1
|
Zhang J, Zhao J, Wu M, Liu J, Qian C, Liu G, Wen C, Liang L, Liu X, Li Y, Xu X. Release kinetics and protective effect of novel curcumin-based nanoliposome modified with pectin, whey protein isolates and hyaluronic acid against oxidative stress. Int J Biol Macromol 2024; 282:136890. [PMID: 39490488 DOI: 10.1016/j.ijbiomac.2024.136890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
In the present study, a novel nanoliposome loaded with curcumin (Cur) (NNLs-Cur) was established to overcome the gastrointestinal digestive barrier and enhance mitochondrial targeting capacity, exerting the antioxidant capacity of Cur. Noteworthy, NNLs-Cur was modified by pectin, whey protein isolates and hyaluronic acid. The results showed that the structure of traditional nanoliposomes loaded with Cur (NLs-Cur) was destroyed during digestion. However, NNLs-Cur maintained intact structural morphology, and the release of Cur in the stomach and intestines was consistent with zero-order and first-order kinetic models, respectively. Interestingly, the survival rate of HL-7702 cells after being damaged by H2O2 was 40.53 %, while the survival rate after treated with NNLs-Cur reached 99.87 %. Besides, the fluorescence localization indicated Cur in NNLs-Cur could escape lysosomal and achieve mitochondria targeting. Compared with NLs-Cur, the damaged cells treated with NNLs-Cur increased activities of catalase (CAT), glutathione peroxide (GSH-Px) and superoxide dismutase (SOD) from 16.16 ± 0.52, 16.92 ± 2.28 and 30.10 ± 0.93 U/mgprot to 19.09 ± 0.52, 20.41 ± 1.79 and 33.81 ± 0.29 U/mgprot, respectively. Malondialdehyde (MDA) content and reactive oxygen species (ROS) level of the oxidative damaged cells were reduced, mitochondrial membrane potential was restored, and cell apoptosis was reduced. This study provides theoretical guidance for realizing the industrial application of efficient targeted delivery Cur.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jiayin Zhao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Maowei Wu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
2
|
Xie D, Sun Y, Li X, Zheng J, Ren S. Study of the effect of calcium signal participating in the antioxidant mechanism of yeast under high-sugar environment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5776-5788. [PMID: 38390983 DOI: 10.1002/jsfa.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Saccharomyces cerevisiae is susceptible to high-sugar stress in the production of bioethanol, wine and bread. Calcium signal is widely involved in various physiological and metabolic activities of cells. The present study aimed to explore the effects of Ca2+ signal on the antioxidant mechanism of yeast during high-sugar fermentation. RESULTS Compared to yeast without available Ca2+, yeast in the high glucose with Ca2+ group had higher dry weight, higher ethanol output at 12 and 24 h and higher glycerol output at 24 and 36 h. During the whole growth process, the trehalose synthesis capacity of yeast in the high glucose with Ca2+ group was lower and intracellular reactive oxygen species content was higher compared to yeast without available Ca2+. Intracellular malondialdehyde content of yeast under high glucose with Ca2+ was significantly lower than yeast under high glucose without available Ca2+ except for 6 h. The superoxide dismutase and catalase activities of yeast and glutathione content were higher in the high glucose with Ca2+ group compared to yeast in high glucose without available Ca2+. The expression levels of SOD1, GSH1, GPX2 genes were higher for high glucose without available Ca2+ at 6 h, while yeast in the high glucose with Ca2+ group had a higher expression of antioxidant-related genes except SOD1 and CTT1 at 12 h. The expression levels of antioxidant-related genes of yeast for high glucose with Ca2+ were higher at 24 h, and those of genes except SOD1 of yeast in the high glucose with Ca2+ group were higher at 36 h. CONCLUSION High-glucose stress limited the growth of yeast, while a moderate extracellular Ca2+ signal could improve the antioxidant capacity of yeast in a high-glucose environment by regulating protectant metabolism and enhancing the antioxidant enzyme activity and expression of antioxidant genes in a high-sugar environment. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Xie
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing Li
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jiaxin Zheng
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
3
|
