1
|
Begagic E, Vranic S, Sominanda A. The role of interleukin 17 in cancer: a systematic review. Carcinogenesis 2025; 46:bgae079. [PMID: 39673782 DOI: 10.1093/carcin/bgae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/16/2024] Open
Abstract
Interleukin 17 (IL17) is a cytokine involved in immune regulation and has been increasingly recognized for its role in cancer progression. This systematic review aims to integrate data on IL17's role in various tumors to better understand its implications for cancer prognosis and treatment. The review included 105 studies (27.6% experimental and 72.4% clinical). Clinical studies involved 9266 patients: 31.2% males, 60.0% females, and 8.8% with undefined gender. IL17A and IL17 were the most studied subtypes (36.2% and 33.3%, respectively). Breast cancer (26.7%), colorectal carcinoma (13.3%), and hematologic malignancies (10.5%) were the most researched neoplasms. IL17A promoted tumor growth in breast cancer and correlated with poor outcomes in colorectal, breast, and lung cancers. IL17 also played a significant role in immune modulation in gliomas and other tumors. IL17A significantly influences tumor growth and prognosis across various cancers, with notable roles in immune modulation and poor outcomes in multiple cancer types.
Collapse
Affiliation(s)
- Emir Begagic
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Semir Vranic
- Department of Pathology, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ajith Sominanda
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| |
Collapse
|
2
|
Shaalan F, Ballout N, Chamoun WT. Insights Into the Role of Bmi-1 Deregulation in Promoting Stemness and Therapy Resistance in Glioblastoma: A Narrative Review. Cancer Med 2025; 14:e70566. [PMID: 39791545 PMCID: PMC11719125 DOI: 10.1002/cam4.70566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary brain tumor in adults and has a median survival of less than 15 months. Advancements in the field of epigenetics have expanded our understanding of cancer biology and helped explain the molecular heterogeneity of these tumors. B-cell-specific Moloney murine leukemia virus insertion site-1 (Bmi-1) is a member of the highly conserved polycomb group (PcG) protein family that acts as a transcriptional repressor of multiple genes, including those that determine cell proliferation and differentiation. We hereby aim to explore the specific involvement of Bmi-1 in glioma pathogenesis. METHODS A comprehensive narrative review was employed using "PubMed". Articles were screened for relevance specific keywords and medical subject headings (MeSH) terms related to the topic combined with Boolean operators (AND, OR). Keywords and MeSH terms included the following: "glioma", "polycomb repressive complex 1", and "Bmi1". RESULTS In GBMs, several reports have shown that Bmi-1 is overexpressed and might serve as a prognostic biomarker. We find that Bmi-1 participates in regulating the gene expression and chromatin structure of several tumor suppressor genes or cell cycle inhibitors. Bmi-1 has a critical role in modulating the tumor microenvironment to support the plasticity of GBM stem cells.We explore Bmi-1's involvement in maintaining glioma stem cell (GSC) proliferation and senescence evasion upon regulating the chromatin structure of several tumor suppressor genes, cell cycle inhibitors, or stem cell genes in tumor cells. Additionally, we analyze Bmi-1's involvement in modulating the DNA repair machinery or activating anti-apoptotic pathways to confer therapy resistance. Importantly, our research discusses the importance of targeting Bmi-1 that could be a promising therapeutic target for GBM treatment. Bmi-1 activates and interacts with NF-κB to promote angiogenesis and invasion, regulates the INK4a-ARF locus, and interacts with various microRNAs to influence tumor progression and proliferation. In addition, Bmi-1 confers radioresistance and chemotherapy by promoting cell senescence evasion and DNA repair. CONCLUSION Bmi-1 regulates self-renewal, proliferation, and differentiation of GBM cells, promoting stemness and therapy resistance. Targeting Bmi-1 could be a promising novel therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Fatima Shaalan
- Faculty of Medical Sciences, Neuroscience Research CenterLebanese UniversityHadathLebanon
| | - Nissrine Ballout
- Faculty of Medical Sciences, Neuroscience Research CenterLebanese UniversityHadathLebanon
| | - Wafaa Takash Chamoun
- Faculty of Medical Sciences, Neuroscience Research CenterLebanese UniversityHadathLebanon
| |
Collapse
|
3
|
Luo X, Ni X, Zhi J, Jiang X, Bai R. Small molecule agents against alopecia: Potential targets and related pathways. Eur J Med Chem 2024; 276:116666. [PMID: 39002436 DOI: 10.1016/j.ejmech.2024.116666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Alopecia has emerged as a global concern, extending beyond the middle-aged and elderly population and increasingly affecting younger individuals. Despite its growing prevalence, the treatment options and effective drugs for alopecia remain limited due to the incomplete understanding of its underlying mechanisms. Therefore, it is urgent to explore the pathogenesis of alopecia and discover novel and safer therapeutic agents. This review provided an overview of the prevailing clinical disorders of alopecia, and the key pathways and targets involved in hair growth process. Additionally, it discusses FDA-approved drugs and clinical candidates for the treatment of alopecia, and explores small molecule compounds with anti-alopecia potential in the drug discovery phase. These endeavors are expected to provide researchers with valuable scientific insights and practical information for anti-alopecia drug discovery.
Collapse
Affiliation(s)
- Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
4
|
Zhu D, Ren X, Xie W, Chen J, Liang S, Jiang M, Wang J, Zheng Z. Potential of gamma/delta T cells for solid tumor immunotherapy. Front Immunol 2024; 15:1466266. [PMID: 39253082 PMCID: PMC11381238 DOI: 10.3389/fimmu.2024.1466266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Gamma/delta T (γδ T)cells possess a unique mechanism for killing tumors, making them highly promising and distinguished among various cell therapies for tumor treatment. This review focuses on the major histocompatibility complex (MHC)-independent recognition of antigens and the interaction between γδ T cells and solid tumor cells. A comprehensive review is provided regarding the classification of human gamma-delta T cell subtypes, the characteristics and mechanisms underlying their functions, as well as their r545egulatory effects on tumor cells. The involvement of γδ T cells in tumorigenesis and migration was also investigated, encompassing potential therapeutic targets such as apoptosis-related molecules, the TNF receptor superfamily member 6(FAS)/FAS Ligand (FASL) pathways, butyrophilin 3A-butyrophilin 2A1 (BTN3A-BTN2A1) complexes, and interactions with CD4, CD8, and natural killer (NK) cells. Additionally, immune checkpoint inhibitors such as programmed cell death protein 1/Programmed cell death 1 ligand 1 (PD-1/PD-L1) have the potential to augment the cytotoxicity of γδ T cells. Moreover, a review on gamma-delta T cell therapy products and their corresponding clinical trials reveals that chimeric antigen receptor (CAR) gamma-delta T therapy holds promise as an approach with encouraging preclinical outcomes. However, practical issues pertaining to manufacturing and clinical aspects need resolution, and further research is required to investigate the long-term clinical side effects of CAR T cells. In conclusion, more comprehensive studies are necessary to establish standardized treatment protocols aimed at enhancing the quality of life and survival rates among tumor patients utilizing γδ T cell immunotherapy.
