen
- Department of Comprehensive Dentistry & Biomaterials, School of Dentistry, Louisiana State University Health-New Orleans, New Orleans, Louisiana, USA
| | - Thomas Lallier
- Department of Cell Biology and Anatomy, School of Dentistry, Louisiana State University Health-New Orleans, New Orleans, Louisiana, USA
| | - Qingzhao Yu
- Biostatistics Program, School of Public Health, Louisiana State University Health - New Orleans, New Orleans, Louisiana, USA
| | - Xiaoming Xu
- Department of Comprehensive Dentistry & Biomaterials, School of Dentistry, Louisiana State University Health-New Orleans, New Orleans, Louisiana, USA,
| |
Collapse
|
26
|
Wen ZT, Scott-Anne K, Liao S, De A, Luo M, Kovacs C, Narvaez BS, Faustoferri R, Yu Q, Taylor CM, Quivey RG. Deficiency of BrpA in Streptococcus mutans reduces virulence in rat caries model. Mol Oral Microbiol 2018; 33:353-363. [PMID: 29888871 PMCID: PMC6158100 DOI: 10.1111/omi.12230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2018] [Indexed: 01/09/2023]
Abstract
Our recent studies have shown that BrpA in Streptococcus mutans plays a critical role in cell envelope biogenesis, stress responses, and biofilm formation. In this study, a 10-species consortium was used to assess how BrpA deficiency influences the establishment, persistence, and competitiveness of S. mutans during growth in a community under conditions typical of the oral cavity. Results showed that, like the wild-type, the brpA mutant was able to colonize and establish on the surfaces tested. Relative to the wild-type, however, the brpA mutant had a reduced ability to persist and grow in the 10-species consortium (P < .001). A rat caries model was also used to examine the effect of BrpA, as well as Psr, a BrpA paralog, on S. mutans cariogenicity. The results showed no major differences in infectivity between the wild-type and the brpA and psr mutants. Unlike the wild-type, however, infection with the brpA mutant, but not the psr mutant, showed no significant differences in both total numbers of carious lesions and caries severity, compared with the control group that received bacterial growth medium (P > .05). Metagenomic and quantitative polymerase chain reaction analysis showed that S. mutans infection caused major alterations in the composition of the rats' plaque microbiota and that significantly less S. mutans was identified in the rats infected with the brpA mutant compared with those infected with the wild-type and the psr mutant. These results further suggest that BrpA plays a critical role in S. mutans pathophysiology and that BrpA has potential as a therapeutic target in the modulation of S. mutans virulence.
Collapse
Affiliation(s)
- Zezhang T. Wen
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kathy Scott-Anne
- Center of Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Sumei Liao
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Arpan De
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Christopher Kovacs
- Center of Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Roberta Faustoferri
- Center of Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Qingzhao Yu
- Department of Biostatistics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Christopher M. Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Robert G. Quivey
- Center of Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
27
|
De A, Jorgensen AN, Beatty WL, Lemos J, Wen ZT. Deficiency of MecA in Streptococcus mutans Causes Major Defects in Cell Envelope Biogenesis, Cell Division, and Biofilm Formation. Front Microbiol 2018; 9:2130. [PMID: 30254619 PMCID: PMC6141683 DOI: 10.3389/fmicb.2018.02130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
MecA is an adaptor protein that guides the ClpC/P-mediated proteolysis. A S. mutans MecA-deficient mutant was constructed by double-crossover allelic exchange and analyzed for the effects of such a deficiency on cell biology and biofilm formation. Unlike the wild-type, UA159, the mecA mutant, TW416, formed mucoid and smooth colonies, severely clumped in broth and had a reduced growth rate. Transmission electron microscopy analysis revealed that TW416 grows primarily in chains of giant “swollen” cells with multiple asymmetric septa, unlike the coccoid form of UA159. As compared to UA159, biofilm formation by TW416 was significantly reduced regardless of the carbohydrate sources used for growth (P < 0.001). Western blot analysis of TW416 whole cell lysates showed a reduced expression of the glucosyltransferase GtfC and GtfB, as well as the P1 and WapA adhesins providing an explanation for the defective biofilm formation of TW416. When analyzed by a colorimetric assay, the cell wall phosphate of the mutant murein sacculi was almost 20-fold lower than the parent strain (P < 0.001). Interestingly, however, when analyzed using immunoblotting of the murein sacculi preps with UA159 whole cell antiserum as a probe, TW416 was shown to possess significantly higher signal intensity as compared to the wild-type. There is also evidence that MecA in S. mutans is more than an adaptor protein, although how it modulates the bacterial pathophysiology, including cell envelope biogenesis, cell division, and biofilm formation awaits further investigation.
