1
|
Lu C, Gao C, Wei J, Dong D, Sun M. SIRT1-FOXOs signaling pathway: A potential target for attenuating cardiomyopathy. Cell Signal 2024; 124:111409. [PMID: 39277092 DOI: 10.1016/j.cellsig.2024.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Cardiomyopathy constitutes a global health burden. It refers to myocardial injury that causes alterations in cardiac structure and function, ultimately leading to heart failure. Currently, there is no definitive treatment for cardiomyopathy. This is because existing treatments primarily focus on drug interventions to attenuate symptoms rather than addressing the underlying causes of the disease. Notably, the cardiomyocyte loss is one of the key risk factors for cardiomyopathy. This loss can occur through various mechanisms such as metabolic disturbances, cardiac stress (e.g., oxidative stress), apoptosis as well as cell death resulting from disorders in autophagic flux, etc. Sirtuins (SIRTs) are categorized as class III histone deacetylases, with their enzyme activity primarily reliant on the substrate nicotinamide adenine dinucleotide (NAD (+)). Among them, Sirtuin 1 (SIRT1) is the most intensively studied in the cardiovascular system. Forkhead O transcription factors (FOXOs) are the downstream effectors of SIRT1. Several reports have shown that SIRT1 can form a signaling pathway with FOXOs in myocardial tissue, and this pathway plays a key regulatory role in cell loss. Thus, this review describes the basic mechanism of SIRT1-FOXOs in inhibiting cardiomyocyte loss and its favorable role in cardiomyopathy. Additionally, we summarized the SIRT1-FOXOs related regulation factor and prospects the SIRT1-FOXOs potential clinical application, which provide reference for the development of cardiomyopathy treatment.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Liu H, Wang J, Yue G, Xu J. Placenta-derived mesenchymal stem cells protect against diabetic kidney disease by upregulating autophagy-mediated SIRT1/FOXO1 pathway. Ren Fail 2024; 46:2303396. [PMID: 38234193 PMCID: PMC10798286 DOI: 10.1080/0886022x.2024.2303396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is a common chronic microvascular complication of diabetes mellitus. Although studies have indicated the therapeutic potential of mesenchymal stem cells (MSCs) for DKD, the underlying molecular mechanisms remain unclear. Herein, we explored the renoprotective effect of placenta-derived MSCs (P-MSCs) and the potential mechanism of SIRT1/FOXO1 pathway-mediated autophagy in DKD. The urine microalbumin/creatinine ratio was determined using ELISA, and renal pathological changes were detected by special staining techniques. Immunofluorescence was used for detecting the renal tissue expression of podocin and nephrin; immunohistochemistry for the renal expression of autophagy-related proteins (LC3, Beclin-1, SIRT1, and FOXO1); and western blotting and PCR for the expression of podocyte autophagy- and pathway-related indicators. We found that P-MSCs ameliorated renal tubular injury and glomerular mesangial matrix deposition and alleviated podocyte damage in DKD rats. PMSCs enhanced autophagy levels and increased SIRT1 and FOXO1 expression in DKD rat renal tissue, whereas the autophagy inhibitor 3-methyladenine significantly attenuated the renoprotective effect of P-MSCs. P-MSCs improved HG-induced Mouse podocyte clone5(MPC5)injury, increased podocyte autophagy, and upregulated SIRT1 and FOXO1 expression. Moreover, downregulation of SIRT1 expression blocked the P-MSC-mediated enhancement of podocyte autophagy and improvement of podocyte injury. Thus, P-MSCs can significantly improve renal damage and reduce podocyte injury in DKD rats by modulating the SIRT1/FOXO1 pathway and enhancing podocyte autophagy.
Collapse
Affiliation(s)
- Honghong Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P.R.China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P.R.China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, P.R.China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, P.R.China
| | - Guanru Yue
- Department of Medical Genetics and Cell biology, Medical College of Nanchang University, Nanchang, P.R. China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P.R.China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, P.R.China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, P.R.China
| |
Collapse
|
3
|
Ahmadzadeh AM, Aliabadi MM, Mirheidari SB, Hamedi-Asil M, Garousi S, Mottahedi M, Sahebkar A. Beneficial effects of resveratrol on diabetes mellitus and its complications: focus on mechanisms of action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03527-4. [PMID: 39446148 DOI: 10.1007/s00210-024-03527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Diabetes mellitus (DM) is a significant global health issue, associated with various microvascular and macrovascular complications that significantly impair patients' quality of life as well as healthspan and lifespan. Despite the availability of several anti-diabetic medications with different mechanisms of action, there remains no definite curative treatment. Hence, discovering new efficient complementary therapies is essential. Natural products have received significant attention due to their advantages in various pathological conditions. Resveratrol is a natural polyphenol that possesses antioxidant and anti-inflammatory properties, and its efficacy has been previously investigated in several diseases, including DM. Herein, we aimed to provide a holistic view of the signaling pathways and mechanisms of action through which resveratrol exerts its effects against DM and its complications.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mahdie Hamedi-Asil
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Mehran Mottahedi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Moustafa Mahmoud M, Abdel Hameed NQ, Adel Al Dreny Abd Al Latef B, Samir Kamar S, Ahmed Rashed L, Abdelhameed Gouda SA. High-intensity exercise alongside insulin alleviates muscle atrophy in type 1 diabetes mellitus concomitant with modulation of mitophagy-related proteins in skeletal muscle. Arch Physiol Biochem 2024:1-13. [PMID: 39382178 DOI: 10.1080/13813455.2024.2410791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
Background: Diabetes patients' quality of life can be severely impacted by diabetic muscle atrophy.Aim: This study aimed to explore the impact of high-intensity exercise (HIE) alongside insulin treatment on muscle atrophy in a rat model of type 1 diabetes mellitus (T1DM).Methodology: Fifty rats were allocated into five groups; Group 1, control sedentary (CS), T1DM was elicited in the rest of the groups by giving them Streptozotocin (STZ) (60 mg/kg), where group 2 (DS) remained sedentary, while groups 3,4,5 were treated with insulin after induction of diabetes. Group 4 (DI+MIE) and 5 (DI+ HIE) underwent moderate and high-intensity exercise, respectively.Results: HIE for 14 days combined with insulin treatment significantly restored muscle strength and mass with a significant modification in the mitophagy-related proteins and fibroblast growth factor 21 (FGF 21) compared to other treated groups.Conclusion: This study concluded that there is a therapeutic role for HIE with insulin against T1DM-induced muscle atrophy.
Collapse
Affiliation(s)
| | | | | | - Samaa Samir Kamar
- Histology department, Faculty of Medicine- Cairo University, Cairo, Egypt
- Histology department, Armed Forces College of Medicine, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
5
|
Mundo Rivera VM, Tlacuahuac Juárez JR, Murillo Melo NM, Leyva Garcia N, Magaña JJ, Cordero Martínez J, Jiménez Gutierrez GE. Natural Autophagy Activators to Fight Age-Related Diseases. Cells 2024; 13:1611. [PMID: 39404375 PMCID: PMC11476028 DOI: 10.3390/cells13191611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The constant increase in the elderly population presents significant challenges in addressing new social, economic, and health problems concerning this population. With respect to health, aging is a primary risk factor for age-related diseases, which are driven by interconnected molecular hallmarks that influence the development of these diseases. One of the main mechanisms that has attracted more attention to aging is autophagy, a catabolic process that removes and recycles damaged or dysfunctional cell components to preserve cell viability. The autophagy process can be induced or deregulated in response to a wide range of internal or external stimuli, such as starvation, oxidative stress, hypoxia, damaged organelles, infectious pathogens, and aging. Natural compounds that promote the stimulation of autophagy regulatory pathways, such as mTOR, FoxO1/3, AMPK, and Sirt1, lead to increased levels of essential proteins such as Beclin-1 and LC3, as well as a decrease in p62. These changes indicate the activation of autophagic flux, which is known to be decreased in cardiovascular diseases, neurodegeneration, and cataracts. The regulated administration of natural compounds offers an adjuvant therapeutic alternative in age-related diseases; however, more experimental evidence is needed to support and confirm these health benefits. Hence, this review aims to highlight the potential benefits of natural compounds in regulating autophagy pathways as an alternative approach to combating age-related diseases.
Collapse
Affiliation(s)
- Vianey M. Mundo Rivera
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
| | - José Roberto Tlacuahuac Juárez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Nadia Mireya Murillo Melo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Norberto Leyva Garcia
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Jonathan J. Magaña
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Joaquín Cordero Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | |
Collapse
|
6
|
Shafaati T, Gopal K. Forkhead box O1 transcription factor; a therapeutic target for diabetic cardiomyopathy. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13193. [PMID: 39206323 PMCID: PMC11349536 DOI: 10.3389/jpps.2024.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease including diabetic cardiomyopathy (DbCM) represents the leading cause of death in people with diabetes. DbCM is defined as ventricular dysfunction in the absence of underlying vascular diseases and/or hypertension. The known molecular mediators of DbCM are multifactorial, including but not limited to insulin resistance, altered energy metabolism, lipotoxicity, endothelial dysfunction, oxidative stress, apoptosis, and autophagy. FoxO1, a prominent member of forkhead box O transcription factors, is involved in regulating various cellular processes in different tissues. Altered FoxO1 expression and activity have been associated with cardiovascular diseases in diabetic subjects. Herein we provide an overview of the role of FoxO1 in various molecular mediators related to DbCM, such as altered energy metabolism, lipotoxicity, oxidative stress, and cell death. Furthermore, we provide valuable insights into its therapeutic potential by targeting these perturbations to alleviate cardiomyopathy in settings of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Tanin Shafaati
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Xu TT, Deng YY, Yu XY, Li M, Fu YY. Natural autophagy modulators in non-communicable diseases: from autophagy mechanisms to therapeutic potential. Acta Pharmacol Sin 2024:10.1038/s41401-024-01356-y. [PMID: 39090393 DOI: 10.1038/s41401-024-01356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Non-communicable diseases (NCDs) are defined as a kind of diseases closely related to bad behaviors and lifestyles, e.g., cardiovascular diseases, cancer, and diabetes. Driven by population growth and aging, NCDs have become the biggest disease burden in the world, and it is urgent to prevent and control these chronic diseases. Autophagy is an evolutionarily conserved process that degrade cellular senescent or malfunctioning organelles in lysosomes. Mounting evidence has demonstrated a major role of autophagy in the pathogenesis of cardiovascular diseases, cancer, and other major human diseases, suggesting that autophagy could be a candidate therapeutic target for NCDs. Natural products/phytochemicals are important resources for drugs against a wide variety of diseases. Recently, compounds from natural plants, such as resveratrol, curcumin, and ursolic acid, have been recognized as promising autophagy modulators. In this review, we address recent advances and the current status of the development of natural autophagy modulators in NCDs and provide an update of the latest in vitro and in vivo experiments that pave the way to clinical studies. Specifically, we focus on the relationship between natural autophagy modulators and NCDs, with an intent to identify natural autophagy modulators with therapeutic potential.