Collapse
Affiliation(s)
- Dantong Zhu
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xijing Ren
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Wanting Xie
- Nursing Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jianjun Chen
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Shiying Liang
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Mingzhe Jiang
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Junyi Wang
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Zhendong Zheng
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Altinoz MA, Yilmaz A, Taghizadehghalehjoughi A, Genc S, Yeni Y, Gecili I, Hacimuftuoglu A. Ulipristal-temozolomide-hydroxyurea combination for glioblastoma: in-vitro studies. J Neurosurg Sci 2024; 68:468-481. [PMID: 35766205 DOI: 10.23736/s0390-5616.22.05718-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a brain malignancy with worst survival. Low dose progesterone stimulates GBM growth, while progesterone receptor (PR)-antagonist mifepristone was shown to reduce growth and to enhance temozolomide sensitivity in GBM cells. Mifepristone is not available in all countries due to ethical reasons and may cause adrenal insufficiency and pelvic infections. Ulipristal is also a PR-antagonist used in treatment of uterine leiomyomas with higher biosafety. Ulipristal is demonstrated to suppress growth of breast cancer, yet it is not tested as yet whether it can also block growth and sensitize to temozolomide in glioblastoma as it was previously shown with mifepristone. Our first aim was to detect whether ulipristal exerts antiproliferative and chemotherapy-sensitizing effects in glioblastoma. Hydroxyurea inhibits DNA replication via blocking ribonucleotide reductase (RR) and it was demonstrated to increase temozolomide antineoplasticity in GBM. Progesterone receptor-activation in the uterus enhances RR transcription. Hence, we have hypothesized that PR-inactivation with ulipristal would further enhance hydroxyurea antineoplasticity by shutting down DNA synthesis mechanisms through further suppression of RR. Lastly, there exists no study as yet whether ulipristal, hydroxyurea and temozolomide could exert ternary antineoplastic efficacy, which was our last aim to define. METHODS To reveal interactions between ulipristal, hydroxyurea and temozolomide, we treated human U251 GBM cell line with these agents alone and in combination and measured cell proliferation, total antioxidant capacity (TAC) and total oxidant status (TOS) in conditioned medium and cellular cytokine gene expressions. RESULTS All agents significantly reduced cell proliferation significantly, yet the most significant decrease of GBM cells occurred with the triple drug combination at the 96th hour. All agents significantly decreased TAC and increased TOS in culture media, which was mostly relevant for the triple combination at the 96th hour. All these three agents tend to reduce the expression of immunosuppressive and/or GBM-growth stimulating cytokines TGF-β, IL-10 and IL-17 while increasing the expression of GBM-growth suppressing cytokine IL-23. CONCLUSIONS Reproposal of these agents in treatment of GBM would be a plausible approach if future studies prove their efficacy.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Türkiye -
| | - Aysegul Yilmaz
- Department of Medical Pharmacology, Ataturk University, Erzurum, Türkiye
| | - Ali Taghizadehghalehjoughi
- Department of Veterinary Pharmacology and Toxicology, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Sidika Genc
- Department of Medical Pharmacology, Ataturk University, Erzurum, Türkiye
| | - Yesim Yeni
- Department of Medical Pharmacology, Ataturk University, Erzurum, Türkiye
| | - Ibrahim Gecili
- Department of Medical Pharmacology, Ataturk University, Erzurum, Türkiye
| | | |
Collapse
|
6
|
Łaszczych D, Czernicka A, Gostomczyk K, Szylberg Ł, Borowczak J. The role of IL-17 in the pathogenesis and treatment of glioblastoma-an update on the state of the art and future perspectives. Med Oncol 2024; 41:187. [PMID: 38918274 PMCID: PMC11199243 DOI: 10.1007/s12032-024-02434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, which, despite significant progress made in the last years in the field of neuro-oncology, remains an incurable disease. GBM has a poor prognosis with a median survival of 12-15 months, and its aggressive clinical course is related to rapid growth, extensive infiltration of adjacent tissues, resistance to chemotherapy, radiotherapy and immunotherapy, and frequent relapse. Currently, several molecular biomarkers are used in clinical practice to predict patient prognosis and response to treatment. However, due to the overall unsatisfactory efficacy of standard multimodal treatment and the remaining poor prognosis, there is an urgent need for new biomarkers and therapeutic strategies for GBM. Recent evidence suggests that GBM tumorigenesis is associated with crosstalk between cancer, immune and stromal cells mediated by various cytokines. One of the key factors involved in this process appears to be interleukin-17 (IL-17), a pro-inflammatory cytokine that is significantly upregulated in the serum and tissue of GBM patients. IL-17 plays a key role in tumorigenesis, angiogenesis, and recurrence of GBM by activating pro-oncogenic signaling pathways and promoting cell survival, proliferation, and invasion. IL-17 facilitates the immunomodulation of the tumor microenvironment by promoting immune cells infiltration and cytokine secretion. In this article we review the latest scientific reports to provide an update on the role of IL-17 role in tumorigenesis, tumor microenvironment, diagnosis, prognosis, and treatment of GBM.
Collapse
Affiliation(s)
- Dariusz Łaszczych
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland.
| | - Aleksandra Czernicka
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| |
Collapse
|
7
|
Li W, Zhao X, Ren C, Gao S, Han Q, Lu M, Li X. The therapeutic role of γδT cells in TNBC. Front Immunol 2024; 15:1420107. [PMID: 38933280 PMCID: PMC11199784 DOI: 10.3389/fimmu.2024.1420107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that presents significant therapeutic challenges due to the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. As a result, conventional hormonal and targeted therapies are largely ineffective, underscoring the urgent need for novel treatment strategies. γδT cells, known for their robust anti-tumor properties, show considerable potential in TNBC treatment as they can identify and eliminate tumor cells without reliance on MHC restrictions. These cells demonstrate extensive proliferation both in vitro and in vivo, and can directly target tumors through cytotoxic effects or indirectly by promoting other immune responses. Studies suggest that expansion and adoptive transfer strategies targeting Vδ2 and Vδ1 γδT cell subtypes have shown promise in preclinical TNBC models. This review compiles and discusses the existing literature on the primary subgroups of γδT cells, their roles in cancer therapy, their contributions to tumor cell cytotoxicity and immune modulation, and proposes potential strategies for future γδT cell-based immunotherapies in TNBC.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xian Zhao
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Chuanxin Ren
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shang Gao
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Qinyu Han
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Min Lu
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xiangqi Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| |
Collapse
|
8
|
Pećina-Šlaus N, Hrašćan R. Glioma Stem Cells-Features for New Therapy Design. Cancers (Basel) 2024; 16:1557. [PMID: 38672638 PMCID: PMC11049195 DOI: 10.3390/cancers16081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
On a molecular level, glioma is very diverse and presents a whole spectrum of specific genetic and epigenetic alterations. The tumors are unfortunately resistant to available therapies and the survival rate is low. The explanation of significant intra- and inter-tumor heterogeneity and the infiltrative capability of gliomas, as well as its resistance to therapy, recurrence and aggressive behavior, lies in a small subset of tumor-initiating cells that behave like stem cells and are known as glioma cancer stem cells (GCSCs). They are responsible for tumor plasticity and are influenced by genetic drivers. Additionally, GCSCs also display greater migratory abilities. A great effort is under way in order to find ways to eliminate or neutralize GCSCs. Many different treatment strategies are currently being explored, including modulation of the tumor microenvironment, posttranscriptional regulation, epigenetic modulation and immunotherapy.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
9
|
Yu X, Wang L, Niu Z, Zhu L. Controversial role of γδ T cells in colorectal cancer. Am J Cancer Res 2024; 14:1482-1500. [PMID: 38726287 PMCID: PMC11076236 DOI: 10.62347/hwmb1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequent type of cancer, and the second leading cause of cancer-related deaths worldwide. Current treatments for patients with CRC do not substantially improve the survival and quality of life of patients with advanced CRC, thus necessitating the development of new treatment strategies. The emergence of immunotherapy has revitalized the field, showing great potential in advanced CRC treatment. Owing to the ability of tumor cells to evade the immune system through major histocompatibility complex shedding and heterogeneous and low antigen spreading, only a few patients respond to immunotherapy. γδ T cells have heterogeneous structures and functions, and their key roles in immune regulation, tumor immunosurveillance, and specific primary immune responses have increasingly been recognized. γδ T cells recognize and kill CRC cells efficiently, thus inhibiting tumor progress through various mechanisms. However, γδ T cells can potentially promote tumor development and metastasis. Thus, given this dual role in prognosis, these cells can act as either a "friend" or "foe" of CRC. In this review, we explore the characteristics of γδ T cells and their functions in CRC, highlighting their application in immunotherapy.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People’s HospitalNo. 10 Qinyun Nan Street, Chengdu, Sichuan, The People’s Republic of China
| | - Leibo Wang
- Department of Surgery, Beijing Jishuitan Hospital Guizhou HospitalGuiyang, Guizhou, The People’s Republic of China
| | - Zhongxi Niu
- Department of Thoracic Surgery, The Third Medical Center of PLA General HospitalBeijing, The People’s Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
| |
Collapse
|
10
|
Hu X, Gan L, Tang Z, Lin R, Liang Z, Li F, Zhu C, Han X, Zheng R, Shen J, Yu J, Luo N, Peng W, Tan J, Li X, Fan J, Wen Q, Wang X, Li J, Zheng X, Liu Q, Guo J, Shi G, Mao H, Chen W, Yin S, Zhou Y. A Natural Small Molecule Mitigates Kidney Fibrosis by Targeting Cdc42-mediated GSK-3β/β-catenin Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307850. [PMID: 38240457 PMCID: PMC10987128 DOI: 10.1002/advs.202307850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Indexed: 04/04/2024]
Abstract
Kidney fibrosis is a common fate of chronic kidney diseases (CKDs), eventually leading to renal dysfunction. Yet, no effective treatment for this pathological process has been achieved. During the bioassay-guided chemical investigation of the medicinal plant Wikstroemia chamaedaphne, a daphne diterpenoid, daphnepedunin A (DA), is characterized as a promising anti-renal fibrotic lead. DA shows significant anti-kidney fibrosis effects in cultured renal fibroblasts and unilateral ureteral obstructed mice, being more potent than the clinical trial drug pirfenidone. Leveraging the thermal proteome profiling strategy, cell division cycle 42 (Cdc42) is identified as the direct target of DA. Mechanistically, DA targets to reduce Cdc42 activity and down-regulates its downstream phospho-protein kinase Cζ(p-PKCζ)/phospho-glycogen synthase kinase-3β (p-GSK-3β), thereby promoting β-catenin Ser33/37/Thr41 phosphorylation and ubiquitin-dependent proteolysis to block classical pro-fibrotic β-catenin signaling. These findings suggest that Cdc42 is a promising therapeutic target for kidney fibrosis, and highlight DA as a potent Cdc42 inhibitor for combating CKDs.
