1
|
Clagnan E, Costanzo M, Visca A, Di Gregorio L, Tabacchioni S, Colantoni E, Sevi F, Sbarra F, Bindo A, Nolfi L, Magarelli RA, Trupo M, Ambrico A, Bevivino A. Culturomics- and metagenomics-based insights into the soil microbiome preservation and application for sustainable agriculture. Front Microbiol 2024; 15:1473666. [PMID: 39526137 PMCID: PMC11544545 DOI: 10.3389/fmicb.2024.1473666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Soil health is crucial for global food production in the context of an ever-growing global population. Microbiomes, a combination of microorganisms and their activities, play a pivotal role by biodegrading contaminants, maintaining soil structure, controlling nutrients' cycles, and regulating the plant responses to biotic and abiotic stresses. Microbiome-based solutions along the soil-plant continuum, and their scaling up from laboratory experiments to field applications, hold promise for enhancing agricultural sustainability by harnessing the power of microbial consortia. Synthetic microbial communities, i.e., selected microbial consortia, are designed to perform specific functions. In contrast, natural communities leverage indigenous microbial populations that are adapted to local soil conditions, promoting ecosystem resilience, and reducing reliance on external inputs. The identification of microbial indicators requires a holistic approach. It is fundamental for current understanding the soil health status and for providing a comprehensive assessment of sustainable land management practices and conservation efforts. Recent advancements in molecular technologies, such as high-throughput sequencing, revealed the incredible diversity of soil microbiomes. On one hand, metagenomic sequencing allows the characterization of the entire genetic composition of soil microbiomes, and the examination of their functional potential and ecological roles; on the other hand, culturomics-based approaches and metabolic fingerprinting offer complementary information by providing snapshots of microbial diversity and metabolic activities both in and ex-situ. Long-term storage and cryopreservation of mixed culture and whole microbiome are crucial to maintain the originality of the sample in microbiome biobanking and for the development and application of microbiome-based innovation. This review aims to elucidate the available approaches to characterize diversity, function, and resilience of soil microbial communities and to develop microbiome-based solutions that can pave the way for harnessing nature's untapped resources to cultivate crops in healthy soils, to enhance plant resilience to abiotic and biotic stresses, and to shape thriving ecosystems unlocking the potential of soil microbiomes is key to sustainable agriculture. Improving management practices by incorporating beneficial microbial consortia, and promoting resilience to climate change by facilitating adaptive strategies with respect to environmental conditions are the global challenges of the future to address the issues of climate change, land degradation and food security.
Collapse
Affiliation(s)
- Elisa Clagnan
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Gruppo Ricicla Labs, Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DiSAA), University of Milan, Milan, Italy
| | - Manuela Costanzo
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Andrea Visca
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Luciana Di Gregorio
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Silvia Tabacchioni
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Eleonora Colantoni
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Filippo Sevi
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Federico Sbarra
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Life Sciences and System Biology (DBIOS), University of Turin, Turin, Italy
| | - Arianna Bindo
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Turin, Italy
| | - Lorenzo Nolfi
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Rosaria Alessandra Magarelli
- Sustainable AgriFood Systems Division, Department for Sustainability, Trisaia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Mario Trupo
- Sustainable AgriFood Systems Division, Department for Sustainability, Trisaia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Alfredo Ambrico
- Sustainable AgriFood Systems Division, Department for Sustainability, Trisaia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Annamaria Bevivino
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
2
|
Cunha-Ferreira IC, Vizzotto CS, Frederico TD, Peixoto J, Carvalho LS, Tótola MR, Krüger RH. Impact of Paenibacillus elgii supernatant on screening bacterial strains with potential for biotechnological applications. ENGINEERING MICROBIOLOGY 2024; 4:100163. [PMID: 39629112 PMCID: PMC11610968 DOI: 10.1016/j.engmic.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 12/06/2024]
Abstract
The biotechnological industry faces a crucial demand for novel bioactive compounds, particularly antimicrobial agents, to address the rising challenge of bacterial resistance to current available antibiotics. Traditional strategies for cultivating naturally occurring microorganisms often limit the discovery of novel antimicrobial producers. This study presents a protocol for targeted selection of bacterial strains using the supernatant of Paenibacillus elgii, which produces abundant signal molecules and antimicrobial peptides. Soil samples were inoculated in these enriched culture media to selectively cultivate bacteria resistant to the supernatant, indicating their potential to produce similar compounds. The bacterial strains isolated through this method were assessed for their antibacterial activity. In addition, the functional annotation of the genome of one of these strains revealed several gene clusters of biotechnological interest. This study highlights the effectiveness of using this approach for selective cultivation of microorganisms with potential for biotechnological applications.