Collapse
Affiliation(s)
- Arpan De
- Department of Comprehensive Dentistry and Biomaterials, University of Florida, Gainesville, FL, United States
| | - Ashton N Jorgensen
- Department of Comprehensive Dentistry and Biomaterials, University of Florida, Gainesville, FL, United States
| | - Wandy L Beatty
- Center of Oral and Craniofacial Biology, University of Florida, Gainesville, FL, United States
| | - Jose Lemos
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Zezhang T Wen
- Department of Comprehensive Dentistry and Biomaterials, University of Florida, Gainesville, FL, United States.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, United States.,Department of Oral Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
Hu X, Wang Y, Gao L, Jiang W, Lin W, Niu C, Yuan K, Ma R, Huang Z. The Impairment of Methyl Metabolism From luxS Mutation of Streptococcus mutans. Front Microbiol 2018; 9:404. [PMID: 29657574 PMCID: PMC5890193 DOI: 10.3389/fmicb.2018.00404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
The luxS gene is present in a wide range of bacteria and is involved in many cellular processes. LuxS mutation can cause autoinducer(AI)-2 deficiency and methyl metabolism disorder. The objective of this study was to demonstrate that, in addition to AI-2-mediated quorum sensing (QS), methyl metabolism plays an important role in LuxS regulation in Streptococcus mutans. The sahH gene from Pseudomonas aeruginosa was amplified and introduced into the S. mutans luxS-null strain to complement the methyl metabolism disruption in a defective QS phenotype. The intracellular activated methyl cycle (AMC) metabolites [S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), homocysteine (HCY), and methionine] were quantified in wild-type S. mutans and its three derivatives to determine the metabolic effects of disrupting the AMC. Biofilm mass and structure, acid tolerance, acid production, exopolysaccharide synthesis of multispecies biofilms and the transcriptional level of related genes were determined. The results indicated that SAH and SAM were relatively higher in S. mutans luxS-null strain and S. mutans luxS null strain with plasmid pIB169 when cultured overnight, and HCY was significantly higher in S. mutans UA159. Consistent with the transcriptional profile, luxS deletion-mediated impairment of biofilm formation and acid tolerance was restored to wild-type levels using transgenic SahH. These results also suggest that methionine methyl metabolism contributes to LuxS regulation in S. mutans to a significant degree.
Collapse
Affiliation(s)
- Xuchen Hu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yuxia Wang
- Department of Endodontics, Tianjin Stomatological Hospital, Nankai University, Tianjin, China
| | - Li Gao
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wenxin Jiang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wenzhen Lin
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Keyong Yuan
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Rui Ma
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
29
|
Mao MY, Li M, Lei L, Yin JX, Yang YM, Hu T. The Regulator Gene rnc Is Closely Involved in Biofilm Formation in Streptococcus mutans. Caries Res 2018; 52:347-358. [PMID: 29510413 DOI: 10.1159/000486431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022] Open
Abstract
Streptococcus mutans is an important factor in the etiology and pathogenesis of dental caries, largely owing to its ability to form a stable biofilm. Previous animal studies have indicated that rnc could decrease the amount of sulcal caries, and that the downregulation of cariogenicity might be due to its capacity to disrupt biofilm formation. However, the biofunctions by which rnc is involved in biofilm formation remain to be elucidated. In this study, we further investigate the role of rnc based on the study of mature biofilm. Scanning electron microscopy and the crystal violet assay were used to detect the biofilm forming ability. The production and distribution of exopolysaccharides within biofilm was analyzed by exopolysaccharide staining. Gel permeation chromatography was used to perform molecular weight assessment. Its adhesion force was measured by atomic force microscopy. The expression of biofilm formation-associated genes was analyzed at the mRNA level by qPCR. Here, we found that rnc could occur and function in biofilm formation by assembling well-structured, exopolysaccharide-encased, stable biofilms in S. mutans. The weakened biofilm forming ability of rnc-deficient strains was associated with the reduction of exopolysaccharide production and bacterial adhesion. Over all, these data illustrate an interesting situation in which an unappreciated regulatory gene acquired for virulence, rnc, most likely has been coopted as a potential regulator of biofilm formation in S. mutans. Further characterization of rnc may lead to the identification of a possible pathogenic biofilm-specific treatment for dental caries.
Collapse
|
30
|
Muras A, Mayer C, Romero M, Camino T, Ferrer MD, Mira A, Otero A. Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity. J Oral Microbiol 2018; 10:1429788. [PMID: 29410771 PMCID: PMC5795696 DOI: 10.1080/20002297.2018.1429788] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Previous studies have suggested the quorum sensing signal AI-2 as a potential target to prevent the biofilm formation by Streptococcus mutans, a pathogen involved in tooth decay. Objective: To obtain inhibition of biofilm formation by S. mutans by extracts obtained from the marine bacterium Tenacibaculum sp. 20J interfering with the AI-2 quorum sensing system. Design: The AI-2 inhibitory activity was tested with the biosensors Vibrio harveyi BB170 and JMH597. S. mutans ATCC25175 biofilm formation was monitored using impedance real-time measurements with the xCELLigence system®, confocal laser microscopy, and the crystal violet quantification method. Results: The addition of the cell extract from Tenacibaculum sp. 20J reduced biofilm formation in S. mutans ATCC25175 by 40–50% compared to the control without significantly affecting growth. A decrease of almost 40% was also observed in S. oralis DSM20627 and S. dentisani 7747 biofilms. Conclusions: The ability of Tenacibaculum sp. 20J to interfere with AI-2 and inhibit biofilm formation in S. mutans was demonstrated. The results indicate that the inhibition of quorum sensing processes may constitute a suitable strategy for inhibiting dental plaque formation, although additional experiments using mixed biofilm models would be required.
