1
|
Liang B, Lin W, Tang Y, Li T, Chen Q, Zhang W, Zhou X, Ma J, Liu B, Yu Z, Zha L, Zhang M. Selenium supplementation elevated SELENBP1 to inhibit fibroblast activation in pulmonary arterial hypertension. iScience 2024; 27:111036. [PMID: 39435142 PMCID: PMC11492086 DOI: 10.1016/j.isci.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/28/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease induced by abnormal activation of pulmonary adventitial fibroblasts (PAFs) in the early stage. The association between selenium deficiency and PAH is not yet fully understood. In this study, we found that the serum selenium content of PAH patients was significantly lower than that of healthy volunteers in two independent cohorts. Moreover, PAH patients with lower selenium levels may present poorer prognosis. Prophylactic selenium supplementation could effectively improve hemodynamics and pulmonary vascular remodeling in monocrotaline-induced pulmonary hypertension rat models. Mechanistically, selenium supplementation restored the level of selenium binding protein 1 (SELENBP1) which could exert an antagonistic effect on PAF activation. The rescue assay further proved that selenium supplementation worked in a SELENBP1-dependent manner. These findings demonstrated that selenium deficiency is an important risk factor in PAH, and the selenium-SELENBP1 axis represents a promising target for PAH prevention.
Collapse
Affiliation(s)
- Benhui Liang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenchao Lin
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiyang Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tangzhiming Li
- Department of Cardiology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Qin Chen
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Zhang
- Department of Cardiology, Xiangya Third Hospital, Central South University, Changsha, Hunan, China
| | - Xinyi Zhou
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiayao Ma
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boqing Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqiu Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Xing C, Bao L, Li W, Fan H. Progress on role of ion channels of cardiac fibroblasts in fibrosis. Front Physiol 2023; 14:1138306. [PMID: 36969589 PMCID: PMC10033868 DOI: 10.3389/fphys.2023.1138306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Collapse
|
3
|
Wang R, Qi YF, Ding CH, Zhang D. Sulfur-containing amino acids and their metabolites in atrial fibrosis. Front Pharmacol 2022; 13:1063241. [DOI: 10.3389/fphar.2022.1063241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Atrial fibrosis, a symbol of atrial structural remodelling, is a complex process involved in the occurrence and maintenance of atrial fibrillation (AF). Atrial fibrosis is regulated by multiple factors. Sulfur containing amino acids and their metabolites, such as hydrogen sulfide (H2S) and taurine, can inhibit the process of atrial fibrosis and alleviate atrial remodeling. However, homocysteine can promote the activation of atrial fibroblasts and further promote atrial fibrosis. In this review, we will focus on the recent progress in atrial structural changes and molecular mechanisms of atrial fibrosis, as well as the regulatory roles and possible mechanisms of sulfur containing amino acids and their metabolites in atrial fibrosis. It is expected to provide new ideas for clarifying the mechanism of atrial fibrosis and finding targets to inhibit the progress of atrial fibrosis.
Collapse
|
4
|
Yang YW, Deng NH, Tian KJ, Liu LS, Wang Z, Wei DH, Liu HT, Jiang ZS. Development of hydrogen sulfide donors for anti-atherosclerosis therapeutics research: Challenges and future priorities. Front Cardiovasc Med 2022; 9:909178. [PMID: 36035922 PMCID: PMC9412017 DOI: 10.3389/fcvm.2022.909178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide (H2S), a gas transmitter found in eukaryotic organisms, plays an essential role in several physiological processes. H2S is one of the three primary biological gas transmission signaling mediators, along with nitric oxide and carbon monoxide. Several animal and in vitro experiments have indicated that H2S can prevent coronary endothelial mesenchymal transition, reduce the expression of endothelial cell adhesion molecules, and stabilize intravascular plaques, suggesting its potential role in the treatment of atherosclerosis (AS). H2S donors are compounds that can release H2S under certain circumstances. Development of highly targeted H2S donors is a key imperative as these can allow for in-depth evaluation of the anti-atherosclerotic effects of exogenous H2S. More importantly, identification of an optimal H2S donor is critical for the creation of H2S anti-atherosclerotic prodrugs. In this review, we discuss a wide range of H2S donors with anti-AS potential along with their respective transport pathways and design-related limitations. We also discuss the utilization of nano-synthetic technologies to manufacture H2S donors. This innovative and effective design example sheds new light on the production of highly targeted H2S donors.
Collapse
Affiliation(s)
- Ye-Wei Yang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Nian-Hua Deng
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Kai-Jiang Tian
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Lu-Shan Liu
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Dang-Heng Wei
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Hui-Ting Liu
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
- *Correspondence: Zhi-Sheng Jiang
| |
Collapse
|
5
|
Guo F, Tang C, Huang B, Gu L, Zhou J, Mo Z, Liu C, Liu Y. LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β Axis. Mol Cells 2022; 45:122-133. [PMID: 34887365 PMCID: PMC8926865 DOI: 10.14348/molcells.2021.0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = -0.337, rs = -0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.
Collapse
Affiliation(s)
- Feng Guo
- Department of Cardiology, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Bo Huang
- Department of Cardiology, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Lifei Gu
- Department of Cardiology, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Jun Zhou
- Department of Cardiology, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Zongyang Mo
- Department of Cardiology, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Chang Liu
- Department of Cardiology, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Yuqing Liu
- Department of Emergency, Naval Characteristic Medical Center Affiliated to Shanghai, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Hu S, Yang M, Huang S, Zhong S, Zhang Q, Ding H, Xiong X, Hu Z, Yang Y. Different Roles of Resident and Non-resident Macrophages in Cardiac Fibrosis. Front Cardiovasc Med 2022; 9:818188. [PMID: 35330948 PMCID: PMC8940216 DOI: 10.3389/fcvm.2022.818188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiac fibrosis is a key pathological link of various cardiovascular diseases to heart failure. It is of great significance to deeply understand the development process of cardiac fibrosis and the cellular and molecular mechanisms involved. Macrophages play a special role in promoting heart development, maintaining myocardial cell homeostasis and heart function. They are involved in the whole process from inflammatory to cardiac fibrosis. This article summarizes the relationship between inflammation and fibrosis, discusses the bidirectional regulation of cardiac fibrosis by macrophages and analyses the functional heterogeneity of macrophages from different sources. It is believed that CCR2– cardiac resident macrophages can promote cardiac function, but the recruitment and infiltration of CCR2+ cardiac non-resident macrophages aggravate cardiac dysfunction and heart remodeling. After heart injury, damage associated molecular patterns (DAMPs) are released in large quantities, and the inflammatory signal mediated by macrophage chemoattractant protein-1 (MCP-1) promotes the infiltration of CCR2+ monocytes and transforms into macrophages in the heart. These CCR2+ non-resident macrophages not only replace part of the CCR2– resident macrophage subpopulation in the heart, but also cause cardiac homeostasis and hypofunction, and release a large number of mediators that promote fibroblast activation to cause cardiac fibrosis. This article reveals the cell biology mechanism of resident and non-resident macrophages in regulating cardiac fibrosis. It is believed that inhibiting the infiltration of cardiac non-resident macrophages and promoting the proliferation and activation of cardiac resident macrophages are the key to improving cardiac fibrosis and improving cardiac function.