Collapse
Affiliation(s)
- I. C. Cunha-Ferreira
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - C. S. Vizzotto
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - T. D. Frederico
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - J. Peixoto
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - L. S Carvalho
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - M. R. Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - R. H. Krüger
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| |
Collapse
|
3
|
Bergman O, Be'eri-Shlevin Y, Ninio S. Sodium levels and grazing pressure shape natural communities of the intracellular pathogen Legionella. MICROBIOME 2023; 11:167. [PMID: 37518067 PMCID: PMC10388490 DOI: 10.1186/s40168-023-01611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Legionella are parasites of freshwater protozoa, responsible for Legionellosis. Legionella can be found in a variety of aquatic environments, including rivers, lakes, and springs, as well as in engineered water systems where they can potentially lead to human disease outbarks. Legionella are considered to be predominantly freshwater organisms with a limited ability to proliferate in saline environments. Exposure of Legionella to high sodium concentrations inhibits growth and virulence of laboratory strains, particularly under elevated temperatures. Nonetheless, Legionella have been identified in some saline environments where they likely interact with various protozoan hosts. In this work, we examine how these selection pressures, sodium and grazing, help shape Legionella ecology within natural environments. Utilizing Legionella-specific primers targeting a variable region of the Legionella 16S rRNA gene, we characterized Legionella abundance, diversity, and community composition in natural spring clusters of varying sodium concentrations, focusing on high sodium concentrations and elevated temperatures. RESULTS We observed the highest abundance of Legionella in spring clusters of high salinity, particularly in combination with elevated temperatures. Legionella abundance was strongly related to sodium concentrations. The Legionella community structure in saline environments was characterized by relatively low diversity, compared to spring clusters of lower salinity. The community composition in high salinity was characterized by few dominant Legionella genotypes, not related to previously described species. Protozoan microbial community structure and composition patterns resembled those of Legionella, suggesting a common response to similar selection pressures. We examined Legionella co-occurrence with potential protozoan hosts and found associations with Ciliophora and Amoebozoa representatives. CONCLUSIONS Our results indicate that selection forces in saline environments favor a small yet dominant group of Legionella species that are not closely related to known species. These novel environmental genotypes interact with various protozoan hosts, under environmental conditions of high salinity. Our findings suggest that alternative survival mechanisms are utilized by these species, representing mechanisms distinct from those of well-studied laboratory strains. Our study demonstrate how salinity can shape communities of opportunistic pathogens and their hosts, in natural environments, shedding light on evolutionary forces acting within these complex environments. Video Abstract.
Collapse
Affiliation(s)
- Oded Bergman
- Kinneret Limnological Laboratory (KLL), Israel Oceanographic and Limnological Research (IOLR), P.O. Box 447, 49500, Migdal, Israel
| | - Yaron Be'eri-Shlevin
- Kinneret Limnological Laboratory (KLL), Israel Oceanographic and Limnological Research (IOLR), P.O. Box 447, 49500, Migdal, Israel
| | - Shira Ninio
- Kinneret Limnological Laboratory (KLL), Israel Oceanographic and Limnological Research (IOLR), P.O. Box 447, 49500, Migdal, Israel.
| |
Collapse
|
4
|
Kapinusova G, Lopez Marin MA, Uhlik O. Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons. Front Microbiol 2023; 14:1089630. [PMID: 36960281 PMCID: PMC10027941 DOI: 10.3389/fmicb.2023.1089630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
In terms of the number and diversity of living units, the prokaryotic empire is the most represented form of life on Earth, and yet it is still to a significant degree shrouded in darkness. This microbial "dark matter" hides a great deal of potential in terms of phylogenetically or metabolically diverse microorganisms, and thus it is important to acquire them in pure culture. However, do we know what microorganisms really need for their growth, and what the obstacles are to the cultivation of previously unidentified taxa? Here we review common and sometimes unexpected requirements of environmental microorganisms, especially soil-harbored bacteria, needed for their replication and cultivation. These requirements include resuscitation stimuli, physical and chemical factors aiding cultivation, growth factors, and co-cultivation in a laboratory and natural microbial neighborhood.
