1
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
2
|
Konsila K, Assavalapsakul W, Phuwapraisirisan P, Chanchao C. Anti- Malassezia globosa (MYA-4889, ATCC) activity of Thai propolis from the stingless bee Geniotrigona thoracica. Heliyon 2024; 10:e29421. [PMID: 38660263 PMCID: PMC11041017 DOI: 10.1016/j.heliyon.2024.e29421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Malassezia globosa, a lipophilic pathogen, is known to be involved in various chronic skin diseases. Unfortunately, the available treatments have unwanted side effects and microbial drug resistance is evolving. As the antimicrobial activity of propolis is outstanding, this study aimed to examine the potential of propolis from the stingless bee Geniotrigona thoracica against the yeast. Anti-M. globosa growth activity was ascertained in agar well diffusion and broth microdilution assays and the inhibitory concentration value at 50 % (IC50) was determined. Since the yeast cannot synthesize its own fatty acids, extracellular lipase is important for its survival. Here, anti-M. globosa extracellular lipase activity was additionally investigated by colorimetric and agar-based methods. Compared to the crude hexane and crude dichloromethane extracts, the crude methanol partitioned extract (CMPE) exhibited the best anti-M. globosa growth activity with an IC50 of 1.22 mg/mL. After CMPE was further enriched by silica gel column chromatography, fraction CMPE1 (IC50 of 0.98 mM or 184.93 μg/mL) presented the highest activity and was later identified as methyl gallate (MG) by nuclear magnetic resonance analysis. Subsequently, MG was successfully synthesized and shown to have a similar activity, and a minimal fungicidal concentration of 43.44 mM or 8.00 mg/mL. However, lipase assay analysis suggested that extracellular lipase might not be the main target mechanism of MG. This is the first report of MG as a new anti-Malassezia compound. It could be a good candidate for further developing alternative therapeutic agents.
Collapse
Affiliation(s)
- Kawisara Konsila
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Preecha Phuwapraisirisan
- Center of Excellence in Natural Products, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Alghamdi SS, Alshafi RA, Huwaizi S, Suliman RS, Mohammed AE, Alehaideb ZI, Alturki AY, Alghashem SA, Rahman I. Exploring in vitro and in silico Biological Activities of Calligonum Comosum and Rumex Vesicarius: Implications on Anticancer and Antibacterial Therapeutics. Saudi Pharm J 2023; 31:101794. [PMID: 37822695 PMCID: PMC10562755 DOI: 10.1016/j.jsps.2023.101794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction The adverse effects of clinically used anti-cancer medication and the rise in resistive micro-organisms have limited therapeutic options. Multiple anti-cancer drugs are derived from medicinal herbs which also have shown anti-bacterial effects. This study aimed to identify the optimal extraction solvent for detecting the cytotoxic and anti-bacterial effects of Calligonum comosum (C. Comosum) and Rumex vesicarius (R. Vesicarius) extracts. Additionally, the study aimed to identify active metabolites and assess their potential as future drug candidates for anti-cancer and anti-bacterial therapeutics. Methods Leaves from both plants were extracted using ethanol, ethyl acetate, chloroform, and water. The cytotoxic effects of the extracts were tested on liver, colon, and breast cancer cell lines. Apoptosis was assessed using High Content Imaging (HCI) and the ApoTox triplex Glo assay. The anti-bacterial effects were determined using agar-well diffusion. Liquid chromatography-mass spectrometry (LC-MS) was used to tentatively identify the secondary metabolites. In silico computational studies were conducted to determine the metabolites' mode of action, safety, and pharmacokinetic properties. Results The ethanolic extract of C. Comosum exhibited potent cytotoxicity on breast cancer cell lines, with IC50 values of 54.97 μg/mL and 58 μg/mL for KAIMRC2 and MDA-MB-231, respectively. It also induced apoptosis in colon and breast cancer cell lines. All tested extracts of C. Comosum and R. Vesicarius demonstrated anti-bacterial activity against Staphylococcus aureus and Escherichia coli. Seven active metabolites were identified, one of which is Kaempferol 3-O-Glucoside-7-O-Rhamnoside, which showed strong (predicted) anti-cancer activity. Kaempferol 3-O-Glucoside-7-O-Rhamnoside and Quercetin-3-O-Glucuronide also exhibited potential anti-bacterial effects on gram-positive and negative bacteria. Conclusion Ethanol extraction of C. Comosum solubilizes active metabolites with potential therapeutic applications in cancer treatment and bacterial infections. Kaempferol 3-O-Glucoside-7-O-Rhamnoside, in particular, shows promise as a dual therapeutic drug candidate for further research and development to improve its efficacy, safety, and pharmacokinetic profile.
Collapse
Affiliation(s)
- Sahar S. Alghamdi
- College of Pharmacy (COP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of the National Guard – Health Affairs, Riyadh 11426, Saudi Arabia
| | - Raghad A. Alshafi
- College of Pharmacy (COP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Rasha S. Suliman
- Pharmacy Department, Fatima College of Health Sciences (FCHS), Abu Dhabi, United Arab Emirates
| | - Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 16 84428, Riyadh 11671, Saudi Arabia
| | - Zeyad I. Alehaideb
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Allulu Y. Alturki
- College of Pharmacy (COP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Sara A. Alghashem
- College of Pharmacy (COP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
4
|
Liang H, Huang Q, Zou L, Wei P, Lu J, Zhang Y. Methyl gallate: Review of pharmacological activity. Pharmacol Res 2023; 194:106849. [PMID: 37429335 DOI: 10.1016/j.phrs.2023.106849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Methyl gallate (MG) is a polyphenolic compound widely found in natural plants. MG has been shown to have a variety of biological functions, including anti-tumor, anti-inflammatory, anti-oxidant, neuroprotective, hepatoprotective and anti-microbial activities, and has broad research and development prospects. A total of 88 articles related to MG were searched using the PubMed, Science Direct, and Google Scholar databases, systematically investigating the pharmacological activity and molecular mechanisms of MG. There were no restrictions on the publication years, and the last search was conducted on June 5, 2023. MG can exert pharmacological effects through multiple pathways and targets, such as PI3K/Akt, ERK1/2, Caspase, AMPK/NF-κB, Wnt/β-catenin, TLR4/NF-κB, MAPK, p53, NLRP3, ROS, EMT. According to the literature, MG has the potential to be a prospective adjuvant for anticancer therapy and deserves further study.
Collapse
Affiliation(s)
- Huaguo Liang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qingsong Huang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Peng Wei
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jiazheng Lu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yongli Zhang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Delgadillo-Puga C, Sánchez-Castillo DR, Cariño-Cervantes YY, Torre-Villalvazo I, Tovar-Palacio C, Vásquez-Reyes S, Furuzawa-Carballeda J, Acevedo-Carabantes JA, Camacho-Corona MDR, Guzmán-Mar JL, Cisneros-Zevallos L, Tovar AR, Rebollar-Vega R, Hernández-Montes G, Ulloa-Aguirre A, Palacios-Gonzalez B, Noriega LG. Vachellia farnesiana Pods or a Polyphenolic Extract Derived from Them Exert Immunomodulatory, Metabolic, Renoprotective, and Prebiotic Effects in Mice Fed a High-Fat Diet. Int J Mol Sci 2023; 24:ijms24097984. [PMID: 37175691 PMCID: PMC10178983 DOI: 10.3390/ijms24097984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity causes systemic inflammation, hepatic and renal damage, as well as gut microbiota dysbiosis. Alternative vegetable sources rich in polyphenols are known to prevent or delay the progression of metabolic abnormalities during obesity. Vachellia farnesiana (VF) is a potent source of polyphenols with antioxidant and anti-inflammatory activities with potential anti-obesity effects. We performed an in vivo preventive or an interventional experimental study in mice and in vitro experiments with different cell types. In the preventive study, male C57BL/6 mice were fed with a Control diet, a high-fat diet, or a high-fat diet containing either 0.1% methyl gallate, 10% powdered VFP, or 0.5%, 1%, or 2% of a polyphenolic extract (PE) derived from VFP (Vachellia farnesiana pods) for 14 weeks. In the intervention study, two groups of mice were fed for 14 weeks with a high-fat diet and then one switched to a high-fat diet with 10% powdered VFP for ten additional weeks. In the in vitro studies, we evaluated the effect of a VFPE (Vachellia farnesiana polyphenolic extract) on glucose-stimulated insulin secretion in INS-1E cells or of naringenin or methyl gallate on mitochondrial activity in primary hepatocytes and C2C12 myotubes. VFP or a VFPE increased whole-body energy expenditure and mitochondrial activity in skeletal muscle; prevented insulin resistance, hepatic steatosis, and kidney damage; exerted immunomodulatory effects; and reshaped fecal gut microbiota composition in mice fed a high-fat diet. VFPE decreased insulin secretion in INS-1E cells, and its isolated compounds naringenin and methyl gallate increased mitochondrial activity in primary hepatocytes and C2C12 myotubes. In conclusion VFP or a VFPE prevented systemic inflammation, insulin resistance, and hepatic and renal damage in mice fed a high-fat diet associated with increased energy expenditure, improved mitochondrial function, and reduction in insulin secretion.