Collapse
Affiliation(s)
- Siyuan Hu
- School of Sports Art, Hunan University of Chinese Medicine, Changsha, China.,College of Health Science, Wuhan Sports University, Wuhan, China
| | - Meng Yang
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Shumin Huang
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Senjie Zhong
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Qian Zhang
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Haichao Ding
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiajun Xiong
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Zhixi Hu
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
7
|
Hu HJ, Wang XH, Liu Y, Zhang TQ, Chen ZR, Zhang C, Tang ZH, Qu SL, Tang HF, Jiang ZS. Hydrogen Sulfide Ameliorates Angiotensin II-Induced Atrial Fibrosis Progression to Atrial Fibrillation Through Inhibition of the Warburg Effect and Endoplasmic Reticulum Stress. Front Pharmacol 2021; 12:690371. [PMID: 34950023 PMCID: PMC8689064 DOI: 10.3389/fphar.2021.690371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrosis is the basis for the occurrence and development of atrial fibrillation (AF) and is closely related to the Warburg effect, endoplasmic reticulum stress (ERS) and mitochondrion dysfunctions-induced cardiomyocyte apoptosis. Hydrogen sulfide (H2S) is a gaseous signalling molecule with cardioprotective, anti-myocardial fibrosis and improved energy metabolism effects. Nevertheless, the specific mechanism by which H2S improves the progression of atrial fibrosis to AF remains unclear. A case-control study of patients with and without AF was designed to assess changes in H2S, the Warburg effect, and ERS in AF. The results showed that AF can significantly reduce cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate thiotransferase (3-MST) expression and the H2S level, induce cystathionine-β-synthase (CBS) expression; increase the Warburg effect, ERS and atrial fibrosis; and promote left atrial dysfunction. In addition, AngII-treated SD rats had an increased Warburg effect and ERS levels and enhanced atrial fibrosis progression to AF compared to wild-type SD rats, and these conditions were reversed by sodium hydrosulfide (NaHS), dichloroacetic acid (DCA) or 4-phenylbutyric acid (4-PBA) supplementation. Finally, low CSE levels in AngII-induced HL-1 cells were concentration- and time-dependent and associated with mitochondrial dysfunction, apoptosis, the Warburg effect and ERS, and these effects were reversed by NaHS, DCA or 4-PBA supplementation. Our research indicates that H2S can regulate the AngII-induced Warburg effect and ERS and might be a potential therapeutic drug to inhibit atrial fibrosis progression to AF.
Collapse
Affiliation(s)
- Heng-Jing Hu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China
| | - Xiu-Heng Wang
- Department of Nuclear Medicine Lab, First Affiliated Hospital of University of South China, Hengyang, China
| | - Yao Liu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Tian-Qing Zhang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zheng-Rong Chen
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Chi Zhang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China.,Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
8
|
Chirindoth SS, Cancarevic I. Role of Hydrogen Sulfide in the Treatment of Fibrosis. Cureus 2021; 13:e18088. [PMID: 34692303 PMCID: PMC8525665 DOI: 10.7759/cureus.18088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/18/2021] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S) is a biological gas, the abnormal metabolism of which has associations with the pathogenesis of fibrosis. The purpose of this paper was to determine the potential of H2S in the prevention and treatment of fibrosis. The data is obtained mainly from articles found in the PubMed database using the keywords “fibrosis” and “hydrogen sulfide,” limiting the results to those published within the last 10 years. Some additional resources have also been used, such as books and articles within journals. Evidence of decreased H2S enzyme levels in animal models with fibrotic diseases has been found. The protective role of H2S has been validated by the administration of exogenous H2S donors in animal models with fibrosis. It is also evident that H2S is involved in complex signaling pathways and ion channels that inhibit fibrosis development. These findings support the role of H2S in the treatment of a variety of fibrotic diseases. A randomized controlled trial in fibrosis patients comparing the efficacy of exogenous H2S and placebo in addition to standard of care can be implemented to validate this further.
Collapse
Affiliation(s)
- Swathy S Chirindoth
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ivan Cancarevic
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
9
|
Hydrogen Sulfide Attenuates Angiotensin II-Induced Cardiac Fibroblast Proliferation and Transverse Aortic Constriction-Induced Myocardial Fibrosis through Oxidative Stress Inhibition via Sirtuin 3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9925771. [PMID: 34603602 PMCID: PMC8486544 DOI: 10.1155/2021/9925771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/30/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
Sirtuin 3 (SIRT3) is critical in mitochondrial function and oxidative stress. Our present study investigates whether hydrogen sulfide (H2S) attenuated myocardial fibrosis and explores the possible role of SIRT3 on the protective effects. Neonatal rat cardiac fibroblasts were pretreated with NaHS followed by angiotensin II (Ang II) stimulation. SIRT3 was knocked down with siRNA technology. SIRT3 promoter activity and expression, as well as mitochondrial function, were measured. Male wild-type (WT) and SIRT3 knockout (KO) mice were intraperitoneally injected with NaHS followed by transverse aortic constriction (TAC). Myocardium sections were stained with Sirius red. Hydroxyproline content, collagen I and collagen III, α-smooth muscle actin (α-SMA), and dynamin-related protein 1 (DRP1) expression were measured both in vitro and in vivo. We found that NaHS enhanced SIRT3 promoter activity and increased SIRT3 mRNA expression. NaHS inhibited cell proliferation and hydroxyproline secretion, decreased collagen I, collagen III, α-SMA, and DRP1 expression, alleviated oxidative stress, and improved mitochondrial respiration function and membrane potential in Ang II-stimulated cardiac fibroblasts, which were unavailable after SIRT3 was silenced. In vivo, NaHS reduced hydroxyproline content, ameliorated perivascular and interstitial collagen deposition, and inhibited collagen I, collagen III, and DRP1 expression in the myocardium of WT mice but not SIRT3 KO mice with TAC. Altogether, NaHS attenuated myocardial fibrosis through oxidative stress inhibition via a SIRT3-dependent manner.