Collapse
Affiliation(s)
- Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Celia Mayer
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Tamara Camino
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria D Ferrer
- Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Alex Mira
- Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
31
|
Cao L, Zhang ZZ, Xu SB, Ma M, Wei X. Farnesol inhibits development of caries by augmenting oxygen sensitivity and suppressing virulence-associated gene expression inStreptococcus mutans. J Biomed Res 2017; 31:333-343. [PMID: 28808205 PMCID: PMC5548994 DOI: 10.7555/jbr.31.20150151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Streptococcus mutans is a primary etiological agent of dental caries. Farnesol, as a potential antimicrobial agent, inhibits the development ofS. mutans biofilm. In this study, we hypothesized that farnesol inhibits caries development in vitro and interferes with biofilm formation by regulating virulence-associated gene expression. The inhibitory effects of farnesol to S. mutans biofilms on enamel surfaces were investigated by determining micro-hardness and calcium measurements. Additionally, the morphological changes ofS. mutans biofilms were compared using field emission scanning electron microscopy and confocal laser scanning microscopy, and the vitality and oxygen sensitivity ofS. mutans biofilms were compared using MTT assays. To investigate the molecular mechanisms of farnesol's effects, expressions of possible target genesluxS, brpA, ffh, recA, nth, and smx were analyzed using reverse-transcription polymerase chain reaction (PCR) and quantitative PCR. Farnesol-treated groups exhibited significantly higher micro-hardness on the enamel surface and lower calcium concentration of the supernatants as compared to the-untreated control. Microscopy revealed that a thinner film with less extracellular matrix formed in the farnesol-treated groups. As compared to the-untreated control, farnesol inhibited biofilm formation by 26.4% with 500 µmol/L and by 37.1% with 1,000 µmol/L (P<0.05). Last, decreased transcription levels of luxS, brpA, ffh, recA, nth, and smx genes were expressed in farnesol-treated biofilms. In vitrofarnesol inhibits caries development and S. mutans biofilm formation. The regulation of luxS, brpA, ffh, recA, nth, and smx genes may contribute to the inhibitory effects of farnesol.
Collapse
Affiliation(s)
- Li Cao
- Jiangsu Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhen-Zhen Zhang
- Jiangsu Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuang-Bo Xu
- Jiangsu Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ming Ma
- Jiangsu Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Wei
- Jiangsu Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
32
|
Deficiency of RgpG Causes Major Defects in Cell Division and Biofilm Formation, and Deficiency of LytR-CpsA-Psr Family Proteins Leads to Accumulation of Cell Wall Antigens in Culture Medium by Streptococcus mutans. Appl Environ Microbiol 2017; 83:AEM.00928-17. [PMID: 28687645 DOI: 10.1128/aem.00928-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Streptococcus mutans is known to possess rhamnose-glucose polysaccharide (RGP), a major cell wall antigen. S. mutans strains deficient in rgpG, encoding the first enzyme of the RGP biosynthesis pathway, were constructed by allelic exchange. The rgpG deficiency had no effect on growth rate but caused major defects in cell division and altered cell morphology. Unlike the coccoid wild type, the rgpG mutant existed primarily in chains of swollen, "squarish" dividing cells. Deficiency of rgpG also causes significant reduction in biofilm formation (P < 0.01). Double and triple mutants with deficiency in brpA and/or psr, genes coding for the LytR-CpsA-Psr family proteins BrpA and Psr, which were previously shown to play important roles in cell envelope biogenesis, were constructed using the rgpG mutant. There were no major differences in growth rates between the wild-type strain and the rgpG brpA and rgpG psr double mutants, but the growth rate of the rgpG brpA psr triple mutant was reduced drastically (P < 0.001). Under transmission electron microscopy, both double mutants resembled the rgpG mutant, while the triple mutant existed as giant cells with multiple asymmetric septa. When analyzed by immunoblotting, the rgpG mutant displayed major reductions in cell wall antigens compared to the wild type, while little or no signal was detected with the double and triple mutants and the brpA and psr single mutants. These results suggest that RgpG in S. mutans plays a critical role in cell division and biofilm formation and that BrpA and Psr may be responsible for attachment of cell wall antigens to the cell envelope.IMPORTANCEStreptococcus mutans, a major etiological agent of human dental caries, produces rhamnose-glucose polysaccharide (RGP) as the major cell wall antigen. This study provides direct evidence that deficiency of RgpG, the first enzyme of the RGP biosynthesis pathway, caused major defects in cell division and morphology and reduced biofilm formation by S. mutans, indicative of a significant role of RGP in cell division and biofilm formation in S. mutans These results are novel not only in S. mutans, but also other streptococci that produce RGP. This study also shows that the LytR-CpsA-Psr family proteins BrpA and Psr in S. mutans are involved in attachment of RGP and probably other cell wall glycopolymers to the peptidoglycan. In addition, the results also suggest that BrpA and Psr may play a direct role in cell division and biofilm formation in S. mutans This study reveals new potential targets to develop anticaries therapeutics.