Collapse
Affiliation(s)
- Claudia Delgadillo-Puga
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | | | - Yonatan Y Cariño-Cervantes
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Claudia Tovar-Palacio
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Sarai Vásquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Janette Furuzawa-Carballeda
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Joshua Ayork Acevedo-Carabantes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - María Del Rayo Camacho-Corona
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad s/n, Ciudad Universitaria, San Nicolás de Los Garza 66455, Mexico
| | - Jorge Luis Guzmán-Mar
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad s/n, Ciudad Universitaria, San Nicolás de Los Garza 66455, Mexico
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Rosa Rebollar-Vega
- Red de Apoyo a la Investigación, Universidad Nacional de Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Georgina Hernández-Montes
- Red de Apoyo a la Investigación, Universidad Nacional de Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional de Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Berenice Palacios-Gonzalez
- Unidad de Vinculación Científica Facultad de Medicina, Instituto Nacional de Medicina Genómica 14, (INMEGEN), Mexico City 16080, Mexico
| | - Lilia G Noriega
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| |
Collapse
|
6
|
Afsar T, Razak S, Almajwal A, Shabbir M, Khan K, Trembley J, Alruwaili NW. Bioassay-guided isolation and characterization of lead antimicrobial compounds from Acacia hydaspica plant extract. AMB Express 2022; 12:156. [PMID: 36520322 PMCID: PMC9755427 DOI: 10.1186/s13568-022-01501-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Acacia hydaspica possesses varied pharmacological attributes. We aimed to examine the antimicrobial potential and isolate the active antimicrobial metabolites. The plant extract was fractionated and the antimicrobial activity of the crude extract, fractions and compounds was tested by agar well diffusion and agar tube dilution and broth dilution methods. Bacterial strains selected for bioactivity testing were Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii while selected strains from kingdom fungi were Candida albicans, Cryptococcus neoformans, Fusarium solani and Aspergillus. The active compounds were isolated from Acacia hydaspica by bioassay-guided fractionation and identified by nuclear magnetic resonance and spectroscopic techniques. S. aureus cell surface proteins, Autolysins (Atl), Clumping factor A (ClfA), and Fibronectin Binding Proteins (FnBP), were molecularly docked with Catechin 3-O-gallate (CG) and Methyl gallate (MG) and binding energy and molecular interactions between the proteins and compounds were analyzed. Ethyl acetate (AHE) and Butanol (AHB) fractions of A. hydaspica were the most active fractions against tested microbial strains. Therefore, both were subjected to bioassay-directed fractionation which led to the isolation of one pure active antimicrobial AHE and one active pure compound from AHB fraction besides active enriched isolates. Methyl-gallate (MG) and catechin-3-gallate (CG) are active compounds extracted from AHE and AHB fractions respectively. In antibacterial testing MG significantly inhibited the growth of E. coli (MIC50 = 21.5 µg/ml), B. subtilus (MIC50 = 23 µg/ml) and S. aureus (MIC50 = 39.1 µg/ml) while moderate to low activity was noticed against other tested bacterial strains. Antifungal testing reveals that MG showed potent antifungal activity against F. solani (MIC50 = 33.9 µg/ml) and A. niger (MIC50 = 41.5 µg/ml) while lower antifungal activity was seen in other tested strains. AHB fractions and pure compound (CG) showed specific antibacterial activity against S. aureus only (MIC50 = 10.1 µg/ml) while compound and enriched fractions showed moderate to no activity against other bacterial and fungal strains respectively. Molecular docking analysis revealed that CG interacted more strongly with the cell surface proteins than MG. Among these proteins, CG made a stronger complex with ClfA (binding affinity - 9.7) with nine hydrophobic interactions and five hydrogen bonds. Methyl gallate (MG) and catechin 3-O-gallate (CG) are the major antimicrobial compound from A. hydaspica that inhibit the growth of specific microbes. The occurrence of MG and CG endorse the traditional antimicrobial applicability of A. hydaspica, and it can be a legitimate alternative to control specific microbial infections.
Collapse
Affiliation(s)
- Tayyaba Afsar
- grid.56302.320000 0004 1773 5396Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Suhail Razak
- grid.56302.320000 0004 1773 5396Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- grid.56302.320000 0004 1773 5396Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Maria Shabbir
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences(ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences(ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen Trembley
- grid.410394.b0000 0004 0419 8667Minneapolis VA Health Care System Research Service, Minneapolis, MN USA ,grid.17635.360000000419368657Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Nawaf W. Alruwaili
- grid.56302.320000 0004 1773 5396Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Batiha GES, Akhtar N, Alsayegh AA, Abusudah WF, Almohmadi NH, Shaheen HM, Singh TG, De Waard M. Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Genus Acacia. Molecules 2022; 27:7340. [PMID: 36364163 PMCID: PMC9658407 DOI: 10.3390/molecules27217340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
Plants are a promising source of bioactive compounds that can be used to tackle many emerging diseases both infectious and non-infectious. Among different plants, Acacia is a very large genus and exhibits a diverse array of bioactive agents with remarkable pharmacological properties against different diseases. Acacia, a herb found all over the world, contains approximately more than 1200 species of the Fabaceae family. In the present review, we have collected detailed information on biochemical as well as pharmacological properties. The data were retrieved using different databases, such as Elsevier, PubMed, Science Direct, Google Scholar, and Scopus, and an extensive literature survey was carried out. Studies have shown that Acacia possesses several secondary metabolites, including amines, cyanogenic glycosides, flavonoids, alkaloids, seed oils, cyclitols, fluoroacetate, gums, non-protein amino acids, diterpenes, fatty acids, terpenes, hydrolyzable tannins, and condensed tannins. These compounds exhibit a wide range of pharmaceutical applications such as anti-inflammatory, antioxidant, antidiarrheal, antidiabetic, anticancer, antiviral, liver protective effects, and so on. Thus, the literature shows the tremendous phytochemical impact of the genus Acacia in medicine. Overall, we recommend that more research should be conducted on the medicinal value and isolation and purification of the effective therapeutic agents from Acacia species for the treatment of various ailments.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Islamabad 46000, Pakistan
| | - Abdulrahman A. Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Wafaa Fouzi Abusudah
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Najlaa Hamed Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | | | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
- LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| |
Collapse
|
8
|
Kasmawati H, Mustarichie R, Halimah E, Ruslin R, Arfan A, Sida NA. Unrevealing the Potential of Sansevieria trifasciata Prain Fraction for the Treatment of Androgenetic Alopecia by Inhibiting Androgen Receptors Based on LC-MS/MS Analysis, and In-Silico Studies. Molecules 2022; 27:molecules27144358. [PMID: 35889232 PMCID: PMC9318048 DOI: 10.3390/molecules27144358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Androgenetic Alopecia (AGA) occurs due to over-response to androgens causing severe hair loss on the scalp, and requires the development of new and efficient drugs to treat this condition. This study explores and identifies secondary metabolites from Sansevieriatrifasciata Prain using the LC-MS/MS and in-silico method. The inhibitory activity of bioactive compounds from S. trifasciata Prain against androgen receptors (PDB ID: 4K7A) was evaluated molecularly using docking and dynamics studies by comparing their binding energies, interactions, and stability with minoxidil. The results of the LC-MS/MS analysis identified Methyl pyrophaeophorbide A (1), Oliveramine (2), (2S)-3′, 4′-Methylenedioxy-5, 7-dimethoxyflavane (3), 1-Acetyl-β-carboline (4), Digiprolactone (5), Trichosanic acid (6) and Methyl gallate (7) from the leaves subfraction of this plant. Three alkaloid compounds (compounds 1, 3, and 4), and one flavonoid (compound 2), had lower docking scores of −7.0, −5.8, −5.2, and −6.3 kcal/mol, respectively. The prediction of binding energy using the MM-PBSA approach ensured that the potency of the four compounds was better than minoxidil, with energies of −66.13, −59.36, −40.39, and −40.25 kJ/mol for compounds 1, 3, 2, and 4, respectively. The dynamics simulation shows the stability of compound 1 based on the trajectory analysis for the 100 ns simulation. This research succeeded in identifying the compound and assessing the anti-alopecia activity of Sansevieria trifasciata Prain. Seven compounds were identified as new compounds never reported in Sansevieria trifasciata Prain. Four compounds were predicted to have better anti-alopecia activity than minoxidil in inhibiting androgen receptors through an in silico approach.
Collapse
Affiliation(s)
- Henny Kasmawati
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia; (R.R.); (A.A.); (N.A.S.)
