1
|
Zhao L, Wang P, Sun L, Ma W, Yu L. SP1/COL1A2/ZEB1 axis promotes TGF-β2-induced lens epithelial cell proliferation, migration, invasion and EMT process. Exp Eye Res 2025; 251:110220. [PMID: 39710101 DOI: 10.1016/j.exer.2024.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/23/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
Posterior capsule opacification (PCO) is the most common complication after cataract surgery. In this study, we used transforming growth factor beta-2 (TGF-β2)-induced SRA01/04 cells to mimic PCO cell model and explored the functions and underlying mechanisms of specific protein 1 (SP1) in TGF-β2-induced SRA01/04 cell development. MTT assay and EdU assay were carried out to explore the proliferation of SRA01/04 cells. Transwell assay and wound-healing assay were performed to investigate SRA01/04 cell migration and invasion. Chromatin Immunoprecipitation (ChIP) assay, dual-luciferase reporter assay and Co-immunoprecipitation (Co-IP) assay were used to analyze the relations of SP1, COL1A2 and ZEB1. TGF-β2 treatment led to the promotion of SRA01/04 cell proliferation, migration, invasion and EMT process. COL1A2 level was induced by TGF-β2 treatment and COL1A2 knockdown inhibited TGF-β2-induced SRA01/04 cell proliferation, migration, invasion and EMT. SP1 could activate the transcription of COL1A2. SP1 overexpression promoted TGF-β2-induced SRA01/04 cell injury by regulating COL1A2 expression. Moreover, COL1A2 interacted with ZEB1 and COL1A2 knockdown-mediated effects on the proliferation, migration, invasion and EMT of TGF-β2-induced SRA01/04 cells were abrogated by elevating ZEB1. SP1 regulated COL1A2 and then mediated ZEB1 to affect the proliferation, migration, invasion and EMT of TGF-β2-induced SRA01/04 cells.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Ping Wang
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Lianyi Sun
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Weimei Ma
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Lei Yu
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China.
| |
Collapse
|
2
|
Liang H, Yin G, Shi G, Liu X, Liu Z, Li J. Insights into the Molecular Mechanisms of Bushen Huoxue Decoction in Breast Cancer via Network Pharmacology and in vitro experiments. Curr Comput Aided Drug Des 2025; 21:50-66. [PMID: 39651565 DOI: 10.2174/0115734099269728231115060827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 10/13/2023] [Indexed: 12/11/2024]
Abstract
AIMS Breast cancer (BC) is by far seen as the most common malignancy globally, with 2.261 million patients newly diagnosed, accounting for 11.7% of all cancer patients, according to the Global Cancer Statistics Report (2020). The luminal A subtype accounts for at least half of all BC diagnoses. According to TCM theory, Bushen Huoxue Decoction (BSHXD) is a prescription used for cancer treatment that may influence luminal A subtype breast cancer (LASBC). OBJECTIVES To analyze the clinical efficacy and underlying mechanisms of BSHXD in LASBC. MATERIALS AND METHODS Network pharmacology and in vitro experiments were utilized to foresee the underlying mechanism of BSHXD for LASBC. RESULTS According to the bioinformatics analysis, BSHXD induced several proliferation and apoptosis processes against LASBC, and the presumed targets of active components in BSHXD were mainly enriched in the HIF-1 and PI3K/AKT pathways. Flow cytometry assay and western blotting results revealed that the rate of apoptosis enhanced in a dose-dependent manner with BSHXD concentration increasing, respectively. BSHXD notably downregulated the expressions of HIF-1α, P-PI3K, PI3K, P-AKT and AKT proteins. However, adding an HIF-1α agonist restored those protein levels. CONCLUSION The study proved that the mechanism of BSHXD in LASBC may be connected to suppressing proliferation by inhibiting the activity of the HIF-1α/PI3K/AKT signaling pathway and promoting apoptosis via the Caspase cascade in LASBC cells.