Collapse
|
10
|
Liu J, Jin Y, Wang B, Zhang J, Zuo S. C188-9 reduces TGF-β1-induced fibroblast activation and alleviates ISO-induced cardiac fibrosis in mice. FEBS Open Bio 2021; 11:2033-2040. [PMID: 34056872 PMCID: PMC8255844 DOI: 10.1002/2211-5463.13212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiac fibrosis is the final event of heart failure and is associated with almost all forms of cardiovascular disease. Cardiac fibroblasts (CFs), a major cell type in the heart, are responsible for regulating normal myocardial function and maintaining extracellular matrix homeostasis in adverse myocardial remodeling. In this study, we found that C188‐9, a small‐molecule inhibitor of signal transducer and activator of transcription 3 (STAT3), exhibited an antifibrotic function, both in vitro and in vivo. C188‐9 decreased transforming growth factor‐β1‐induced CF activation and fibrotic gene expression. Moreover, C188‐9 treatment alleviated heart injury and cardiac fibrosis in an isoproterenol‐induced mouse model by suppressing STAT3 phosphorylation and activation. These findings may help us better understand the role of C188‐9 in cardiac fibrosis and facilitate the development of new treatments for cardiac fibrosis and other cardiovascular diseases.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Yuxuan Jin
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, China
| | - Bei Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Jinying Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Shengkai Zuo
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, China
| |
Collapse
|
11
|
Jakob D, Klesen A, Darkow E, Kari FA, Beyersdorf F, Kohl P, Ravens U, Peyronnet R. Heterogeneity and Remodeling of Ion Currents in Cultured Right Atrial Fibroblasts From Patients With Sinus Rhythm or Atrial Fibrillation. Front Physiol 2021; 12:673891. [PMID: 34149453 PMCID: PMC8209389 DOI: 10.3389/fphys.2021.673891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
Cardiac fibroblasts express multiple voltage-dependent ion channels. Even though fibroblasts do not generate action potentials, they may influence cardiac electrophysiology by electrical coupling via gap junctions with cardiomyocytes, and through fibrosis. Here, we investigate the electrophysiological phenotype of cultured fibroblasts from right atrial appendage tissue of patients with sinus rhythm (SR) or atrial fibrillation (AF). Using the patch-clamp technique in whole-cell mode, we observed steady-state outward currents exhibiting either no rectification or inward and/or outward rectification. The distributions of current patterns between fibroblasts from SR and AF patients were not significantly different. In response to depolarizing voltage pulses, we measured transient outward currents with fast and slow activation kinetics, an outward background current, and an inward current with a potential-dependence resembling that of L-type Ca2+ channels. In cell-attached patch-clamp mode, large amplitude, paxilline-sensitive single channel openings were found in ≈65% of SR and ∼38% of AF fibroblasts, suggesting the presence of “big conductance Ca2+-activated K+ (BKCa)” channels. The open probability of BKCa was significantly lower in AF than in SR fibroblasts. When cultured in the presence of paxilline, the shape of fibroblasts became wider and less spindle-like. Our data confirm previous findings on cardiac fibroblast electrophysiology and extend them by illustrating differential channel expression in human atrial fibroblasts from SR and AF tissue.
Collapse
Affiliation(s)
- Dorothee Jakob
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Freiburg, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Klesen
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Freiburg, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elisa Darkow
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Freiburg, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fabian A Kari
- Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiovascular Surgery, University Heart Center Freiburg - Bad Krozingen, Freiburg, Germany
| | - Friedhelm Beyersdorf
- Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiovascular Surgery, University Heart Center Freiburg - Bad Krozingen, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Freiburg, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Freiburg, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Freiburg, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Jakob D, Klesen A, Allegrini B, Darkow E, Aria D, Emig R, Chica AS, Rog-Zielinska EA, Guth T, Beyersdorf F, Kari FA, Proksch S, Hatem SN, Karck M, Künzel SR, Guizouarn H, Schmidt C, Kohl P, Ravens U, Peyronnet R. Piezo1 and BK Ca channels in human atrial fibroblasts: Interplay and remodelling in atrial fibrillation. J Mol Cell Cardiol 2021; 158:49-62. [PMID: 33974928 DOI: 10.1016/j.yjmcc.2021.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
AIMS Atrial Fibrillation (AF) is an arrhythmia of increasing prevalence in the aging populations of developed countries. One of the important indicators of AF is sustained atrial dilatation, highlighting the importance of mechanical overload in the pathophysiology of AF. The mechanisms by which atrial cells, including fibroblasts, sense and react to changing mechanical forces, are not fully elucidated. Here, we characterise stretch-activated ion channels (SAC) in human atrial fibroblasts and changes in SAC- presence and activity associated with AF. METHODS AND RESULTS Using primary cultures of human atrial fibroblasts, isolated from patients in sinus rhythm or sustained AF, we combine electrophysiological, molecular and pharmacological tools to identify SAC. Two electrophysiological SAC- signatures were detected, indicative of cation-nonselective and potassium-selective channels. Using siRNA-mediated knockdown, we identified the cation-nonselective SAC as Piezo1. Biophysical properties of the potassium-selective channel, its sensitivity to calcium, paxilline or iberiotoxin (blockers), and NS11021 (activator), indicated presence of calcium-dependent 'big potassium channels' (BKCa). In cells from AF patients, Piezo1 activity and mRNA expression levels were higher than in cells from sinus rhythm patients, while BKCa activity (but not expression) was downregulated. Both Piezo1-knockdown and removal of extracellular calcium from the patch pipette resulted in a significant reduction of BKCa current during stretch. No co-immunoprecipitation of Piezo1 and BKCa was detected. CONCLUSIONS Human atrial fibroblasts contain at least two types of ion channels that are activated during stretch: Piezo1 and BKCa. While Piezo1 is directly stretch-activated, the increase in BKCa activity during mechanical stimulation appears to be mainly secondary to calcium influx via SAC such as Piezo1. During sustained AF, Piezo1 is increased, while BKCa activity is reduced, highlighting differential regulation of both channels. Our data support the presence and interplay of Piezo1 and BKCa in human atrial fibroblasts in the absence of physical links between the two channel proteins.
Collapse
Affiliation(s)
- Dorothee Jakob
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Alexander Klesen
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Benoit Allegrini
- CNRS University Cote d'Azur laboratory Institut Biology Valrose, Nice, France
| | - Elisa Darkow
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Diana Aria
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Operative Dentistry and Periodontology, Medical Center - University of Freiburg, Germany
| | - Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, Faculty of Biology, University of Freiburg, Germany
| | - Ana Simon Chica
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Tim Guth
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Friedhelm Beyersdorf
- Faculty of Medicine, University of Freiburg, Germany; Department of Cardiovascular Surgery, University Heart Center Freiburg Bad Krozingen, Medical Center - University of Freiburg, Germany
| | - Fabian A Kari
- Faculty of Medicine, University of Freiburg, Germany; Department of Cardiovascular Surgery, University Heart Center Freiburg Bad Krozingen, Medical Center - University of Freiburg, Germany
| | - Susanne Proksch
- Faculty of Medicine, University of Freiburg, Germany; G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Operative Dentistry and Periodontology, Medical Center - University of Freiburg, Germany
| | - Stéphane N Hatem
- Sorbonne University, Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière Hospital, INSERM UMR_S1166, Cardiology department, Institute of Cardiometabolism and Nutrition-ICAN, Paris, France
| | - Matthias Karck
- Department of Cardiac Surgery, University of Heidelberg, Germany
| | - Stephan R Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Hélène Guizouarn
- CNRS University Cote d'Azur laboratory Institut Biology Valrose, Nice, France
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research) partner site Heidelberg/Mannheim, University of Heidelberg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, Faculty of Biology, University of Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
13
|
Sokolov AS, Nekrasov PV, Shaposhnikov MV, Moskalev AA. Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous. Ageing Res Rev 2021; 67:101262. [PMID: 33516916 DOI: 10.1016/j.arr.2021.101262] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is one of the biologically active gases (gasotransmitters), which plays an important role in various physiological processes and aging. Its production in the course of methionine and cysteine catabolism and its degradation are finely balanced, and impairment of H2S homeostasis is associated with various pathologies. Despite the strong geroprotective action of exogenous H2S in C. elegans, there are controversial effects of hydrogen sulfide and its donors on longevity in other models, as well as on stress resistance, age-related pathologies and aging processes, including regulation of senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Here we discuss that the translation potential of H2S as a geroprotective compound is influenced by a multiplicity of its molecular targets, pleiotropic biological effects, and the overlapping ranges of toxic and beneficial doses. We also consider the challenges of the targeted delivery of H2S at the required dose. Along with this, the complexity of determining the natural levels of H2S in animal and human organs and their ambiguous correlations with longevity are reviewed.