Collapse
|
33
|
Xu B, Zhang P, Li W, Liu R, Tang J, Fan H. hsdS, Belonging to the Type I Restriction-Modification System, Contributes to the Streptococcus suis Serotype 2 Survival Ability in Phagocytes. Front Microbiol 2017; 8:1524. [PMID: 28848531 PMCID: PMC5552720 DOI: 10.3389/fmicb.2017.01524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic agent in swine and humans. Anti-phagocytosis and survival in phagocytic cells and whole blood is essential for bacteria to be pathogenic. In this study, the host specificity determinant specificity subunit (coded by hsdS) of the Type I Restriction-Modification system and two peptidoglycan-binding proteins (coded by lysM and lysM′, respectively), which were simultaneously found to be subjected to transcript-level influence by hsdS, were identified to facilitate the anti-phagocytosis of SS2 to a microglia cell line BV2. Furthermore, they significantly enhanced its survival in BV2, whole blood, and a peroxidation environment (H2O2) (p < 0.05), yet not in the acidic condition based on statistical analysis of the characteristic differences between gene mutants and wild-type SS2. In contrast, another specificity subunit, coded by hsdS′, that belonged to the same Type I Restriction-Modification system, only significantly reduced the survival ability of SS2 in the acidic condition when in the form of a gene-deleted mutant (p < 0.05), but it did not significantly influence the survival ability in other conditions mentioned above or have enhanced anti-phagocytosis action when compared with wild-type SS2. In addition, the mutation of hsdS significantly enhanced the secretion of nitric oxide and TNF-α by BV2 with SS2 incubation (p < 0.05). The SS2 was tested, and it failed to stimulate BV2 to produce IFN-γ. These results demonstrated that hsdS contributed to bacterial anti-phagocytosis and survival in adverse host environments through positively impacting the transcription of two peptidoglycan-binding protein genes, enhancing resistance to reactive oxygen species, and reducing the secretion of TNF-α and nitric oxide by phagocytes. These findings revealed new mechanisms of SS2 pathogenesis.
Collapse
Affiliation(s)
- Bin Xu
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Ping Zhang
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China.,Poultry Institute, Chinese Academy of Agricultural SciencesYangzhou, China
| | - Weiyi Li
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Rui Liu
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Jinsheng Tang
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
34
|
Wang X, Li X, Ling J. Streptococcus gordonii LuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation with Streptococcus mutans. J Basic Microbiol 2017; 57:605-616. [PMID: 28485524 DOI: 10.1002/jobm.201700010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/04/2017] [Accepted: 04/21/2017] [Indexed: 01/26/2023]
Abstract
Dental plaques are mixed-species biofilms that are related to the development of dental caries. Streptococcus mutans (S. mutans) is an important cariogenic bacterium that forms mixed-species biofilms with Streptococcus gordonii (S. gordonii), an early colonizer of the tooth surface. The LuxS/autoinducer-2(AI-2) quorum sensing system is involved in the regulation of mixed-species biofilms, and AI-2 is proposed as a universal signal for the interaction between bacterial species. In this work, a S. gordonii luxS deficient strain was constructed to investigate the effect of the S. gordonii luxS gene on dual-species biofilm formed by S. mutans and S. gordonii. In addition, AI-2 was synthesized in vitro by incubating recombinant LuxS and Pfs enzymes of S. gordonii together. The effect of AI-2 on S. mutans single-species biofilm formation and cariogenic virulence gene expression were also assessed. The results showed that luxS disruption in S. gordonii altered dual-species biofilm formation, architecture, and composition, as well as the susceptibility to chlorhexidine. And the in vitro synthesized AI-2 had a concentration-dependent effect on S. mutans biofilm formation and virulence gene expression. These findings indicate that LuxS/AI-2 quorum-sensing system of S. gordonii plays a role in regulating the dual-species biofilm formation with S. mutans.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolan Li
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Sadeghinejad L, Cvitkovitch DG, Siqueira WL, Merritt J, Santerre JP, Finer Y. Mechanistic, genomic and proteomic study on the effects of BisGMA-derived biodegradation product on cariogenic bacteria. Dent Mater 2016; 33:175-190. [PMID: 27919444 DOI: 10.1016/j.dental.2016.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Investigate the effects of a Bis-phenyl-glycidyl-dimethacrylate (BisGMA) biodegradation product, bishydroxypropoxyphenyl-propane (BisHPPP), on gene expression and protein synthesis of cariogenic bacteria. METHODS Quantitative real-time polymerase chain reaction was used to investigate the effects of BisHPPP on the expression of specific virulence-associated genes, i.e. gtfB, gtfC, gbpB, comC, comD, comE and atpH in Streptococcus mutans UA159. Possible mechanisms for bacterial response to BisHPPP were explored using gene knock-out and associated complemented strains of the signal peptide encoding gene, comC. The effects of BisHPPP on global gene and protein expression was analyzed using microarray and quantitative proteomics. The role of BisHPPP in glucosyltransferase (GTF) enzyme activity of S. mutans biofilms was also measured. RESULTS BisHPPP (0.01, 0.1mM) up-regulated gtfB/C, gbpB, comCDE, and atpH most pronounced in biofilms at cariogenic pH (5.5). The effects of BisHPPP on the constructed knock-out and complemented strains of comC from quorum-sensing system, implicated this signaling pathway in up-regulation of the virulence-associated genes. Microarray and proteomics identified BisHPPP-regulated genes and proteins involved in biofilm formation, carbohydrate transport, acid tolerance and stress-response. GTF activity was higher in BisHPPP-exposed biofilms when compared to no-BisHPPP conditions. SIGNIFICANCE These findings provide insight into the genetic and physiological pathways and mechanisms that help explain S. mutans adaptation to restorative conditions that are conducive to increased secondary caries around resin composite restorations and may provide guidance to clinicians' decision on the selection of dental materials when considering the long term oral health of patients and the interactions of composite resins with oral bacteria.