Collapse
Affiliation(s)
- Ting-Ting Xu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Yi Deng
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xi-Yong Yu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Min Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yuan-Yuan Fu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
8
|
Dilli D, Taşoğlu İ, Sarı E, Akduman H, Yumuşak N, Tümer NB, Salar S. Therapeutic Role of Astaxanthin and Resveratrol in an Experimental Rat Model of Supraceliac Aortic Ischemia-Reperfusion. Am J Perinatol 2024; 41:1069-1076. [PMID: 35644129 DOI: 10.1055/s-0042-1748324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE The aim of the study is to investigate the therapeutic effects of astaxanthin (AST) and resveratrol (RVT) on multiorgan damage in an animal model of the supraceliac aortic ischemia-reperfusion (I/R). METHODS In this study, 28 rats (n = 7/group), 200 to 250 g in weight, were randomized to four groups (1: Sham, 2: Control + I/R, 3: AST + I/R, and 4: RVT + I/R). Following the abdominal incision, aortic dissection was performed in the sham group without injury. Other groups underwent I/R injury via supraceliac aortic clamping (20 minutes) and reperfusion. The rats were administered olive oil (3 mL/kg) orally for 2 weeks before and 1 week after the laparotomy. Additionally, oral AST (10 mg/kg) or RVT (50 mg/kg) was given to the study groups. All rats were sacrificed on the 3rd week of the experiment after blood samples were taken for analysis. Multiple rat tissues were removed. RESULTS We found that RVT increased total antioxidant status (TAS) and superoxide dismutase (SOD) levels, and decreased total oxidant status (TOS), oxidative stress index (OSI), myeloperoxidase (MPO), and malondialdehyde (MDA) levels, while AST increased the levels of TAS, decreased TNF-α, MDA, TOS, and OSI (p <0.05). Pathological investigations of the rat tissues revealed that both AST and RVT ameliorated tissue damage and apoptosis. CONCLUSION Our study suggests that AST and RVT might show therapeutic effects against oxidative tissue damage and apoptosis in an animal model of aortic I/R. Further studies are required. KEY POINTS · Major congenital heart diseases are at high risk of multiorgan damage.. · Re-establishment of blood flow may result in ischemia-reperfusion (I/R) injury.. · Astaxanthin and resveratrol may have therapeutic effects against I/R injury..
Collapse
Affiliation(s)
- Dilek Dilli
- Department of Neonatology, University of Health Sciences of Turkey, Dr. Sami Ulus Maternity and Children Training and Research Hospital, Ankara, Turkey
| | - İrfan Taşoğlu
- Department of Cardiovascular Surgery, University of Health Sciences of Turkey, Türkiye Yüksek İhtisas Eğitim ve Araştırma Hastanesi, Ankara City Hospital, Ankara, Turkey
| | - Eyüp Sarı
- Department of Management, Gülhane Faculty of Medicine/Ankara Provincial Health Directorate, University of Health Sciences of Turkey, Public Hospitals Services Presidency, Ankara, Turkey
| | - Hasan Akduman
- Department of Neonatology, University of Health Sciences of Turkey, Dr. Sami Ulus Maternity and Children Training and Research Hospital, Ankara, Turkey
| | - Nihat Yumuşak
- Department of Pathology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| | - Naim Boran Tümer
- Department of Cardiovascular Surgery, University of Health Sciences of Turkey, Türkiye Yüksek İhtisas Eğitim ve Araştırma Hastanesi, Ankara City Hospital, Ankara, Turkey
| | - Salih Salar
- Department of Laboratory, Saki Yenilli Experimental Animals Production Laboratory, Ankara, Turkey
| |
Collapse
|
9
|
Li J, Xie Y, Zheng S, He H, Wang Z, Li X, Jiao S, Liu D, Yang F, Zhao H, Li P, Sun Y. Targeting autophagy in diabetic cardiomyopathy: From molecular mechanisms to pharmacotherapy. Biomed Pharmacother 2024; 175:116790. [PMID: 38776677 DOI: 10.1016/j.biopha.2024.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac microvascular complication caused by metabolic disorders. It is characterized by myocardial remodeling and dysfunction. The pathogenesis of DCM is associated with abnormal cellular metabolism and organelle accumulation. Autophagy is thought to play a key role in the diabetic heart, and a growing body of research suggests that modulating autophagy may be a potential therapeutic strategy for DCM. Here, we have summarized the major signaling pathways involved in the regulation of autophagy in DCM, including Adenosine 5'-monophosphate-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), Forkhead box subfamily O proteins (FOXOs), Sirtuins (SIRTs), and PTEN-inducible kinase 1 (PINK1)/Parkin. Given the significant role of autophagy in DCM, we further identified natural products and chemical drugs as regulators of autophagy in the treatment of DCM. This review may help to better understand the autophagy mechanism of drugs for DCM and promote their clinical application.
Collapse
Affiliation(s)
- Jie Li
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, China
| | - Yingying Xie
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuwen Zheng
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
| | - Haoming He
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhe Wang
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuexi Li
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siqi Jiao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dong Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Furong Yang
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
| | - Hailing Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Yihong Sun
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
| |
Collapse
|
10
|
Zhu X, He S, Zhang R, Kang L, Lei X, Dong W. Protective Effect and Mechanism of Autophagy in Endothelial Cell Injury Induced by Hyperoxia. Am J Perinatol 2024; 41:e2365-e2375. [PMID: 37516120 DOI: 10.1055/s-0043-1771258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
OBJECTIVE Bronchopulmonary dysplasia is a chronic lung disease in premature infants with alveolar simplification and pulmonary vascular development disorder as the main pathological feature and hyperoxia as the main etiology. Autophagy is a highly conserved cytological behavior of self-degrading cellular components and is accompanied by oxidative stress. Studies have reported that autophagy is regulated by FOXO1 posttranslational modification. However, whether autophagy can be involved in the regulation of endothelial cell injury induced by hyperoxia and its mechanism are still unclear. STUDY DESIGN We have activated and inhibited autophagy in human umbilical vein endothelial cells under hyperoxia and verified the role of autophagy in endothelial cell-related functions from both positive and negative aspects. RESULTS Our research showed that the expression level of autophagy-related proteins decreased, accompanied by decreased cell migration ability and tube formation ability and increased cell reactive oxygen species level and cell permeability under hyperoxia conditions. Using an autophagy agonist alleviated hyperoxia-induced changes and played a protective role. However, inhibition of autophagy aggravated the cell damage induced by hyperoxia. Moreover, the decrease in autophagy proteins was accompanied by the upregulation of FOXO1 phosphorylation and acetylation. CONCLUSION We concluded that autophagy was a protective mechanism against endothelial cell injury caused by hyperoxia. Autophagy might participate in this process by coregulating posttranslational modifications of FOXO1. KEY POINTS · Hyperoxia induces vascular endothelial cell injury.. · Autophagy may has a protective role under hyperoxia conditions.. · FOXO1 posttranslational modification may be involved in the regulation of autophagy..
Collapse
Affiliation(s)
- Xiaodan Zhu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Shasha He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Rong Zhang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Lan Kang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
11
|
Liu F, Zhao L, Wu T, Yu W, Li J, Wang W, Huang C, Diao Z, Xu Y. Targeting autophagy with natural products as a potential therapeutic approach for diabetic microangiopathy. Front Pharmacol 2024; 15:1364616. [PMID: 38659578 PMCID: PMC11039818 DOI: 10.3389/fphar.2024.1364616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
As the quality of life improves, the incidence of diabetes mellitus and its microvascular complications (DMC) continues to increase, posing a threat to people's health and wellbeing. Given the limitations of existing treatment, there is an urgent need for novel approaches to prevent and treat DMC. Autophagy, a pivotal mechanism governing metabolic regulation in organisms, facilitates the removal of dysfunctional proteins and organelles, thereby sustaining cellular homeostasis and energy generation. Anomalous states in pancreatic β-cells, podocytes, Müller cells, cardiomyocytes, and Schwann cells in DMC are closely linked to autophagic dysregulation. Natural products have the property of being multi-targeted and can affect autophagy and hence DMC progression in terms of nutrient perception, oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis. This review consolidates recent advancements in understanding DMC pathogenesis via autophagy and proposes novel perspectives on treating DMC by either stimulating or inhibiting autophagy using natural products.
Collapse
Affiliation(s)
- Fengzhao Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jixin Li
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenru Wang
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengcheng Huang
- Department of Endocrinology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Zhihao Diao
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Mone P, Agyapong ED, Morciano G, Jankauskas SS, De Luca A, Varzideh F, Pinton P, Santulli G. Dysfunctional mitochondria elicit bioenergetic decline in the aged heart. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:13. [PMID: 39015481 PMCID: PMC11250775 DOI: 10.20517/jca.2023.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Aging represents a complex biological progression affecting the entire body, marked by a gradual decline in tissue function, rendering organs more susceptible to stress and diseases. The human heart holds significant importance in this context, as its aging process poses life-threatening risks. It entails macroscopic morphological shifts and biochemical changes that collectively contribute to diminished cardiac function. Among the numerous pivotal factors in aging, mitochondria play a critical role, intersecting with various molecular pathways and housing several aging-related agents. In this comprehensive review, we provide an updated overview of the functional role of mitochondria in cardiac aging.
Collapse
Affiliation(s)
- Pasquale Mone
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy
| | - Esther Densu Agyapong
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola 48033, Italy
| | - Stanislovas S. Jankauskas
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Vanvitelli University, Naples 80100, Italy
| | - Fahimeh Varzideh
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola 48033, Italy
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy
- Department of Advanced Biomedical Sciences, “Federico II” University, International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples 80131, Italy
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
14
|
Li Y, Ni SH, Liu X, Sun SN, Ling GC, Deng JP, Ou-Yang XL, Huang YS, Li H, Chen ZX, Huang XF, Xian SX, Yang ZQ, Wang LJ, Wu HY, Lu L. Crosstalk between endothelial cells with a non-canonical EndoMT phenotype and cardiomyocytes/fibroblasts via IGFBP5 aggravates TAC-induced cardiac dysfunction. Eur J Pharmacol 2024; 966:176378. [PMID: 38309679 DOI: 10.1016/j.ejphar.2024.176378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Heart failure (HF) is a complex chronic condition characterized by structural and functional impairments. The differentiation of endothelial cells into myofibroblasts (EndoMT) in response to cardiac fibrosis is controversial, and the relative contribution of endothelial plasticity remains to be explored. Single-cell RNA sequencing was used to identify endothelial cells undergoing fibrotic differentiation within 2 weeks of transverse aortic constriction (TAC). This subset of endothelial cells transiently expressed fibrotic genes but had low expression of alpha-smooth muscle actin, indicating a non-canonical EndoMT, which we named a transient fibrotic-like phenotype (EndoFP). The role of EndoFP in pathological cardiac remodeling may be correlated with increased levels of osteopontin. Cardiomyocytes and fibroblasts co-cultured with EndoFP exhibited heightened pro-hypertrophic and pro-fibrotic effects. Mechanistically, we found that the upregulated expression of insulin-like growth factor-binding protein 5 may be a key mediator of EndoFP-induced cardiac dysfunction. Furthermore, our findings suggested that Rab5a is a novel regulatory gene involved in the EndoFP process. Our study suggests that the specific endothelial subset identified in TAC-induced pressure overload plays a critical role in the cellular interactions that lead to cardiac fibrosis and hypertrophy. Additionally, our findings provide insight into the mechanisms underlying EndoFP, making it a potential therapeutic target for early heart failure.