Collapse
|
14
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
15
|
Wang YZ, Ngowi EE, Wang D, Qi HW, Jing MR, Zhang YX, Cai CB, He QL, Khattak S, Khan NH, Jiang QY, Ji XY, Wu DD. The Potential of Hydrogen Sulfide Donors in Treating Cardiovascular Diseases. Int J Mol Sci 2021; 22:2194. [PMID: 33672103 PMCID: PMC7927090 DOI: 10.3390/ijms22042194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Hydrogen sulfide (H2S) has long been considered as a toxic gas, but as research progressed, the idea has been updated and it has now been shown to have potent protective effects at reasonable concentrations. H2S is an endogenous gas signaling molecule in mammals and is produced by specific enzymes in different cell types. An increasing number of studies indicate that H2S plays an important role in cardiovascular homeostasis, and in most cases, H2S has been reported to be downregulated in cardiovascular diseases (CVDs). Similarly, in preclinical studies, H2S has been shown to prevent CVDs and improve heart function after heart failure. Recently, many H2S donors have been synthesized and tested in cellular and animal models. Moreover, numerous molecular mechanisms have been proposed to demonstrate the effects of these donors. In this review, we will provide an update on the role of H2S in cardiovascular activities and its involvement in pathological states, with a special focus on the roles of exogenous H2S in cardiac protection.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Di Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Hui-Wen Qi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Qing-Lin He
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng 475004, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng 475004, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
16
|
Watts M, Kolluru GK, Dherange P, Pardue S, Si M, Shen X, Trosclair K, Glawe J, Al-Yafeai Z, Iqbal M, Pearson BH, Hamilton KA, Orr AW, Glasscock E, Kevil CG, Dominic P. Decreased bioavailability of hydrogen sulfide links vascular endothelium and atrial remodeling in atrial fibrillation. Redox Biol 2020; 38:101817. [PMID: 33310503 PMCID: PMC7732878 DOI: 10.1016/j.redox.2020.101817] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress drives the pathogenesis of atrial fibrillation (AF), the most common arrhythmia. In the cardiovascular system, cystathionine γ-lyase (CSE) serves as the primary enzyme producing hydrogen sulfide (H2S), a mammalian gasotransmitter that reduces oxidative stress. Using a case control study design in patients with and without AF and a mouse model of CSE knockout (CSE-KO), we evaluated the role of H2S in the etiology of AF. Patients with AF (n = 51) had significantly reduced plasma acid labile sulfide levels compared to patients without AF (n = 65). In addition, patients with persistent AF (n = 25) showed lower plasma free sulfide levels compared to patients with paroxysmal AF (n = 26). Consistent with an important role for H2S in AF, CSE-KO mice had decreased atrial sulfide levels, increased atrial superoxide levels, and enhanced propensity for induced persistent AF compared to wild type (WT) mice. Rescuing H2S signaling in CSE-KO mice by Diallyl trisulfide (DATS) supplementation or reconstitution with endothelial cell specific CSE over-expression significantly reduced atrial superoxide, increased sulfide levels, and lowered AF inducibility. Lastly, low H2S levels in CSE KO mice was associated with atrial electrical remodeling including longer effective refractory periods, slower conduction velocity, increased myocyte calcium sparks, and increased myocyte action potential duration that were reversed by DATS supplementation or endothelial CSE overexpression. Our findings demonstrate an important role of CSE and H2S bioavailability in regulating electrical remodeling and susceptibility to AF.
Collapse
Affiliation(s)
- Megan Watts
- The Departments of Medicine, And Molecular and Cellular Physiology and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Gopi K Kolluru
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Parinita Dherange
- The Departments of Medicine, And Molecular and Cellular Physiology and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Sibile Pardue
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Man Si
- The Departments of Cellular Biology and Anatomy and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States; The Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Xinggui Shen
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Krystle Trosclair
- The Departments of Cellular Biology and Anatomy and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States; The Department of Neurosurgery and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - John Glawe
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Zaki Al-Yafeai
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Mazen Iqbal
- The Departments of Medicine, And Molecular and Cellular Physiology and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Brenna H Pearson
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Kathryn A Hamilton
- The Departments of Cellular Biology and Anatomy and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - A Wayne Orr
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Edward Glasscock
- The Departments of Cellular Biology and Anatomy and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States; The Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Christopher G Kevil
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Paari Dominic
- The Departments of Medicine, And Molecular and Cellular Physiology and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States.
| |
Collapse
|
17
|
Chen Y, Zhang F, Yin J, Wu S, Zhou X. Protective mechanisms of hydrogen sulfide in myocardial ischemia. J Cell Physiol 2020; 235:9059-9070. [PMID: 32542668 DOI: 10.1002/jcp.29761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2 S), which has been identified as the third gaseous signaling molecule after nitric oxide (NO) and carbon monoxide (CO), plays an important role in maintaining homeostasis in the cardiovascular system. Endogenous H2 S is produced mainly by three endogenous enzymes: cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfur transferase. Numerous studies have shown that H2 S has a significant protective role in myocardial ischemia. The mechanisms by which H2 S affords cardioprotection include the antifibrotic and antiapoptotic effects, regulation of ion channels, protection of mitochondria, reduction of oxidative stress and inflammatory response, regulation of microRNA expression, and promotion of angiogenesis. Amplification of NO- and CO-mediated signaling through crosstalk between H2 S, NO, and CO may also contribute to the cardioprotective effect. Exogenous H2 S donors are expected to become effective drugs for the treatment of cardiovascular diseases. This review article focuses on the protective mechanisms and potential therapeutic applications of H2 S in myocardial ischemia.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Siyi Wu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Long J, Liu M, Liu S, Tang F, Tan W, Xiao T, Chu C, Yang J. H2S attenuates the myocardial fibrosis in diabetic rats through modulating PKC-ERK1/2MAPK signaling pathway. Technol Health Care 2020; 27:307-316. [PMID: 31045549 PMCID: PMC6598001 DOI: 10.3233/thc-199029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To investigate the roles and underlying mechanism of exogenous H2S (hydrogen sulfide) in attenuating the myocardial fibrosis in diabetic rats. METHODS: A total of 40 SD rats were randomly divided into 4 groups: control group, STZ group, STZ + H2S group and H2S group. To build the DM rat model , the rats in the STZ group and STZ + H2S group were injected streptozotocin (STZ) intraperitoneally, While the rats in the STZ + H2S group and the H2S group received sodium hydrosulfide (NaHS), which provides exogenous H2S. Eight weeks later, the myocardial tissues of rats were used to detecting the collagen deposition through Masson staining, as well as some protein expressions related to myocardial fibrosis and signaling pathway by western blotting. RESULTS: Comparing to control group, the collagen deposition of myocardial matrix remarkably increased in the STZ group, and almost all the proteins that are relative to myocardial fibrosis, inflammatory and signaling pathway show an overexpression, except for PPARG and NF-κBp65. When Compared with the STZ group, the collagen deposition was obviously attenuated in STZ + H2S group, as well as the protein expressions above-mentioned, While PPARG was up-regulated. CONCLUSION: The myocardial fibrosis in DM rats can be attenuated effectively by exogenous H2S, and the underlying mechanism is likely to regulating PKC-ERK1/2MAPK signaling pathway, improving the MMPs/TIMPs expression dysregulation and inhibiting inflammatory reaction.