Isleyen M, Cina M, Asci H, Ilhan I, Oguz Yuceer R. The Preventive Effect of Preoperative and Postoperative Selenium on the Medication-Related Osteonecrosis of the Jaw: An Animal Study in Rats. J Oral Maxillofac Surg 2024; 82:828-839. [PMID: 38621662 DOI: 10.1016/j.joms.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Medication-related osteonecrosis of the jaw (MRONJ) is a condition that can occur primarily in patients undergoing or have previously undergone therapy with bisphosphonates, particularly in the presence of risk factors, such as tooth extraction (TE). PURPOSE This study aimed to evaluate the effect of selenium (SEL) administration on the prevention of osteonecrosis of the jaw in an MRONJ animal model. STUDY DESIGN, SETTING, AND SAMPLE This study was a longitudinal in vivo animal study using a TE model in a sample of 48 Wistar rats. PREDICTOR VARIABLE The predictor variables were SEL exposure, timing of SEL exposure, and zoledronic acid (ZOL) exposure. The animals were randomly assigned to 4 treatment groups (n = 12 per group): 1) saline (negative control), 2) ZOL (positive control), 3) SELpreop + ZOL, and 4) ZOL + SELpostop. The animals were administered saline (negative control) or ZOL (0.06 mg/kg, intraperitoneally) once a week for 5 weeks. All rats underwent TE at the end of the fifth week. SEL (0.3 mg/kg, intraperitoneally) was administered once daily for 15 days to the SELpreop + ZOL group before TE and to the ZOL + SELpostop group after TE. All animals were sacrificed at the end of the ninth week. MAIN OUTCOME VARIABLES The primary outcome variables were new bone area, necrotic bone area, fibrosis, new connective tissue formation, and inflammatory cell infiltration in the histopathological analysis, as well as angiogenesis and percentage of osteoblasts in the immunohistochemical analysis. COVARIATES There was none. ANALYSES Statistical analysis was conducted using the Kruskal-Wallis test, followed by post hoc Bonferroni-corrected Mann-Whitney U tests, with a significance level of P ≤ .05. RESULTS The new bone area was higher in the ZOL + SELpostop group (3.00 score) than in the saline group (0.58 ± 1.08 score, P < .001) and the ZOL group (0.82 ± 1.40 score, P = .001), while the necrotic bone area was lower in the ZOL + SELpostop group (0.08 ± 0.29 score) than in the ZOL group (2.82 ± 0.40 score, P < .001) and the SELpreop + ZOL group (1.67 ± 0.89 score, P = .007). The percentage of osteoblasts was higher in the ZOL + SELpostop group (18.73%) than in the saline group (8.63%, P < .001) and the ZOL group (0.07%, P < .001), and it was also higher in the SELpreop + ZOL group (18.49%) than in the ZOL group (0.07%, P < .001). CONCLUSION AND RELEVANCE In conclusion SEL prevents MRONJ, with postoperative SEL demonstrating greater prevention effects. Given these findings, we hypothesize that SEL exposure may decrease the risk of MRONJ.
Collapse
Affiliation(s)
- Mustafa Isleyen
- Assistant Professor, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Muge Cina
- Associate Professor, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Suleyman Demirel University, Isparta, Turkey
| | - Halil Asci
- Associate Professor, Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Ilter Ilhan
- Assistant Professor, Faculty of Medicine, Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey
| | | |
Collapse
|
4
|
Banerjee M, Kalwani P, Chakravarty D, Pathak P, Agarwal R, Ballal A. Modulation of oxidative stress machinery determines the contrasting ability of cyanobacteria to adapt to Se(VI) or Se(IV). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108673. [PMID: 38733937 DOI: 10.1016/j.plaphy.2024.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Excess of selenium (Se) in aquatic ecosystems has necessitated thorough investigations into the effects/consequences of this metalloid on the autochthonous organisms exposed to it. The molecular details of Se-mediated adaptive response remain unknown in cyanobacteria. This study aims to uncover the molecular mechanisms driving the divergent physiological responses of cyanobacteria on exposure to selenate [Se(VI)] or selenite [Se(IV)], the two major water-soluble oxyanions of Se. The cyanobacterium, Anabaena PCC 7120, withstood 0.4 mM of Se(VI), whereas even 0.1 mM of Se(IV) was detrimental, affecting photosynthesis and enhancing endogenous ROS. Surprisingly, Anabaena pre-treated with Se(VI), but not Se(IV), showed increased tolerance to oxidative stress mediated by H2O2/methyl viologen. RNA-Seq analysis showed Se(VI) to elevate transcription of genes encoding anti-oxidant proteins and Fe-S cluster biogenesis, whereas the photosynthesis-associated genes, which were mainly downregulated by Se(IV), remained unaffected. Specifically, the content of typical 2-Cys-Prx (Alr4641), a redox-maintaining protein in Anabaena, was elevated with Se(VI). In comparison to the wild-type, the Anabaena strain over-expressing the Alr4641 protein (An4641+) showed enhanced tolerance to Se(VI) stress, whereas the corresponding knockdown-strain (KD4641) was sensitive to this stressor. Incidentally, among these strains, only An4641+ was better protected from the ROS-mediated damage caused by high dose of Se(VI). These results suggest that altering the content of the antioxidant protein 2-Cys-Prx, could be a potential strategy for modulating resistance to selenate. Thus, involvement of oxidative stress machinery appears to be the major determinant, responsible for the contrasting physiological differences observed in response to selenate/selenite in cyanobacteria.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai-400085, India; Homi Bhabha National Institute, Mumbai-400094, India.