Collapse
Affiliation(s)
- Yue Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, 518000, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Shi-Hao Ni
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Xin Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shu-Ning Sun
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Gui-Chen Ling
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jian-Ping Deng
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Xiao-Lu Ou-Yang
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Yu-Sheng Huang
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Huan Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Zi-Xin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Xiu-Fang Huang
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Shao-Xiang Xian
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Zhong-Qi Yang
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Ling-Jun Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
| | - Hong-Yan Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, 518000, China.
| | - Lu Lu
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
| |
Collapse
|
15
|
García-Díez E, Pérez-Jiménez J, Martín MÁ, Ramos S. (-)-Epicatechin and colonic metabolite 2,3-dihydroxybenzoic acid, alone or in combination with metformin, protect cardiomyocytes from high glucose/high palmitic acid-induced damage by regulating redox status, apoptosis and autophagy. Food Funct 2024; 15:2536-2549. [PMID: 38347828 DOI: 10.1039/d3fo04039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
(-)-Epicatechin (EC) and a main colonic phenolic acid derived from flavonoid intake, 2,3-dihydroxybenzoic acid (DHBA), display antioxidant and antidiabetic activities. Diabetic cardiomyopathy (DCM) is one of the main causes of mortality in patients with diabetes, lacking a suitable treatment. Hyperglycaemia and dyslipidaemia are mainly responsible for oxidative stress and altered apoptosis and autophagy in cardiomyocytes during DCM. In this context, phenolic compounds could be suitable candidates for alleviating DCM, but have scarcely been investigated or their use in combination with antidiabetic drugs. This study evaluates the effects of EC, DHBA and antidiabetic drug metformin (MET), alone or all combined (MIX), on redox status, autophagy and apoptosis in H9c2 cardiomyocytes challenged with high concentrations of glucose (HG) and palmitic acid (PA). Under HG + PA conditions, EC, DHBA, MET and MIX equally improved redox status, reduced apoptosis induction and ameliorated autophagy inhibition. Mechanistically, all treatments alleviated HG + PA-induced oxidative stress by reinforcing antioxidant defences (∼40% increase in glutathione, ∼30% diminution in GPx activity and ∼15% increase in SOD activity) and reducing ROS generation (∼20%), protein oxidation (∼35%) and JNK phosphorylation (∼200%). Additionally, all treatments mitigated HG + PA-induced apoptosis and activated autophagy by decreasing Bax (∼15-25%), caspase-3 (∼20-40%) and p62 (∼20-40%), and increasing Bcl-2, beclin-1 and LC3-II/LC3-I (∼40-60%, ∼15-20%, and ∼25-30%, respectively). JNK inhibition improved protective changes to redox status, apoptosis and autophagy that were observed in EC-, DHBA- and MIX-mediated protection. Despite no additive or synergistic effects being detected when phenolic compounds and MET were combined, these results provide the first evidence for the benefits of EC and DHBA, comparable to those of MET alone, to ameliorate cardiomyocyte damage, that involve an improvement in antioxidant competence, autophagy and apoptosis, these effects being mediated at least by targeting JNK.
Collapse
Affiliation(s)
- Esther García-Díez
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040, Madrid, Spain.
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - María Ángeles Martín
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| |
Collapse
|
16
|
Yang Z, Cao Y, Kong L, Xi J, Liu S, Zhang J, Cheng W. Small molecules as modulators of the proteostasis machinery: Implication in cardiovascular diseases. Eur J Med Chem 2024; 264:116030. [PMID: 38071793 DOI: 10.1016/j.ejmech.2023.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
With the escalating prevalence of cardiovascular diseases, the substantial socioeconomic burden on healthcare systems is intensifying. Accumulating empirical evidence underscores the pivotal role of the proteostasis network in regulating cardiac homeostasis and function. Disruptions in proteostasis may contribute to the loss of protein function or the acquisition of toxic functions, which are intricately linked to the development of cardiovascular ailments such as atrial fibrillation, heart failure, atherosclerosis, and cardiac aging. It is widely acknowledged that the proteostasis network encompasses molecular chaperones, autophagy, and the ubiquitin proteasome system (UPS). Consequently, the proteostasis network emerges as an appealing target for therapeutic interventions in cardiovascular diseases. Numerous small molecules, acting as modulators of the proteostasis machinery, have exhibited therapeutic efficacy in managing cardiovascular diseases. This review centers on elucidating the role of the proteostasis network in various cardiovascular diseases and explores the potential of small molecules as therapeutic agents.
Collapse
Affiliation(s)
- Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Limin Kong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Shourong Liu
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
17
|
Pavlova JA, Guseva EA, Dontsova OA, Sergiev PV. Natural Activators of Autophagy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1-26. [PMID: 38467543 DOI: 10.1134/s0006297924010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024]
Abstract
Autophagy is the process by which cell contents, such as aggregated proteins, dysfunctional organelles, and cell structures are sequestered by autophagosome and delivered to lysosomes for degradation. As a process that allows the cell to get rid of non-functional components that tend to accumulate with age, autophagy has been associated with many human diseases. In this regard, the search for autophagy activators and the study of their mechanism of action is an important task for treatment of many diseases, as well as for increasing healthy life expectancy. Plants are rich sources of autophagy activators, containing large amounts of polyphenolic compounds in their composition, which can be autophagy activators in their original form, or can be metabolized by the intestinal microbiota to active compounds. This review is devoted to the plant-based autophagy activators with emphasis on the sources of their production, mechanism of action, and application in various diseases. The review also describes companies commercializing natural autophagy activators.
Collapse
Affiliation(s)
- Julia A Pavlova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina A Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
18
|
Guseva EA, Pavlova JA, Dontsova OA, Sergiev PV. Synthetic Activators of Autophagy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:27-52. [PMID: 38467544 DOI: 10.1134/s0006297924010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 03/13/2024]
Abstract
Autophagy is a central process for degradation of intracellular components that do not operate correctly. Molecular mechanisms underlying this process are extremely difficult to study, since they involve a large number of participants. The main task of autophagy is redistribution of cellular resources in response to environmental changes, such as starvation. Recent studies show that autophagy regulation could be the key to achieve healthy longevity, as well as to create therapeutic agents for treatment of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Thus, development of autophagy activators with established detailed mechanism of action is a really important area of research. Several commercial companies are at various stages of development of such molecules, and some of them have already begun to introduce autophagy activators to the market.
Collapse
Affiliation(s)
- Ekaterina A Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Julia A Pavlova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
19
|
Ding X, Zhu C, Wang W, Li M, Ma C, Gao B. SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion. Pharmacol Res 2024; 199:106957. [PMID: 37820856 DOI: 10.1016/j.phrs.2023.106957] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/09/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
SIRT1 is a highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase. It is involved in the regulation of various pathophysiological processes, including cell proliferation, survival, differentiation, autophagy, and oxidative stress. Therapeutic activation of SIRT1 protects the heart and cardiomyocytes from pathology-related stress, particularly myocardial ischemia/reperfusion (I/R). Autophagy is an important metabolic pathway for cell survival during energy or nutrient deficiency, hypoxia, or oxidative stress. Autophagy is a double-edged sword in myocardial I/R injury. The activation of autophagy during the ischemic phase removes excess metabolic waste and helps ensure cardiomyocyte survival, whereas excessive autophagy during reperfusion depletes the cellular components and leads to autophagic cell death. Increasing research on I/R injury has indicated that SIRT1 is involved in the process of autophagy and regulates myocardial I/R. SIRT1 regulates autophagy through various pathways, such as the deacetylation of FOXOs, ATGs, and LC3. Recent studies have confirmed that SIRT1-mediated autophagy plays different roles at different stages of myocardial I/R injury. By targeting the mechanism of SIRT1-mediated autophagy at different stages of I/R injury, new small-molecule drugs, miRNA activators, or blockers can be developed. For example, resveratrol, sevoflurane, quercetin, and melatonin in the ischemic stage, coptisine, curcumin, berberine, and some miRNAs during reperfusion, were involved in regulating the SIRT1-autophagy axis, exerting a cardioprotective effect. Here, we summarize the possible mechanisms of autophagy regulation by SIRT1 in myocardial I/R injury and the related molecular drug applications to identify strategies for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoqing Ding
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wenhong Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Mengying Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chunwei Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Binghong Gao
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
20
|
Xuan X, Zhang S. Targeting the programmed cell death (PCD) signaling mechanism with natural substances for the treatment of diabetic cardiomyopathy (DCM). Phytother Res 2023; 37:5495-5508. [PMID: 37622685 DOI: 10.1002/ptr.7992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the severe complications of diabetes, characterized by structural and functional abnormalities in the hearts of diabetic patients without hypertension, coronary heart disease, or valvular heart disease. DCM can progress to heart failure, which is a significant cause of death in diabetic patients, but currently, there is no effective treatment available. Programmed cell death (PCD) is a genetically regulated form of cell death that includes apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis. PCD is essential for tissue homeostasis and normal development of the body. DCM is a complex condition, and abnormalities in the cascade of PCD signaling have been observed in its pathological process, suggesting that targeting PCD could be a potential therapeutic strategy. Studies have shown that natural substances can effectively modulate PCD to intervene in the treatment of DCM, and their use is safe. This review explores the role of different forms of PCD in the pathogenesis of DCM and summarizes the research progress in targeting PCD with natural substances to treat DCM. It can serve as a basis for further research and drug development to provide new treatment strategies for DCM patients.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiliang Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
21
|
Li AL, Lian L, Chen XN, Cai WH, Fan XB, Fan YJ, Li TT, Xie YY, Zhang JP. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics. Free Radic Biol Med 2023; 208:236-251. [PMID: 37567516 DOI: 10.1016/j.freeradbiomed.2023.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Myocardial damage is the most serious pathological consequence of cardiovascular diseases and an important reason for their high mortality. In recent years, because of the high prevalence of systemic energy metabolism disorders (e.g., obesity, diabetes mellitus, and metabolic syndrome), complications of myocardial damage caused by these disorders have attracted widespread attention. Energy metabolism disorders are independent of traditional injury-related risk factors, such as ischemia, hypoxia, trauma, and infection. An imbalance of myocardial metabolic flexibility and myocardial energy depletion are usually the initial changes of myocardial injury caused by energy metabolism disorders, and abnormal morphology and functional destruction of the mitochondria are their important features. Specifically, mitochondria are the centers of energy metabolism, and recent evidence has shown that decreased mitochondrial function, caused by an imbalance in mitochondrial quality control, may play a key role in myocardial injury caused by energy metabolism disorders. Under chronic energy stress, mitochondria undergo pathological fission, while mitophagy, mitochondrial fusion, and biogenesis are inhibited, and mitochondrial protein balance and transfer are disturbed, resulting in the accumulation of nonfunctional and damaged mitochondria. Consequently, damaged mitochondria lead to myocardial energy depletion and the accumulation of large amounts of reactive oxygen species, further aggravating the imbalance in mitochondrial quality control and forming a vicious cycle. In addition, impaired mitochondria coordinate calcium homeostasis imbalance, and epigenetic alterations participate in the pathogenesis of myocardial damage. These pathological changes induce rapid progression of myocardial damage, eventually leading to heart failure or sudden cardiac death. To intervene more specifically in the myocardial damage caused by metabolic disorders, we need to understand the specific role of mitochondria in this context in detail. Accordingly, promising therapeutic strategies have been proposed. We also summarize the existing therapeutic strategies to provide a reference for clinical treatment and developing new therapies.