Collapse
Affiliation(s)
- Junrong Long
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Maojun Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Shengquan Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Feng Tang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Wenting Tan
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Xiao
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
19
|
Wang L, Shi H, Liu Y, Zhang W, Duan X, Li M, Shi X, Wang T. Cystathionine‑γ‑lyase promotes the metastasis of breast cancer via the VEGF signaling pathway. Int J Oncol 2019; 55:473-487. [PMID: 31173185 PMCID: PMC6615928 DOI: 10.3892/ijo.2019.4823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/31/2019] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to provide data to support the association between cystathionine‑γ‑lyase (CSE) and breast cancer metastasis. Reverse transcription‑quantitative polymerase chain reaction, immunohistochemistry and western blot analysis were used to detect the mRNA and protein expression levels of CSE in human breast cancer tissues and cells. MTS and 5‑ethynyl‑2'‑deoxyuridine assays were used to assess cell viability and proliferation. Scratch wound and Transwell assays were conducted to determine cell migration and invasion. In addition, hydrogen sulfide determination was performed using the methylene blue method. The expression of CSE was upregulated in samples from patients with breast cancer that also exhibit lymph node metastasis, and in grade III and readily metastatic breast cancer cell lines. The proliferation, migration and invasion of breast cancer cells were examined in the present study, and tumor metastasis was observed in nude mice. The function of CSE in breast cancer metastasis depends on the vascular endothelial growth factor (VEGF) signaling pathway, a key mediator of angiogenesis that is crucial for the development and metastasis of tumors. CSE positively regulated the expression of VEGF and increased the levels of certain key proteins in the VEGF pathway, including the phosphoinositide (PI3K)/protein kinase B (AKT) pathway [PI3K, Akt and phosphorylated (p)Akt], focal adhesion kinase (FAK)‑paxillin pathway (FAK and paxillin) and rat sarcoma (Ras)‑mitogen‑activated protein kinase pathway [Ras, rapidly accelerated fibrosarcoma, extracellular signal‑regulated kinase (ERK)1/2 and pERK1/2]. Furthermore, the novel CSE inhibitor I157172 possessed antiproliferative and anti‑metastatic activities in early MDA‑MB‑231 metastatic breast cancer cells via inhibition of the VEGF signaling pathway, which further confirmed the role of CSE in breast cancer metastasis. Overall, these data demonstrate for the first time, to the best of our knowledge, that the functions of CSE in breast cancer metastasis are associated with the VEGF signaling pathway.
Collapse
Affiliation(s)
- Lupeng Wang
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Haimei Shi
- Anesthesiology Department, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ya Liu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Weiyuan Zhang
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaofang Duan
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ming Li
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaoyan Shi
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Tianxiao Wang
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
20
|
Ischemia Reperfusion Injury Produces, and Ischemic Preconditioning Prevents, Rat Cardiac Fibroblast Differentiation: Role of K ATP Channels. J Cardiovasc Dev Dis 2019; 6:jcdd6020022. [PMID: 31167469 PMCID: PMC6617075 DOI: 10.3390/jcdd6020022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/04/2023] Open
Abstract
Ischemic preconditioning (IPC) and activation of ATP-sensitive potassium channels (KATP) protect cardiac myocytes from ischemia reperfusion (IR) injury. We investigated the influence of IR injury, IPC and KATP in isolated rat cardiac fibroblasts. Hearts were removed under isoflurane anesthesia. IR was simulated in vitro by application and removal of paraffin oil over pelleted cells. Ischemia (30, 60 and 120 min) followed by 60 min reperfusion resulted in significant differentiation of fibroblasts into myofibroblasts in culture (mean % fibroblasts ± SEM in IR vs. time control: 12 ± 1% vs. 63 ± 2%, 30 min ischemia; 15 ± 3% vs. 71 ± 4%, 60 min ischemia; 8 ± 1% vs. 55 ± 2%, 120 min ischemia). IPC (15 min ischemia, 30 min reperfusion) significantly attenuated IR-induced fibroblast differentiation (52 ± 3%) compared to 60 min IR. IPC was mimicked by opening KATP with pinacidil (50 μM; 43 ± 6%) and by selectively opening mitochondrial KATP (mKATP) with diazoxide (100 μM; 53 ± 3%). Furthermore, IPC was attenuated by inhibiting KATP with glibenclamide (10 μM; 23 ± 5%) and by selectively blocking mKATP with 5-hydroxydecanoate (100 μM; 22 ± 9%). These results suggest that (a) IR injury evoked cardiac fibroblast to myofibroblast differentiation, (b) IPC attenuated IR-induced fibroblast differentiation, (c) KATP were involved in IPC and (d) this protection involved selective activation of mKATP.
Collapse
|
21
|
Abdelmonem M, Shahin NN, Rashed LA, Amin HAA, Shamaa AA, Shaheen AA. Hydrogen sulfide enhances the effectiveness of mesenchymal stem cell therapy in rats with heart failure: In vitro preconditioning versus in vivo co-delivery. Biomed Pharmacother 2019; 112:108584. [DOI: 10.1016/j.biopha.2019.01.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
|
22
|
Park HJ, Kim JW. Role of Hydrogen Sulfide in the Survival of Fibroblasts and Fibroblast-mediated Contraction of Collagen Gel. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2019. [DOI: 10.3341/jkos.2019.60.10.975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hyeon Jin Park
- Department of Ophthalmology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Jae Woo Kim
- Department of Ophthalmology, Daegu Catholic University School of Medicine, Daegu, Korea
| |
Collapse
|
23
|
Xu J, Wu H, Chen S, Qi B, Zhou G, Cai L, Zhao L, Wei Y, Liu S. MicroRNA-30c suppresses the pro-fibrogenic effects of cardiac fibroblasts induced by TGF-β1 and prevents atrial fibrosis by targeting TGFβRII. J Cell Mol Med 2018. [PMID: 29532993 PMCID: PMC5980214 DOI: 10.1111/jcmm.13548] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Atrial fibrosis serves as an important contributor to atrial fibrillation (AF). Recent data have suggested that microRNA-30c (miR-30c) is involved in fibrotic remodelling and cancer development, but the specific role of miR-30c in atrial fibrosis remains unclear. The purpose of this study was to investigate the role of miR-30c in atrial fibrosis and its underlying mechanisms through in vivo and in vitro experiments. Our results indicate that miR-30c is significantly down-regulated in the rat abdominal aortic constriction (AAC) model and in the cellular model of fibrosis induced by transforming growth factor-β1 (TGF-β1). Overexpression of miR-30c in cardiac fibroblasts (CFs) markedly inhibits CF proliferation, differentiation, migration and collagen production, whereas decrease in miR-30c leads to the opposite results. Moreover, we identified TGFβRII as a target of miR-30c. Finally, transferring adeno-associated virus 9 (AAV9)-miR-30c into the inferior vena cava of rats attenuated fibrosis in the left atrium following AAC. These data indicate that miR-30c attenuates atrial fibrosis via inhibition of CF proliferation, differentiation, migration and collagen production by targeting TGFβRII, suggesting that miR-30c might be a novel potential therapeutic target for preventing atrial fibrosis.