- Correspondence: (H.K.); (R.M.)
| | - Resmi Mustarichie
- Department of Analytical Pharmacy and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence: (H.K.); (R.M.)
| | - Eli Halimah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia;
| | - Ruslin Ruslin
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia; (R.R.); (A.A.); (N.A.S.)
| | - Arfan Arfan
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia; (R.R.); (A.A.); (N.A.S.)
| | - Nurramadhani A. Sida
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia; (R.R.); (A.A.); (N.A.S.)
| |
Collapse
|
9
|
El-Maadawy WH, Hassan M, Hafiz E, Badawy MH, Eldahshan S, AbuSeada A, El-Shazly MAM, Ghareeb MA. Co-treatment with Esculin and erythropoietin protects against renal ischemia-reperfusion injury via P2X7 receptor inhibition and PI3K/Akt activation. Sci Rep 2022; 12:6239. [PMID: 35422072 PMCID: PMC9010483 DOI: 10.1038/s41598-022-09970-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022] Open
Abstract
Renal ischemia/reperfusion (RI/R) is a critical clinical outcome with slightly reported improvement in mortality and morbidity. Effective therapies are still crucially required. Accordingly, the therapeutic effects of esculin (ESC, LCESI-MS/MS-isolated compound from Vachellia farnesiana flowers extract, with reported P2X7 receptor inhibitor activity) alone and in combination with erythropoietin (EPO) were investigated against RI/R injury and the possible underlying mechanisms were delineated. ESC and EPO were administered for 7 days and 30 min prior to RI, respectively. Twenty-four hour following reperfusion, blood and kidney samples were collected. Results revealed that pretreatment with either ESC or EPO reduced serum nephrotoxicity indices, renal oxidative stress, inflammatory, and apoptosis markers. They also ameliorated the renal histopathological injury on both endothelial and tubular epithelial levels. Notably, ESC markedly inhibited P2X7 receptors and NLRP3 inflammasome signaling (downregulated NLRP3 and Caspase-1 gene expressions), whereas EPO significantly upregulated PI3K and Akt gene expressions, also p-PI3K and p-Akt levels in renal tissues. ESC, for the first time, demonstrated effective protection against RI/R-injury and its combination with EPO exerted maximal renoprotection when compared to each monotherapy, thereby representing an effective therapeutic approach via inhibiting oxidative stress, inflammation, renal tubular and endothelial injury, apoptosis, and P2X7 receptors expression, and activating PI3K/Akt pathway.
Collapse
Affiliation(s)
- Walaa H El-Maadawy
- Pharmacology Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt.
| | - Marwa Hassan
- Immunology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Ehab Hafiz
- Electron Microscopy Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Mohamed H Badawy
- Urology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Samir Eldahshan
- Urology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - AbdulRahman AbuSeada
- Anesthesia Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Maha A M El-Shazly
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| |
Collapse
|
10
|
Tajuddeen N, Swart T, Hoppe HC, van Heerden FR. Antiplasmodial Activity of Vachellia xanthophloea (Benth.) P.J.H. Hurter (African Fever Tree) and Its Constituents. Pharmaceuticals (Basel) 2022; 15:ph15040470. [PMID: 35455467 PMCID: PMC9033093 DOI: 10.3390/ph15040470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/11/2023] Open
Abstract
Vachellia xanthophloea is used in Zulu traditional medicine as an antimalarial remedy. A moderate antiplasmodial activity was previously reported for extracts of the plant against D10 Plasmodium falciparum. This study aimed to identify the phytochemicals responsible for the antiplasmodial activity of the leaf extract. The compounds were isolated by chromatography and their structures were determined using spectroscopic and spectrometric methods. The antiplasmodial activity was evaluated using a parasite lactate dehydrogenase assay and cytotoxicity was determined using a resazurin assay. The ethyl acetate fraction inhibited P. falciparum with IC50 = 10.6 µg/mL and showed minimal cytotoxicity (98% cell viability at 33 µg/mL). The chromatographic purification of this fraction afforded sixteen compounds, including two new flavonoids. A 1:1 mixture of phytol and lupeol was also isolated from the hexane fraction. All the compounds were reported from V. xanthophloea for the first time. Among the isolated metabolites, methyl gallate displayed the best activity against P. falciparum (IC50 = 1.2 µg/mL), with a 68% viability of HeLa cells at 10 µg/mL. Therefore, methyl gallate was responsible for the antiplasmodial activity of the V. xanthophloea leaf extract and its presence in the leaf extract might account for the folkloric use of the plant as an antimalarial remedy.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
| | - Tarryn Swart
- Department of Biochemistry & Microbiology, Rhodes University, Grahamstown 6140, South Africa; (T.S.); (H.C.H.)
| | - Heinrich C. Hoppe
- Department of Biochemistry & Microbiology, Rhodes University, Grahamstown 6140, South Africa; (T.S.); (H.C.H.)
| | - Fanie R. van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
- Correspondence: ; Tel.: +27-82-823-8642
| |
Collapse
|
11
|
El-Hawary SS, Mohammed R, Lithy NM, AbouZid SF, Mansour MA, Almahmoud SA, Huwaimel B, Amin E. Digalloyl Glycoside: A Potential Inhibitor of Trypanosomal PFK from Euphorbia abyssinica J.F. Gmel. PLANTS (BASEL, SWITZERLAND) 2022; 11:173. [PMID: 35050063 PMCID: PMC8779944 DOI: 10.3390/plants11020173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Human African trypanosomiasis is an endemic infectious disease caused by Trypanosoma brucei via the bite of tsetse-fly. Most of the drugs used for the treatment, e.g., Suramin, have shown several problems, including the high level of toxicity. Accordingly, the discovery of anti-trypanosomal drugs from natural sources has become an urgent requirement. In our previous study on the anti-trypanosomal potential of Euphorbia species, Euphorbia abyssinica displayed significant anti-trypanosomal activity. Therefore, a phytochemical investigation of the methanolic extract of E. abyssinica was carried out. Twelve compounds, including two triterpenes (1, 2); one sterol-glucoside (4); three ellagic acid derivatives (3, 9, 11); three gallic acid derivatives (5, 6, 10); and three flavonoids (7, 8, 12), were isolated. The structures of isolated compounds were determined through different spectroscopic techniques. Compound (10) was obtained for the first time from genus Euphorbia while all other compounds except compound (4), were firstly reported in E. abyssinica. Consequently, an in silico study was used to estimate the anti-trypanosomal activity of the isolated compounds. Several compounds displayed interesting activity where 1,6-di-O-galloyl-d-glucose (10) appeared as the most potent inhibitor of trypanosomal phosphofructokinase (PFK). Moreover, molecular dynamics (MD) simulations and ADMET calculations were performed for 1,6-di-O-galloyl-d-glucose. In conclusion, 1,6-di-O-galloyl-d-glucose revealed high binding free energy as well as desirable molecular dynamics and pharmacokinetic properties; therefore, it could be suggested for further in vitro and in vivo studies for trypanosomiasis.
Collapse
Affiliation(s)
- Seham S. El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt;
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
| | - Nadia M. Lithy
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef, Beni-Suef 62521, Egypt;
| | - Sameh Fekry AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mostafa A. Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University Beni-Suef, Beni-Suef 62521, Egypt;
| | - Suliman A. Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 34464, Saudi Arabia;
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| |
Collapse
|
12
|
Tao J, Yan S, Wang H, Zhao L, Zhu H, Wen Z. Antimicrobial and antibiofilm effects of total flavonoids from Potentilla kleiniana Wight et Arn on Pseudomonas aeruginosa and its potential application to stainless steel surfaces. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Tao J, Yan S, Zhou C, Liu Q, Zhu H, Wen Z. Total flavonoids from Potentilla kleiniana Wight et Arn inhibits biofilm formation and virulence factors production in methicillin-resistant Staphylococcus aureus (MRSA). JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114383. [PMID: 34214645 DOI: 10.1016/j.jep.2021.114383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
ETHANOPHARMACOLOGICAL RELEVANCE Potentilla kleiniana Wight et Arn is a wide-spread wild plant in the mountainous areas in southern China. The whole herb has been used as a traditional herbal medicine to treat fever, arthritis, malaria, insect and snake bites, hepatitis, and traumatic injury. In vitro studies have reported the antibacterial activity use of the plant in traditional medicinal systems. AIM OF THE STUDY The aim of this study was to investigate the inhibitory activity of total flavonoid from Potentilla kleiniana Wight et Arn (TFP) on methicillin-resistant Staphylococcus aureus (MRSA) in planktonic state and biofilm state. MATERIALS AND METHODS Antibacterial activities of TFP on planktonic MRSA were determined by agar diffusion method, microtiter plate assay and time-kill curve assay. Electrical conductivity, membrane permeability, membrane potential and autoaggregation were analyzed to study TFP effects on planktonic MRSA growth. Crystal violet (CV) staining and confocal laser scanning microscopy (CLSM) were analyzed to study TFP effects on aggregation and maturation of MRSA biofilm. After TFP treatment, extracellular polymeric substances (EPS) production were examined. Morphological changes in planktonic and MRSA biofilm following TFP treatment were determined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, α-Toxin protein expression and adhesion-related gene expression were also determined. RESULTS The minimum inhibitory concentration (MIC) of TFP against MRSA was 20 μg/mL. The agar diffusion method and time-kill curve assay results indicated that TFP inhibited planktonic MRSA growth. TFP treatment significantly inhibited planktonic MRSA growth by inhibiting autoaggregation, α-hemolysin activity, α-Toxin protein expression, but increasing electrolyte leakage, membrane permeability and membrane potential and impacting cell structure. Moreover, TFP treatment significantly inhibited aggregation and maturation on MRSA biofilm by decreasing surface hydrophobicity, EPS production and adhesion-related gene expression. CONCLUSION The results of this trial provide scientific experimental data on the traditional use of Potentilla Kleiniana Wight et Arn for traumatic injury treatment and further demonstrate the potential of TFP to be developed as a novel anti-biofilm drug.