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - Priyanka Pathak
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai-400085, India; Homi Bhabha National Institute, Mumbai-400094, India
| | - Rachna Agarwal
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India; Homi Bhabha National Institute, Mumbai-400094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai-400085, India; Homi Bhabha National Institute, Mumbai-400094, India.
| |
Collapse
|
5
|
Wu J, Zhang Y, Liu T, Yang J, Sun X, Gao XJ. The mechanism of selenium regulating the permeability of vascular endothelial cells through selenoprotein O. Redox Biol 2024; 70:103063. [PMID: 38316067 PMCID: PMC10862066 DOI: 10.1016/j.redox.2024.103063] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
Vascular diseases, a leading cause of death in human, are strongly associated with pathological damage to blood vessels. The selenoprotein (Sel) have been reported to play important roles in vascular disease. However, the role of SelO in vascular disease has not been conclusively investigated. The present experiment was to investigate the regulatory mechanism of the effect of SelO on the permeability of vascular endothelial. The H.E staining, FITC-Dextran staining, Dil-AC-LDL staining and FITC-WGA staining showed that vascular structure was damaged, and intercellular junctions were disrupted with selenium (Se)-deficient. Immunohistochemistry, qPCR and Western blot revealed decreased expression of the adhesion plaque proteins vinculin, talin and paxillin, decreased expression of the vascular connectivity effector molecules connexin, claudin-1 and E-cadherin and increased expression of JAM-A and N-cadherin, as well as decreased expression of the ZO-1 signaling pathways ZO-1, Rock, rhoGEF, cingulin and MLC-2. In a screening of 24 Sel present in mice, SelO showed the most pronounced changes in vascular tissues, and a possible association between SelO and vascular intercellular junction effectors was determined using IBM SPSS Statistics 25. Silencing of SelO, vascular endothelial intercellular junction adverse effects present. The regulatory relationship between SelO and vascular endothelial intercellular junctions was determined. The results showed that Se deficiency lead to increased vascular endothelial permeability and vascular tissue damage by decreasing SelO expression, suggesting a possible role for SelO in regulating vascular endothelial permeability.
Collapse
Affiliation(s)
- Jiawei Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanhe Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tianjing Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jie Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoran Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xue-Jiao Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Yang X, Song W, Gao F, Luo H, Liu P, Tan Z, Zhou J, Wang D, Nie X, Lai C, Shi H, Li X, Zhang D. Superoxide Dismutase Catalyzed Size-Adjustable Selenium Nanoparticles in Saccharomyces boulardii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4257-4266. [PMID: 38354318 DOI: 10.1021/acs.jafc.3c08507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Selenium nanoparticles (SeNPs) are important and safe food and feed additives that can be used for dietary supplementation. In this study, a mutagenic strain of Saccharomyces boulardii was employed to obtain biologically synthesized SeNPs (BioSeNPs) with the desired particle size by controlling the dosage and duration of sodium selenite addition, and the average particle size achieved was 55.8 nm with protease A encapsulation. Transcriptomic analysis revealed that increased expression of superoxide dismutase 1 (SOD1) in the mutant strain effectively promoted the synthesis of BioSeNPs and the formation of smaller nanoparticles. Under sodium selenite stress, the mutant strain exhibited significantly increased expression of glutathione peroxidase 2 (GPx2), which was significantly greater in the mutant strain than in the wild type, facilitating the synthesis of glutathione selenol and providing abundant substrates for the production of BioSeNPs. Furthermore, based on the experimental results and transcriptomic analysis of relevant genes such as sod1, gpx2, the thioredoxin reductase 1 gene (trr1) and the thioredoxin reductase 2 gene (trr2), a yeast model for the size-controlled synthesis of BioSeNPs was constructed. This study provides an important theoretical and practical foundation for the green synthesis of controllable-sized BioSeNPs or other metal nanoparticles with potential applications in the fields of food, feed, and biomedicine.