Collapse
Affiliation(s)
- Lida Sadeghinejad
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dennis G Cvitkovitch
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Walter L Siqueira
- Schulich Dentistry and Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - J Paul Santerre
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yoav Finer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Zhang S, Qiu J, Ren Y, Yu W, Zhang F, Liu X. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:78. [PMID: 26896953 DOI: 10.1007/s10856-015-5645-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans.
Collapse
Affiliation(s)
- Songmei Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 20001, China
| | - Jing Qiu
- Department of Oral Implantology, College of Stomatology, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yanfang Ren
- Department of General Dentistry, University of Rochester Eastman Institute for Oral Health, Rochester, 14642, USA
| | - Weiqiang Yu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 20001, China
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 20001, China.
| | - Xiuxin Liu
- Department of General Dentistry, University of Rochester Eastman Institute for Oral Health, Rochester, 14642, USA.
| |
Collapse
|
37
|
He Z, Liang J, Tang Z, Ma R, Peng H, Huang Z. Role of the luxS gene in initial biofilm formation by Streptococcus mutans. J Mol Microbiol Biotechnol 2015; 25:60-8. [PMID: 25766758 DOI: 10.1159/000371816] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Quorum sensing (QS) is a process by which bacteria communicate with each other by secreting chemical signals called autoinducers (AIs). Among Gram-negative and Gram-positive bacteria, AI-2 synthesized by the LuxS enzyme is widespread. The aim of this study was to evaluate the effect of QS luxS gene on initial biofilm formation by Streptococcus mutans. The bacterial cell surface properties, including cell hydrophobicity (bacterial adherence to hydrocarbons) and aggregation, which are important for initial adherence during biofilm development, were investigated. The biofilm adhesion assay was evaluated by the MTT method. The structures of the 5-hour biofilms were observed by using confocal laser scanning microscopy, and QS-related gene expressions were investigated by real-time PCR. The luxS mutant strain exhibited higher biofilm adherence and aggregation, but lower hydrophobicity than the wild-type strain. The confocal laser scanning microscopy images revealed that the wild-type strain tended to form smaller aggregates with uniform distribution, whereas the luxS mutant strain aggregated into distinct clusters easily discernible in the generated biofilm. Most of the genes examined were downregulated in the biofilms formed by the luxS mutant strain, except the gtfB gene. QS luxS gene can affect the initial biofilm formation by S. mutans.
Collapse
|
38
|
Genetics and Physiology of Acetate Metabolism by the Pta-Ack Pathway of Streptococcus mutans. Appl Environ Microbiol 2015; 81:5015-25. [PMID: 25979891 DOI: 10.1128/aem.01160-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/12/2015] [Indexed: 12/24/2022] Open
Abstract
In the dental caries pathogen Streptococcus mutans, phosphotransacetylase (Pta) catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate (AcP), which can be converted to acetate by acetate kinase (Ack), with the concomitant generation of ATP. A ΔackA mutant displayed enhanced accumulation of AcP under aerobic conditions, whereas little or no AcP was observed in the Δpta or Δpta ΔackA mutant. The Δpta and Δpta ΔackA mutants also had diminished ATP pools compared to the size of the ATP pool for the parental or ΔackA strain. Surprisingly, when exposed to oxidative stress, the Δpta ΔackA strain appeared to regain the capacity to produce AcP, with a concurrent increase in the size of the ATP pool compared to that for the parental strain. The ΔackA and Δpta ΔackA mutants exhibited enhanced (p)ppGpp accumulation, whereas the strain lacking Pta produced less (p)ppGpp than the wild-type strain. The ΔackA and Δpta ΔackA mutants displayed global changes in gene expression, as assessed by microarrays. All strains lacking Pta, which had defects in AcP production under aerobic conditions, were impaired in their abilities to form biofilms when glucose was the growth carbohydrate. Collectively, these data demonstrate the complex regulation of the Pta-Ack pathway and critical roles for these enzymes in processes that appear to be essential for the persistence and pathogenesis of S. mutans.
Collapse
|
39
|
Liao S, Bitoun JP, Nguyen AH, Bozner D, Yao X, Wen ZT. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation. Mol Oral Microbiol 2015; 30:255-68. [PMID: 25421565 DOI: 10.1111/omi.12090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2014] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by real-time polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyltransferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6 . Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation.