Collapse
Affiliation(s)
- Xinrong Hu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Lu Gan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Ziwen Tang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ruoni Lin
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Zhou Liang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Feng Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Changjian Zhu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xu Han
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ruilin Zheng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jiani Shen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jing Yu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ning Luo
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Wenxing Peng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jiaqing Tan
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xiaoyan Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jinjin Fan
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Qiong Wen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xin Wang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jianbo Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xunhua Zheng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Qinghua Liu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jianping Guo
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Guo‐Ping Shi
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Haiping Mao
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Wei Chen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Sheng Yin
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yi Zhou
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| |
Collapse
|
11
|
Lavogina D, Krõlov MK, Vellama H, Modhukur V, Di Nisio V, Lust H, Eskla KL, Salumets A, Jaal J. Inhibition of epigenetic and cell cycle-related targets in glioblastoma cell lines reveals that onametostat reduces proliferation and viability in both normoxic and hypoxic conditions. Sci Rep 2024; 14:4303. [PMID: 38383756 PMCID: PMC10881536 DOI: 10.1038/s41598-024-54707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The choice of targeted therapies for treatment of glioblastoma patients is currently limited, and most glioblastoma patients die from the disease recurrence. Thus, systematic studies in simplified model systems are required to pinpoint the choice of targets for further exploration in clinical settings. Here, we report screening of 5 compounds targeting epigenetic writers or erasers and 6 compounds targeting cell cycle-regulating protein kinases against 3 glioblastoma cell lines following incubation under normoxic or hypoxic conditions. The viability/proliferation assay indicated that PRMT5 inhibitor onametostat was endowed with high potency under both normoxic and hypoxic conditions in cell lines that are strongly MGMT-positive (T98-G), weakly MGMT-positive (U-251 MG), or MGMT-negative (U-87 MG). In U-251 MG and U-87 MG cells, onametostat also affected the spheroid formation at concentrations lower than the currently used chemotherapeutic drug lomustine. In T98-G cell line, treatment with onametostat led to dramatic changes in the transcriptome profile by inducing the cell cycle arrest, suppressing RNA splicing, and down-regulating several major glioblastoma cell survival pathways. Further validation by immunostaining in three cell lines confirmed that onametostat affects cell cycle and causes reduction in nucleolar protein levels. In this way, inhibition of epigenetic targets might represent a viable strategy for glioblastoma treatment even in the case of decreased chemo- and radiation sensitivity, although further studies in clinically more relevant models are required.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia.
- Competence Centre on Health Technologies, Tartu, Estonia.
| | - Mattias Kaspar Krõlov
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Hans Vellama
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Helen Lust
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Jana Jaal
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.
- Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia.
| |
Collapse
|
12
|
Ahmedna T, Khela H, Weber-Levine C, Azad TD, Jackson CM, Gabrielson K, Bettegowda C, Rincon-Torroella J. The Role of γδ T-Lymphocytes in Glioblastoma: Current Trends and Future Directions. Cancers (Basel) 2023; 15:5784. [PMID: 38136330 PMCID: PMC10741533 DOI: 10.3390/cancers15245784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cell-based immunotherapy for glioblastoma (GBM) encounters major challenges due to the infiltration-resistant and immunosuppressive tumor microenvironment (TME). γδ T cells, unconventional T cells expressing the characteristic γδ T cell receptor, have demonstrated promise in overcoming these challenges, suggesting great immunotherapeutic potential. This review presents the role of γδ T cells in GBM and proposes several research avenues for future studies. Using the PubMed, ScienceDirect, and JSTOR databases, we performed a review of the literature studying the biology of γδ T cells and their role in GBM treatment. We identified 15 studies focused on γδ T cells in human GBM. Infiltrative γδ T cells can incite antitumor immune responses in certain TMEs, though rapid tumor progression and TME hypoxia may impact the extent of tumor suppression. In the studies, available findings have shown both the potential for robust antitumor activity and the risk of protumor activity. While γδ T cells have potential as a therapeutic agent against GBM, the technical challenges of extracting, isolating, and expanding γδ T cells, and the activation of antitumoral versus protumoral cascades, remain barriers to their application. Overcoming these limitations may transform γδ T cells into a promising immunotherapy in GBM.
Collapse
Affiliation(s)
- Taha Ahmedna
- Department of Biology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Harmon Khela
- Department of Biology, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Public Health Studies, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Tej D. Azad
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christopher M. Jackson
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
13
|
Fan ST, Xu HQ, He Y, Tu MX, Shi K, Zhang YQ, Guo Q, Yang WQ, Qin Y. Overexpression of TMEM150A in glioblastoma multiforme patients correlated with dismal prognoses and compromised immune statuses. PLoS One 2023; 18:e0294144. [PMID: 38055673 PMCID: PMC10699650 DOI: 10.1371/journal.pone.0294144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
Transmembrane proteins have exhibited a significant correlation with glioblastoma multiforme (GBM). The current study elucidates the roles of transmembrane protein 150A (TMEM150A) in GBM. Data on patients with GBM were collected from The Cancer Genome Atlas and Xena databases. The objective was to identify the expression levels of TMEM150A in patients with GBM, and evaluate its diagnostic and prognostic values, accomplished using the receiver operating characteristic and survival analyses. On a cellular level, Cell Counting Kit-8, Wound healing, and Transwell experiments were performed to gauge the impact of TMEM150A on cell growth and migration. The study further investigated the correlation between TMEM150A expression and immune status, along with ribonucleic acid (RNA) modifications in GBM. The findings demonstrated TMEM150A overexpression in the cancerous tissues of patients with GBM, with an area under the curve value of 0.95. TMEM150A overexpression was significantly correlated with poor prognostic indicators. TMEM150A overexpression and isocitrate dehydrogenase (IDH) mutation status were predictive of poor survival time among patients with GBM. In vitro experiments indicated that suppressing TMEM150A expression could inhibit GBM cell proliferation, migration, and invasion. Moreover, TMEM150A overexpression was associated with stromal, immune, and estimate scores, immune cells (such as the T helper (Th) 17 cells, Th2 cells, and regulatory T cells), cell markers, and RNA modifications. Therefore, TMEM150A overexpression might serve as a promising biomarker for predicting poor prognosis in patients with GBM. Inhibiting TMEM150A expression holds the potential for improving the survival time of patients with GBM.
Collapse
Affiliation(s)
- Si-Tong Fan
- Department of Infectious Disease, Beilun District People’s Hospital of Ningbo, Ningbo City, China
| | - Hao-Qiang Xu
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan City, China
| | - Yang He
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan City, China
| | - Ming-Xiang Tu
- Department of Neurology, Yunyang District People’s Hospital, Shiyan City, China
| | - Ke Shi
- Department of Thoracic Surgery, Beilun District People’s Hospital of Ningbo, Ningbo City, China
| | - Yun-Qiang Zhang
- Department of Thoracic Surgery, Beilun District People’s Hospital of Ningbo, Ningbo City, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei Medical University, Shiyan City, China
| | - Wen-Qiong Yang
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan City, China
- Department of Neurology, Shenzhen Lansheng Brain Hospital, Shenzhen City, China
| | - Yong Qin
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
14
|
Chen CT, Chen CF, Lin TY, Hua WJ, Hua K, Tsai CY, Hsu CH. Traditional Chinese medicine Kuan-Sin-Yin decoction inhibits cell mobility via downregulation of CCL2, CEACAM1 and PIK3R3 in hepatocellular carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116834. [PMID: 37355084 DOI: 10.1016/j.jep.2023.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kuan-Sin-Yin (KSY) is a traditional Chinese medical decoction, designed based on the classic Si-Jun-Zi-Tang decoction and used clinically to improve the synergic effects of energy promotion, liver function and cancer related symptom and quality of life. However, the anti-hepatocellular carcinoma (HCC) function of KSY is unclear. AIM OF THE STUDY This study aimed to investigate the anti-mobility activity of KSY on HCC cells and elucidate its molecular mechanism. MATERIALS AND METHODS Two malignancy hepatocellular carcinoma cells, Mahlavu and SK-Hep-1, were used for the test of cell proliferation via alarm blue assay. The wound healing and Transwell assays were used to determine the anti-mobility activity of KSY in HCC cells. Cell morphology was analyzed via confocal microscopy. The genomic profile of KSY-treated HCC cells was analyzed by microarray. The potential signaling pathways and bio-functions of KSY-mediated genes were analyzed by ingenuity pathway analysis (IPA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the messenger RNA (mRNA) level of indicated gene. RESULTS KSY did not affect cell viability of HCC cells but significantly inhibited cell migration and invasion in those HCC Mahlavu and SK-Hep-1 cells. In parallel, KSY induced changes in morphology of HCC cells via re-modulating actin cytoskeleton. KSY upregulated 1270 genes but reduced 1534 genes in Mahlavu cells. KSY regulated various gene networks which controlled cell migration, invasion and movement. Specifically, KSY reduced expression of chemokine (C-C motif) ligand 2 (CCL2), which is correlated to cell mobility, and concomitantly downregulated mRNA levels of phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) and CEA cell adhesion molecule 1 (CEACAM1). CONCLUSION These findings indicated that regulation of CCL2-mediated PIK3R3 and CEACAM1 may be involved in KSY inhibited cell mobility. Moreover, KSY may be a potential a Chinese decoction for reducing cell mobility.