Collapse
Affiliation(s)
- Xurui Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Wancheng Song
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Feng Gao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Pei Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Jia Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Dianlong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Xinling Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210097, China
| | - Chenhuan Lai
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210097, China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Xun Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210097, China
| | - Daihui Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210097, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210037, China
| |
Collapse
|
7
|
Dogaru CB, Duță C, Muscurel C, Stoian I. "Alphabet" Selenoproteins: Implications in Pathology. Int J Mol Sci 2023; 24:15344. [PMID: 37895024 PMCID: PMC10607139 DOI: 10.3390/ijms242015344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Selenoproteins are a group of proteins containing selenium in the form of selenocysteine (Sec, U) as the 21st amino acid coded in the genetic code. Their synthesis depends on dietary selenium uptake and a common set of cofactors. Selenoproteins accomplish diverse roles in the body and cell processes by acting, for example, as antioxidants, modulators of the immune function, and detoxification agents for heavy metals, other xenobiotics, and key compounds in thyroid hormone metabolism. Although the functions of all this protein family are still unknown, several disorders in their structure, activity, or expression have been described by researchers. They concluded that selenium or cofactors deficiency, on the one hand, or the polymorphism in selenoproteins genes and synthesis, on the other hand, are involved in a large variety of pathological conditions, including type 2 diabetes, cardiovascular, muscular, oncological, hepatic, endocrine, immuno-inflammatory, and neurodegenerative diseases. This review focuses on the specific roles of selenoproteins named after letters of the alphabet in medicine, which are less known than the rest, regarding their implications in the pathological processes of several prevalent diseases and disease prevention.
Collapse
Affiliation(s)
| | | | - Corina Muscurel
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
8
|
Yan Y, Zou Q, Zhou Y, He H, Yu W, Yan H, Yi Y, Zhao Z. Water extract from Ligusticum chuanxiong delays the aging of Saccharomyces cerevisiae via improving antioxidant activity. Heliyon 2023; 9:e19027. [PMID: 37600358 PMCID: PMC10432717 DOI: 10.1016/j.heliyon.2023.e19027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
Ligusticum chuanxiong is a common traditional edible-medicinal herb that has various pharmacological activities. However, its effects on Saccharomyces cerevisiae (S. cerevisiae) remains unknown. In this study, we found that water extract of Ligusticum chuanxiong (abbreviated as WEL) exhibited excellent free radical scavenging ability in-vitro. Moreover, WEL treatment could delay the aging of S. cerevisiae, an important food microorganism sensitive to reactive oxygen species (ROS) stress. Biochemical analyses revealed that WEL significantly increased the activity of antioxidant enzymes in S. cerevisiae, including superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR), as well as their gene expression. As a result, ROS level was significantly decreased and accompanied with the decline of malondialdehyde (MDA), which represented a state of low oxidative stress. The reduction of oxidative stress could elevate S. cerevisiae's ethanol fermentation efficiency. Taken together, WEL plays a protective role against S. cerevisiae aging via improving antioxidant activity.
Collapse
Affiliation(s)
- Yinhui Yan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Qianxing Zou
- Department of Reproductive Medicine, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, 545006, PR China
| | - Yueqi Zhou
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Huan He
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Wanguo Yu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Haijun Yan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Zaoya Zhao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China
| |
Collapse
|
9
|
Chen Y, Wan Y, Cai W, Liu N, Zeng J, Liu C, Peng H, Fu G. Effects on Cell Membrane Integrity of Pichia anomala by the Accumulating Excessive Reactive Oxygen Species under Ethanol Stress. Foods 2022; 11:foods11223744. [PMID: 36429336 PMCID: PMC9689904 DOI: 10.3390/foods11223744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Ethanol stress to yeast is well recognized and exists widely during the brewing process of alcohol products. Pichia anomala is an important ester-producing yeast in the brewing process of Chinese Baijiu and other alcohol products. Therefore, it is of great significance for the alcohol products brewing industry to explore the effects of ethanol stress on the growth metabolism of P. anomala. In this study, the effects of ethanol stress on the growth, esters production ability, cell membrane integrity and reactive oxygen species (ROS) metabolism of P. anomala NCU003 were studied. Our results showed that ethanol stress could inhibit the growth, reduce the ability of non-ethyl ester compounds production and destroy the cell morphology of P. anomala NCU003. The results also showed that 9% ethanol stress produced excessive ROS and then increased the activities of antioxidant enzymes (superoxide dismutase, catalase, aseorbateperoxidase and glutathione reductase) compared to the control group. However, these increased antioxidant enzyme activities could not prevent the damage caused by ROS to P. anomala NCU003. Of note, correlation results indicated that high content of ROS could promote the accumulation of malondialdehyde content, resulting in destruction of the integrity of the cell membrane and leading to the leakage of intracellular nutrients (soluble sugar and protein) and electrolytes. These results indicated that the growth and the non-ethyl ester compounds production ability of P. anomala could be inhibited under ethanol stress by accumulating excessive ROS and the destruction of cell membrane integrity in P. anomala.