Collapse
Affiliation(s)
- S Liao
- Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J P Bitoun
- Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A H Nguyen
- Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - D Bozner
- Center of Excellence for Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - X Yao
- Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Z T Wen
- Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Center of Excellence for Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
40
|
Halistanol sulfate A and rodriguesines A and B are antimicrobial and antibiofilm agents against the cariogenic bacterium Streptococcus mutans. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol 2014; 196:2355-66. [PMID: 24748612 DOI: 10.1128/jb.01493-14] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA.
Collapse
|
42
|
Bitoun JP, Liao S, Xie GG, Beatty WL, Wen ZT. Deficiency of BrpB causes major defects in cell division, stress responses and biofilm formation by Streptococcus mutans. MICROBIOLOGY-SGM 2013; 160:67-78. [PMID: 24190982 DOI: 10.1099/mic.0.072884-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus mutans, the primary aetiological agent of dental caries, possesses an YjeE-like protein that is encoded by locus SMU.409, herein designated brpB. In this study, a BrpB-deficient mutant, JB409, and a double mutant deficient of BrpB and BrpA (a paralogue of the LytR-CpsA-Psr family of cell wall-associated proteins), JB819, were constructed and characterized using function assays and microscopy analysis. Both JB409 and JB819 displayed extended lag phases and drastically slowed growth rates during growth in brain heart infusion medium as compared to the wild-type, UA159. Relative to UA159, JB409 and JB819 were more than 60- and 10-fold more susceptible to acid killing at pH 2.8, and more than 1 and 2 logs more susceptible to hydrogen peroxide, respectively. Complementation of the deficient mutants with a wild-type copy of the respective gene(s) partly restored the acid and oxidative stress responses to a level similar to the wild-type. As compared to UA159, biofilm formation by JB409 and JB819 was drastically reduced (P<0.001), especially during growth in medium containing sucrose. Under a scanning electron microscope, JB409 had significantly more giant cells with an elongated, rod-like morphology, and JB819 formed marble-like super cells with apparent defects in cell division. As revealed by transmission electron microscopy analysis, BrpB deficiency in both JB409 and JB819 resulted in the development of low electron density patches and formation of a loose nucleoid structure. Taken together, these results suggest that BrpB likely functions together with BrpA in regulating cell envelope biogenesis/homeostasis in Strep. mutans. Further studies are under way to elucidate the mechanism that underlies the BrpA- and BrpB-mediated regulation.
Collapse
Affiliation(s)
- Jacob P Bitoun
- Center of Excellence in Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA
| | - Sumei Liao
- Center of Excellence in Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA
| | - Gary G Xie
- Biology and Bioinformatics, Los Alamos National Laboratory, NM 87545, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Zezhang T Wen
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.,Department of Comprehensive Dentistry and Biomaterials, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA.,Center of Excellence in Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA
| |
Collapse
|
43
|
Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, Nobbs AH, Lamont RJ, Jenkinson HF. Microbial interactions in building of communities. Mol Oral Microbiol 2013; 28:83-101. [PMID: 23253299 PMCID: PMC3600090 DOI: 10.1111/omi.12012] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/31/2022]
Abstract
Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development.
Collapse
Affiliation(s)
- Christopher J. Wright
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Logan H. Burns
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Alison A. Jack
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Catherine R. Back
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Lindsay C. Dutton
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Richard J. Lamont
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| |
Collapse
|
44
|
Bitoun JP, Liao S, Yao X, Xie GG, Wen ZT. The redox-sensing regulator Rex modulates central carbon metabolism, stress tolerance response and biofilm formation by Streptococcus mutans. PLoS One 2012; 7:e44766. [PMID: 23028612 PMCID: PMC3441419 DOI: 10.1371/journal.pone.0044766] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/06/2012] [Indexed: 01/15/2023] Open
Abstract
The Rex repressor has been implicated in regulation of central carbon and energy metabolism in gram-positive bacteria. We have previously shown that Streptococcus mutans, the primary causative agent of dental caries, alters its transcriptome upon Rex-deficiency and renders S. mutans to have increased susceptibility to oxidative stress, aberrations in glucan production, and poor biofilm formation. In this study, we showed that rex in S. mutans is co-transcribed as an operon with downstream guaA, encoding a putative glutamine amidotransferase. Electrophoretic mobility shift assays showed that recombinant Rex bound promoters of target genes avidly and specifically, including those down-regulated in response to Rex-deficiency, and that the ability of recombinant Rex to bind to selected promoters was modulated by NADH and NAD(+). Results suggest that Rex in S. mutans can function as an activator in response to intracellular NADH/NAD(+) level, although the exact binding site for activator Rex remains unclear. Consistent with a role in oxidative stress tolerance, hydrogen peroxide challenge assays showed that the Rex-deficient mutant, TW239, and the Rex/GuaA double mutant, JB314, were more susceptible to hydrogen peroxide killing than the wildtype, UA159. Relative to UA159, JB314 displayed major defects in biofilm formation, with a decrease of more than 50-fold in biomass after 48-hours. Collectively, these results further suggest that Rex in S. mutans regulates fermentation pathways, oxidative stress tolerance, and biofilm formation in response to intracellular NADH/NAD(+) level. Current effort is being directed to further investigation of the role of GuaA in S. mutans cellular physiology.