Collapse
Affiliation(s)
- Chueh-Tan Chen
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chian-Feng Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Jyun Hua
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Kate Hua
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ching-Yao Tsai
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan; Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Business Administration, Fu Jen Catholic University, New Taipei, Taiwan; General Education Center, University of Taipei, Taipei, Taiwan.
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Chinese Medicine, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Taipei, Taiwan.
| |
Collapse
|
15
|
Choi H, Kim TG, Jeun SS, Ahn S. Human gamma-delta (γδ) T cell therapy for glioblastoma: A novel alternative to overcome challenges of adoptive immune cell therapy. Cancer Lett 2023; 571:216335. [PMID: 37544475 DOI: 10.1016/j.canlet.2023.216335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Glioblastoma is the most common brain malignancy with devastating prognosis. Numerous clinical trials using various target therapeutic agents have failed and recent clinical trials using check point inhibitors also failed to provide survival benefits for glioblastoma patients. Adoptive T cell transfer is suggested as a novel therapeutic approach that has exhibited promise in preliminary clinical studies. However, the clinical outcomes are inconsistent, and there are several limitations of current adoptive T cell transfer strategies for glioblastoma treatment. As an alternative cell therapy, gamma-delta (γδ) T cells have been recently introduced for several cancers including glioblastoma. Since the leading role of γδ T cells is immune surveillance by recognizing a broad range of ligands including stress molecules, phosphoantigens, or lipid antigens, recent studies have suggested the potential benefits of γδ T cell transfer against glioblastomas. However, γδ T cells, as a small subset (1-5%) of T cells in human peripheral blood, are relatively unknown compared to conventional alpha-beta (αβ) T cells. In this context, our study introduced γδ T cells as an alternative and novel option to overcome several challenges regarding immune cell therapy in glioblastoma treatment. We described the unique characteristics and advantages of γδ T cells compared to conventional αβ T cells and summarize several recent preclinical studies using human gamma-delta T cell therapy for glioblastomas. Finally, we suggested future direction of human γδ T cell therapy for glioblastomas.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Rebpulic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Rebpulic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Fu X, Zhang Y, Zhang R. Regulatory role of PI3K/Akt/WNK1 signal pathway in mouse model of bone cancer pain. Sci Rep 2023; 13:14321. [PMID: 37652923 PMCID: PMC10471765 DOI: 10.1038/s41598-023-40182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
In the advanced stage of cancer, the pain caused by bone metastasis is unbearable, but the mechanism of bone cancer pain (BCP) is very complicated and remains unclear. In this study, we used 4T1 mouse breast cancer cells to establish a bone cancer pain model to study the mechanism of BCP. Then the paw withdrawal mechanical threshold (PWMT) and the hematoxylin-eosin staining were used to reflect the erosion of cancer cells on tibia tissue. We also determined the role of proinflammatory factors (TNF-α, IL-17, etc.) in BCP by the enzyme-linked immunosorbent assay in mouse serum. When GSK690693, a new Akt inhibitor, was given and the absence of intermediate signal dominated by Akt is found, pain may be relieved by blocking the transmission of pain signal and raising the PWMT. In addition, we also found that GSK690693 inhibited the phosphorylation of Akt protein, resulting in a significant decrease in with-nolysinekinases 1 (WNK1) expression in the spinal cord tissue. In the BCP model, we confirmed that GSK690693 has a relieving effect on BCP, which may play an analgesic effect through PI3K-WNK1 signal pathway. At the same time, there is a close relationship between inflammatory factors and PI3K-WNK1 signal pathway. The PI3K/Akt pathway in the dorsal horn of the mouse spinal cord activates the downstream WNK1 protein, which promotes the release of inflammatory cytokines, which leads to the formation of BCP in mice. Inhibition of Akt can reduce the levels of IL-17 and TNF-α, cut off the downstream WNK1 protein signal receiving pathway, increase the PWMT and relieve BCP in mice. To clarify the analgesic target of BCP, to provide reference and theoretical support for the clinical effective treatment of BCP and the development of new high-efficiency analgesics.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
- Inner Mongolia Medical University, Hohhot, 010110, China
| | - Yanhong Zhang
- Department of Anesthesiology, Peking University Cancer Hospital Inner Mongolia Hospital/Cancer Hospital Affiliated to Inner Mongolia Medical University, Hohhot, 010020, China.
| | - Rui Zhang
- Department of Anesthesiology, Peking University Cancer Hospital Inner Mongolia Hospital/Cancer Hospital Affiliated to Inner Mongolia Medical University, Hohhot, 010020, China
| |
Collapse
|
17
|
Wang Z, Dai Z, Zhang H, Liang X, Zhang X, Wen Z, Luo P, Zhang J, Liu Z, Zhang M, Cheng Q. Tumor-secreted lactate contributes to an immunosuppressive microenvironment and affects CD8 T-cell infiltration in glioblastoma. Front Immunol 2023; 14:894853. [PMID: 37122693 PMCID: PMC10130393 DOI: 10.3389/fimmu.2023.894853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/05/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Glioblastoma is a malignant brain tumor with poor prognosis. Lactate is the main product of tumor cells, and its secretion may relate to immunocytes' activation. However, its role in glioblastoma is poorly understood. Methods This work performed bulk RNA-seq analysis and single cell RNA-seq analysis to explore the role of lactate in glioblastoma progression. Over 1400 glioblastoma samples were grouped into different clusters according to their expression and the results were validated with our own data, the xiangya cohort. Immunocytes infiltration analysis, immunogram and the map of immune checkpoint genes' expression were applied to analyze the potential connection between the lactate level with tumor immune microenvironment. Furthermore, machine learning algorithms and cell-cell interaction algorithm were introduced to reveal the connection of tumor cells with immunocytes. By co-culturing CD8 T cells with tumor cells, and performing immunohistochemistry on Xiangya cohort samples further validated results from previous analysis. Discussion In this work, lactate is proved that contributes to glioblastoma immune suppressive microenvironment. High level of lactate in tumor microenvironment can affect CD8 T cells' migration and infiltration ratio in glioblastoma. To step further, potential compounds that targets to samples from different groups were also predicted for future exploration.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- MRC Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhipeng Wen
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Marino S, Menna G, Di Bonaventura R, Lisi L, Mattogno P, Figà F, Bilgin L, D’Alessandris QG, Olivi A, Della Pepa GM. The Extracellular Matrix in Glioblastomas: A Glance at Its Structural Modifications in Shaping the Tumoral Microenvironment-A Systematic Review. Cancers (Basel) 2023; 15:1879. [PMID: 36980765 PMCID: PMC10046791 DOI: 10.3390/cancers15061879] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND AND AIM While many components of the ECM have been isolated and characterized, its modifications in the specific setting of GBMs have only been recently explored in the literature. The aim of this paper is to provide a systematic review on the topic and to assess the ECM's role in shaping tumoral development. METHODS An online literature search was launched on PubMed/Medline and Scopus using the research string "((Extracellular matrix OR ECM OR matrix receptor OR matrix proteome) AND (glioblastoma OR GBM) AND (tumor invasion OR tumor infiltration))", and a systematic review was conducted in accordance with the PRISMA-P guidelines. RESULTS The search of the literature yielded a total of 693 results. The duplicate records were then removed (n = 13), and the records were excluded via a title and abstract screening; 137 studies were found to be relevant to our research question and were assessed for eligibility. Upon a full-text review, 59 articles were finally included and were summarized as follows based on their focus: (1) proteoglycans; (2) fibrillary proteins, which were further subdivided into the three subcategories of collagen, fibronectin, and laminins; (3) glycoproteins; (4) degradative enzymes; (5) physical forces; (6) and glioma cell and microglia migratory and infiltrative patterns. CONCLUSIONS Our systematic review demonstrates that the ECM should not be regarded anymore as a passive scaffold statically contributing to mechanical support in normal and pathological brain tissue but as an active player in tumor-related activity.
Collapse
Affiliation(s)
- Salvatore Marino
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (A.O.)
| | - Grazia Menna
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (A.O.)
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Lisi
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, IRCSS-Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Pierpaolo Mattogno
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Federica Figà
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (A.O.)
| | - Lal Bilgin
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (A.O.)
| | | | - Alessandro Olivi
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (A.O.)