Collapse
Affiliation(s)
- Ao-Lin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin-Nong Chen
- Department of Traditional Chinese Medicine, Tianjin First Central Hospital, Tianjin, 300190, China
| | - Wen-Hui Cai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin-Biao Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ya-Jie Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ting-Ting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ying-Yu Xie
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China.
| |
Collapse
|
22
|
Zhao X, Bie LY, Pang DR, Li X, Yang LF, Chen DD, Wang YR, Gao Y. The role of autophagy in the treatment of type II diabetes and its complications: a review. Front Endocrinol (Lausanne) 2023; 14:1228045. [PMID: 37810881 PMCID: PMC10551182 DOI: 10.3389/fendo.2023.1228045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is a chronic metabolic disease characterized by prolonged hyperglycemia and insulin resistance (IR). Its incidence is increasing annually, posing a significant threat to human life and health. Consequently, there is an urgent requirement to discover effective drugs and investigate the pathogenesis of T2DM. Autophagy plays a crucial role in maintaining normal islet structure. However, in a state of high glucose, autophagy is inhibited, resulting in impaired islet function, insulin resistance, and complications. Studies have shown that modulating autophagy through activation or inhibition can have a positive impact on the treatment of T2DM and its complications. However, it is important to note that the specific regulatory mechanisms vary depending on the target organ. This review explores the role of autophagy in the pathogenesis of T2DM, taking into account both genetic and external factors. It also provides a summary of reported chemical drugs and traditional Chinese medicine that target the autophagic pathway for the treatment of T2DM and its complications.
Collapse
Affiliation(s)
- Xuan Zhao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu-Yao Bie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dao-Ran Pang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Long-Fei Yang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan-Dan Chen
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Rui Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
23
|
Wang Y, Li Y, Ding H, Li D, Shen W, Zhang X. The Current State of Research on Sirtuin-Mediated Autophagy in Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:382. [PMID: 37754811 PMCID: PMC10531599 DOI: 10.3390/jcdd10090382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Sirtuins belong to the class III histone deacetylases and possess nicotinamide adenine dinucleotide-dependent deacetylase activity. They are involved in the regulation of multiple signaling pathways implicated in cardiovascular diseases. Autophagy is a crucial adaptive cellular response to stress stimuli. Mounting evidence suggests a strong correlation between Sirtuins and autophagy, potentially involving cross-regulation and crosstalk. Sirtuin-mediated autophagy plays a crucial regulatory role in some cardiovascular diseases, including atherosclerosis, ischemia/reperfusion injury, hypertension, heart failure, diabetic cardiomyopathy, and drug-induced myocardial damage. In this context, we summarize the research advancements pertaining to various Sirtuins involved in autophagy and the molecular mechanisms regulating autophagy. We also elucidate the biological function of Sirtuins across diverse cardiovascular diseases and further discuss the development of novel drugs that regulate Sirtuin-mediated autophagy.
Collapse
Affiliation(s)
- Yuqin Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730106, China; (Y.W.)
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730031, China;
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China;
| | - Dan Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730106, China; (Y.W.)
| | - Wanxi Shen
- Qinghai Provincial People’s Hospital, Qinghai University, Xining 810007, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China;
| |
Collapse
|
24
|
Zheng HY, Wang YX, Zhou K, Xie HL, Ren Z, Liu HT, Ou YS, Zhou ZX, Jiang ZS. Biological functions of CRTC2 and its role in metabolism-related diseases. J Cell Commun Signal 2023; 17:495-506. [PMID: 36856929 PMCID: PMC10409973 DOI: 10.1007/s12079-023-00730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
CREB-regulated transcription coactivator2 (CRTC2 or TORC2) is a transcriptional coactivator of CREB(cAMP response element binding protein), which affects human energy metabolism through cyclic adenosine phosphate pathway, Mammalian target of rapamycin (mTOR) pathway, Sterol regulatory element binding protein 1(SREBP1), Sterol regulatory element binding protein 2 (SREBP2) and other substances Current studies on CRTC2 mainly focus on glucose and lipid metabolism, relevant studies show that CRTC2 can participate in the occurrence and development of related diseases by affecting metabolic homeostasis. It has been found that Crtc2 acts as a signaling regulator for cAMP and Ca2 + signaling pathways in many cell types, and phosphorylation at ser171 and ser275 can regulate downstream biological functions by controlling CRTC2 shuttling between cytoplasm and nucleus.
Collapse
Affiliation(s)
- Hong-Yu Zheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Yan-Xia Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Hai-Lin Xie
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Yang-Shao Ou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
25
|
Duan Q, Wu J. Dihydroartemisinin ameliorates cerebral I/R injury in rats via regulating VWF and autophagy-mediated SIRT1/FOXO1 pathway. Open Med (Wars) 2023; 18:20230698. [PMID: 37415610 PMCID: PMC10320570 DOI: 10.1515/med-2023-0698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 07/08/2023] Open
Abstract
Dihydroartemisinin (DHA) has been found to inhibit the expression of von Willebrand factor (VWF), a marker of endothelial cell injury, but its mechanism in cerebral ischemia/reperfusion (I/R) injury remains obscure. In this study, I/R model was constructed through middle cerebral artery occlusion (MCAO) in rats, followed by DHA administration. The effect of DHA on rat cerebral I/R injury was investigated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin and eosin staining, TUNEL staining, and Western blot. Brain microvascular endothelial cells (BMVECs) isolated from newborn rats were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R), and then treated with DHA. The results showed that MCAO treatment induced infarction, nerve cell apoptosis, and brain tissue impairment in rats, which was mitigated by DHA. OGD/R inhibited viability and accelerated apoptosis of BMVECs, which was alleviated by DHA. I/R procedures or OGD/R up-regulated expressions of VWF, ATG7, Beclin1, and LC3-II/LC3-I ratio, while down-regulating Occludin, Claudin-5, ZO-1, P62, SIRT1, and FOXO1 expressions in vivo and in vitro; however, these effects of I/R procedures or OGD/R were offset by DHA. VWF overexpression reversed the above effects of DHA on OGD/R-induced BMVECs. In summary, DHA ameliorates cerebral I/R injury in rats by reducing VWF level and activating autophagy-mediated SIRT1/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Qi Duan
- Emergency Department, Nantong Rich Hospital, Nantong, Jiangsu, 226006, China
| | - Junxia Wu
- Emergency Department, The Sixth People’s Hospital of Nantong, No. 500 Yonghe Road, Gangzha District, Nantong, Jiangsu, 226000, China
| |
Collapse
|
26
|
Hosoda R, Nakashima R, Yano M, Iwahara N, Asakura S, Nojima I, Saga Y, Kunimoto R, Horio Y, Kuno A. Resveratrol, a SIRT1 activator, attenuates aging-associated alterations in skeletal muscle and heart in mice. J Pharmacol Sci 2023; 152:112-122. [PMID: 37169475 DOI: 10.1016/j.jphs.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Aging is associated with impairment of multiple organs, including skeletal muscle and heart. In this study, we investigated whether resveratrol, an activator of an NAD+-dependent protein deacetylase Sirtuin-1 (SIRT1), attenuates age-related sarcopenia and cardiomyocyte hypertrophy in mice. Treatment of mice with resveratrol (0.4 g/kg diet) from 28 weeks of age for 32 weeks prevented aging-associated shortening of rotarod riding time. In the tibialis anterior (TA) muscle, histogram analysis showed that the atrophic muscle was increased in 60-week-old (wo) mice compared with 20-wo mice, which was attenuated by resveratrol. In the heart, resveratrol attenuated an aging-associated increase in the cardiomyocyte diameter. Acetylated proteins were increased and autophagic activity was reduced in the TA muscle of 60-wo mice compared with those of 20-wo mice. Resveratrol treatment reduced levels of acetylated proteins and restored autophagic activity in the TA muscle. Aging-related reduction in myocardial autophagy was also suppressed by resveratrol. Skeletal muscle-specific SIRT1 knockout mice showed increases in acetylated proteins and atrophic muscle fibers and reduced autophagic activity in the TA muscle. These results suggest that activation of SIRT1 by treatment with resveratrol suppresses sarcopenia and cardiomyocyte hypertrophy by restoration of autophagy in mice.