Collapse
Affiliation(s)
- Junyu Tao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Shilun Yan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Chuyue Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Hui Zhu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Zhen Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China.
| |
Collapse
|
14
|
Jia R, Ge S, Ren S, Luo Y, Xiu L, Sanabil, Liu H, Cai D. Antibacterial mechanism of adzuki bean seed coat polyphenols and their potential application in preservation of fresh raw beef. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rui Jia
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- National Engineering laboratory for Wheat and Corn Deep Processing Changchun China
| | - Sitong Ge
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- National Engineering laboratory for Wheat and Corn Deep Processing Changchun China
| | - Shida Ren
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- National Engineering laboratory for Wheat and Corn Deep Processing Changchun China
| | - Yanfei Luo
- ChangChun Customs District P.R.CHINA Changchun China
| | - Lin Xiu
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- National Engineering laboratory for Wheat and Corn Deep Processing Changchun China
| | - Sanabil
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- National Engineering laboratory for Wheat and Corn Deep Processing Changchun China
- University of Central Punjab Lahore Pakistan
| | - Huimin Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- National Engineering laboratory for Wheat and Corn Deep Processing Changchun China
| | - Dan Cai
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- National Engineering laboratory for Wheat and Corn Deep Processing Changchun China
| |
Collapse
|
15
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
16
|
Xu R, Bu YG, Zhao ML, Tao R, Luo J, Li Y. Studies on antioxidant and α-glucosidase inhibitory constituents of Chinese toon bud (Toona sinensis). J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Zhou X, Zeng L, Chen Y, Wang X, Liao Y, Xiao Y, Fu X, Yang Z. Metabolism of Gallic Acid and Its Distributions in Tea ( Camellia sinensis) Plants at the Tissue and Subcellular Levels. Int J Mol Sci 2020; 21:ijms21165684. [PMID: 32784431 PMCID: PMC7460824 DOI: 10.3390/ijms21165684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
In tea (Camellia sinensis) plants, polyphenols are the representative metabolites and play important roles during their growth. Among tea polyphenols, catechins are extensively studied, while very little attention has been paid to other polyphenols such as gallic acid (GA) that occur in tea leaves with relatively high content. In this study, GA was able to be transformed into methyl gallate (MG), suggesting that GA is not only a precursor of catechins, but also can be transformed into other metabolites in tea plants. GA content in tea leaves was higher than MG content-regardless of the cultivar, plucking month or leaf position. These two metabolites occurred with higher amounts in tender leaves. Using nonaqueous fractionation techniques, it was found that GA and MG were abundantly accumulated in peroxisome. In addition, GA and MG were found to have strong antifungal activity against two main tea plant diseases, Colletotrichum camelliae and Pseudopestalotiopsis camelliae-sinensis. The information will advance our understanding on formation and biologic functions of polyphenols in tea plants and also provide a good reference for studying in vivo occurrence of specialized metabolites in economic plants.
Collapse
Affiliation(s)
- Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (X.Z.); (L.Z.); (X.W.); (Y.L.); (Y.X.); (X.F.)
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (X.Z.); (L.Z.); (X.W.); (Y.L.); (Y.X.); (X.F.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China;
| | - Xuewen Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (X.Z.); (L.Z.); (X.W.); (Y.L.); (Y.X.); (X.F.)
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (X.Z.); (L.Z.); (X.W.); (Y.L.); (Y.X.); (X.F.)
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yangyang Xiao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (X.Z.); (L.Z.); (X.W.); (Y.L.); (Y.X.); (X.F.)
| | - Xiumin Fu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (X.Z.); (L.Z.); (X.W.); (Y.L.); (Y.X.); (X.F.)
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (X.Z.); (L.Z.); (X.W.); (Y.L.); (Y.X.); (X.F.)
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Correspondence: ; Tel.: +86-20-3807-2989
| |
Collapse
|
18
|
Potential Role of Plant Extracts and Phytochemicals Against Foodborne Pathogens. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134597] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Foodborne diseases are one of the major causes of morbidity and mortality, especially in low-income countries with poor sanitation and inadequate healthcare facilities. The foremost bacterial pathogens responsible for global outbreaks include Salmonella species, Campylobacter jejuni, Escherichia coli, Shigella sp., Vibrio, Listeria monocytogenes and Clostridium botulinum. Among the viral and parasitic pathogens, norovirus, hepatitis A virus, Giardia lamblia, Trichinella spiralis, Toxoplasma and Entamoeba histolytica are commonly associated with foodborne diseases. The toxins produced by Staphylococcus aureus, Bacillus cereus and Clostridium perfringens also cause these infections. The currently available therapies for these infections are associated with various limited efficacy, high cost and side-effects. There is an urgent need for effective alternative therapies for the prevention and treatment of foodborne diseases. Several plant extracts and phytochemicals were found to be highly effective to control the growth of these pathogens causing foodborne infections in in vitro systems. The present review attempts to provide comprehensive scientific information on major foodborne pathogens and the potential role of phytochemicals in the prevention and treatment of these infections. Further detailed studies are necessary to evaluate the activities of these extracts and phytochemicals along with their mechanism of action using in vivo models.
Collapse
|
19
|
Evaluation of the pharmacokinetic-pharmacodynamic integration of marbofloxacin in combination with methyl gallate against Salmonella Typhimurium in rats. PLoS One 2020; 15:e0234211. [PMID: 32497083 PMCID: PMC7272065 DOI: 10.1371/journal.pone.0234211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
Fluoroquinolone resistance in Salmonella Typhimurium is becoming a major concern. Hence, an intervention to limit the growth in resistance is inevitable. One way to combat this challenge is through combination therapy. The combination of antibiotics with phytochemicals has become an ideal means of preventing antimicrobial resistance. Recently, in an in vitro study, the combination of methyl gallate (MG) with marbofloxacin (MAR) has shown to prevent Salmonella Typhimurium invasion. It is also worth to study the effects of plant extracts on the pharmacokinetics of antibiotics. Hence, the objective of this study was to determine the effect of MG on the pharmacokinetics of MAR and pharmacokinetics/pharmacodynamics integration of MG and MAR. The micro-broth dilution method was used to obtain the minimum inhibitory concentration (MIC), and fractional inhibitory concentration (FIC) of MAR and MG. Whereas, the pharmacokinetic was conducted in rats by administering either MAR alone or combined with MG through oral and/or intravenous routes. The results indicated that the MIC of MAR and MG against standard strain Salmonella Typhimurium (ATCC 14028) was 0.031 and 500 μg/mL, respectively. The FICindex of the combination of MAR and MG was 0.5. For orally administered drugs, the Cmax and AUC24h of MAR were 1.04 and 0.78 μg/mL and 5.98 and 6.11 h.μg/mL when MAR was given alone and in combination with MG, respectively. The intravenous administration of MAR showed a half-life of 3.8 and 3.9 h; a clearance rate of 1.1 and 0.73 L/h/kg and a volume of distribution of 5.98 and 4.13 L/kg for MAR alone and in combination with MG, respectively. The AUC24/MIC for MAR alone and in combination with MG was 192.8 and 381.9 h, respectively. In conclusion, MG has shown to increase the antimicrobial activity of MAR in vitro and ex vivo experiments without affecting the pharmacokinetics of MAR in rats.
Collapse
|
20
|
Wu HC, Cheng MJ, Yen CH, Chen YMA, Chen YS, Chen IS, Chang HS. Chemical Constituents with GNMT-Promoter-Enhancing and NRF2-Reduction Activities from Taiwan Agarwood Excoecaria formosana. Molecules 2020; 25:E1746. [PMID: 32290267 PMCID: PMC7181199 DOI: 10.3390/molecules25071746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is considered to be a silent killer, and was the fourth leading global cause of cancer deaths in 2018. For now, sorafenib is the only approved drug for advanced HCC treatment. The introduction of additional chemopreventive agents and/or adjuvant therapies may be helpful for the treatment of HCC. After screening 3000 methanolic extracts from the Formosan plant extract bank, Excoecaria formosana showed glycine N-methyltransferase (GNMT)-promoter-enhancing and nuclear factor erythroid 2-related factor 2 (NRF2)-suppressing activities. Further, the investigation of the whole plant of E. formosana led to the isolation of a new steroid, 7α-hydroperoxysitosterol-3-O-β-d-(6-O-palmitoyl)glucopyranoside (1); two new coumarinolignans, excoecoumarin A (2) and excoecoumarin B (3); a new diterpene, excoeterpenol A (4); and 40 known compounds (5-44). Among them, Compounds 38 and 40-44 at a 100 μM concentration showed a 2.97 ± 0.27-, 3.17 ± 1.03-, 2.73 ± 0.23-, 2.63 ± 0.14-, 6.57 ± 0.13-, and 2.62 ± 0.05-fold increase in GNMT promoter activity, respectively. In addition, Compounds 40 and 43 could reduce NRF2 activity, a transcription factor associated with drug resistance, in Huh7 cells with relative activity of 33.1 ± 0.2% and 45.2 ± 2.5%. These results provided the basis for the utilization of Taiwan agarwood for the development of anti-HCC agents.