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
19
|
Individualized Multimodal Immunotherapy for Adults with IDH1 Wild-Type GBM: A Single Institute Experience. Cancers (Basel) 2023; 15:cancers15041194. [PMID: 36831536 PMCID: PMC9954396 DOI: 10.3390/cancers15041194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Synergistic activity between maintenance temozolomide (TMZm) and individualized multimodal immunotherapy (IMI) during/after first-line treatment has been suggested to improve the overall survival (OS) of adults with IDH1 wild-type MGMT promoter-unmethylated (unmeth) GBM. We expand the data and include the OS of MGMT promoter-methylated (meth) adults with GBM. Unmeth (10 f, 18 m) and meth (12 f, 10 m) patients treated between 27 May 2015 and 1 January 2022 were analyzed retrospectively. There were no differences in age (median: 48 y) or Karnofsky performance index (median: 80). The IMI consisted of 5-day immunogenic cell death (ICD) therapies during TMZm: Newcastle disease virus (NDV) bolus injections and sessions of modulated electrohyperthermia (mEHT); subsequent active specific immunotherapy: dendritic cell (DC) vaccines plus modulatory immunotherapy; and maintenance ICD therapy. There were no differences in the number of vaccines (median: 2), total number of DCs (median: 25.6 × 106), number of NDV injections (median: 31), and number of mEHT sessions (median: 28) between both groups. The median OS of 28 unmeth patients was 22 m (2y-OS: 39%), confirming previous results. OS of 22 meth patients was significantly better (p = 0.0414) with 38 m (2y-OS: 81%). There were no major treatment-related adverse reactions. The addition of IMI during/after standard of care should be prospectively explored.
Collapse
|
20
|
Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother 2023; 158:114204. [PMID: 36916430 DOI: 10.1016/j.biopha.2022.114204] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the most malignant cancers of central nervous system and due to its sensitive location, surgical resection has high risk and therefore, chemotherapy and radiotherapy are utilized for its treatment. However, chemoresistance and radio-resistance are other problems in GBM treatment. Hence, new therapies based on genes are recommended for treatment of GBM. PTEN is a tumor-suppressor operator in cancer that inhibits PI3K/Akt/mTOR axis in diminishing growth, metastasis and drug resistance. In the current review, the function of PTEN/PI3K/Akt axis in GBM progression is evaluated. Mutation or depletion of PTEN leads to increase in GBM progression. Low expression level of PTEN mediates poor prognosis in GBM and by increasing proliferation and invasion, promotes malignancy of tumor cells. Moreover, loss of PTEN signaling can result in therapy resistance in GBM. Activation of PTEN signaling impairs GBM metabolism via glycolysis inhibition. In contrast to PTEN, PI3K/Akt signaling has oncogenic function and during tumor progression, expression level of PI3K/Akt enhances. PI3K/Akt signaling shows positive association with oncogenic pathways and its expression similar to PTEN signaling, is regulated by non-coding RNAs. PTEN upregulation and PI3K/Akt signaling inhibition by anti-cancer agents can be beneficial in interfering GBM progression. This review emphasizes on the signaling networks related to PTEN/PI3K/Akt and provides new insights for targeting this axis in effective GBM treatment.
Collapse
|
21
|
Ruxolitinib enhances cytotoxic and apoptotic effects of temozolomide on glioblastoma cells by regulating WNT signaling pathway-related genes. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:37. [PMID: 36460932 DOI: 10.1007/s12032-022-01897-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
Although temozolomide is the primary chemotherapeutic agent in glioblastoma, current studies have focused on its combinational applications to overcome resistance by targeting multiple pathways. JAK/STAT and WNT are among the essential cancer-related signaling pathways. Ruxolitinib, the first approved JAK1/2 inhibitor, has promise in glioblastoma with its blood-brain barrier (BBB) crossing ability. The mentioned study aims to evaluate the anti-cancer potential of ruxolitinib individually and in combination with temozolomide on glioblastoma cells, brain cancer stem cells (BCSCs), and BBB-forming healthy cells. It also intends to determine the effects of JAK inhibitor treatment in combination with temozolomide on WNT signaling, which is known to cross-talk with the JAK/STAT pathway. The U87MG, BCSC, and HBMEC cell lines were the in vitro models. The cytotoxic and apoptotic effects of ruxolitinib and the combination were determined by the WST-1 test and Annexin V assay, respectively. The expression level changes of WNT signaling pathway genes caused by ruxolitinib and the combination treatments were defined by the qRT-PCR method. Network analysis of significantly upregulated and downregulated genes was performed via the GO KEGG pathway enrichment module of the String V11.5 database. The IC50 value of the ruxolitinib on U87MG glioblastoma cells was determined as 94.07 µM at 24th h. The combination of temozolomide and ruxolitinib had a synergistic effect on U87MG cells at 24th h. The combination index (CI) was determined as 0.796, and ED60 values of ruxolitinib and temozolomide were determined as 89.75 and 391.48 µM, respectively. Ruxolitinib improves the apoptotic effect of temozolomide on glioblastoma cells and brain cancer stem cells. Ruxolitinib regulates the WNT signaling pathway both individually and in combination with temozolomide. Our study indicates the potential of ruxolitinib to increase the cytotoxic and apoptotic activity of temozolomide in glioblastoma cells, also considering CSCs and healthy BBB-forming cells. As supported by gene expression and network analyses, the BBB-crossing agent ruxolitinib promises the potential to increase the efficacy of temozolomide in glioblastoma by affecting multiple signaling pathways in both cancer cells and CSCs.
Collapse
|
22
|
Xiang Y, Zhang H, Xu Zhang Z, Yang Qu X, Xia Zhu F. Dihydrosanguinarine based RNA-seq approach couple with network pharmacology attenuates LPS-induced inflammation through TNF/IL-17/PI3K/AKT pathways in mice liver. Int Immunopharmacol 2022; 109:108779. [DOI: 10.1016/j.intimp.2022.108779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 01/24/2023]
|
23
|
Ortiz-Rivera J, Albors A, Kucheryavykh Y, Harrison JK, Kucheryavykh L. The Dynamics of Tumor-Infiltrating Myeloid Cell Activation and the Cytokine Expression Profile in a Glioma Resection Site during the Post-Surgical Period in Mice. Brain Sci 2022; 12:brainsci12070893. [PMID: 35884700 PMCID: PMC9313002 DOI: 10.3390/brainsci12070893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma is the most aggressive brain cancer and is highly infiltrated with cells of myeloid lineage (TIM) that support tumor growth and invasion. Tumor resection is the primary treatment for glioblastoma; however, the activation state of TIM at the site of tumor resection and its impact on glioma regrowth are poorly understood. Using the C57BL/6/GL261 mouse glioma implantation model, we investigated the state of TIM in the tumor resection area during the post-surgical period. TIM isolated from brain tissue at the resection site were analyzed at 0, 1, 4, 7, 14, and 21 days after tumor resection. An increase in expression of CD86 during the first 7 days after surgical resection and then upregulation of arginase 1 from the 14th to 21st days after resection were detected. Cytokine expression analysis combined with qRT-PCR revealed sustained upregulation of IL4, IL5, IL10, IL12, IL17, vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein 1 (MCP1/CCL2) in TIM purified from regrown tumors compared with primary implanted tumors. Flow cytometry analysis revealed increased CD86+/CD206+ population in regrown tumors compared with primary implanted tumors. Overall, we found that TIM in primary implanted tumors and tumors regrown after resection exhibited different phenotypes and cytokine expression patterns.
Collapse
Affiliation(s)
- Jescelica Ortiz-Rivera
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
- Correspondence:
| | - Alejandro Albors
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| | - Yuriy Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| | - Jeffrey K. Harrison
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Lilia Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| |
Collapse
|
24
|
Altinoz MA, Ozpinar A. Oxamate targeting aggressive cancers with special emphasis to brain tumors. Biomed Pharmacother 2022; 147:112686. [DOI: 10.1016/j.biopha.2022.112686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
|
25
|
Wang X, Wang Y, Xie F, Song ZT, Zhang ZQ, Zhao Y, Wang SD, Hu H, Zhang YS, Qian LJ. Norepinephrine promotes glioma cell migration through up-regulating the expression of Twist1. BMC Cancer 2022; 22:213. [PMID: 35219305 PMCID: PMC8882280 DOI: 10.1186/s12885-022-09330-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background Glioma cells are characterized by high migration ability, resulting in aggressive growth of the tumors and poor prognosis of patients. It has been reported that the stress-induced hormone norepinephrine (NE) contributes to tumor progression through mediating a number of important biological processes in various cancers. However, the role of NE in the regulation of glioma migration is still unclear. Epithelial-to-mesenchymal transition (EMT) is one of the most important steps for tumor migration and metastasis. Twist1, as a key regulator of EMT, has been found to be elevated during glioma migration. But it is still unknown whether Twist1 is involved in the effect of NE on the migration of glioma cells. Methods Wound healing assay and transwell assay were conducted to evaluate the migration of glioma cells upon different treatments. The mesenchymal-like phenotype and the expression of Twist1 after NE treatment were assessed by cell diameters, real-time PCR, western blot and immunofluorescence staining. The gain-and loss-of-function experiments were carried out to investigate the biological function of Twist1 in the migration induced by NE. Finally, the clinical significance of Twist1 was explored among three public glioma datasets. Results In this study, our finding revealed a facilitative effect of NE on glioma cell migration in a β-adrenergic receptor (ADRB)-dependent way. Mechanistically, NE induced mesenchymal-like phenotype and the expression of Twist1. Twist1 overexpression promoted glioma cells migration, while knockdown of Twist1 abolished the discrepancy in the migration ability between NE treated glioma cells and control cells. In addition, the clinical analysis demonstrated that Twist1 was up-regulated in malignant gliomas and recurrent gliomas, and predicted a poor prognosis of glioma patients. Conclusions NE enhanced the migration ability of glioma cells through elevating the expression of Twist1. Our finding may provide potential therapeutic target for protecting patients with glioma from the detrimental effects of stress biology on the tumor progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09330-9.