Collapse
Affiliation(s)
- Ryusuke Hosoda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Ryuta Nakashima
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Masaki Yano
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Naotoshi Iwahara
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Seidai Asakura
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Iyori Nojima
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Yukika Saga
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Risa Kunimoto
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Japan.
| |
Collapse
|
27
|
Zhu M, Wei C, Wang H, Han S, Cai L, Li X, Liao X, Che X, Li X, Fan L, Qiu G. SIRT1 mediated gastric cancer progression under glucose deprivation through the FoxO1-Rab7-autophagy axis. Front Oncol 2023; 13:1175151. [PMID: 37293593 PMCID: PMC10244632 DOI: 10.3389/fonc.2023.1175151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Purpose Silent mating type information regulator 2 homolog 1 (SIRT1) and autophagy have a two-way action (promoting cell death or survival) on the progression and treatment of gastric cancer (GC) under different conditions or environments. This study aimed to investigate the effects and underlying mechanism of SIRT1 on autophagy and the malignant biological behavior of GC cells under conditions of glucose deprivation (GD). Materials and methods Human immortalized gastric mucosal cell GES-1 and GC cell lines SGC-7901, BGC-823, MKN-45 and MKN-28 were utilized. A sugar-free or low-sugar (glucose concentration, 2.5 mmol/L) DMEM medium was used to simulate GD. Additionally, CCK8, colony formation, scratches, transwell, siRNA interference, mRFP-GFP-LC3 adenovirus infection, flow cytometry and western blot assays were performed to investigate the role of SIRT1 in autophagy and malignant biological behaviors (proliferation, migration, invasion, apoptosis and cell cycle) of GC under GD and the underlying mechanism. Results SGC-7901 cells had the longest tolerance time to GD culture conditions, which had the highest expression of SIRT1 protein and the level of basal autophagy. With the extension of GD time, the autophagy activity in SGC-7901 cells also increased. Under GD conditions, we found a close relationship between SIRT1, FoxO1 and Rab7 in SGC-7901 cells. SIRT1 regulated the activity of FoxO1 and upregulated the expression of Rab7 through deacetylation, which ultimately affected autophagy in GC cells. In addition, changing the expression of FoxO1 provided feedback on the expression of SIRT1 in the cell. Reducing SIRT1, FoxO1 or Rab7 expression significantly inhibited the autophagy levels of GC cells under GD conditions, decreased the tolerance of GC cells to GD, enhanced the inhibition of GD in GC cell proliferation, migration and invasion and increased apoptosis induced by GD. Conclusion The SIRT1-FoxO1-Rab7 pathway is crucial for the autophagy and malignant biological behaviors of GC cells under GD conditions, which could be a new target for the treatment of GC.
Collapse
Affiliation(s)
- Mengke Zhu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chao Wei
- Clinical Medicine Teaching and Research Section, Xi’an Health School, Xi’an, Shaanxi, China
| | - Haijiang Wang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shangning Han
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lindi Cai
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaowen Li
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinhua Liao
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiangming Che
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lin Fan
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guanglin Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
28
|
Samy DM, Zaki EI, Hassaan PS, Abdelmonsif DA, Mohamed DY, Saleh SR. Neurobehavioral, biochemical and histological assessment of the effects of resveratrol on cuprizone-induced demyelination in mice: role of autophagy modulation. J Physiol Biochem 2023:10.1007/s13105-023-00959-z. [PMID: 37131098 DOI: 10.1007/s13105-023-00959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Resveratrol is known to exhibit neuroprotective effects in many neurological disorders via autophagy modulation. However, controversial results have been reported about the therapeutic potential of resveratrol and the implication of autophagy in demyelinating diseases. This study aimed to evaluate the autophagic changes in cuprizone-intoxicated C57Bl/6 mice and explore the effect of autophagy activation by resveratrol on the demyelination and remyelination processes. Mice were fed with chow containing 0.2% cuprizone for 5 weeks, followed by a cuprizone-free diet for 2 weeks. Resveratrol (250 mg/kg/day) and/or chloroquine (an autophagy inhibitor; 10 mg/kg/day) were given for 5 weeks starting from the third week. At the end of the experiment, animals were tested on rotarod and then sacrificed for biochemical assessment, luxol fast blue (LFB) staining, and transmission electron microscopy (TEM) imaging of the corpus callosum. We observed that cuprizone-induced demyelination was associated with impaired degradation of autophagic cargo, induction of apoptosis, and manifest neurobehavioral disturbances. Oral treatment with resveratrol promoted motor coordination and improved remyelination with regular compacted myelin in most axons without a significant impact on myelin basic protein (MBP) mRNA expression. These effects are mediated, at least in part, via activating autophagic pathways that may involve SIRT1/FoxO1 activation. This study verified that resveratrol dampens cuprizone-induced demyelination, and partially enhances myelin repair through modulation of the autophagic flux, since interruption of the autophagic machinery by chloroquine reversed the therapeutic potential of resveratrol.
Collapse
Affiliation(s)
- Doaa M Samy
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Eiman I Zaki
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Passainte S Hassaan
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalia Y Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar R Saleh
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Bioscreening and Preclinical Trial Lab, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
29
|
Mohammadi-Motlagh HR, Sadeghalvad M, Yavari N, Primavera R, Soltani S, Chetty S, Ganguly A, Regmi S, Fløyel T, Kaur S, Mirza AH, Thakor AS, Pociot F, Yarani R. β Cell and Autophagy: What Do We Know? Biomolecules 2023; 13:biom13040649. [PMID: 37189396 DOI: 10.3390/biom13040649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic β cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in β cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components. Impaired autophagy results in β cell loss of function and apoptosis and, as a result, diabetes initiation and progress. It has been shown that in response to endoplasmic reticulum stress, inflammation, and high metabolic demands, autophagy affects β cell function, insulin synthesis, and secretion. This review highlights recent evidence regarding how autophagy can affect β cells' fate in the pathogenesis of diabetes. Furthermore, we discuss the role of important intrinsic and extrinsic autophagy modulators, which can lead to β cell failure.
Collapse
Affiliation(s)
- Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67155-1616, Iran
| | - Mona Sadeghalvad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rosita Primavera
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Iran
| | - Shashank Chetty
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abantika Ganguly
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shobha Regmi
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Tina Fløyel
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Aashiq H Mirza
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Avnesh S Thakor
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Reza Yarani
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
30
|
Sehrawat A, Mishra J, Mastana SS, Navik U, Bhatti GK, Reddy PH, Bhatti JS. Dysregulated autophagy: A key player in the pathophysiology of type 2 diabetes and its complications. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166666. [PMID: 36791919 DOI: 10.1016/j.bbadis.2023.166666] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Autophagy is essential in regulating the turnover of macromolecules via removing damaged organelles, misfolded proteins in various tissues, including liver, skeletal muscles, and adipose tissue to maintain the cellular homeostasis. In these tissues, a specific type of autophagy maintains the accumulation of lipid droplets which is directly related to obesity and the development of insulin resistance. It appears to play a protective role in a normal physiological environment by eliminating the invading pathogens, protein aggregates, and damaged organelles and generating energy and new building blocks by recycling the cellular components. Ageing is also a crucial modulator of autophagy process. During stress conditions involving nutrient deficiency, lipids excess, hypoxia etc., autophagy serves as a pro-survival mechanism by recycling the free amino acids to maintain the synthesis of proteins. The dysregulated autophagy has been found in several ageing associated diseases including type 2 diabetes (T2DM), cancer, and neurodegenerative disorders. So, targeting autophagy can be a promising therapeutic strategy against the progression to diabetes related complications. Our article provides a comprehensive outline of understanding of the autophagy process, including its types, mechanisms, regulation, and role in the pathophysiology of T2DM and related complications. We also explored the significance of autophagy in the homeostasis of β-cells, insulin resistance (IR), clearance of protein aggregates such as islet amyloid polypeptide, and various insulin-sensitive tissues. This will further pave the way for developing novel therapeutic strategies for diabetes-related complications.
Collapse
Affiliation(s)
- Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Umashanker Navik
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| |
Collapse
|
31
|
Taban Akça K, Çınar Ayan İ, Çetinkaya S, Miser Salihoğlu E, Süntar İ. Autophagic mechanisms in longevity intervention: role of natural active compounds. Expert Rev Mol Med 2023; 25:e13. [PMID: 36994671 PMCID: PMC10407225 DOI: 10.1017/erm.2023.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The term 'autophagy' literally translates to 'self-eating' and alterations to autophagy have been identified as one of the several molecular changes that occur with aging in a variety of species. Autophagy and aging, have a complicated and multifaceted relationship that has recently come to light thanks to breakthroughs in our understanding of the various substrates of autophagy on tissue homoeostasis. Several studies have been conducted to reveal the relationship between autophagy and age-related diseases. The present review looks at a few new aspects of autophagy and speculates on how they might be connected to both aging and the onset and progression of disease. Additionally, we go over the most recent preclinical data supporting the use of autophagy modulators as age-related illnesses including cancer, cardiovascular and neurodegenerative diseases, and metabolic dysfunction. It is crucial to discover important targets in the autophagy pathway in order to create innovative therapies that effectively target autophagy. Natural products have pharmacological properties that can be therapeutically advantageous for the treatment of several diseases and they also serve as valuable sources of inspiration for the development of possible new small-molecule drugs. Indeed, recent scientific studies have shown that several natural products including alkaloids, terpenoids, steroids, and phenolics, have the ability to alter a number of important autophagic signalling pathways and exert therapeutic effects, thus, a wide range of potential targets in various stages of autophagy have been discovered. In this review, we summarised the naturally occurring active compounds that may control the autophagic signalling pathways.
Collapse
Affiliation(s)
- Kevser Taban Akça
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İlknur Çınar Ayan
- Department of Medical Biology, Medical Faculty, Necmettin Erbakan University, Meram, Konya, Türkiye
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, Yenimahalle, Ankara, Türkiye
| | - Ece Miser Salihoğlu
- Biochemistry Department, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İpek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
32
|
Huang H, Liao D, He B, Pu R, Cui Y, Zhou G. Deoxyshikonin inhibited rotavirus replication by regulating autophagy and oxidative stress through SIRT1/FoxO1/Rab7 axis. Microb Pathog 2023; 178:106065. [PMID: 36907361 DOI: 10.1016/j.micpath.2023.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Rotavirus (RV) is a double-stranded RNA virus. RV prevention and treatment remain a major public health problem due to the lack of clinically specific drugs. Deoxyshikonin is a natural compound isolated from the root of Lithospermum erythrorhizon and one of the shikonin derivatives which owns remarkable therapeutic effects on multiple diseases. The purpose of this research was to inquire Deoxyshikonin's role and mechanism in RV infection. METHODS Deoxyshikonin's function in RV was estimated using Cell Counting Kit-8 analysis, cytopathic effect inhibition assay, virus titer determination, quantitative real-time PCR, enzyme linked-immunosorbent assay, Western blot, immunofluorescence, and glutathione levels detection. Also, Deoxyshikonin's mechanism in RV was appraised with Western blot, virus titer determination, and glutathione levels detection. Moreover, Deoxyshikonin's function in RV in vivo was determined using animal models, and diarrhea score analysis. RESULTS Deoxyshikonin owned anti-RV activity and repressed RV replication in Caco-2 cells. Furthermore, Deoxyshikonin reduced autophagy and oxidative stress caused by RV. Mechanistically, Deoxyshikonin induced low protein levels of SIRT1, ac-Foxo1, Rab7, VP6, low levels of RV titers, low autophagy and oxidative stress. SIRT1 overexpression abolished the effects of Deoxyshikonin on RV-treated Caco-2 cells. Meanwhile, in vivo research affirmed that Deoxyshikonin also possessed anti-RV function, and this was reflected in increased survival rate, body weight, GSH levels, and decreased diarrhea score, RV virus antigen, LC-3II/LC3-I. CONCLUSION Deoxyshikonin reduced RV replication through mediating autophagy and oxidative stress via SIRT1/FoxO1/Rab7 pathway.