Collapse
Affiliation(s)
- Ho-Cheng Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (C.-H.Y.)
| | - Ming-Jen Cheng
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan;
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (C.-H.Y.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Ming Arthur Chen
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Yi-Siao Chen
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (C.-H.Y.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
21
|
Madjid O. A, Sanni A, Lagnika L. Chemical Diversity and Pharmacological Properties of Genus Acacia. ACTA ACUST UNITED AC 2020. [DOI: 10.3923/ajaps.2020.40.59] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Dávila-Aviña J, Gil-Solís C, Merino-Mascorro J, García S, Heredia N. Phenolics with Bactericidal Activity Alter Motility and Biofilm Formation in Enterotoxigenic, Enteropathogenic, and Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2020; 17:568-575. [PMID: 32043899 DOI: 10.1089/fpd.2019.2766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Most Escherichia coli strains are innocuous to human beings; however, some strains can cause diarrhea and are grouped into pathotypes. Since current trends promote the use of natural-origin compounds to control bacteria, in this study, the effects of the phenolic compounds (PCs) tannic acid (TA), gallic acid (GA), methyl gallate (MG), and epigallocatechin gallate (EG) on the growth, swarming motility, biofilm formation, and expression of selected virulence genes of three E. coli pathotypes (enteropathogenic Escherichia coli [EPEC], enterohemorrhagic Escherichia coli [EHEC], and enterotoxigenic Escherichia coli [ETEC]) were evaluated. Minimum bactericidal concentrations (MBCs) were determined by using microtiter plates, and the effects of sublethal PC concentrations on swarming motility were evaluated on Luria-Bertani agar. Biofilm formation was assessed in microtiter plates via crystal violet staining, and the expression levels of genes involved in biofilm formation (flhC, fliA, fliC, and csgA) and swarming motility (csgD and cyaA) were evaluated via quantitative PCR. All PC were bactericidal with minimal bactericidal concentrations ranging from 0.07 to 2.1 mg/mL. At concentrations lower than the MBC, PCs decreased swarming motility (14.8-100%). GA reduced biofilm formation in all of the tested strains; however, TA, MG, and EG induced biofilm formation in some strains at specific concentrations. TA induced the overexpression of csgA, csgD, and cyaA, whereas the other PCs did not have any effects or reduced their expression levels. The PCs tested in this study showed potential to control E. coli strains belonging to the EHEC, ETEC, and EPEC pathotypes by affecting their growth, swarming motility, and virulence gene expression; however, proper concentrations must be used to avoid the induction of undesirable virulence factor genes.
Collapse
Affiliation(s)
- Jorge Dávila-Aviña
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Carolina Gil-Solís
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Jose Merino-Mascorro
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Santos García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Norma Heredia
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
23
|
Anti-Shigellosis Activity of Cola anomala Water/Ethanol Pods Extract on Shigella flexneri-Induced Diarrhea in Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6706230. [PMID: 31828116 PMCID: PMC6881571 DOI: 10.1155/2019/6706230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/02/2022]
Abstract
This study was undertaken to evaluate the activities of water/ethanol Cola anomala pods extract. In vitro antimicrobial susceptibility was determined by the disk diffusion method; the minimum inhibitory concentration and minimum bactericidal concentration were determined by agar dilution technique. In vivo, shigellosis was induced in healthy Wistar albino rats by oral administration of Shigella flexneri inoculum, 12 × 108 CFU/mL. At the onset of diarrhea, infected and normal control animals were subdivided into various groups treated with distilled water, with water/ethanol Cola anomala pods extract at 25, 50, or 100 mg/kg, or with ciprofloxacin, 2.5 mg/kg. After one-week treatment, rats were sacrificed, and blood and colon were collected. Blood was used for blood cell count. A portion of the colon served for histological studies while homogenate from the remaining part was centrifuged and the supernatant was collected for the determination of NO, PGE2, IL-1β, and TNF-α levels. In vitro, water/ethanol Cola anomala pods extract showed to be bactericidal, with a minimum inhibitory concentration of 2.0 mg/mL and a minimum bactericidal concentration of 3.0 mg/mL. In diarrheic rats, the extract significantly (P < 0.01) increased the white blood cells and significantly (P < 0.01) decreased stool Shigella density from the first to the seventh day of treatment. It partially restored the structure of eroded intestine epithelium and prevented weight loss; the dose dependently and significantly (P < 0.001) decreased NO, IL-1β, and TNF-α production in the colon and was found to have no significant effect on PGE2 production. These results support the use of this plant in traditional medicine in the treatment of gastrointestinal ailments.
Collapse
|
24
|
Qiu Y, Xiao Z, Wang Y, Zhang D, Zhang W, Wang G, Chen W, Liang G, Li X, Zhang Y, Liu Z. Optimization and anti-inflammatory evaluation of methyl gallate derivatives as a myeloid differentiation protein 2 inhibitor. Bioorg Med Chem 2019; 27:115049. [PMID: 31466835 DOI: 10.1016/j.bmc.2019.115049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 01/06/2023]
Abstract
Myeloid differentiation protein 2 (MD2) is a co-receptor of toll-like receptor 4 (TLR4) responsible for the recognition of lipopolysaccharide (LPS) and mediates a series of TLR4-dependent inflammatory responses in inflammatory lung diseases including acute lung injury (ALI). Targeting MD2 thus may provide a therapeutic strategy against these lung diseases. In this study, we identified a novel compound 4k with the potent anti-inflammatory activity among 39 methyl gallate derivatives (MGDs). MGD 4k exhibited a high binding affinity to MD2, which in turn prevented the formation of the LPS/MD2/TLR4 complex. In addition, MGD 4k significantly reversed the upregulation of LPS-induced inflammatory mediators such as tumor necrosis factor-α, interleukin-6, intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and monocyte chemoattractant protein-1 in vitro and in vivo. Mechanistically, MGD 4k performed anti-inflammatory function by inactivating JNK, ERK and p38 signaling pathways. Taken together, our study identified MGD 4k as a novel potential therapeutic agent for ALI through inhibiting MD2, inflammatory responses, and major inflammation-associated signaling pathways.
Collapse
Affiliation(s)
- Yinda Qiu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China; College of Pharmacy, Chonnam National University, 300 Yongbong-Dong, Buk-Gu, Gwangju 500-757, Republic of Korea
| | - Zhongxiang Xiao
- Department of Pharmacy, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Yanyan Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang 150040, People's Republic of China
| | - Dingfang Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Wenxin Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Guangbao Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Wenbin Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China.
| | - Xiaokun Li
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China.
| | - Yali Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China.
| |
Collapse
|
25
|
Mechesso AF, Yixian Q, Park SC. Methyl gallate and tylosin synergistically reduce the membrane integrity and intracellular survival of Salmonella Typhimurium. PLoS One 2019; 14:e0221386. [PMID: 31490973 PMCID: PMC6730861 DOI: 10.1371/journal.pone.0221386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022] Open
Abstract
Nymphaea tetragona Georgi (Nymphaceae) is traditionally used in Asia for the treatment of diarrhea, dysentery and fever. The plant contains various active compounds, including methyl gallate (MG) which are reported to inhibit bacterial virulence mechanisms. This study aimed to evaluate the alterations on viability, membrane potential and integrity of Salmonella enterica Serovar Typhimurium exposed to MG in combination with Tylosin (Ty), which is relatively inactive against Gram-negative bacteria, but it is commonly used as a feed additive in livestock. Besides, the effects of sub-inhibitory concentrations of the combination (MT) on the interaction between S. Typhimurium and the host cell, as well as on the indirect host responses, were characterized. Flow cytometry, confocal and electron microscopic examinations were undertaken to determine the effects of MT on S. Typhimurium. The impacts of sub-inhibitory concentrations of MT on biofilm formation, as well as on the adhesion, invasion and intracellular survival of S. Typhimurium were assessed. The result demonstrated significant damage to the bacterial membrane, leakage of cell contents and a reduction in the membrane potential when treated with MT. Sub-inhibitory concentrations of MT significantly reduced (P < 0.05) the biofilm-forming, adhesive and invasive abilities of S. Typhimurium. Exposure to MT drastically reduced the bacterial count in macrophages. Up-regulation of interleukin (IL)-6, IL-8 and IL-10 cytokine genes were detected in intestinal epithelial cells pre-treated with MT. This report is the first to describe the effects of MT against S. Typhimurium. The result indicates a synergistic interaction between MG and Ty against S. Typhimurium. Therefore, the combination may be a promising option to combat S. Typhimurium in swine and, indirectly, safeguard the health of the public.