Collapse
Affiliation(s)
- Yanru Chen
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Wenqin Cai
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Na Liu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Jiali Zeng
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Hong Peng
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330299, China
- Correspondence:
| |
Collapse
|
10
|
Protective Effect of SeMet on Liver Injury Induced by Ochratoxin A in Rabbits. Toxins (Basel) 2022; 14:toxins14090628. [PMID: 36136566 PMCID: PMC9504919 DOI: 10.3390/toxins14090628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is second only to aflatoxin in toxicity among mycotoxins. Recent studies have shown that selenomethionine (SeMet) has a protective effect on mycotoxin-induced toxicity. The purpose of this study was to investigate the protective effect and mechanism of SeMet on OTA-induced liver injury in rabbits. Sixty 35-day-old rabbits with similar body weight were randomly divided into five groups: control group, OTA group (0.2 mg/kg OTA), OTA + 0.2 mg/kg SeMet group, OTA + 0.4 mg/kg SeMet group and OTA + 0.6 mg/kg SeMet group. Rabbits were fed different doses of the SeMet diet for 21 d, and OTA was administered for one week from day 15 (the control group was provided the same dose of NaHCO3 solution). The results showed that 0.4 mg/kg SeMet could significantly improve the liver injury induced by OTA poisoning. SeMet supplementation can improve the changes in physiological blood indexes caused by OTA poisoning in rabbits and alleviate pathological damage to the rabbit liver. SeMet also increased the activities of SOD, GSH-Px and T-AOC and significantly decreased the contents of ROS, MDA, IL-1β, IL-6 and TNF-α, effectively alleviating the oxidative stress and inflammatory response caused by OTA poisoning. In addition, OTA poisoning inhibits Nrf2 and HO-1 levels, ultimately leading to peroxide reaction, while SeMet activates the Nrf2 signaling pathway and enhances the expression of the HO-1 downstream Nrf2 gene. These results suggest that Se protects the liver from OTA-induced hepatotoxicity by regulating Nrf2/HO-1 expression.
Collapse
|
11
|
Xie D, Sun Y, Lei Y. Effect of glucose levels on carbon flow rate, antioxidant status, and enzyme activity of yeast during fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5333-5347. [PMID: 35318660 DOI: 10.1002/jsfa.11887] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The physiological metabolism of yeast has a significant impact on the quality of fermentation products. The present study aimed to investigate yeast metabolism in response to a changing glucose content environment, especially in fermentation products, as well as the change of carbon flow rate, antioxidant status, and yeast enzyme activity. RESULTS Yeast in a 0 g L-1 glucose level was subjected to carbon starvation stress, cell growth retardation and cell proliferation was significantly inadequate; in the logarithmic growth stage of yeast, at a 30 g L-1 glucose level, the carbon source mainly flowed to tricarboxylic acid cycle and pentose phosphate metabolism, cell division, proliferation, and increased cell growth. In later logarithmic growth period and stable period, carbon flowed into glycerol and trehalose metabolism, to cope with the environmental stress; yeast in 60 and 150 g L-1 glucose levels faced high glucose stress at the beginning, the content of reactive oxygen increased, malondialdehyde content increased, cell damage was reduced through the regulation of superoxide dismutase and catalase enzyme activities, and most of the carbon flowed into the metabolic pathway of ethanol, glycerol, and trehalose to cope with high glucose stress, the pentose phosphate pathway showed a large late influx, and NADPH also started to increase rapidly after 24 h. CONCLUSION Yeast was stressed in a high-sugar environment and ensured the activity of yeast by preferentially increasing the metabolic intensity of trehalose, glycerol, and glycolytic metabolism, weakening tricarboxylic acid metabolism, and first weakening and then increasing pentose phosphate metabolism. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yanan Lei
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
12
|
Browning Development and Antioxidant Compounds in White Wines after Selenium, Iron, and Peroxide Addition. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The effect of oxidation on the organoleptic properties of white wines mostly involves increased browning color, loss of the fruity aromas, and appearance of unpleasant odors. Browning, however, is known to be related with polyphenol oxidation and therefore it may be delayed by the presence of antioxidants such as selenium (Se) and SO2. On the other hand, the presence of oxidants such as metal ions and H2O2 can accelerate browning and oxidation phenomena. The browning capacity, the phenolic composition (both total and individual contents of flavanols and hydroxycinnamic acids), the antioxidant activity, and the SO2 content of Assyrtiko white wines were studied after the addition of Fe2+ and H2O2 and Se at two temperatures, employing an accelerated test. Browning was approached from a kinetic point of view, and the study was focused on the implication of