Collapse
Affiliation(s)
- Haohai Huang
- Medical and Pharmacy Research Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China; Department of Clinical Pharmacy, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China.
| | - Dan Liao
- Medical and Pharmacy Research Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China; Department of Gynaecology, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Bin He
- Medical and Pharmacy Research Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Rong Pu
- Department of Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yejia Cui
- Department of Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guanghui Zhou
- Department of TCM Rehabilitation, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
33
|
Silva BR, Silva JRV. Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. Anim Reprod Sci 2023; 249:107186. [PMID: 36638648 DOI: 10.1016/j.anireprosci.2022.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
In vitro follicle growth and oocyte maturation still has a series of limitations, since not all oocytes matured in vitro have the potential to develop in viable embryos. One of the factors associated with low oocyte quality is the generation of reactive oxygen species (ROS) during in vitro culture. Therefore, this review aims to discuss the role of non-enzymatic antioxidants in the control of oxidative stress during in vitro follicular growth, oocyte maturation and embryonic development. A wide variety of non-enzymatic antioxidants (melatonin, resveratrol, L-ascorbic acid, L-carnitine, N-acetyl-cysteine, cysteamine, quercetin, nobiletin, lycopene, acteoside, mogroside V, phycocyanin and laminarin) have been used to supplement culture media. Some of them, like N-acetyl-cysteine, cysteamine, nobiletin and quercetin act by increasing the levels of glutathione (GSH), while melatonin and resveratrol increase the expression of antioxidant enzymes and minimize oocyte oxidative stress. L-ascorbic acid reduces free radicals and reactive oxygen species. Lycopene positively regulates the expression of many antioxidant genes. Additionally, L-carnitine protects DNA against ROS-induced damage, while acteoside and laminarin reduces the expression of proapoptotic genes. Mogrosides increases mitochondrial function and reduces intracellular ROS levels, phycocyanin reduces lipid peroxidation, and lycopene neutralizes the adverse effects of ROS. Thus, it is very important to know their mechanisms of actions, because the combination of two or more antioxidants with different activities has great potential to improve in vitro culture systems.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil
| | - José R V Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil.
| |
Collapse
|
34
|
Werbner B, Tavakoli-Rouzbehani OM, Fatahian AN, Boudina S. The dynamic interplay between cardiac mitochondrial health and myocardial structural remodeling in metabolic heart disease, aging, and heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:9. [PMID: 36742465 PMCID: PMC9894375 DOI: 10.20517/jca.2022.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review provides a holistic perspective on the bi-directional relationship between cardiac mitochondrial dysfunction and myocardial structural remodeling in the context of metabolic heart disease, natural cardiac aging, and heart failure. First, a review of the physiologic and molecular drivers of cardiac mitochondrial dysfunction across a range of increasingly prevalent conditions such as metabolic syndrome and cardiac aging is presented, followed by a general review of the mechanisms of mitochondrial quality control (QC) in the heart. Several important mechanisms by which cardiac mitochondrial dysfunction triggers or contributes to structural remodeling of the heart are discussed: accumulated metabolic byproducts, oxidative damage, impaired mitochondrial QC, and mitochondrial-mediated cell death identified as substantial mechanistic contributors to cardiac structural remodeling such as hypertrophy and myocardial fibrosis. Subsequently, the less studied but nevertheless important reverse relationship is explored: the mechanisms by which cardiac structural remodeling feeds back to further alter mitochondrial bioenergetic function. We then provide a condensed pathogenesis of several increasingly important clinical conditions in which these relationships are central: diabetic cardiomyopathy, age-associated declines in cardiac function, and the progression to heart failure, with or without preserved ejection fraction. Finally, we identify promising therapeutic opportunities targeting mitochondrial function in these conditions.
Collapse
Affiliation(s)
- Benjamin Werbner
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Amir Nima Fatahian
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
35
|
Lee J, Kim J, Lee JH, Choi YM, Choi H, Cho HD, Cha GH, Lee YH, Jo EK, Park BH, Yuk JM. SIRT1 Promotes Host Protective Immunity against Toxoplasma gondii by Controlling the FoxO-Autophagy Axis via the AMPK and PI3K/AKT Signalling Pathways. Int J Mol Sci 2022; 23:13578. [PMID: 36362370 PMCID: PMC9654124 DOI: 10.3390/ijms232113578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2023] Open
Abstract
Sirtuin 1 (SIRT1) regulates cellular processes by deacetylating non-histone targets, including transcription factors and intracellular signalling mediators; thus, its abnormal activation is closely linked to the pathophysiology of several diseases. However, its function in Toxoplasma gondii infection is unclear. We found that SIRT1 contributes to autophagy activation via the AMP-activated protein kinase (AMPK) and PI3K/AKT signalling pathways, promoting anti-Toxoplasma responses. Myeloid-specific Sirt1-/- mice exhibited an increased cyst burden in brain tissue compared to wild-type mice following infection with the avirulent ME49 strain. Consistently, the intracellular survival of T. gondii was markedly increased in Sirt1-deficient bone-marrow-derived macrophages (BMDMs). In contrast, the activation of SIRT1 by resveratrol resulted in not only the induction of autophagy but also a significantly increased anti-Toxoplasma effect. Notably, SIRT1 regulates the FoxO-autophagy axis in several human diseases. Importantly, the T. gondii-induced phosphorylation, acetylation, and cytosolic translocation of FoxO1 was enhanced in Sirt1-deficient BMDMs and the pharmacological inhibition of PI3K/AKT signalling reduced the cytosolic translocation of FoxO1 in BMDMs infected with T. gondii. Further, the CaMKK2-dependent AMPK signalling pathway is responsible for the effect of SIRT1 on the FoxO3a-autophagy axis and for its anti-Toxoplasma activity. Collectively, our findings reveal a previously unappreciated role for SIRT1 in Toxoplasma infection.
Collapse
Affiliation(s)
- Jina Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jinju Kim
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jae-Hyung Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yong Min Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyeonil Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hwan-Doo Cho
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Guang-Ho Cha
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Young-Ha Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju 54896, Korea
| | - Jae-Min Yuk
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
36
|
Chen Y, Zhang H, Li Y, Ji S, Jia P, Wang T. Pterostilbene attenuates intrauterine growth retardation-induced colon inflammation in piglets by modulating endoplasmic reticulum stress and autophagy. J Anim Sci Biotechnol 2022; 13:125. [PMID: 36329539 PMCID: PMC9635184 DOI: 10.1186/s40104-022-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022] Open
Abstract
Background Endoplasmic reticulum (ER) stress and autophagy are implicated in the pathophysiology of intestinal inflammation; however, their roles in intrauterine growth retardation (IUGR)-induced colon inflammation are unclear. This study explored the protective effects of natural stilbene pterostilbene on colon inflammation using the IUGR piglets and the tumor necrosis factor alpha (TNF-α)-treated human colonic epithelial cells (Caco-2) by targeting ER stress and autophagy. Results Both the IUGR colon and the TNF-α-treated Caco-2 cells exhibited inflammatory responses, ER stress, and impaired autophagic flux (P < 0.05). The ER stress inducer tunicamycin and the autophagy inhibitor 3-methyladenine further augmented inflammatory responses and apoptosis in the TNF-α-treated Caco-2 cells (P < 0.05). Conversely, pterostilbene inhibited ER stress and restored autophagic flux in the IUGR colon and the TNF-α-treated cells (P < 0.05). Pterostilbene also prevented the release of inflammatory cytokines and nuclear translocation of nuclear factor kappa B p65, reduced intestinal permeability and cell apoptosis, and facilitated the expression of intestinal tight junction proteins in the IUGR colon and the TNF-α-treated cells (P < 0.05). Importantly, treatment with tunicamycin or autophagosome-lysosome binding inhibitor chloroquine blocked the positive effects of pterostilbene on inflammatory response, cell apoptosis, and intestinal barrier function in the TNF-α-exposed Caco-2 cells (P < 0.05). Conclusion Pterostilbene mitigates ER stress and promotes autophagic flux, thereby improving colon inflammation and barrier dysfunction in the IUGR piglets and the TNF-α-treated Caco-2 cells. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00780-6.
Collapse
|
37
|
Singh P, Barman B, Thakur MK. Oxidative stress-mediated memory impairment during aging and its therapeutic intervention by natural bioactive compounds. Front Aging Neurosci 2022; 14:944697. [PMID: 35959291 PMCID: PMC9357995 DOI: 10.3389/fnagi.2022.944697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Aging and associated neurodegenerative diseases are accompanied by the decline of several brain functions including cognitive abilities. Progressive deleterious changes at biochemical and physiological levels lead to the generation of oxidative stress, accumulation of protein aggregates, mitochondrial dysfunctions, loss of synaptic connections, and ultimately neurodegeneration and cognitive decline during aging. Oxidative stress that arises due to an imbalance between the rates of production and elimination of free radicles is the key factor for age-associated neurodegeneration and cognitive decline. Due to high energy demand, the brain is more susceptible to free radicals-mediated damages as they oxidize lipids, proteins, and nucleic acids, thereby causing an imbalance in the homeostasis of the aging brain. Animal, as well as human subject studies, showed that with almost no or few side effects, dietary interventions and plant-derived bioactive compounds could be beneficial to recovering the memory or delaying the onset of memory impairment. As the plant-derived bioactive compounds have antioxidative properties, several of them were used to recover the oxidative stress-mediated changes in the aging brain. In the present article, we review different aspects of oxidative stress-mediated cognitive change during aging and its therapeutic intervention by natural bioactive compounds.
Collapse
Affiliation(s)
- Padmanabh Singh
- Department of Zoology, Banaras Hindu University, Varanasi, India
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, India
| | - Bhabotosh Barman
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Mahendra Kumar Thakur
- Department of Zoology, Banaras Hindu University, Varanasi, India
- *Correspondence: Mahendra Kumar Thakur,
| |
Collapse
|
38
|
The Rab GTPase in the heart: Pivotal roles in development and disease. Life Sci 2022; 306:120806. [PMID: 35841978 DOI: 10.1016/j.lfs.2022.120806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
Rab proteins are a family of small GTPases that function as molecular switches of intracellular vesicle formation and membrane trafficking. As a key factor, Rab GTPase participates in autophagy and protein transport and acts as the central hub of membrane trafficking in eukaryotes. The role of Rab GTPase in neurodegenerative disorders, such as Alzheimer's and Parkinson's, has been extensively investigated; however, its implication in cardiovascular embryogenesis and diseases remains largely unknown. In this review, we summarize previous findings and reveal their importance in the onset and progression of cardiac diseases, as well as their emergence as potential therapeutic targets for cardiovascular disease.