Collapse
Affiliation(s)
- Abraham Fikru Mechesso
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
| | - Quah Yixian
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
- * E-mail:
| |
Collapse
|
26
|
Olmedo-Juárez A, Briones-Robles TI, Zaragoza-Bastida A, Zamilpa A, Ojeda-Ramírez D, Mendoza de Gives P, Olivares-Pérez J, Rivero-Perez N. Antibacterial activity of compounds isolated from Caesalpinia coriaria (Jacq) Willd against important bacteria in public health. Microb Pathog 2019; 136:103660. [PMID: 31398533 DOI: 10.1016/j.micpath.2019.103660] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 11/15/2022]
Abstract
Antimicrobial resistance has been increasing in recent years and is most frequently found in pathogenic microorganisms resistant or multiresistant to drugs. The secondary metabolites of plants have been evaluated as alternatives for control and treatment of these microorganisms. The aim of this study was to isolate and identify the secondary metabolites with antibacterial activity from Caesalpinia coriaria (Jacq) Willd fruit. Hydroalcoholic extract (CCHA), was subjected to a bipartition with ethyl acetate giving two fractions an aqueous (Aq-F) and an organic (EtOAc-F). The isolation of bioactive fraction (EtOAc-F) allowed obtain two important compounds, methyl gallate (1) and gallic acid (2). These compounds were identified by high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). The CCHA, both fractions and the isolated compounds were evaluated in vitro to determine their Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) against Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Listeria monocytogenes and Staphylococcus aureus. Gallic acid (2) showed the lowest MIC on S. typhi, (0.156 mg/mL), L. monocytogenes and S. aureus (1.25 mg/mL), while methyl gallate (1) had the best inhibitory effect against E. coli and P. aeruginosa (1.25 mg/mL). On the other hand, methyl gallate (1) showed the best MBC on P. aeruginosa (2.50 mg/mL), and gallic acid (2) had the lowest MBC on P. aeruginosa and L. monocytogenes. In conclusion, methyl gallate (1) and gallic acid (2) are the compounds responsible for the antibacterial activity of Caesalpinia coriaria fruit.
Collapse
Affiliation(s)
- Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534 / Col. Progreso, C.P. 62550, Jiutepec, Morelos, A.P. 206-CIVAC, Mexico
| | - Tania Isabel Briones-Robles
- Universidad Politécnica de Morelos. Boulevard Cuauhnáhuac #566, Col. Lomas del Texcal, Jiutepec, Morelos, CP 62550, Mexico
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, 43600, Tulancingo, Hgo, Mexico.
| | - Alejando Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1. Col. Centro, CP 62790, Xochitepec, Morelos, Mexico
| | - Deyanira Ojeda-Ramírez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, 43600, Tulancingo, Hgo, Mexico
| | - Pedro Mendoza de Gives
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534 / Col. Progreso, C.P. 62550, Jiutepec, Morelos, A.P. 206-CIVAC, Mexico
| | - Jaime Olivares-Pérez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, 43600, Tulancingo, Hgo, Mexico.
| |
Collapse
|
27
|
Goats' Feeding Supplementation with Acacia farnesiana Pods and Their Relationship with Milk Composition: Fatty Acids, Polyphenols, and Antioxidant Activity. Animals (Basel) 2019; 9:ani9080515. [PMID: 31374913 PMCID: PMC6720175 DOI: 10.3390/ani9080515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The study aimed to describe the fatty acids, polyphenols, and antioxidant activity of goat’s milk from five different feeding systems: Grazing; conventional diet; and conventional diet supplemented with 10, 20, and 30 percent of Acacia farnesiana pods. Conventional diet showed the highest content of polyunsaturated fatty acids while grazing showed the healthiest fatty acid profile. Similarly, grazing and A. farnesiana boosted the polyphenol content. A. farnesiana pod meal inclusion in the goats’ diets increased the selective presence of bioactive compounds and the antioxidant activity of goat’s milk while cholesterol content was reduced. Abstract Background: Research efforts have focused on the evaluation of the bioactive quality of animal products (milk, cheese, meat, and other by-products) contrasting various feeding strategies coming from different ecological zones. The study aimed to describe the fatty acids (FA), polyphenols (P), bioactive compounds (BC), and antioxidant activity (AA) of goat’s milk. Methods: Dairy goats were fed with five systems: (1) Grazing; (2) conventional diet (CD); (3) CD + 10% of Acacia farnesiana (AF) pods; (4) CD + 20% AF; and (5) CD + 30% AF. The fatty acid profile, health promoting and thrombogenic indexes were calculated. Milk extracts were evaluated by HPLC to determent phenolic compounds (gallic, caffeic, chlorogenic, and ferulic acids, catechin, epicatechin, and quercetin). Antioxidant activity of goat’s milk extract was evaluated using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•), oxygen radical absorbance capacity (ORAC), and the ferric reducing antioxidant power (FRAP) assays. Results: Conventional diet showed the highest content of polyunsaturated fatty acids while grazing showed the best n-6:n-3 and the linoleic:alpha linolenic acid ratio. Similarly, grazing and AF boosted the polyphenol content. Conclusions: Acacia farnesiana inclusion in the goats’ diets increased the presence of bioactive compounds and the antioxidant activity while diminishing the cholesterol content of goat’s milk.
Collapse
|
28
|
Tang C, Liu C, Han Y, Guo Q, Ouyang W, Feng H, Wang M, Xu F. Nontoxic Carbon Quantum Dots/g-C 3 N 4 for Efficient Photocatalytic Inactivation of Staphylococcus aureus under Visible Light. Adv Healthc Mater 2019; 8:e1801534. [PMID: 30941911 DOI: 10.1002/adhm.201801534] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/15/2019] [Indexed: 01/08/2023]
Abstract
The widespread use of antibiotics has caused the rapid emergence of antibiotic-resistant bacterial strains and antibiotic resistance genes in the past few decades. Photocatalytic inactivation, a promising approach for the killing of pathogens, efficiently avoids the problems induced by antimicrobial drugs. However, traditional photocatalysts usually have some disadvantages, such as high costs of raw materials, ultraviolet ray excitation, and potential leaching of toxic metals. Here, a metal-free heterojunction photocatalyst, denoted as CQDs/g-C3 N4 , is synthesized through incorporating carbon quantum dots (CQDs) on graphitic carbon nitride (g-C3 N4 ), which significantly enhances photocatalytic inactivation of Staphylococcus aureus (S. aureus) compared with pure g-C3 N4 in vitro. CQDs/g-C3 N4 causes a rapid increase of intracellular reactive oxygen species levels and destruction of cell membranes under visible light, eventually leading to death of bacteria. The efficacy of CQDs/g-C3 N4 is further examined by a mouse cutaneous infection model of S. aureus. CQDs/g-C3 N4 markedly reduces the bacterial loads and prompts lesion recovery in mice, as compared with g-C3 N4 -treated group. In vivo and in vitro toxicity analyses show that the side effects of CQDs/g-C3 N4 are negligible. Considering the efficient photocatalytic inactivation and nontoxicity of CQDs/g-C3 N4 , this visible-light-driven photocatalyst paves a brand new avenue for the treatment of S. aureus infection.
Collapse
Affiliation(s)
- Chenyi Tang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and RecyclingSchool of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou 310012 Zhejiang China
| | - Chao Liu
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of Medicine Hangzhou 310009 Zhejiang China
| | - Yu Han
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of Medicine Hangzhou 310009 Zhejiang China
| | - Qiaoqi Guo
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and RecyclingSchool of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou 310012 Zhejiang China
| | - Wei Ouyang
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of Medicine Hangzhou 310009 Zhejiang China
| | - Huajun Feng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and RecyclingSchool of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou 310012 Zhejiang China
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and RecyclingSchool of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou 310012 Zhejiang China
| | - Feng Xu
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of Medicine Hangzhou 310009 Zhejiang China
| |
Collapse
|
29
|
Teixeira N, Melo JC, Batista LF, Paula-Souza J, Fronza P, Brandão MG. Edible fruits from Brazilian biodiversity: A review on their sensorial characteristics versus bioactivity as tool to select research. Food Res Int 2019; 119:325-348. [DOI: 10.1016/j.foodres.2019.01.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/24/2022]
|
30
|
Effects of Crinum jagus Water/Ethanol Extract on Shigella flexneri-Induced Diarrhea in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9537603. [PMID: 30992711 PMCID: PMC6434311 DOI: 10.1155/2019/9537603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/02/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023]
Abstract
Diarrheal disease, characterized by the release of more than three loose or liquid stools per day, remains one of the leading causes of morbidity and mortality in children below 5 years of age in developing countries. Many drugs used in diarrhea management face contraindication and, with regard to infectious diarrhea, resistance of some bacterial strains; this therefore increases the need of new alternative and more effective drugs. This study aimed to evaluate anti-Shigella flexneri activities of Crinum jagus water/ethanol extract. In vitro activities were assayed by disc diffusion and agar dilution methods and in vivo section on Shigella flexneri-induced diarrhea in rats. This was done by oral administration of 9 X 108 CFU of Shigella flexneri to rats that were treated twice daily with Crinum jagus water/ethanol extract for seven consecutive days. Ciprofloxacin was used as positive control. Daily Shigella flexneri load was evaluated. After one treatment week, animals were then sacrificed and interleukins (IL-2 and INF-γ), immunoglobulins (IgA and IgM), motilin, vasoactive intestinal peptide, and ions (sodium, potassium, calcium, and chloride) levels were determined. Also, blood cell count was realized. Crinum jagus water/ethanol extract dose-dependently inhibited Shigella flexneri growth with inhibition diameter of 18.90 and 25.36 mm, respectively, at 0.39 and 200 mg/mL. Minimum inhibitory concentration (MIC) was 0.10 mg/mL and minimum bactericidal concentration (MBC) was 0.30 mg/mL with MBC/MIC ratio of 3.0. In Shigella flexneri-induced diarrheic rats, Crinum jagus reduced (p<0.01) diarrheal stools emission and Shigella load and lowered IL-2, INF-γ, IgA, IgM, and motilin blood levels, whereas it increased (p<0.01) vasoactive intestinal peptide, sodium, potassium, calcium, and chloride blood levels. In diarrheal rats, Crinum jagus restored the decreasing white blood cells and haemoglobin and restored the damaged colon epithelium, where it reduced the density of mucus-filled goblet cells. These results confirm the use of Crinum jagus in ethnomedicine in diarrhea treatment.