Collapse
|
26
|
A novel PI3K inhibitor XH30 suppresses orthotopic glioblastoma and brain metastasis in mice models. Acta Pharm Sin B 2022; 12:774-786. [PMID: 35256946 PMCID: PMC8897175 DOI: 10.1016/j.apsb.2021.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma is carcinogenesis of glial cells in central nervous system and has the highest incidence among primary brain tumors. Brain metastasis, such as breast cancer and lung cancer, also leads to high mortality. The available medicines are limited due to blood–brain barrier. Abnormal activation of phosphatidylinositol 3-kinases (PI3K) signaling pathway is prevalent in glioblastoma and metastatic tumors. Here, we characterized a 2-amino-4-methylquinazoline derivative XH30 as a potent PI3K inhibitor with excellent anti-tumor activity against human glioblastoma. XH30 significantly repressed the proliferation of various brain cancer cells and decreased the phosphorylation of key proteins of PI3K signaling pathway, induced cell cycle arrest in G1 phase as well. Additionally, XH30 inhibited the migration of glioma cells and blocked the activation of PI3K pathway by interleukin-17A (IL-17A), which increased the migration of U87MG. Oral administration of XH30 significantly suppressed the tumor growth in both subcutaneous and orthotopic tumor models. XH30 also repressed tumor growth in brain metastasis models of lung cancers. Moreover, XH30 reduced IL-17A and its receptor IL-17RA in vivo. These results indicate that XH30 might be a potential therapeutic drug candidate for glioblastoma migration and brain metastasis.
Collapse
|
27
|
Huan P, Wang L, He Z, He J. The Role of Gut Microbiota in the Progression of Parkinson's Disease and the Mechanism of Intervention by Traditional Chinese Medicine. Neuropsychiatr Dis Treat 2022; 18:1507-1520. [PMID: 35923300 PMCID: PMC9341349 DOI: 10.2147/ndt.s367016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a common degenerative disease of the nervous system that seriously affects the quality of life of the patients. The pathogenesis of PD is not yet fully clear. Previous studies have confirmed that patients with PD exhibit obvious gut microbiota imbalance, while intervention of PD by regulating the gut microbiota has become an important approach to the prevention and treatment of this disease. Traditional Chinese medicine (TCM) has been shown to be safe and effective in treating PD. It has the advantages of affecting multiple targets. Studies have shown TCM can regulate gut microbiota. However, the specific mechanism of action is still unclear. Therefore, this article will mainly discuss the association of the alteration of the gut microbiota and the incidence of PD, the advantages of TCM in treating PD, and the mechanism of regulating gut microbiota by TCM to treat PD. It will clarify the target and mechanism of TCM treating PD by acting gut microbiota and provided a novel methodology for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Pengfei Huan
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Li Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Zhuqing He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiancheng He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
28
|
Phon BWS, Kamarudin MNA, Bhuvanendran S, Radhakrishnan AK. Transitioning pre-clinical glioblastoma models to clinical settings with biomarkers identified in 3D cell-based models: A systematic scoping review. Biomed Pharmacother 2022; 145:112396. [PMID: 34775238 DOI: 10.1016/j.biopha.2021.112396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/02/2022] Open
Abstract
Glioblastoma (GBM) remains incurable despite the overwhelming discovery of 2-dimensional (2D) cell-based potential therapeutics since the majority of them have met unsatisfactory results in animal and clinical settings. Incremental empirical evidence has laid the widespread need of transitioning 2D to 3-dimensional (3D) cultures that better mimic GBM's complex and heterogenic nature to allow better translation of pre-clinical results. This systematic scoping review analyses the transcriptomic data involving 3D models of GBM against 2D models from 22 studies identified from four databases (PubMed, ScienceDirect, Medline, and Embase). From a total of 499 genes reported in these studies, 313 (63%) genes were upregulated across 3D models cultured using different scaffolds. Our analysis showed that 4 of the replicable upregulated genes are associated with GBM stemness, epithelial to mesenchymal transition (EMT), hypoxia, and migration-related genes regardless of the type of scaffolds, displaying close resemblances to primitive undifferentiated tumour phenotypes that are associated with decreased overall survival and increased hazard ratio in GBM patients. The upregulation of drug response and drug efflux genes (e.g. cytochrome P450s and ABC transporters) mirrors the GBM genetic landscape that contributes to in vivo and clinical treatment resistance. These upregulated genes displayed strong protein-protein interactions when analysed using an online bioinformatics software (STRING). These findings reinforce the need for widespread transition to 3D GBM models as a relatively inexpensive humanised pre-clinical tool with suitable genetic biomarkers to bridge clinical gaps in potential therapeutic evaluations.
Collapse
Affiliation(s)
- Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Muhamad N A Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Saatheeyavaane Bhuvanendran
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
29
|
Izadpanah A, Daneshimehr F, Willingham K, Barabadi Z, Braun SE, Dumont A, Mostany R, Chandrasekar B, Alt EU, Izadpanah R. Targeting TRAF3IP2 inhibits angiogenesis in glioblastoma. Front Oncol 2022; 12:893820. [PMID: 36046049 PMCID: PMC9421153 DOI: 10.3389/fonc.2022.893820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Increased vascularization, also known as neoangiogenesis, plays a major role in many cancers, including glioblastoma multiforme (GBM), by contributing to their aggressive growth and metastasis. Although anti-angiogenic therapies provide some clinical improvement, they fail to significantly improve the overall survival of GBM patients. Since various pro-angiogenic mediators drive GBM, we hypothesized that identifying targetable genes that broadly inhibit multiple pro-angiogenic mediators will significantly promote favorable outcomes. Here, we identified TRAF3IP2 (TRAF3-interacting protein 2) as a critical regulator of angiogenesis in GBM. We demonstrated that knockdown of TRAF3IP2 in an intracranial model of GBM significantly reduces vascularization. Targeting TRAF3IP2 significantly downregulated VEGF, IL6, ANGPT2, IL8, FZGF2, PGF, IL1β, EGF, PDGFRB, and VEGFR2 expression in residual tumors. Our data also indicate that exogenous addition of VEGF partially restores angiogenesis by TRAF3IP2-silenced cells, suggesting that TRAF3IP2 promotes angiogenesis through VEGF- and non-VEGF-dependent mechanisms. These results indicate the anti-angiogenic and anti-tumorigenic potential of targeting TRAF3IP2 in GBM, a deadly cancer with limited treatment options.
Collapse
Affiliation(s)
- Amin Izadpanah
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Fatemeh Daneshimehr
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Kurtis Willingham
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Zahra Barabadi
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Stephen E. Braun
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Aaron Dumont
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Bysani Chandrasekar
- Department of Medicine, University of Missouri School of Medicine and Harry S. Truman Veterans Memorial Hospital, Columbia, MO, United States
| | - Eckhard U. Alt
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Medicine, Isarklinikum Munich, Munich, Germany
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Reza Izadpanah,
| |
Collapse
|
30
|
Li Y, Ma J, Song Z, Zhao Y, Zhang H, Li Y, Xu J, Guo Y. The Antitumor Activity and Mechanism of a Natural Diterpenoid From Casearia graveolens. Front Oncol 2021; 11:688195. [PMID: 34249737 PMCID: PMC8267910 DOI: 10.3389/fonc.2021.688195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 01/26/2023] Open
Abstract
Casearlucin A, a diterpenoid obtained from Casearia graveolens, has been reported to possess strong cytotoxic activity. However, the in vivo anti-tumor effects and the action mechanism of casearlucin A remain poorly understood. Our study revealed that casearlucin A arrested cell cycle at G0/G1 stage and induced cell apoptosis in cell level. Additionally, casearlucin A inhibited HepG2 cell migration via regulating a few of metastasis-related proteins. Furthermore, it inhibited tumor angiogenesis in zebrafish in vivo. More importantly, casearlucin A significantly inhibited cell proliferation and migration in an in vivo zebrafish xenograft model. Collectively, these results are valuable for the further development and application of casearlucin A as an anticancer agent.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, China
| | - Jun Ma
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, China
| | - Yinan Zhao
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Micro-Current Stimulation Has Potential Effects of Hair Growth-Promotion on Human Hair Follicle-Derived Papilla Cells and Animal Model. Int J Mol Sci 2021; 22:ijms22094361. [PMID: 33921970 PMCID: PMC8122395 DOI: 10.3390/ijms22094361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/20/2022] Open
Abstract
Recently, a variety of safe and effective non-pharmacological methods have been introduced as new treatments of alopecia. Micro-current electrical stimulation (MCS) is one of them. It is generally known to facilitate cell proliferation and differentiation and promote cell migration and ATP synthesis. This study aimed to investigate the hair growth-promoting effect of MCS on human hair follicle-derived papilla cells (HFDPC) and a telogenic mice model. We examined changes in cell proliferation, migration, and cell cycle progression with MCS-applied HFDPC. The changes of expression of the cell cycle regulatory proteins, molecules related to the PI3K/AKT/mTOR/Fox01 pathway and Wnt/β-catenin pathway were also examined by immunoblotting. Subsequently, we evaluated the various growth factors in developing hair follicles by RT-PCR in MCS-applied (MCS) mice model. From the results, the MCS-applied groups with specific levels showed effects on HFDPC proliferation and migration and promoted cell cycle progression and the expression of cell cycle-related proteins. Moreover, these levels significantly activated the Wnt/β-catenin pathway and PI3K/AKT/mTOR/Fox01 pathway. Various growth factors in developing hair follicles, including Wnts, FGFs, IGF-1, and VEGF-B except for VEGF-A, significantly increased in MCS-applied mice. Our results may confirm that MCS has hair growth-promoting effect on HFDPC as well as telogenic mice model, suggesting a potential treatment strategy for alopecia.