Collapse
|
39
|
Ferreira JP, Vasques-Nóvoa F, Ferrão D, Saraiva F, Falcão-Pires I, Neves JS, Sharma A, Rossignol P, Zannad F, Leite-Moreira A. Fenofibrate and Heart Failure Outcomes in Patients With Type 2 Diabetes: Analysis From ACCORD. Diabetes Care 2022; 45:1584-1591. [PMID: 35320363 PMCID: PMC9274224 DOI: 10.2337/dc21-1977] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/27/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with type 2 diabetes (T2D) have a high risk for developing heart failure (HF), which is associated with poor prognosis. Fenofibrate may reduce HF events through multiple mechanisms. We sought to study the effect of fenofibrate (vs. placebo) in HF outcomes among patients with T2D receiving simvastatin enrolled in the Action to Control Cardiovascular Risk in Diabetes lipid trial (ACCORD Lipid). RESEARCH DESIGN AND METHODS We used Cox regression analysis with background glucose-lowering strategy as the stratification variable. The median follow-up was 4.7 years. RESULTS A total of 5,518 patients were included. Median age was 62 years, and 31% were women. Prior HF history was present in 5% of the patients. The composite outcome of HF hospitalization or cardiovascular death occurred in 190 (6.9%) patients in the fenofibrate group vs. 228 (8.3%) in the placebo group: HR 0.82, 95% CI 0.68-1.00 (P = 0.048). The beneficial effect of fenofibrate to reduce HF hospitalizations or cardiovascular death was present among patients receiving standard glucose-lowering strategy, HR 0.64, 95% CI 0.48-0.85, and not among patients receiving intensive glucose-lowering strategy, HR 1.02, 95% CI 0.79-1.33 (Pinteraction = 0.017). A similar pattern was observed for HF hospitalizations alone. The effect of fenofibrate on blood lipids was not influenced by background glucose-lowering therapy in a clinically important manner. Fenofibrate caused more transient worsening estimated glomerular filtration rate (eGFR) events but slowed long-term eGFR decline. CONCLUSIONS In patients with T2D treated with simvastatin, fenofibrate reduced the composite of HF hospitalizations or cardiovascular mortality, an effect that was seen predominantly in patients with standard background glucose-lowering therapy.
Collapse
Affiliation(s)
- João Pedro Ferreira
- INSERM, Centre d'Investigations Cliniques - Plurithématique 14-33, Université de Lorraine, and INSERM U1116, CHRU Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France.,Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Diana Ferrão
- Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisca Saraiva
- Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Sérgio Neves
- Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Abhinav Sharma
- DREAM-CV Lab, Division of Cardiology, McGill University Health Centre, Montreal, Canada
| | - Patrick Rossignol
- INSERM, Centre d'Investigations Cliniques - Plurithématique 14-33, Université de Lorraine, and INSERM U1116, CHRU Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Faiez Zannad
- INSERM, Centre d'Investigations Cliniques - Plurithématique 14-33, Université de Lorraine, and INSERM U1116, CHRU Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Adelino Leite-Moreira
- Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
40
|
Su M, Zhao W, Xu S, Weng J. Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel) 2022; 11:antiox11061085. [PMID: 35739982 PMCID: PMC9219679 DOI: 10.3390/antiox11061085] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent chronic diseases worldwide. High morbidity and mortality caused by DM are closely linked to its complications in multiple organs/tissues, including cardiovascular complications, diabetic nephropathy, and diabetic neuropathy. Resveratrol is a plant-derived polyphenolic compound with pleiotropic protective effects, ranging from antioxidant and anti-inflammatory to hypoglycemic effects. Recent studies strongly suggest that the consumption of resveratrol offers protection against diabetes and its cardiovascular complications. The protective effects of resveratrol involve the regulation of multiple signaling pathways, including inhibition of oxidative stress and inflammation, enhancement of insulin sensitivity, induction of autophagy, regulation of lipid metabolism, promotion of GLUT4 expression, and translocation, and activation of SIRT1/AMPK signaling axis. The cardiovascular protective effects of resveratrol have been recently reviewed in the literature, but the role of resveratrol in preventing diabetes mellitus and its cardiovascular complications has not been systematically reviewed. Therefore, in this review, we summarize the pharmacological effects and mechanisms of action of resveratrol based on in vitro and in vivo studies, highlighting the therapeutic potential of resveratrol in the prevention and treatment of diabetes and its cardiovascular complications.
Collapse
|
41
|
Mitochondria-Endoplasmic Reticulum Contacts: The Promising Regulators in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2531458. [PMID: 35450404 PMCID: PMC9017569 DOI: 10.1155/2022/2531458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 03/28/2022] [Indexed: 02/05/2023]
Abstract
Diabetic cardiomyopathy (DCM), as a serious complication of diabetes, causes structural and functional abnormalities of the heart and eventually progresses to heart failure. Currently, there is no specific treatment for DCM. Studies have proved that mitochondrial dysfunction and endoplasmic reticulum (ER) stress are key factors for the development and progression of DCM. The mitochondria-associated ER membranes (MAMs) are a unique domain formed by physical contacts between mitochondria and ER and mediate organelle communication. Under high glucose conditions, changes in the distance and composition of MAMs lead to abnormal intracellular signal transduction, which will affect the physiological function of MAMs, such as alter the Ca2+ homeostasis in cardiomyocytes, and lead to mitochondrial dysfunction and abnormal apoptosis. Therefore, the dysfunction of MAMs is closely related to the pathogenesis of DCM. In this review, we summarized the evidence for the role of MAMs in DCM and described that MAMs participated directly or indirectly in the regulation of the pathophysiological process of DCM via the regulation of Ca2+ signaling, mitochondrial dynamics, ER stress, autophagy, and inflammation. Finally, we discussed the clinical transformation prospects and technical limitations of MAMs-associated proteins (such as MFN2, FUNDC1, and GSK3β) as potential therapeutic targets for DCM.
Collapse
|
42
|
Sajad M, Kumar R, Thakur SC. History in Perspective: The Prime Pathological Players and Role of Phytochemicals in Alzheimer’s Disease. IBRO Neurosci Rep 2022; 12:377-389. [PMID: 35586776 PMCID: PMC9108734 DOI: 10.1016/j.ibneur.2022.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/25/2022] [Indexed: 11/01/2022] Open
Abstract
Alzheimer's disease is a steadily progressive, irreversible neurological disorder that is most frequently categorized under the umbrella term "neurodegeneration". Several attempts are underway to clarify the pathogenic mechanisms, identify the aetiologies, and determine a pathway by which the therapeutic steps can be implemented. Oxidative stress is one of the pathogenic processes, which is commonly believed to be associated with neurodegenerative diseases. Accumulation of extracellular amyloid-β protein (Aβ), hyperphosphorylation of tau, initiation of neurometabolic reactions characterized by the loss of neuronal function and synaptic failure, and decreased or lost learning capability and memory function are the most central neuropathological characteristics of AD. According to the amyloid cascade hypothesis, the enhanced deposition of Aβ deposits and neurofibrillary tangles due to hyperphosphorylation of Tau activates the cascade reactions in the brain. These reactions affect the synaptic activity and activation of microglia, which results in neuroinflammation due to enhanced immune function. Plant-based phytochemicals have also been used long ago against several diseases. Phytoconstituents play a significant neuroprotective property by preventing the pathophysiology of the disease. In this review, we have discussed the formation and crosstalk between amyloid and tau pathologies as well as the effect of neuroinflammation on the progression of AD. We have specifically focused on the formation of NFT, β-amyloids, inflammation, and pathophysiology of AD and the role of phytochemicals in the prevention of AD. AD is an insidious, slowly progressive, and neurodegenerative disorder. Common symptoms are memory loss, difficulty in recalling, and understanding. β-amyloids and Neurofibrillary tangles are the main factors in AD pathogenesis. Activated microglia and oxidative stress have different effects on AD progression. Phytochemicals show a key role against AD by inhibiting several pathways.
Collapse
|
43
|
Gatica D, Chiong M, Lavandero S, Klionsky DJ. The role of autophagy in cardiovascular pathology. Cardiovasc Res 2022; 118:934-950. [PMID: 33956077 PMCID: PMC8930074 DOI: 10.1093/cvr/cvab158] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic recycling pathway in which cytoplasmic components are sequestered, degraded, and recycled to survive various stress conditions. Autophagy dysregulation has been observed and linked with the development and progression of several pathologies, including cardiovascular diseases, the leading cause of death in the developed world. In this review, we aim to provide a broad understanding of the different molecular factors that govern autophagy regulation and how these mechanisms are involved in the development of specific cardiovascular pathologies, including ischemic and reperfusion injury, myocardial infarction, cardiac hypertrophy, cardiac remodelling, and heart failure.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| | - Mario Chiong
- Department of Biochemistry and Molecular Biology, Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Olivos 1007, Independencia, Santiago 8380492, Chile
| | - Sergio Lavandero
- Department of Biochemistry and Molecular Biology, Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Olivos 1007, Independencia, Santiago 8380492, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), 926 JF Gonzalez, Santiago 7860201, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-8573, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| |
Collapse
|
44
|
Wang A, Zhao W, Yan K, Huang P, Zhang H, Zhang Z, Zhang D, Ma X. Mechanisms and Efficacy of Traditional Chinese Medicine in Heart Failure. Front Pharmacol 2022; 13:810587. [PMID: 35281941 PMCID: PMC8908244 DOI: 10.3389/fphar.2022.810587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is one of the main public health problems at present. Although some breakthroughs have been made in the treatment of HF, the mortality rate remains very high. However, we should also pay attention to improving the quality of life of patients with HF. Traditional Chinese medicine (TCM) has a long history of being used to treat HF. To demonstrate the clinical effects and mechanisms of TCM, we searched published clinical trial studies and basic studies. The search results showed that adjuvant therapy with TCM might benefit patients with HF, and its mechanism may be related to microvascular circulation, myocardial energy metabolism, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Anzhu Wang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
45
|
Zhu Y, Wu F, Yang Q, Feng H, Xu D. Resveratrol Inhibits High Glucose-Induced H9c2 Cardiomyocyte Hypertrophy and Damage via RAGE-Dependent Inhibition of the NF- κB and TGF- β1/Smad3 Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7781910. [PMID: 35251212 PMCID: PMC8896917 DOI: 10.1155/2022/7781910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Hyperglycaemia is associated with the development of cardiac vascular disease. Resveratrol (RES) is a naturally occurring polyphenolic compound that possesses many biological properties, including anti-inflammatory properties and antioxidation functions. Our study aimed to explore the RES's protective roles on high glucose (HG)-induced H9c2 cells and the underlying mechanisms. Small-molecule inhibitors, western blotting (WB), as well as reverse-transcription PCR (RT-PCR) were employed to investigate the mechanisms underlying HG-induced damage in H9c2 cells. RES (40 μg/mL) treatment significantly alleviated HG-induced cardiac hypertrophy and cardiac dysfunction. RES abated the HG-induced increase in the levels of extracellular matrix (ECM) components and inflammatory cytokines, reducing ECM accumulation and inflammatory responses. Additionally, RES administration prevented HG-induced mitochondrion-mediated cardiac apoptosis of myocardial cells. In terms of mechanisms, we demonstrated that RES ameliorated the HG-induced overexpression of receptor for advanced glycation endproducts (RAGE) and downregulation of NF-κB signalling. Moreover, RES inhibited HG-induced cardiac fibrosis by inhibiting transforming growth factor beta 1 (TGF-β1)/Smad3-mediated ECM synthesis in cultured H9c2 cardiomyocytes. Further studies revealed that the effects of RES against HG-induced upregulation of NF-κB and TGF-β1/Smad3 pathways were similar to those of FPS-ZM1, a RAGE inhibitor. Collectively, the results implied that RES might help alleviate HG-induced cardiotoxicity via RAGE-dependent downregulation of the NF-κB and TGF-β/Smad3 pathways. This study provided evidence that RES can be developed as a promising cardioprotective drug.