oxidants and antioxidants on browning rate, paying particular attention to the content of major redox-active polyphenols, including substances with an o-diphenol feature, such as flavanols and hydroxycinnamic acids. The results showed that after the addition of oxidants it was possible to significantly accelerate the rate of browning development (up to 4.7 and six times) depending on the temperature and the concentration of the added compounds. The presence of Se protected wine color and preserved total SO2 at 35 °C, while at 50 °C, these effects were not observed. Total flavanol content decreased upon heating, while total hydroxycinnamic content showed a slight increase. Similarly, the content of the individual phenolic compounds (with the exception of caffeic acid and (+)-catechin at 35 °C) was decreased with oxidant addition, while Se addition was not adequate to prevent or even promote their oxidation.
Collapse
|
13
|
Kieliszek M, Bano I, Zare H. A Comprehensive Review on Selenium and Its Effects on Human Health and Distribution in Middle Eastern Countries. Biol Trace Elem Res 2022; 200:971-987. [PMID: 33884538 PMCID: PMC8761138 DOI: 10.1007/s12011-021-02716-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
Selenium (Se) is an important microelement with numerous positive effects on human health and diseases. It is important to specify that the status and consumption of Se are for a specific community as the levels of Se are extremely unpredictable between different populations and regions. Our existing paper was based on the impacts of Se on human health and disease along with data on the Se levels in Middle Eastern countries. Overall, the findings of this comprehensive review show that the consumption and levels of Se are inadequate in Middle Eastern nations. Such findings, together with the growing awareness of the importance of Se to general health, require further work primarily on creating an acceptable range of blood Se concentration or other measures to determine optimal Se consumption and, consequently, to guarantee adequate Se supplementation in populations at high risk of low Se intake.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Iqra Bano
- Department of Veterinary Physiology and Biochemistry, Shaheed Benazir Bhutto University of Veterinary & Animal Sciences Sakrand, Sindh, 67210 Pakistan
| | - Hamed Zare
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
14
|
Zhou K, Wu L, Chen G, Liu Z, Zhao X, Zhang C, Lv X, Zhang W, Rao P, Ni L. Development of a Novel Restrictive Medium for Monascus Enrichment From Hongqu Based on the Synergistic Stress of Lactic Acid and Ethanol. Front Microbiol 2021; 12:702951. [PMID: 34234769 PMCID: PMC8256164 DOI: 10.3389/fmicb.2021.702951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/05/2022] Open
Abstract
Hongqu is a famous fermented food produced by Monascus and has been used as food coloring, wine starters and food additives for thousands of years in China. Excellent Monascus strain is an important prerequisite for producing high-quality Hongqu. However, the isolation of Monascus pure culture from Hongqu samples is time-consuming and laborious because it is easily interfered by other microorganisms (especially filamentous fungi). Therefore, the development of restrictive medium for Monascus enrichment from Hongqu is of great significance for the preparation and screening of excellent Monascus strains. Results of this study showed that Monascus has good tolerance to lactic acid and ethanol. Under the conditions of tolerance limits [7.5% lactic acid (v/v) and 12.0% ethanol (v/v)], Monascus could not grow but it still retained the vitality of spore germination, and the spore activity gradually decreased with the increasing concentrations of lactic acid and ethanol. More interestingly, the addition of lactic acid and ethanol significantly changed the microbial community structure in rice milk inoculated with Hongqu. After response surface optimization, Monascus could be successfully enriched without the interference of other microorganisms when 3.98% (v/v) lactic acid and 6.24% (v/v) ethanol were added to rice milk simultaneously. The optimal enrichment duration of Monascus by the restrictive medium based on the synergistic stress of lactic acid and ethanol is 8∼24 h. The synergistic stress of lactic acid and ethanol had no obvious effects on the accumulation of major metabolites in the progeny of Monascus, and was suitable for the enrichment of Monascus from different types of Hongqu. Finally, the possible mechanisms on the tolerance of Monascus to the synergistic stress of lactic acid and ethanol were preliminarily studied. Under the synergistic stress of lactic acid and ethanol, the cell membrane of Monascus defends against lactic acid and ethanol into cells to some extent, and the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities of Monascus were higher than those of other fungi, which significantly reduced the degree of lipid peroxidation of cell membrane, while secreting more amylase to make reducing sugars to provide the cells with enough energy to resist environmental stress. This work has great application value for the construction of Monascus strain library and the better development of its germplasm resources.