Collapse
|
31
|
In vivo fluid accumulation-inhibitory, anticolonization and anti-inflammatory and in vitro biofilm-inhibitory activities of methyl gallate isolated from Terminalia chebula against fluoroquinolones resistant Vibrio cholerae. Microb Pathog 2019; 128:41-46. [DOI: 10.1016/j.micpath.2018.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/02/2017] [Accepted: 12/18/2018] [Indexed: 11/21/2022]
|
32
|
Hernández-García E, García A, Garza-González E, Avalos-Alanís FG, Rivas-Galindo VM, Rodríguez-Rodríguez J, Alcantar-Rosales VM, Delgadillo-Puga C, Del Rayo Camacho-Corona M. Chemical composition of Acacia farnesiana (L) wild fruits and its activity against Mycobacterium tuberculosis and dysentery bacteria. JOURNAL OF ETHNOPHARMACOLOGY 2019; 230:74-80. [PMID: 30367988 DOI: 10.1016/j.jep.2018.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Mexico, plants are an important element of traditional medicine, and many are considered part of Mexican cultural heritage from prehispanic and colonial times. Nevertheless, relatively few systematic scientific studies have been conducted to fully characterize the chemical composition and pharmacological activities of Mexican medicinal plants. Acacia farnesiana is used in Mexican traditional medicine to treat dysentery and tuberculosis and therefore could have bioactive compounds that may explain its traditional use. AIMS OF THE STUDY i) To isolate and characterize the compounds from the hexanic, chloroformic and methanolic extracts; ii) to identify the volatile compounds from methylated hexanic and chloroformic extracts using GC-FID and GC-MS methods; iii) to identify the compounds from methanolic and aqueous extracts using HPLC-Q-TOF-MS; iv) to test the activity of extracts and isolated compounds against Mycobacterium tuberculosis and dysentery bacteria. MATERIAL AND METHODS A. farnesiana fruits were collected in Acatlán de Osorio, Puebla, Mexico. Hexanic, chloroformic, methanolic and aqueous extracts were prepared and analyzed by different chromatographic techniques including column chromatography, flash chromatography, GC-FID, GC-MS and HPLC-Q-TOF-MS. Structural elucidation was carried out by NMR spectroscopic analysis. The activity of extracts, phytochemicals and semi-synthetic derivatives against Mycobacterium tuberculosis H37Rv and G122 as well as dysentery bacteria (Campylobacter jejuni, Shigella flexneri, Salmonella enteritidis, Yersinia enterocolitica and enterohemorrhagic Escherichia coli) was determined by the broth microdilution method and reported as minimal inhibitory concentration (MIC µg/mL). RESULTS From both hexane and chloroform extracts, tetracosanoic acid (2S)-2,3-dihydroxypropyl ester (1) and (3β,22E)-estigmasta-5,22-dien-3-yl β-D-glucopyranoside (2) were isolated and characterized. From the methanolic extract, methyl gallate (3), gallic acid (4), (3β,22E)-estigmasta-5,22-dien-3-yl β-D-glucopyranoside (2), (2S) naringenin 7-O-β-glucopyranoside (prunin, 5), pinitol (6) and sucrose (7) were isolated and characterized. Furthermore, hexanic and chloroformic extracts were analyzed by GC-FID and GC-MS and 18 methylated fatty acids were identified for each extract in addition to three sterols. The methanolic and aqueous extracts were analyzed separately by HPLC-Q-TOF-MS, and 15 compounds were identified in each extract. The compounds 1, 2, and 7, in addition to 13 fatty acids and eight phenolic compounds, were identified for the first time in A. farnesiana. The extracts showed antitubercular (MIC 100-200 µg/mL) and antidysentery activity (MIC 100-200 µg/mL). Methyl gallate and its acetylated derivative showed activity against the sensible strain M. tuberculosis H37Rv with MIC values of 50-25 µg/mL, respectively. The flavanone prunin showed activity against multidrug resistant M. tuberculosis G122 (MIC 50 μg/mL). Methyl gallate, gallic acid and prunin showed activity against C. jejuni (MIC 50 μg/mL). CONCLUSIONS The activity of tested extracts and isolated compounds against M. tuberculosis and dysentery bacteria justifies the ethnomedical use of A. farnesiana fruits for the treatment of tuberculosis and dysentery.
Collapse
Affiliation(s)
- Erika Hernández-García
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, CP 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Abraham García
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, CP 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Elvira Garza-González
- Universidad Autónoma de Nuevo León, Servicio de Gastroenterología Hospital Universitario Dr. José Eleuterio González, Av. Gonzalitos y Madero S/N, Col. Mitras Centro, CP 64460 Monterrey, Nuevo León, Mexico.
| | - Francisco G Avalos-Alanís
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, CP 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Verónica M Rivas-Galindo
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Av. Madero S/N, Col. Mitras Centro, CP 64460 Monterrey, Nuevo León, Mexico.
| | - José Rodríguez-Rodríguez
- Instituto Tecnológico de Estudios Superiores de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. 2 de Abril S/N, Tecnológico, CP 64849 Monterrey, Nuevo León, Mexico.
| | - Victor M Alcantar-Rosales
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Servicios Analíticos, Sede Noreste, Parque de Investigación e Innovación Tecnológica, Vía de la Innovación 404, CP 66628 Apodaca, Nuevo León, Mexico.
| | - Claudia Delgadillo-Puga
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, CP 14080 Ciudad de México, Mexico.
| | - María Del Rayo Camacho-Corona
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, CP 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
33
|
Delgadillo Puga C, Cuchillo-Hilario M, Navarro Ocaña A, Medina-Campos ON, Nieto Camacho A, Ramírez Apan T, López-Tecpoyotl ZG, Díaz Martínez M, Álvarez-Izazaga MA, Cruz Martínez YR, Sánchez-Quezada V, Gómez FE, Torre-Villalvazo I, Furuzawa Carballeda J, Camacho-Corona MDR, Pedraza-Chaverri J. Phenolic Compounds in Organic and Aqueous Extracts from Acacia farnesiana Pods Analyzed by ULPS-ESI-Q-oa/TOF-MS. In Vitro Antioxidant Activity and Anti-Inflammatory Response in CD-1 Mice. Molecules 2018; 23:E2386. [PMID: 30231503 PMCID: PMC6225385 DOI: 10.3390/molecules23092386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Acacia farnesiana (AF) pods have been traditionally used to treat dyspepsia, diarrhea and topically for dermal inflammation. Main objectives: (1) investigate the antioxidant activity and protection against oxidative-induced damage of six extracts from AF pods and (2) their capacity to curb the inflammation process as well as to down-regulate the pro-inflammatory mediators. METHODS Five organic extracts (chloroformic, hexanic, ketonic, methanolic, methanolic:aqueous and one aqueous extract) were obtained and analyzed by UPLC-ESI-Q-oa/TOF-MS. Antioxidant activity (DPPH•, ORAC and FRAP assays) and lipid peroxidation (TBARS assay) were performed. Assessment of anti-inflammatory properties was made by the ear edema induced model in CD-1 mice and MPO activity assay. Likewise, histological analysis, IL-1β, IL-6, IL-10, TNF-α, COX measurements plus nitrite and immunohistochemistry analysis were carried out. RESULTS Methyl gallate, gallic acid, galloyl glucose isomer 1, galloyl glucose isomer 2, galloyl glucose isomer 3, digalloyl glucose isomer 1, digalloyl glucose isomer 2, digalloyl glucose isomer 3, digalloyl glucose isomer 4, hydroxytyrosol acetate, quinic acid, and caffeoylmalic acid were identified. Both organic and aqueous extracts displayed antioxidant activity. All extracts exhibited a positive effect on the interleukins, COX and immunohistochemistry assays. CONCLUSION All AF pod extracts can be effective as antioxidant and topical anti-inflammatory agents.