Collapse
Affiliation(s)
- Jacob P. Bitoun
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sumei Liao
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Xin Yao
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Gary G. Xie
- Biology and Bioinformatics, Los Alamos National Laboratory, New Mexico, United States of America
| | - Zezhang T. Wen
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
45
|
Redanz S, Standar K, Podbielski A, Kreikemeyer B. Heterologous expression of sahH reveals that biofilm formation is autoinducer-2-independent in Streptococcus sanguinis but is associated with an intact activated methionine cycle. J Biol Chem 2012; 287:36111-22. [PMID: 22942290 DOI: 10.1074/jbc.m112.379230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous studies have claimed deleterious effects of LuxS mutation on many bacterial phenotypes, including bacterial biofilm formation. Genetic complementation mostly restored the observed mutant phenotypes to WT levels, leading to the postulation that quorum sensing via a family of molecules generically termed autoinducer-2 (AI-2) is essential for many phenotypes. Because LuxS mutation has dual effects, this hypothesis needs to be investigated into the details for each bacterial species. In this study we used S. sanguinis SK36 as a model biofilm bacterium and employed physiological characterization and transcriptome approaches on WT and luxS-deficient strains, in combination with chemical, luxS, and sahH complementation experiments. SahH enables a direct conversion of SAH to homocysteine and thereby restores the activated methionine cycle in a luxS-negative background without formation of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione. With this strategy we were able to dissect the individual contribution of LuxS and AI-2 activity in detail. Our data revealed that S. sanguinis biofilm formation is independent from AI-2 substance pools and is rather supported by an intact activated methyl cycle. Of 216 differentially transcribed genes in the luxS mutant, 209 were restored by complementation with a gene encoding the S-adenosylhomocysteine hydrolase. Only nine genes, mainly involved in natural competence, were directly affected by the AI-2 quorum-sensing substance pool. Cumulatively, this suggested that biofilm formation in S. sanguinis is not under control of AI-2. Our study suggests that previously evaluated LuxS mutants in other species need to be revisited to resolve the precise contribution of AI-2 substance pools and the methionine pathways.
Collapse
Affiliation(s)
- Sylvio Redanz
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Hospital, 18057 Rostock, Germany
| | | | | | | |
Collapse
|
46
|
Kim HW, Oh HS, Kim SR, Lee KB, Yeon KM, Lee CH, Kim S, Lee JK. Microbial population dynamics and proteomics in membrane bioreactors with enzymatic quorum quenching. Appl Microbiol Biotechnol 2012; 97:4665-75. [PMID: 22846900 DOI: 10.1007/s00253-012-4272-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 11/24/2022]
Abstract
Quorum sensing gives rise to biofilm formation on the membrane surface, which in turn causes a loss of water permeability in membrane bioreactors (MBRs) for wastewater treatment. Enzymatic quorum quenching was reported to successfully inhibit the formation of biofilm in MBRs through the decomposition of signal molecules, N-acyl homoserine lactones (AHLs). The aim of this study was to elucidate the mechanisms of quorum quenching in more detail in terms of microbial population dynamics and proteomics. Microbial communities in MBRs with and without a quorum quenching enzyme (acylase) were analyzed using pyrosequencing and compared with each other. In the quorum quenching MBR, the rate of transmembrane pressure (TMP) rise-up was delayed substantially, and the proportion of quorum sensing bacteria with AHL-like autoinducers (such as Enterobacter, Pseudomonas, and Acinetobacter) also decreased in the entire microbial community of mature biofilm in comparison to that in the control MBR. These factors were attributed to the lower production of extracellular polymeric substances (EPS), which are known to play a key role in the formation of biofilm. Proteomic analysis using the Enterobacter cancerogenus strain ATCC 35316 demonstrates the possible depression of protein expression related to microbial attachments to solid surfaces (outer membrane protein, flagellin) and the agglomeration of microorganisms (ATP synthase beta subunit) with the enzymatic quorum quenching. It has been argued that changes in the microbial population, EPS and proteins via enzymatic quorum quenching could inhibit the formation of biofilm, resulting in less biofouling in the quorum quenching MBR.