Collapse
Affiliation(s)
- Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiqing Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baozhen Qi
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lidong Cai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqun Zhao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai Songjiang Central Hospital, Shanghai, China
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Zhang N, Zheng Y, Chen WG, Li R, Song LX, Xu LH, Xu KS. Changes in hydrogen sulfide in rats with hepatic cirrhosis in different stages. Curr Med Sci 2017; 37:705-710. [PMID: 29058283 DOI: 10.1007/s11596-017-1792-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/30/2017] [Indexed: 12/30/2022]
Abstract
This study aimed to observe changes in the hydrogen sulfide (H2S) system in the blood and liver tissue of rats with hepatic cirrhosis at different stages by studying the effect of H2S on the course of hyperdynamic circulation in rats with hepatic cirrhosis. H2S concentration in the blood from the portal vein and inferior vena cava of hepatic cirrhosis rat model induced with carbon tetrachloride was detected on the 15th, 30th, and 52nd day. The expression of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) protein, and CBS and CSE mRNA in the liver was detected by immunohistochemistry and reverse transcriptase polymerase chain reaction (RT-PCR), respectively. The results indicated that H2S concentration in the blood from the portal vein and inferior vena cava of rats with hepatic cirrhosis was significantly lower than that in the control group. H2S was gradually decreased with the development of the disease and significantly lower in the blood from portal vein than in the blood of inferior vena cava at the mid-stage and the late stage groups. The expression levels of CBS and CSE protein, and CBS and CSE mRNA in the livers with hepatic cirrhosis at different stages were all higher than those in the control group, and the expression gradually increased with the development of the disease. The expression of CBS was lower than CSE in the same stages. The results indicated that the CSE mRNA was expressed predominantly in the cirrhosis groups as compared with CBS mRNA. Among experimental rats, the H2S system has an important effect on the occurrence and development of hyperdynamic circulation in rats with hepatic cirrhosis. This finding adds to the literature by demonstrating that H2S protects vascular remodelling in the liver, and that CSE is indispensable in this process.
Collapse
Affiliation(s)
- Ning Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, 832002, China
| | - Yong Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, 832002, China.
| | - Wei-Gang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, 832002, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, 832002, China
| | - Li-Xiu Song
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, 832002, China
| | - Li-Hong Xu
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, 832002, China
| | - Ke-Shu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Dugbartey GJ. The smell of renal protection against chronic kidney disease: Hydrogen sulfide offers a potential stinky remedy. Pharmacol Rep 2017; 70:196-205. [PMID: 29471067 DOI: 10.1016/j.pharep.2017.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/28/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
Chronic kidney disease (CKD) is a common global health challenge characterized by irreversible pathological processes that reduce kidney function and culminates in development of end-stage renal disease. It is associated with increased morbidity and mortality in addition to increased caregiver burden and higher financial cost. A central player in CKD pathogenesis and progression is renal hypoxia. Renal hypoxia stimulates induction of oxidative and endoplasmic reticulum stress, inflammation and tubulointerstitial fibrosis, which in turn, promote cellular susceptibility and further aggravate hypoxia, thus forming a pathological vicious cycle in CKD progression. Although the importance of CKD is widely appreciated, including improvements in the quality of existing therapies such as dialysis and transplantation, new therapeutic options are limited, as there is still increased morbidity, mortality and poor quality of life among CKD patients. Growing evidence indicates that hydrogen sulfide (H2S), a small gaseous signaling molecule with an obnoxious smell, accumulates in the renal medulla under hypoxic conditions, and functions as an oxygen sensor that restores oxygen balance and increases medullary flow. Moreover, plasma H2S level has been recently reported to be markedly reduced in CKD patients and animal models. Also, H2S has been established to possess potent antioxidant, anti-inflammatory, and anti-fibrotic properties in several experimental models of kidney diseases, suggesting that its supplementation could protect against CKD and retard its progression. The purpose of this review is to discuss current clinical and experimental developments regarding CKD, its pathophysiology, and potential cellular and molecular mechanisms of protection by H2S in experimental models of CKD.
Collapse
Affiliation(s)
- George J Dugbartey
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
26
|
You J, Shi X, Liang H, Ye J, Wang L, Han H, Fang H, Kang W, Wang T. Cystathionine- γ-lyase promotes process of breast cancer in association with STAT3 signaling pathway. Oncotarget 2017; 8:65677-65686. [PMID: 29029463 PMCID: PMC5630363 DOI: 10.18632/oncotarget.20057] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/25/2017] [Indexed: 12/29/2022] Open
Abstract
Here we provide evidences to link cystathionine-γ-lyase (CSE) to the development of breast cancer. CSE expression is up-regulated in both breast cancers and breast cancer cell lines and results in proliferation and migration of breast cancer cells. CSE Function in breast cancer depends on the STAT3 signaling pathway, a regulator of critical cell functions including cell growth in a wide variety of human cancer cells via activating the expression of relative genes. STAT3 positively relates to CSE expression. It activates the CSE promoter via a direct binding to the promoter. Moreover, CSE could reversely regulate STAT3 expression and consequently enhance the effect of STAT3 on CSE. Taken together, these data demonstrate for the first time the roles of CSE in breast cancer leading to breast cancer development in association with STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jing You
- College of Pharmacy, Henan University, Kaifeng 475004, Henan Province, China
| | - Xiaoyan Shi
- College of Pharmacy, Henan University, Kaifeng 475004, Henan Province, China
| | - Huimin Liang
- Huaihe Hospital, Henan University, Kaifeng 475000, Henan Province, China
| | - Juan Ye
- College of Pharmacy, Henan University, Kaifeng 475004, Henan Province, China
| | - Lupeng Wang
- College of Pharmacy, Henan University, Kaifeng 475004, Henan Province, China
| | - Huanxiao Han
- College of Pharmacy, Henan University, Kaifeng 475004, Henan Province, China
| | - Hongyu Fang
- College of Pharmacy, Henan University, Kaifeng 475004, Henan Province, China
| | - Wenyi Kang
- College of Pharmacy, Henan University, Kaifeng 475004, Henan Province, China
| | - Tianxiao Wang
- College of Pharmacy, Henan University, Kaifeng 475004, Henan Province, China
| |
Collapse
|
27
|
Yu W, Jin H, Tang C, Du J, Zhang Z. Sulfur-containing gaseous signal molecules, ion channels and cardiovascular diseases. Br J Pharmacol 2017; 175:1114-1125. [PMID: 28430359 DOI: 10.1111/bph.13829] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/23/2017] [Accepted: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
Sulfur-containing gaseous signal molecules including hydrogen sulphide and sulfur dioxide were previously recognized as toxic gases. However, extensive studies have revealed that they can be generated in the cardiovascular system via a sulfur-containing amino acid metabolic pathway, and have an important role in cardiovascular physiology and pathophysiology. Ion channels are pore-forming membrane proteins present in the membrane of all biological cells; their functions include the establishment of a resting membrane potential and the control of action potentials and other electrical signals by conducting ions across the cell membrane. Evidence has now accumulated suggesting that the sulfur-containing gaseous signal molecules are important regulators of ion channels and transporters. The aims of this review are (1) to discuss the recent experimental evidences in the cardiovascular system regarding the regulatory effects of sulfur-containing gaseous signal molecules on a variety of ion channels, including ATP-sensitive potassium, calcium-activated potassium, voltage-gated potassium, L- and T-type calcium, transient receptor potential and chloride and sodium channels, and (2) to understand how the gaseous signal molecules affect ion channels and cardiovascular diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Wen Yu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Zhiren Zhang