Collapse
Affiliation(s)
- Kangxi Zhou
- College of Chemical Engineering, Fuzhou University, Fuzhou, China.,Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Li Wu
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Guimei Chen
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Zhibin Liu
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Xinze Zhao
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Chen Zhang
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Xucong Lv
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Wen Zhang
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Pingfan Rao
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Li Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou, China.,Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| |
Collapse
|
15
|
Zhang S, He Y, Sen B, Wang G. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. BIORESOURCE TECHNOLOGY 2020; 307:123234. [PMID: 32245673 DOI: 10.1016/j.biortech.2020.123234] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Oleaginous microorganisms are among the most promising alternative sources of lipids for oleochemicals and biofuels. However, in the course of lipid production, reactive oxygen species (ROS) are generated inevitably as byproducts of aerobic metabolisms. Although excessive accumulation of ROS leads to lipid peroxidation, DNA damage, and protein denaturation, ROS accumulation has been suggested to enhance lipid synthesis in these microorganisms. There are many unresolved questions concerning this dichotomous view of ROS influence on lipid accumulation. These include what level of ROS triggers lipid overproduction, what mechanisms and targets are vital and whether ROS act as toxic byproducts or cellular messengers in these microorganisms? Here we review the current state of knowledge on ROS generation, antioxidative defense system, the dual effects of ROS on microbial lipid production, and ROS-induced lipid peroxidation and accumulation mechanisms. Toward the end, the review summarizes strategies that enhance lipid production based on ROS manipulation.
Collapse
Affiliation(s)
- Sai Zhang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China.
| |
Collapse
|
16
|
Effects of Long-Term Supplementation with Aluminum or Selenium on the Activities of Antioxidant Enzymes in Mouse Brain and Liver. Catalysts 2020. [DOI: 10.3390/catal10050585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate the effects of aluminum (Al) or selenium (Se) on the “primary” antioxidant defense system enzymes (superoxide dismutase, catalase, and glutathione reductase) in cells of mouse brain and liver after long-term (8-week) exposure to drinking water supplemented with AlCl3 (50 mg or 100 mg Al/L in drinking water) or Na2SeO3 (0.2 mg or 0.4 mg Se/L in drinking water). Results have shown that a high dose of Se increased the activities of superoxide dismutase and catalase in mouse brain and liver. Exposure to a low dose of Se resulted in an increase in catalase activity in mouse brain, but did not show any statistically significant changes in superoxide dismutase activity in both organs. Meanwhile, the administration of both doses of Al caused no changes in activities of these enzymes in mouse brain and liver. The greatest sensitivity to the effect of Al or Se was exhibited by glutathione reductase. Exposure to both doses of Al or Se resulted in statistically significant increase in glutathione reductase activity in both brain and liver. It was concluded that 8-week exposure to Se caused a statistically significant increase in superoxide dismutase, catalase and glutathione reductase activities in mouse brain and/or liver, however, these changes were dependent on the used dose. The exposure to both Al doses caused a statistically significant increase only in glutathione reductase activity of both organs.