Collapse
Affiliation(s)
| | | | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
5
|
James AE, Kesteloot K, Paul JT, McMullen RL, Louie S, Waters C, Dillaha J, Tumlison J, Haselow DT, Smith JC, Lee S, Ritter T, Lucas C, Kunz J, Miller LA, Said M. Potential Association of Legionnaires' Disease with Hot Spring Water, Hot Springs National Park and Hot Springs, Arkansas, USA, 2018-2019. Emerg Infect Dis 2022; 28:44-50. [PMID: 34932451 PMCID: PMC8714197 DOI: 10.3201/eid2801.211090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Legionella pneumophila is the cause of Legionnaires' disease, a life-threatening pneumonia that occurs after inhalation of aerosolized water containing the bacteria. Legionella growth occurs in stagnant, warm-to-hot water (77°F-113°F) that is inadequately disinfected. Piped hot spring water in Hot Springs National Park, Arkansas, USA, has naturally high temperatures (>135°F) that prevent Legionella growth, and Legionnaires' disease has not previously been associated with the park or other hot springs in the United States. During 2018-2019, Legionnaires' disease occurred in 5 persons after they visited the park; 3 of these persons were potentially exposed in spa facilities that used untreated hot spring water. Environmental testing revealed Legionella bacteria in piped spring water, including 134°F stagnant pipe water. These findings underscore the importance of water management programs to reduce Legionella growth in plumbing through control activities such as maintaining hot water temperatures, reducing stored water age, and ensuring adequate water flow.
Collapse
|
6
|
Chambers ST, Slow S, Scott-Thomas A, Murdoch DR. Legionellosis Caused by Non- Legionella pneumophila Species, with a Focus on Legionella longbeachae. Microorganisms 2021; 9:291. [PMID: 33572638 PMCID: PMC7910863 DOI: 10.3390/microorganisms9020291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Although known as causes of community-acquired pneumonia and Pontiac fever, the global burden of infection caused by Legionella species other than Legionella pneumophila is under-recognised. Non-L. pneumophila legionellae have a worldwide distribution, although common testing strategies for legionellosis favour detection of L. pneumophila over other Legionella species, leading to an inherent diagnostic bias and under-detection of cases. When systematically tested for in Australia and New Zealand, L. longbeachae was shown to be a leading cause of community-acquired pneumonia. Exposure to potting soils and compost is a particular risk for infection from L. longbeachae, and L. longbeachae may be better adapted to soil and composting plant material than other Legionella species. It is possible that the high rate of L. longbeachae reported in Australia and New Zealand is related to the composition of commercial potting soils which, unlike European products, contain pine bark and sawdust. Genetic studies have demonstrated that the Legionella genomes are highly plastic, with areas of the chromosome showing high levels of recombination as well as horizontal gene transfer both within and between species via plasmids. This, combined with various secretion systems and extensive effector repertoires that enable the bacterium to hijack host cell functions and resources, is instrumental in shaping its pathogenesis, survival and growth. Prevention of legionellosis is hampered by surveillance systems that are compromised by ascertainment bias, which limits commitment to an effective public health response. Current prevention strategies in Australia and New Zealand are directed at individual gardeners who use potting soils and compost. This consists of advice to avoid aerosols generated by the use of potting soils and use masks and gloves, but there is little evidence that this is effective. There is a need to better understand the epidemiology of L. longbeachae and other Legionella species in order to develop effective treatment and preventative strategies globally.
Collapse
Affiliation(s)
- Stephen T. Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (S.S.); (A.S.-T.); (D.R.M.)
| | | | | | | |
Collapse
|