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
28
|
Jia H, Ye J, You J, Shi X, Kang W, Wang T. Role of the cystathionine β-synthase/H2S system in liver cancer cells and the inhibitory effect of quinolone-indolone conjugate QIC2 on the system. Oncol Rep 2017; 37:3001-3009. [PMID: 28440458 DOI: 10.3892/or.2017.5513] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/30/2016] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S), the third gasotransmitter, plays important roles in cancer biological processes. As endogenous H2S exerts pro-cancer functions, inhibition of its production in cancer cells may provide a new cancer treatment strategy and be achieved via regulation of the function of cystathionine β-synthase (CBS), one of the main metabolic enzymes synthesizing H2S. This enzyme plays important roles in the development and progression of colon and ovarian cancer, primarily regulating mitochondrial bioenergetics and accelerating cell cycle progression. In the present study, we firstly investigated the role of the CBS/H2S system in human hepatoma cells, and then the inhibitory effect of a quinolone-indolone conjugate QIC2 on this system. When CBS was overexpressed in human hepatoma HepG2 and SMMC-7721 cells, inhibition of endogenous CBS/H2S significantly reduced their viability and growth rate, as well as the proliferation of SMMC-7721 cells. Meanwhile, CBS knockdown caused multiple effects, including apoptosis of SMMC-7721 cells, an increase in the Bcl-2-associated X protein (Bax)/B cell lymphoma/leukemia (Bcl-2) ratio, activation of caspase-3 and polyADP-ribose polymerase (PARP), when compared with the scramble siRNA (Sc siRNA)-transfected groups. Heme oxygenase-1 (HO-1; a microsomal enzyme) expression was significantly decreased while the reactive oxygen species (ROS) level was increased in the CBS siRNA-transfected SMMC-7721 cells. QIC2 significantly reduced SMMC-7721 cell viability in a dose-dependent manner and showed a lower toxicity in human normal liver HL-7702 cells relative to the positive controls sunitinib and doxorubicin (DOX). The compound also inhibited cell proliferation and induced cell apoptosis in SMMC-7721 cells. Further analysis indicated that QIC2 downregulated the CBS/H2S system, decreased both HO-1 protein and glutathione (GSH) levels while increased the ROS level and activated the caspase-3 cascade. Collectively, our results demonstrated that the CBS/H2S system plays important roles in human hepatoma cells and QIC2 significantly inhibited cell growth via downregulation of the system.
Collapse
Affiliation(s)
- Huina Jia
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Juan Ye
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jing You
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaoyan Shi
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wenyi Kang
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Tianxiao Wang
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
29
|
Donnarumma E, Trivedi RK, Lefer DJ. Protective Actions of H2S in Acute Myocardial Infarction and Heart Failure. Compr Physiol 2017; 7:583-602. [PMID: 28333381 DOI: 10.1002/cphy.c160023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen sulfide (H2S) was identified as the third gasotransmitter in 1996 following the discoveries of the biological importance of nitric oxide and carbon monoxide. Although H2S has long been considered a highly toxic gas, the discovery of its presence and enzymatic production in mammalian tissues supports a critical role for this physiological signaling molecule. H2S is synthesized endogenously by three enzymes: cystathionine β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. H2S plays a pivotal role in the regulation of cardiovascular function as H2S has been shown to modulate: vasodilation, angiogenesis, inflammation, oxidative stress, and apoptosis. Perturbation of endogenous production of H2S has been associated with many pathological conditions of the cardiovascular system such as diabetes, heart failure, and hypertension. As such, modulation of the endogenous H2S signaling pathway or administration of exogenous H2S has been shown to be cytoprotective. This review article will provide a summary of the current body of evidence on the role of H2S signaling in the setting of myocardial ischemia and heart failure. © 2017 American Physiological Society. Compr Physiol 7:583-602, 2017.
Collapse
Affiliation(s)
- Erminia Donnarumma
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Rishi K Trivedi
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - David J Lefer
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
30
|
You J, Ma M, Ye J, Shi X, Wang T. Down-regulation of cystathionine-γ-lyase/H 2S system inhibits cell growth in human breast cancer MDA-MB-231 cells. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170801034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Dugbartey GJ. Diabetic nephropathy: A potential savior with 'rotten-egg' smell. Pharmacol Rep 2016; 69:331-339. [PMID: 28183033 DOI: 10.1016/j.pharep.2016.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/20/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is currently the leading cause of end-stage renal disease. Despite optimal management, DN is still a major contributor to morbidity and mortality of diabetic patients worldwide. The major pathological alterations in DN include excessive accumulation and deposition of extracellular matrix, leading to expansion of mesangial matrix, thickening of glomerular basement membrane and tubulointerstitial fibrosis. At the molecular level, accumulating evidence suggests that hyperglycemia or high glucose mediates renal injury in DN via multiple molecular mechanisms such as induction of oxidative stress, upregulation of renal transforming growth factor beta-1 expression, production of proinflammatory cytokines, activation of fibroblasts and renin angiotensin system, and depletion of adenosine triphosphate. Also worrying is the fact that existing therapies only retard the disease progression but do not prevent it. Therefore, there is urgent need to identify novel therapies to target additional disease mechanisms. Hydrogen sulfide (H2S), the third member of the gasotransmitter family, has recently been identified and demonstrated to possess important therapeutic characteristics that prevent the development and progression of DN in experimental animals by targeting several important molecular pathways, and therefore may represent an alternative or additional therapeutic approach for DN. This review discusses recent experimental findings on the molecular mechanisms underlying the therapeutic effects of H2S against the development and progression of DN and its clinical application in the future.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
32
|
Hackfort BT, Mishra PK. Emerging role of hydrogen sulfide-microRNA crosstalk in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2016; 310:H802-12. [PMID: 26801305 PMCID: PMC4867357 DOI: 10.1152/ajpheart.00660.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/18/2016] [Indexed: 12/15/2022]
Abstract
Despite an obnoxious smell and toxicity at a high dose, hydrogen sulfide (H2S) is emerging as a cardioprotective gasotransmitter. H2S mitigates pathological cardiac remodeling by regulating several cellular processes including fibrosis, hypertrophy, apoptosis, and inflammation. These encouraging findings in rodents led to initiation of a clinical trial using a H2S donor in heart failure patients. However, the underlying molecular mechanisms by which H2S mitigates cardiac remodeling are not completely understood. Empirical evidence suggest that H2S may regulate signaling pathways either by directly influencing a gene in the cascade or interacting with nitric oxide (another cardioprotective gasotransmitter) or both. Recent studies revealed that H2S may ameliorate cardiac dysfunction by up- or downregulating specific microRNAs. MicroRNAs are noncoding, conserved, regulatory RNAs that modulate gene expression mostly by translational inhibition and are emerging as a therapeutic target for cardiovascular disease (CVD). Few microRNAs also regulate H2S biosynthesis. The inter-regulation of microRNAs and H2S opens a new avenue for exploring the H2S-microRNA crosstalk in CVD. This review embodies regulatory mechanisms that maintain the physiological level of H2S, exogenous H2S donors used for increasing the tissue levels of H2S, H2S-mediated regulation of CVD, H2S-microRNAs crosstalk in relation to the pathophysiology of heart disease, clinical trials on H2S, and future perspectives for H2S as a therapeutic agent for heart failure.