Collapse
|
17
|
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology 2020; 28:667-695. [PMID: 32144521 PMCID: PMC7222958 DOI: 10.1007/s10787-020-00690-x] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Abstract Selenium is an essential immunonutrient which holds the human’s metabolic activity with its chemical bonds. The organic forms of selenium naturally present in human body are selenocysteine and selenoproteins. These forms have a unique way of synthesis and translational coding. Selenoproteins act as antioxidant warriors for thyroid regulation, male-fertility enhancement, and anti-inflammatory actions. They also participate indirectly in the mechanism of wound healing as oxidative stress reducers. Glutathione peroxidase (GPX) is the major selenoprotein present in the human body, which assists in the control of excessive production of free radical at the site of inflammation. Other than GPX, other selenoproteins include selenoprotein-S that regulates the inflammatory cytokines and selenoprotein-P that serves as an inducer of homeostasis. Previously, reports were mainly focused on the cellular and molecular mechanism of wound healing with reference to various animal models and cell lines. In this review, the role of selenium and its possible routes in translational decoding of selenocysteine, synthesis of selenoproteins, systemic action of selenoproteins and their indirect assimilation in the process of wound healing are explained in detail. Some of the selenium containing compounds which can acts as cancer preventive and therapeutics are also discussed. These compounds directly or indirectly exhibit antioxidant properties which can sustain the intracellular redox status and these activities protect the healthy cells from reactive oxygen species induced oxidative damage. Although the review covers the importance of selenium/selenoproteins in wound healing process, still some unresolved mystery persists which may be resolved in near future. Graphic abstract ![]()
Collapse
Affiliation(s)
- Sneha Hariharan
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India
| | - Selvakumar Dharmaraj
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
18
|
Drehmer E, Navarro-Moreno MÁ, Carrera S, Villar VM, Moreno ML. Oxygenic metabolism in nutritional obesity induced by olive oil. The influence of vitamin C. Food Funct 2019; 10:3567-3580. [PMID: 31157805 DOI: 10.1039/c8fo02550a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a medical and sociological problem of great importance due to the high percentage of people affected and the important health consequences that it involves. Most cases of obesity are related to an inadequate diet, rich in fats, which could lead to changes in the patient's oxygenic metabolism. That is why this study has been proposed to evaluate how some aspects of oxygenic metabolism are affected in a nutritional experimental model, with a controlled hyperlipidic liquid diet based on olive oil, and the effect of the antioxidant vitamin C on these conditions. Wistar rats were divided into four groups which received a control and hyperlipidic liquid diet for 30 days, with or without a vitamin C supplement (CO, COC, HO and HOC). First of all the body and fat tissue development was measured in the four groups. Our results showed that the excessive intake of nutritional and healthy fat such as olive oil did not prevent the appearance of obesity and the supplementation with vitamin C did not have a protective effect on body and fat development. The study of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in total liver, liver cytosol, abdominal white fat, brown fat and blood cells showed that vitamin C could have different selectivities and affinities for different enzymes and compartments/tissues of the body. Finally, the effect of vitamin C on various metabolic parameters (glucose, pyruvate, lactate, LDH, ATP, acetoacetate and beta-hydroxybutyrate) provided positive protection against oxidative stress especially under hyperlipidic conditions. All things considered, the present study concludes that vitamin C treatment could protect Wistar rats from the oxidative stress impairment induced by obesity generated by an excessive intake of fats.
Collapse
Affiliation(s)
- Eraci Drehmer
- Department of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | | | | | | | | |
Collapse
|
19
|
Romero I, de Francisco P, Gutiérrez JC, Martín-González A. Selenium cytotoxicity in Tetrahymena thermophila: New clues about its biological effects and cellular resistance mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:850-865. [PMID: 30947056 DOI: 10.1016/j.scitotenv.2019.03.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Selenium is an essential micronutrient but at high concentrations can produce severe cytotoxicity and genomic damage. We have evaluated the cytotoxicity, ultrastructural and mitochondrial alterations of the two main selenium inorganic species; selenite and selenate, in the eukaryotic microorganism Tetrahymena thermophila. In this ciliate, selenite is more toxic than selenate. Their LC50 values were calculated as 27.65 μM for Se(IV) and 56.88 mM for Se(VI). Significant levels of peroxides/hydroperoxides are induced under low-moderate selenite or selenate concentrations. Se(VI) exposures induce an immediate mitochondrial membrane depolarization. Selenium treated cells show an intense vacuolization and some of them present numerous discrete and small electrondense particles, probably selenium deposits. Mitochondrial fusion, an intense swelling in peripheral mitochondria and mitophagy are detected in selenium treated cells, especially in those exposed to Se (IV). qRT-PCR analysis of diverse genes, encoding relevant antioxidant enzymes or other proteins, like metallothioneins, involved in an environmental general stress response, have shown that they may be crucial against Se(IV) and/or Se (VI) cytotoxicity.
Collapse
Affiliation(s)
- Ivan Romero
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain
| | - Patricia de Francisco
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain
| | - Juan Carlos Gutiérrez
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain
| | - Ana Martín-González
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain..
| |
Collapse
|