Collapse
Affiliation(s)
- Claudia Delgadillo Puga
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | - Mario Cuchillo-Hilario
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | - Arturo Navarro Ocaña
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico.
| | - Omar Noel Medina-Campos
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico.
| | - Antonio Nieto Camacho
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico.
| | - Teresa Ramírez Apan
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico.
| | | | - Margarita Díaz Martínez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | - Marsela Alejandra Álvarez-Izazaga
- Departamento de Nutrición Aplicada y Educación Nutricional, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | | | | | - Francisco Enrique Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | - Iván Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | - Janette Furuzawa Carballeda
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), CDMX 14080, Mexico.
| | | | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico.
| |
Collapse
|
34
|
Ülger C, Takaç S. Kinetics of lipase-catalysed methyl gallate production in the presence of deep eutectic solvent. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1359573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ceren Ülger
- Department of Chemical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Serpil Takaç
- Department of Chemical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| |
Collapse
|
35
|
Amoussa AMO, Bourjot M, Lagnika L, Vonthron-Sénécheau C, Sanni A. Acthaside: a new chromone derivative from Acacia ataxacantha and its biological activities. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:506. [PMID: 27923358 PMCID: PMC5142280 DOI: 10.1186/s12906-016-1489-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/29/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Acacia ataxacantha (Fabaceae), used in traditional medicine grows in the South-West of Bénin. Ethyl acetate extract of the barks of this species was previously reported to display various bioactivities, including antibacterial, antifungal and antioxidant activities. In the present study, we investigate the antimicrobial and antioxidant activities of compound isolated from ethyl acetate extract of Acacia ataxacantha. METHODS Purification, isolation and structural identification of isolated compound were done using various chromatographic and spectroscopic methods. Antimicrobial activity was investigated using a two-fold serial microdilution method. The inhibitory potency of isolated compound was evaluated by kinetic experiments. The antioxidant activity was also determined using 2, 2-diphenyl-1-picrylhydrazyl. RESULTS The isolated compound was identified as 7-hydroxy-2-methyl-6-[β-galactopyranosyl-propyl]-4H-chromen-4-one. As far as we know, this compound, named "acthaside", reported for the first time, was active against all tested microorganisms with minimal inhibitory concentration ranging from 25 to 50 μg/ml. At 50 μl/ml, no growth was observed in almost all tested microbial after 24 h of exposure. The isolated compound had significant antioxidant activity with an IC50 value of 3.61 ± 0.12 μg/ml compared to quercetin (IC50 1.04 ± 0.01 μg/ml). CONCLUSION The present work demonstrates that the new chromen derivative isolated from A. ataxacantha may help treat bacterial and yeast infections. However, further studies are required to clarify the mechanism of action of this compound.
Collapse
Affiliation(s)
- Abdou Madjid O. Amoussa
- Unité de Biochimie et Biologie Moléculaire, Equipe de Biochimie et Substances Naturelles Bioactives, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 04 BP 0320, Cotonou, Benin
| | - Mélanie Bourjot
- Laboratoire d’Innovation Thérapeutique, Faculté de Pharmacie, UMR CNRS-Unistra 7200, 74 route du Rhin, CS 60024, 67401 Illkich, France
| | - Latifou Lagnika
- Unité de Biochimie et Biologie Moléculaire, Equipe de Biochimie et Substances Naturelles Bioactives, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 04 BP 0320, Cotonou, Benin
| | - Catherine Vonthron-Sénécheau
- Laboratoire d’Innovation Thérapeutique, Faculté de Pharmacie, UMR CNRS-Unistra 7200, 74 route du Rhin, CS 60024, 67401 Illkich, France
| | - Ambaliou Sanni
- Unité de Biochimie et Biologie Moléculaire, Equipe de Biochimie et Substances Naturelles Bioactives, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 04 BP 0320, Cotonou, Benin
| |
Collapse
|
36
|
Gao H, Xu X, Dai Y, He H. Isolation, Identification and Characterization of Bacillus subtilis CF-3, a Bacterium from Fermented Bean Curd for Controlling Postharvest Diseases of Peach Fruit. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Haiyan Gao
- School of Life Sciences, Shanghai University
- Shanghai Key Laboratory of Bio-Energy Crops
| | - Xinxing Xu
- School of Life Sciences, Shanghai University
- Shanghai Key Laboratory of Bio-Energy Crops
| | - Yuewen Dai
- School of Life Sciences, Shanghai University
- Shanghai Key Laboratory of Bio-Energy Crops
| | - Huixia He
- Shanghai Jiamai Agricultural Technology Service Company Limited
| |
Collapse
|
37
|
Delgadillo Puga C, Cuchillo Hilario M, Espinosa Mendoza JG, Medina Campos O, Molina Jijón E, Díaz Martínez M, Álvarez Izazaga MA, Ledesma Solano JÁ, Pedraza Chaverri J. Antioxidant activity and protection against oxidative-induced damage of Acacia shaffneri and Acacia farnesiana pods extracts: in vitro and in vivo assays. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:435. [PMID: 26669565 PMCID: PMC4678613 DOI: 10.1186/s12906-015-0959-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/08/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND Obesity is a worldwide public health issue, reaching epidemic condition in developing countries associated to chronic diseases. Oxidative damage is another side effect of obesity. Antioxidant activity from plant components regulates at some extent this imbalance. Main goal of the present study was to determine the antioxidant activity and protection against oxidative-induced damage of Acacia shaffneri (AS) and Acacia farnesiana (AF) pods extracts. METHODS To evaluated antioxidant activity and radical scavenging capacity of AS and AF extracts, two experiments were performed: 1) pods extracts were challenged against H2O2 using kidney cells in an in vitro assay; and 2) (Meriones unguiculatus) was employed in an in vivo assay to observe the effect of pods extracts on scavenging properties in plasma. RESULTS Both pods extracts presented an important protective effect on radical scavenging capacity against ABTS• + and DPPH(+), and also in TBARS formation in vitro. Vegetal pods extracts did not induce any pro-oxidative effect when added to kidney cells in DMEM. Cells damage in DMEM with addition of H2O2 was significantly higher than those when vegetal pods extracts were added at 50 (P < 0.05) or 200 ppm (P < 0.001). Plasma scavenging properties presented an important dose-dependent positive effect in those groups where pods extracts were administered. CONCLUSIONS The antioxidant protection of the acacia pods extracts reported in this study suggests the possible transference of antioxidant components and protective effects to animal products (milk, meat, and by-products) from Acacia pods when this vegetation is included in the diet. In order to evaluate, the possible transference of theirs antioxidant components to animal products, the incorporation of these non-conventional resources to ruminant feeding is a good opportunity of study. Profiling of Acacia farnesiana pods extract is necessary to identify the responsible bioactive compounds of protective properties.
Collapse
Affiliation(s)
- Claudia Delgadillo Puga
- National Institute of Medical Science and Nutrition "Salvador Zubirán", Vasco de Quiroga 15., Mexico City, 14000, Mexico.
| | - Mario Cuchillo Hilario
- National Institute of Medical Science and Nutrition "Salvador Zubirán", Vasco de Quiroga 15., Mexico City, 14000, Mexico
| | | | - Omar Medina Campos
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Eduardo Molina Jijón
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Margarita Díaz Martínez
- National Institute of Medical Science and Nutrition "Salvador Zubirán", Vasco de Quiroga 15., Mexico City, 14000, Mexico
| | | | - José Ángel Ledesma Solano
- National Institute of Medical Science and Nutrition "Salvador Zubirán", Vasco de Quiroga 15., Mexico City, 14000, Mexico
| | - José Pedraza Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| |
Collapse
|
38
|
Acharyya S, Sarkar P, Saha DR, Patra A, Ramamurthy T, Bag PK. Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp. J Med Microbiol 2015; 64:901-909. [PMID: 26272388 DOI: 10.1099/jmm.0.000107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigella spp. (Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei) cause bacillary dysentery (shigellosis), which is characterized by bloody mucous diarrhoea. Although a variety of antibiotics have been effective for treatment of shigellosis, options are becoming limited due to globally emerging drug resistance. In the present study, in vitro antibacterial activity of methyl gallate (MG) isolated from Terminalia chebula was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity of MG was determined by membrane perturbation and transmission electron microscopy (TEM). Cellular drug accumulation, cell infection and assessment of intracellular activities of MG and reference antibiotics were performed using HeLa cell cultures. The bactericidal activity of MG against multidrug-resistant (MDR) Shigella spp. in comparison with other commonly used drugs including fluoroquinolone was demonstrated here. TEM findings in the present study revealed that MG caused the total disintegration of inner and outer membranes, and leakage of the cytoplasmic contents of S. dysenteriae. The level of accumulation of MG and tetracycline in HeLa cells incubated for 24 h was relatively higher than that of ciprofloxacin and nalidixic acid (ratio of intracellular concentration/extracellular concentration of antibiotic for MG and tetracycline>ciprofloxacin and nalidixic acid). The viable number of intracellular S. dysenteriae was decreased in a time-dependent manner in the presence of MG (4 × MBC) and reduced to zero within 20 h. The significant intracellular activities of MG suggested that it could potentially be used as an effective antibacterial agent for the treatment of severe infections caused by MDR Shigella spp.
Collapse
Affiliation(s)
- Saurabh Acharyya
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Prodipta Sarkar
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Dhira R Saha
- National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Amarendra Patra
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - T Ramamurthy
- National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Prasanta K Bag
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| |
Collapse
|