Collapse
|
32
|
Park JH, Lee HK. Function of γδ T cells in tumor immunology and their application to cancer therapy. Exp Mol Med 2021; 53:318-327. [PMID: 33707742 PMCID: PMC8080836 DOI: 10.1038/s12276-021-00576-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
T cells of the γδ lineage are unconventional T cells with functions not restricted to MHC-mediated antigen presentation. Because of their broad antigen specificity and NK-like cytotoxicity, γδ T-cell importance in tumor immunology has been emphasized. However, some γδ T-cell subsets, especially those expressing IL-17, are immunosuppressive or tumor-promoting cells. Their cytokine profile and cytotoxicity are seemingly determined by cross-talk with microenvironment components, not by the γδTCR chain. Furthermore, much about the TCR antigen of γδ T cells remains unknown compared with the extreme diversity of their TCR chain pairs. Thus, the investigation and application of γδ T cells have been relatively difficult. Nevertheless, γδ T cells remain attractive targets for antitumor therapy because of their independence from MHC molecules. Because tumor cells have the ability to evade the immune system through MHC shedding, heterogeneous antigens, and low antigen spreading, MHC-independent γδ T cells represent good alternative targets for immunotherapy. Therefore, many approaches to using γδ T cells for antitumor therapy have been attempted, including induction of endogenous γδ T cell activation, adoptive transfer of expanded cells ex vivo, and utilization of chimeric antigen receptor (CAR)-T cells. Here, we discuss the function of γδ T cells in tumor immunology and their application to cancer therapy.
Collapse
Affiliation(s)
- Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
33
|
Zhang X, Wang J, Wang Y, Liu G, Li H, Yu J, Wu R, Liang J, Yu R, Liu X. MELK Inhibition Effectively Suppresses Growth of Glioblastoma and Cancer Stem-Like Cells by Blocking AKT and FOXM1 Pathways. Front Oncol 2021; 10:608082. [PMID: 33520717 PMCID: PMC7842085 DOI: 10.3389/fonc.2020.608082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating disease yet no effective drug treatment has been established to date. Glioblastoma stem-like cells (GSCs) are insensitive to treatment and may be one of the reasons for the relapse of GBM. Maternal embryonic leucine zipper kinase gene (MELK) plays an important role in the malignant proliferation and the maintenance of GSC stemness properties of GBM. However, the therapeutic effect of targeted inhibition of MELK on GBM remains unclear. This study analyzed the effect of a MELK oral inhibitor, OTSSP167, on GBM proliferation and the maintenance of GSC stemness. OTSSP167 significantly inhibited cell proliferation, colony formation, invasion, and migration of GBM. OTSSP167 treatment reduced the expression of cell cycle G2/M phase-related proteins, Cyclin B1 and Cdc2, while up-regulation the expression of p21 and subsequently induced cell cycle arrest at the G2/M phase. OTSSP167 effectively prolonged the survival of tumor-bearing mice and inhibited tumor cell growth in in vivo mouse models. It also reduced protein kinase B (AKT) phosphorylation levels by OTSSP167 treatment, thereby disrupting the proliferation and invasion of GBM cells. Furthermore, OTSSP167 inhibited the proliferation, neurosphere formation and self-renewal capacity of GSCs by reducing forkhead box M1 (FOXM1) phosphorylation and transcriptional activity. Interestingly, the inhibitory effect of OTSSP167 on the proliferation of GSCs was 4-fold more effective than GBM cells. In conclusion, MELK inhibition suppresses the growth of GBM and GSCs by double-blocking AKT and FOXM1 signals. Targeted inhibition of MELK may thus be potentially used as a novel treatment for GBM.
Collapse
Affiliation(s)
- Xu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,The Graduate School, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yifeng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guanzheng Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Huan Li
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jiefeng Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Runqiu Wu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jun Liang
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xuejiao Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
34
|
Jirmo AC, Busse M, Happle C, Skuljec J, Dalüge K, Habener A, Grychtol R, DeLuca DS, Breiholz OD, Prinz I, Hansen G. IL-17 regulates DC migration to the peribronchial LNs and allergen presentation in experimental allergic asthma. Eur J Immunol 2020; 50:1019-1033. [PMID: 32142593 DOI: 10.1002/eji.201948409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/30/2020] [Accepted: 03/05/2020] [Indexed: 01/04/2023]
Abstract
IL-17 is associated with different phenotypes of asthma, however, it is not fully elucidated how it influences induction and maintenance of asthma and allergy. In order to determine the role of IL-17 in development of allergic asthma, we used IL-17A/F double KO (IL-17A/F KO) and WT mice with or without neutralization of IL-17 in an experimental allergic asthma model and analyzed airway hyperresponsiveness, lung inflammation, T helper cell polarization, and DCs influx and activation. We report that the absence of IL-17 reduced influx of DCs into lungs and lung draining LNs. Compared to WT mice, IL-17A/F KO mice or WT mice after neutralization of IL-17A showed reduced airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and IgE levels. DCs from draining LNs of allergen-challenged IL-17A/F KO mice showed a reduction in expression of migratory and costimulatory molecules CCR7, CCR2, MHC-II, and CD40 compared to WT DCs. Moreover, in vivo stimulation of adoptively transferred antigen-specific cells was attenuated in lung-draining LNs in the absence of IL-17. Thus, we report that IL-17 enhances airway DC activation, migration, and function. Consequently, lack of IL-17 leads to reduced antigen-specific T cell priming and impaired development of experimental allergic asthma.
Collapse
Affiliation(s)
- Adan Chari Jirmo
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jelena Skuljec
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Kathleen Dalüge
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Ruth Grychtol
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - David S DeLuca
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Oliver D Breiholz
- Research Core Unit Genomics (RCUG), Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Excellence Cluster RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Hübner M, Effinger D, Wu T, Strauß G, Pogoda K, Kreth FW, Kreth S. The IL-1 Antagonist Anakinra Attenuates Glioblastoma Aggressiveness by Dampening Tumor-Associated Inflammation. Cancers (Basel) 2020; 12:E433. [PMID: 32069807 PMCID: PMC7072290 DOI: 10.3390/cancers12020433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The recombinant IL-1 receptor antagonist anakinra-currently approved for the treatment of autoinflammatory diseases-blocks IL-1β-mediated inflammatory signaling. As inflammation is a major driver of cancer, we hypothesized that anakinra might be able to mitigate glioblastoma (GBM) aggressiveness. METHODS Primary GBM or T98G cells were incubated alone or with peripheral blood mononuclear cells (PBMCs) and were subsequently treated with IL-1β and/or anakinra. T cells were obtained by magnetic bead isolation. Protein and mRNA expression were quantified by SDS-PAGE, qRT-PCR, and ELISA, respectively. Cell proliferation and apoptosis were analyzed via flow cytometry. Chemotaxis was studied via time-lapse microscopy. RESULTS Upon IL-1β stimulation, anakinra attenuated proinflammatory gene expression in both GBM cells and PBMCs, and mitigated tumor migration and proliferation. In a more lifelike model replacing IL-1β stimulation by GBM-PBMC co-culture, sole presence of PBMCs proved sufficient to induce a proinflammatory phenotype in GBM cells with enhanced proliferation and migration rates and attenuated apoptosis. Anakinra antagonized these pro-tumorigenic effects and, moreover, reduced inflammatory signaling in T cells without compromising anti-tumor effector molecules. CONCLUSION By dampening the inflammatory crosstalk between GBM and immune cells, anakinra mitigated GBM aggressiveness. Hence, counteracting IL-1β-mediated inflammation might be a promising strategy to pursue.