Collapse
Affiliation(s)
- Yanzhou Zhu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fuling Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
46
|
McCarty MF. Nutraceutical and Dietary Strategies for Up-Regulating Macroautophagy. Int J Mol Sci 2022; 23:2054. [PMID: 35216170 PMCID: PMC8875972 DOI: 10.3390/ijms23042054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Macroautophagy is a "cell cleansing" process that rids cells of protein aggregates and damaged organelles that may contribute to disease pathogenesis and the dysfunctions associated with aging. Measures which boost longevity and health span in rodents typically up-regulate macroautophagy, and it has often been suggested that safe strategies which can promote this process in humans may contribute to healthful aging. The kinase ULK1 serves as a trigger for autophagy initiation, and the transcription factors TFEB, FOXO1, ATF4 and CHOP promote expression of a number of proteins which mediate macroautophagy. Nutraceutical or dietary measures which stimulate AMPK, SIRT1, eIF5A, and that diminish the activities of AKT and mTORC1, can be expected to boost the activities of these pro-autophagic factors. The activity of AMPK can be stimulated with the phytochemical berberine. SIRT1 activation may be achieved with a range of agents, including ferulic acid, melatonin, urolithin A, N1-methylnicotinamide, nicotinamide riboside, and glucosamine; correction of ubiquinone deficiency may also be useful in this regard, as may dietary strategies such as time-restricted feeding or intermittent fasting. In the context of an age-related decrease in cellular polyamine levels, provision of exogenous spermidine can boost the hypusination reaction required for the appropriate post-translational modification of eIF5A. Low-protein plant-based diets could be expected to increase ATF4 and CHOP expression, while diminishing IGF-I-mediated activation of AKT and mTORC1. Hence, practical strategies for protecting health by up-regulating macroautophagy may be feasible.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, San Diego, CA 92109, USA
| |
Collapse
|
47
|
da Silva JS, Gonçalves RGJ, Vasques JF, Rocha BS, Nascimento-Carlos B, Montagnoli TL, Mendez-Otero R, de Sá MPL, Zapata-Sudo G. Mesenchymal Stem Cell Therapy in Diabetic Cardiomyopathy. Cells 2022; 11:cells11020240. [PMID: 35053356 PMCID: PMC8773977 DOI: 10.3390/cells11020240] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The incidence and prevalence of diabetes mellitus (DM) are increasing worldwide, and the resulting cardiac complications are the leading cause of death. Among these complications is diabetes-induced cardiomyopathy (DCM), which is the consequence of a pro-inflammatory condition, oxidative stress and fibrosis caused by hyperglycemia. Cardiac remodeling will lead to an imbalance in cell survival and death, which can promote cardiac dysfunction. Since the conventional treatment of DM generally does not address the prevention of cardiac remodeling, it is important to develop new alternatives for the treatment of cardiovascular complications induced by DM. Thus, therapy with mesenchymal stem cells has been shown to be a promising approach for the prevention of DCM because of their anti-apoptotic, anti-fibrotic and anti-inflammatory effects, which could improve cardiac function in patients with DM.
Collapse
Affiliation(s)
- Jaqueline S. da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
| | - Renata G. J. Gonçalves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-170, RJ, Brazil; (R.G.J.G.); (R.M.-O.)
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-170, RJ, Brazil;
| | - Bruna S. Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
| | - Bianca Nascimento-Carlos
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
| | - Tadeu L. Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
| | - Rosália Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-170, RJ, Brazil; (R.G.J.G.); (R.M.-O.)
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Mauro P. L. de Sá
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
- Correspondence: or ; Tel.: +55-21-39386505
| |
Collapse
|
48
|
Zhao D, Ji J, Li S, Wu A. Skullcapflavone II protects neuronal damage in cerebral ischemic rats via inhibiting NF-ĸB and promoting angiogenesis. Microvasc Res 2022; 141:104318. [PMID: 35026288 DOI: 10.1016/j.mvr.2022.104318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cerebral ischemia (CI) is considered as a main cause of cerebral stroke (CS) and poses significant risk to the mankind across the world. In the present study, we intended to investigate the protective effect of Skullcapflavone II (SCP) a flavonoid isolated from S. baicalensis on cerebral ischemia/reperfusion (I/R) injury. METHODS The middle cerebral artery occlusion (MCAO) and reperfusion was used to create ischemic stroke rat model. The rats were treated with (5, 10, and 15 mg/kg) SCP and after the end of the experiment the rats were sacrificed and various biochemical parameters were assed to determine the pharmacological action of SCP. RESULTS SCP dramatically decreases cerebral edema, infarct volume, and improves neurological manifestation as confirmed by reduced neurological deficit. SCP also improves the survivability of neurons as evidenced by H and E and Nissl staining. The level of oxidative stress in the cerebral cortex of the rats was found reduced after treatment with SCP, as confirmed by increase in GSH and SOD activity with reduction in MDA content. In addition, SCP attenuated inflammation via reducing the level of TNF-α, IL-1β and IL-6 in brain tissues of rats. SCP increases the expression of Bcl2, cleaved caspase-3 and -9, while decreasing Bax, and NF-ĸB/TLR4. It causes induction of angiogenesis as suggested by increased expression of VEGF, Ang-1 and Tie-2 in cerebral cortex of rat. CONCLUSIONS Our data determined that SCP may provide protective effect on the I/R-induced cerebral ischemia.
Collapse
Affiliation(s)
- Danpeng Zhao
- Department of Neurology, Ward 6, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City 450000, China
| | - Jinming Ji
- Department of Neurology, Binzhou People's Hospital, Binzhou, Shandong Province 256610, China
| | - Shanshan Li
- Department of Neurology, Binzhou People's Hospital, Binzhou, Shandong Province 256610, China
| | - Aimei Wu
- Department of Neurology, Xi'an Fengcheng Hospital, No.9 Fengcheng 3(rd) Road, Economic and Technological Development Zone, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
49
|
Zhou X, Cong R, Yao L, Zhou X, Luan J, Zhang Q, Zhang X, Ren X, Zhang T, Meng X, Song N. Comparative Transcriptome Analyses of Geriatric Rats Associate Age-Related Erectile Dysfunction With a lncRNA-miRNA-mRNA Regulatory Network. Front Endocrinol (Lausanne) 2022; 13:887486. [PMID: 35898462 PMCID: PMC9309694 DOI: 10.3389/fendo.2022.887486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The key regulatory roles of long non-coding RNAs (lncRNAs) in age-related erectile dysfunction (A-ED) are unknown. AIM This study aimed to identify putative lncRNAs that regulate age-related erectile dysfunction via transcriptome analyses, and to predict their specific regulatory routes via bioinformatics methods. METHODS 22 geriatric male SD rats were divided into age-related erectile dysfunction (A-ED) and negative control (NC) groups after evaluations of intracavernous pressure (ICP). By comparative analysis of transcriptomes of cavernosal tissues from both groups, we identified differentially expressed lncRNAs, miRNAs, and mRNAs. Seven differentially expressed lncRNAs were selected and further verified by quantitative real-time polymerase chain reactions (RT-qPCR). The construction of the lncRNA-miRNA-mRNA network, the Gene Ontology (GO) term enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed in Cytoscape. RESULTS From comparative transcriptome analyses of A-ED and NC groups, 69, 29, and 364 differentially expressed lncRNAs, miRNAs, and mRNAs were identified respectively. Differentially expressed lncRNAs were culled to seven, which were all verified by qPCR. Three of these lncRNAs (ENSRNOT00000090050, ENSRNOT00000076482, and ENSRNOT00000029245) were used to build regulatory networks, of which only ENSRNOT00000029245 was successful. Moreover, GO and KEGG analyses demonstrated that these lncRNAs possibly regulated muscle myosin complex, muscle cell cellular homeostasis, and ultimately erectile function in rats through PI3K-Akt, fluid shear stress, and atherosclerosis pathways. CONCLUSION Our study identified differentially expressed lncRNAs, miRNAs, and mRNAs through comparisons of transcriptomes of geriatric rats. An identified lncRNA verified by qPCR, was used to construct a lncRNA-miRNA-mRNA regulatory network. LncRNA ENSRNOT00000029245 possibly regulated downstream mRNAs through this regulatory network, leading to apoptosis in the cavernous tissue, fibrosis, and endothelial dysfunction, which ultimately caused ED. These findings provide seminal insights into the molecular biology of aging-related ED, which could spur the development of effective therapeutics.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liangyu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qijie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohan Ren
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tongtong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianghu Meng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xianghu Meng, ; Ninghong Song,
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People’s Hospital of Nanjing Medical University, Artux, China
- *Correspondence: Xianghu Meng, ; Ninghong Song,
| |
Collapse
|
50
|
Kim J, Mondaca-Ruff D, Singh S, Wang Y. SIRT1 and Autophagy: Implications in Endocrine Disorders. Front Endocrinol (Lausanne) 2022; 13:930919. [PMID: 35909524 PMCID: PMC9331929 DOI: 10.3389/fendo.2022.930919] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Autophagy is a cellular process involved in the selective degradation and recycling of dysfunctional intracellular components. It plays a crucial role in maintaining cellular homeostasis and survival by removing damaged and harmful proteins, lipids, and organelles. SIRT1, an NAD+-dependent multifunctional enzyme, is a key regulator of the autophagy process. Through its deacetylase activity, SIRT1 participates in the regulation of different steps of autophagy, from initiation to degradation. The levels and function of SIRT1 are also regulated by the autophagy process. Dysregulation in SIRT1-mediated autophagy hinders the proper functioning of the endocrine system, contributing to the onset and progression of endocrine disorders. This review provides an overview of the crosstalk between SIRT1 and autophagy and their implications in obesity, type-2 diabetes mellitus, diabetic cardiomyopathy, and hepatic steatosis.
Collapse
|