Collapse
Affiliation(s)
- Bryan T Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
33
|
Abstract
Telocytes (TCs) are a novel type of interstitial cells, with extremely long and thin cellular prolongations termed telopodes (Tps). TCs were first identified by Popescu et al. and described their finding as "cells with telopodes." The presence of TCs has been reported in the majority of tissues and organs (for details please visit www.telocytes.com ). TCs have been ignored or overlooked for a long time due to our inability to observe these cells via a light microscopy. TCs represent a distinct cell population, different from other types of interstitial cells, based on their distinct (ultra)structure, immunophenotype, microRNA profile, gene feature, proteome signature, and secretome features. As TCs have been suggested as new cellular targets for forthcoming therapies, developing specific methods to modulate TC numbers represents an important objective.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| |
Collapse
|
34
|
Hydrogen sulfide suppresses transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1126-34. [PMID: 26246380 DOI: 10.1007/s11427-015-4904-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and secrete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (H2S) suppresses TGF-β1-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were serum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL(-1)) for 24 h with or without sodium hydrosulfide (NaHS, 100 µmol L(-1), 30 min pretreatment) treatment. NaHS, an exogenous H2S donor, potently inhibited the proliferation and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NaHS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S suppresses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.
Collapse
|
35
|
Hydrogen Sulfide Donor GYY4137 Protects against Myocardial Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:691070. [PMID: 26078813 PMCID: PMC4442292 DOI: 10.1155/2015/691070] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter which regulates multiple cardiovascular functions. However, the precise roles of H2S in modulating myocardial fibrosis in vivo and cardiac fibroblast proliferation in vitro remain unclear. We investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial fibrosis. Spontaneously hypertensive rats (SHR) were administrated with GYY4137 by intraperitoneal injection daily for 4 weeks. GYY4137 decreased systolic blood pressure and inhibited myocardial fibrosis in SHR as evidenced by improved cardiac collagen volume fraction (CVF) in the left ventricle (LV), ratio of perivascular collagen area (PVCA) to lumen area (LA) in perivascular regions, reduced hydroxyproline concentration, collagen I and III mRNA expression, and cross-linked collagen. GYY4137 also inhibited angiotensin II- (Ang II-) induced neonatal rat cardiac fibroblast proliferation, reduced the number of fibroblasts in S phase, decreased collagen I and III mRNA expression and protein synthesis, attenuated oxidative stress, and suppressed α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) expression as well as Smad2 phosphorylation. These results indicate that GYY4137 improves myocardial fibrosis perhaps by a mechanism involving inhibition of oxidative stress, blockade of the TGF-β1/Smad2 signaling pathway, and decrease in α-SMA expression in cardiac fibroblasts.
Collapse
|
36
|
Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:593407. [PMID: 26078809 PMCID: PMC4442300 DOI: 10.1155/2015/593407] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/29/2014] [Indexed: 12/24/2022]
Abstract
Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself.
Collapse
|
37
|
The Cardioprotective Effects of Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:925167. [PMID: 26078822 PMCID: PMC4442295 DOI: 10.1155/2015/925167] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/18/2014] [Indexed: 11/23/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as a third gaseous mediator along with nitric oxide (NO) and carbon monoxide (CO), though it was originally considered as a malodorous and toxic gas. H2S is produced endogenously from cysteine by three enzymes in mammalian tissues. An increasing body of evidence suggests the involvement of H2S in different physiological and pathological processes. Recent studies have shown that H2S has the potential to protect the heart against myocardial infarction, arrhythmia, hypertrophy, fibrosis, ischemia-reperfusion injury, and heart failure. Some mechanisms, such as antioxidative action, preservation of mitochondrial function, reduction of apoptosis, anti-inflammatory responses, angiogenic actions, regulation of ion channel, and interaction with NO, could be responsible for the cardioprotective effect of H2S. Although several mechanisms have been identified, there is a need for further research to identify the specific molecular mechanism of cardioprotection in different cardiac diseases. Therefore, insight into the molecular mechanisms underlying H2S action in the heart may promote the understanding of pathophysiology of cardiac diseases and lead to new therapeutic targets based on modulation of H2S production.
Collapse
|
38
|
Wang X, Liu T, Zhao Z, Li G. Noncoding RNA in cardiac fibrosis. Int J Cardiol 2015; 187:365-8. [PMID: 25841127 DOI: 10.1016/j.ijcard.2015.03.195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/17/2015] [Indexed: 01/25/2023]
|
39
|
Plotnikova L, Berezovskiі V, S.P. Veselskiі S. EFFECT OF REDUCED OXYGEN CONCENTRATIONS AND HYDROGEN SULFIDE ON THE AMINO ACID METABOLISM AND MESENCHYMAL CELLS PROLIFERATION. ACTA ACUST UNITED AC 2015. [DOI: 10.15407/fz61.01.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Fan K, Li N, Qi J, Yin P, Zhao C, Wang L, Li Z, Zha X. Wnt/β-catenin signaling induces the transcription of cystathionine-γ-lyase, a stimulator of tumor in colon cancer. Cell Signal 2014; 26:2801-8. [DOI: 10.1016/j.cellsig.2014.08.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/06/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
|
41
|
Sheng J, Shim W, Lu J, Lim SY, Ong BH, Lim TS, Liew R, Chua YL, Wong P. Electrophysiology of human cardiac atrial and ventricular telocytes. J Cell Mol Med 2014; 18:355-62. [PMID: 24467431 PMCID: PMC3930421 DOI: 10.1111/jcmm.12240] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/24/2013] [Indexed: 01/13/2023] Open
Abstract
Telocytes (TCs) with exceptionally long cellular processes of telopodes have been described in human epicardium to act as structural supporting cells in the heart. We examined myocardial chamber-specific TCs identified in atrial and ventricular fibroblast culture using immunocytochemistry and studied their electrophysiological property by whole-cell patch clamp. Atrial and ventricular TCs with extended telopodes and alternating podoms and podomers that expressed CD34, c-Kit and PDGFR-β were identified. These cells expressed large conductance Ca2+-activated K+ current (BKCa) and inwardly rectifying K+ current (IKir), but not transient outward K+ current (Ito) and ATP-sensitive potassium current (KATP). The active channels were functionally competent with demonstrated modulatory response to H2S and transforming growth factor (TGF)-β1 whereby H2S significantly inhibited the stimulatory effect of TGF-β1 on current density of both BKCa and IKir. Furthermore, H2S attenuated TGF-β1-stimulated KCa1.1/Kv1.1 (encode BKCa) and Kir2.1 (encode IKir) expression in TCs. Our results show that functionally competent K+ channels are present in human atrial and ventricular TCs and their modulation may have significant implications in myocardial physiopathology.
Collapse
Affiliation(s)
- Jingwei Sheng
- Research and Development Unit, National Heart Centre Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|