Collapse
Affiliation(s)
- Max Hübner
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - David Effinger
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - Tingting Wu
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - Gabriele Strauß
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - Kristin Pogoda
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
- Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg, Germany
| | | | - Simone Kreth
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| |
Collapse
|
36
|
Fan Z, Xu Q, Wang C, Lin X, Zhang Q, Wu N. A tropomyosin-like Meretrix meretrix Linnaeus polypeptide inhibits the proliferation and metastasis of glioma cells via microtubule polymerization and FAK/Akt/MMPs signaling. Int J Biol Macromol 2019; 145:154-164. [PMID: 31866539 DOI: 10.1016/j.ijbiomac.2019.12.158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) represents the most common, aggressive and deadliest primary tumors with poor prognosis as available therapeutic approaches fail to control its aberrant proliferation and high invasiveness. Thus, the therapeutic agents targeting these two characteristics will be more effective. In present study, a novel polypeptide (MM15), which was originally purified from Meretrix meretrix Linnaeus and has been proven to possess potent antitumor activity by our laboratory, was recombinant expressed and identified as a tropomyosin homologous protein. The recombinant polypeptide (re-MM15) could induce the U87 cell cycle arrest in G2/M phase and cell apoptosis by inducing tubulin polymerization. Additionally, re-MM15 displayed the significant inhibition to the migration and invasion of U87 cells through downregulating FAK/Akt/MMPs signaling. Furthermore, the in vivo analysis suggested that re-MM15 significantly blocked tumor growth in U87 xenograft model. Collectively, our results indicated that re-MM15, with anti-GBM properties in vitro and in vivo, has promising potential as a new anticancer candidate for GBM.
Collapse
Affiliation(s)
- Zhongjun Fan
- Key Laboratory of Experimental Marine Biology, Center of Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, China
| | - Qi Xu
- Key Laboratory of Experimental Marine Biology, Center of Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of sciences), Jinan, China
| | - Changhui Wang
- Shanghai Neuromedical Center, Qingdao University, Shanghai, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Center of Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Center of Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
37
|
Yang G, Lu YB, Guan QL. EPS8 is a Potential Oncogene in Glioblastoma. Onco Targets Ther 2019; 12:10523-10534. [PMID: 31819533 PMCID: PMC6898995 DOI: 10.2147/ott.s227739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose In this study, we investigated the expression and function of Epidermal growth factor receptor kinase substrate 8 (EPS8) in glioblastoma (GBM), and further explored the underlying mechanisms that regulate it. Patients and methods The expression and potential mechanisms of EPS8 in GBM were evaluated through multiple online public databases. The expression level EPS8 in GBM tissues and cell lines were detected by immunohistochemical staining and Western blot. Then, the prognosis of EPS8 and GBM patients were analyzed. Loss-of-function experiments were conducted to determine the role of EPS8 for the biological behavior of GBM cells. In addition, the tumorigenic ability of nude mice was tested in vivo. Results EPS8 is highly expressed in GBM tissues and indicates poor patient prognosis. In cell experiments, EPS8 can promote the proliferation, migration and invasion of GBM cells. In vivo, EPS8 promotes tumor formation in nude mice. EPS8 can activate the PI3K/Akt signaling pathway to function. Conclusion EP8S plays a role in the development of GBM and may be a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Gang Yang
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China.,The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yong-Bin Lu
- Department of Technology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Quan-Lin Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China.,Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
38
|
Song X, Li J, Wang Y, Zhou C, Zhang Z, Shen M, Xiang P, Zhang X, Zhao H, Yu L, Zuo L, Hu J. Clematichinenoside AR ameliorated spontaneous colitis in Il-10 -/- mice associated with improving the intestinal barrier function and abnormal immune responses. Life Sci 2019; 239:117021. [PMID: 31678552 DOI: 10.1016/j.lfs.2019.117021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Clematichinenoside AR (AR) is a saponin extracted for traditional Chinese medicine with the effects of improving the expression of tight junction (TJ) proteins and mediating anti-inflammatory activities. However, its effect on Crohn's disease (CD) is still unknown. We aimed to investigate the impact of AR on CD-like colitis and determine the mechanism underlying its effects. METHODS Interleukin-10 gene knockout (Il-10-/-) mice (male, fifteen weeks old) with spontaneous colitis were allocated to the positive control and AR-treated (32 mg/kg AR administered every other day by gavage for 4 weeks) groups. Wild-type (WT) mice (male, fifteen weeks old) composed the negative control group. The effects of AR on intestinal barrier function and structure and T cell responses as well as the potential mechanisms underlying these effects were investigated. RESULTS AR treatment significantly improved spontaneous colitis in Il-10-/- mice as demonstrated by reductions in the inflammatory score, disease activity index (DAI) and levels of inflammatory factors. The effects of AR on colitis in Il-10-/- mice were related to protecting intestinal barrier function and maintaining immune system homeostasis (regulatory T cell (Treg)/T helper 17 (Th17) cell balance). The anticolitis effect of AR may partly act by downregulating PI3K/Akt signaling. CONCLUSIONS AR may have therapeutic potential for treating CD in humans.
Collapse
Affiliation(s)
- Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Jing Li
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yan Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Changmin Zhou
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Zhichao Zhang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Mengdi Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Ping Xiang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Hao Zhao
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Liang Yu
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Lugen Zuo
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jianguo Hu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
39
|
Ginsenoside Rb1 promotes the growth of mink hair follicle via PI3K/AKT/GSK-3β signaling pathway. Life Sci 2019; 229:210-218. [PMID: 31102746 DOI: 10.1016/j.lfs.2019.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
AIMS Hair follicles play a critical role in the process of hair growth. The dermal papilla cells (DPCs) are an important component in the hair follicle regeneration and growth. This study investigated the effects of ginsenoside Rb1 on the growth of cultured mink hair follicles and DPCs. MAIN METHODS The mink hair follicles were treated with ginsenoside Rb1 for 9 days and their lengths were measured every three days. Real-time PCR was used to determine the mRNA expression of vascularization endothelial growth factor A (VEGF-A), VEGF receptor 2 (VEGF-R2) and TGF-β1. In addition, the levels of proteins were detected by western blot. Cell proliferation was determined by immunofluorescence staining of proliferation marker Ki-67 and cell cycle analysis was performed on flow cytometry. Moreover, cell migration was evaluated by wound healing assay. KEY FINDINGS Ginsenoside Rb1 promoted the growth of hair follicles, and proliferation and migration of DPCs. Ginsenoside Rb1 improved the expression levels of VEGFA and VEGF-R2, while attenuated the TGF-β1 expression both in hair follicles and DPCs. Furthermore, ginsenoside Rb1 facilitated the activation of PI3K/AKT/GSK-3β signaling pathway in hair follicles and DPCs. SIGNIFICANCE The results reveals a crucial role of PI3K/AKT/GSK-3β signaling pathway in ginsenoside Rb1-induced growth of hair follicles and DPCs.
Collapse
|
40
|
Zheng Q, Diao S, Wang Q, Zhu C, Sun X, Yin B, Zhang X, Meng X, Wang B. IL-17A promotes cell migration and invasion of glioblastoma cells via activation of PI3K/AKT signalling pathway. J Cell Mol Med 2018; 23:357-369. [PMID: 30353649 PMCID: PMC6307791 DOI: 10.1111/jcmm.13938] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022] Open
Abstract
Glioblastomas (GBMs) are the most common of both benign and malignant primary brain tumours, in which the inflammatory and immunologic abnormalities are involved. Interleukin-17A (IL-17A) plays an important role in various inflammatory diseases and cancers. Several recent studies revealed that the expression of IL-17A was overexpressed in human GBMs tissue. However, the accurate role of IL-17A in GBMs remains unclear. In this study, we aimed to explore the effect of IL-17A on cell migration and invasion of GBMs and the mechanism by which the effects occurred. We found that exogenous IL-17A promoted significantly cell migration and invasion abilities in two GBMs cell lines (U87MG and U251) in a time-dependent manner. In addition, the protein expressions of PI3K, Akt and MMP-2/9 were increased in the GBMs cells challenged by IL-17A. Furthermore, a tight junction protein ZO-1 was down-regulated but Twist and Bmi1 were up-regulated. Treatment with a PI3K inhibitor (LY294002) significantly reduced the abilities of both migration and invasion in U87MG and U251 cells. LY294002 treatment also attenuated the IL-17A causing increases of protein levels of PI3K, AKT, MMP-2/9, Twist and the decreases of protein level of ZO-1 in the U87MG and U251 cells. Taken together, we concluded that IL-17A promotes the GBM cells migration and invasion via PI3K/AKT signalling pathway. IL-17A and its related signalling pathways may be potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Shuo Diao
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xun Sun
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Bo Yin
- Department of Urology, ShengJing Hospital of China Medical University, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School & Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| |
Collapse
|