Collapse
Affiliation(s)
- Hak-Woo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
He Z, Wang Q, Hu Y, Liang J, Jiang Y, Ma R, Tang Z, Huang Z. Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain. Int J Antimicrob Agents 2012; 40:30-5. [DOI: 10.1016/j.ijantimicag.2012.03.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 03/24/2012] [Accepted: 03/28/2012] [Indexed: 12/17/2022]
|
48
|
Xu X, Wang Y, Liao S, Wen ZT, Fan Y. Synthesis and characterization of antibacterial dental monomers and composites. J Biomed Mater Res B Appl Biomater 2012; 100:1151-62. [PMID: 22447582 DOI: 10.1002/jbm.b.32683] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 12/22/2011] [Accepted: 01/02/2012] [Indexed: 11/08/2022]
Abstract
The objective of this study is to synthesize antibacterial methacrylate and methacrylamide monomers and formulate antibacterial fluoride-releasing dental composites. Three antibacterial methacrylate or methacrylamide monomers containing long-chain quaternary ammonium fluoride, 1,2-methacrylamido-N,N,N-trimethyldodecan-1-aminium fluoride (monomer I), N-benzyl-11-(methacryloyloxy)-N,N-dimethylundecan-1-aminium fluoride (monomer II), and methacryloxyldecylpyridinium fluoride (monomer III) have been synthesized and analyzed by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The cytotoxicity test and bactericidal test against Streptococcus mutans indicate that antibacterial monomer II is superior to monomers I and III. A series of dental composites containing 0-6% of antibacterial monomer II have been formulated and tested for degree of conversion (DC), flexure strength, water sorption, solubility, and inhibition of S. mutans biofilms. An antibacterial fluoride-releasing dental composite has also been formulated and tested for flexure strength and fluoride release. The dental composite containing 3% of monomer II has a significant effect against S. mutans biofilm formation without major adverse effects on its physical and mechanical properties. The new antibacterial monomers can be used together with the fluoride-releasing monomers containing a ternary zirconiun-fluoride chelate to formulate a new antibacterial fluoride-releasing dental composite. Such a new dental composite is expected to have higher anticaries efficacy and longer service life.
Collapse
Affiliation(s)
- Xiaoming Xu
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, School of Dentistry, New Orleans, Louisiana 70119, USA.
| | | | | | | | | |
Collapse
|
49
|
Effect of periodontal pathogens on the metatranscriptome of a healthy multispecies biofilm model. J Bacteriol 2012; 194:2082-95. [PMID: 22328675 DOI: 10.1128/jb.06328-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oral bacterial biofilms are highly complex microbial communities with up to 700 different bacterial taxa. We report here the use of metatranscriptomic analysis to study patterns of community gene expression in a multispecies biofilm model composed of species found in healthy oral biofilms (Actinomyces naeslundii, Lactobacillus casei, Streptococcus mitis, Veillonella parvula, and Fusobacterium nucleatum) and the same biofilm plus the periodontopathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. The presence of the periodontopathogens altered patterns in gene expression, and data indicate that transcription of protein-encoding genes and small noncoding RNAs is stimulated. In the healthy biofilm hypothetical proteins, transporters and transcriptional regulators were upregulated while chaperones and cell division proteins were downregulated. However, when the pathogens were present, chaperones were highly upregulated, probably due to increased levels of stress. We also observed a significant upregulation of ABC transport systems and putative transposases. Changes in Clusters of Orthologous Groups functional categories as well as gene set enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that in the absence of pathogens, only sets of proteins related to transport and secondary metabolism were upregulated, while in the presence of pathogens, proteins related to growth and division as well as a large portion of transcription factors were upregulated. Finally, we identified several small noncoding RNAs whose predicted targets were genes differentially expressed in the open reading frame libraries. These results show the importance of pathogens controlling gene expression of a healthy oral community and the usefulness of metatranscriptomic techniques to study gene expression profiles in complex microbial community models.
Collapse
|
50
|
Redanz S, Standar K, Podbielski A, Kreikemeyer B. A five-species transcriptome array for oral mixed-biofilm studies. PLoS One 2011; 6:e27827. [PMID: 22194794 PMCID: PMC3237422 DOI: 10.1371/journal.pone.0027827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/26/2011] [Indexed: 12/03/2022] Open
Abstract
Background Oral polymicrobial interactions and biofilm formation are associated with initiation and progression of caries, gingivitis, and periodontitis. Transcriptome studies of such interactions, allowing a first mechanistic insight, are hampered by current single-species array designs. Methodology/Principal Findings In this study we used 385 K NimbleGene™ technology for design and evaluation of an array covering the full genomes of 5 important physiological-, cariogenic-, and periodontitis-associated microorganisms (Streptococcus sanguinis, Streptococcus mutans, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis). Array hybridization was done with cDNA from cultures grown for 24 h anaerobically. Single species experiments identified cross-species hybridizing array probes. These probes could be neglected in a mixed-species experimental setting without the need to exclude the whole genes from the analysis. Between 69% and almost 99% of the genomes were actively transcribed under the mono-species planktonic, monolayer, and biofilm conditions. The influence of Streptococcus mitis (not represented on the array) on S. mutans gene transcription was determined as a test for a dual-species mixed biofilm setup. Phenotypically, under the influence of S. mitis an increase in S. mutans biofilm mass and a decrease in media pH-value were noticed, thereby confirming previously published data. Employing a stringent cut-off (2-fold, p<0.05), 19 S. mutans transcripts were identified with increased abundance, and 11 with decreased abundance compared to a S. mutans mono-species biofilm. Several of these genes have previously been found differentially regulated under general and acid stress, thereby confirming the value of this array. Conclusions/Significance This new array allows transcriptome studies on multi-species oral biofilm interactions. It may become an important asset in future oral biofilm and inhibitor/therapy studies.
Collapse
Affiliation(s)
- Sylvio Redanz
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Kerstin Standar
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Andreas Podbielski
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
- * E-mail:
| |
Collapse
|