Collapse
Affiliation(s)
- Hongyi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guangxi Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaofei Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhiyong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingwei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Deng X, Zhang Y, He X, Li L, Yue Z, Liang Y, Huang Y. Effects of MMP2 and its inhibitor TIMP2 on DNA damage, apoptosis and senescence of human lens epithelial cells induced by oxidative stress. J Bioenerg Biomembr 2024; 56:619-630. [PMID: 39538054 DOI: 10.1007/s10863-024-10044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Oxidative stress-induced lens epithelial cells (LECs) death plays a pivotal role in pathogenesis of age-related cataract (ARC), causing significant visual impairment. Apoptosis of porcine granulosa cells mediated by MMP2 is linked to DNA damage. The current study aimed to investigate the potential mechanism of MMP2 in DNA damage, apoptosis and senescence of lens epithelial cells caused by oxidative stress. HLE-B3 cells were treated with different doses of H2O2 for 24 h, and CCK-8 was used to detect cell viability. Furthermore, western blotting was used to detect the expressions of MMP2, Bcl2, Bax, cleaved caspase3, γ-H2AX, p16, p21, and TIMP2. DCFH-DA staining was used to assess ROS levels. Moreover, EdU staining was used to detect cell proliferation, and flow cytometry was used to detect cell apoptosis. Then, 15A3 immunofluorescence staining and γ-H2AX staining were used to detect DNA damage. In addition, SA-β-gal staining was used to observe cell senescence. The present findings suggest that oxidative stress triggers damage to LECs viability and elevates the expression of MMP2. Furthermore, MMP2 interference attenuates H2O2-induced active damage, apoptosis, DNA damage, and cellular senescence in LECs. Additionally, TIMP2 expression is down-regulated in H2O2-induced LECs, which suppresses the expression of MMP2 induced by H2O2. These findings highlight the crucial role of MMP2 and TIMP2 in the modulation of oxidative stress-induced cellular responses in LECs. Collectively, TIMP2 alleviates H2O2-induced lens epithelial cell viability damage, apoptosis, DNA damage and cell senescence in LECs by inhibiting MMP2.
Collapse
Affiliation(s)
- Xinran Deng
- Pengzhou People's Hospital Ophthalmology Department, Chengdu City, 611930, Sichuan Province, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yan Zhang
- Pengzhou People's Hospital Ophthalmology Department, Chengdu City, 611930, Sichuan Province, China
| | - Xiwei He
- Pengzhou People's Hospital Ophthalmology Department, Chengdu City, 611930, Sichuan Province, China
| | - Li Li
- Pengzhou People's Hospital Ophthalmology Department, Chengdu City, 611930, Sichuan Province, China
| | - Zhongbin Yue
- Pengzhou People's Hospital Ophthalmology Department, Chengdu City, 611930, Sichuan Province, China
| | - Yong Liang
- Pengzhou People's Hospital Ophthalmology Department, Chengdu City, 611930, Sichuan Province, China.
| | - Yue Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
4
|
Wang L, Zhang X, Li H, Mou Y, Cui G. SP1 promotes high glucose-induced lens epithelial cell viability, migration and epithelial-mesenchymal transition via regulating FGF7 and PI3K/AKT pathway. Int Ophthalmol 2024; 44:316. [PMID: 38969958 DOI: 10.1007/s10792-024-03230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Diabetic cataract (DC) is a common complication of diabetes and its etiology and progression are multi-factorial. In this study, the roles of specific protein 1 (SP1) and fibroblast growth factor 7 (FGF7) in DC development were explored. METHODS DC cell model was established by treating SRA01/04 cells with high glucose (HG). MTT assay was conducted to evaluate cell viability. Transwell assay and wound-healing assay were performed to assess cell migration and invasion. Western blot assay and qRT-PCR assay were conducted to measure the expression of N-cadherin, E-cadherin, Collagen I, Fibronectin, SP1 and FGF7 expression. CHIP assay and dual-luciferase reporter assay were conducted to analyze the combination between FGF7 and SP1. RESULTS FGF7 was upregulated in DC patients and HG-induced SRA01/04 cells. HG treatment promoted SRA01/04 cell viability, migration, invasion and epithelial-mesenchymal transition (EMT), while FGF7 knockdown abated the effects. Transcription factor SP1 activated the transcription level of FGF7 and SP1 overexpression aggravated HG-induced SRA01/04 cell injury. SP1 silencing repressed HG-induced SRA01/04 cell viability, migration, invasion and EMT, but these effects were ameliorated by upregulating FGF7. Additionally, SP1 knockdown inhibited the PI3K/AKT pathway by regulating the transcription level of FGF7. CONCLUSION Transcription factor SP1 activated the transcription level of FGF7 and the PI3K/AKT pathway to regulate HG-induced SRA01/04 cell viability, migration, invasion and EMT.
Collapse
Affiliation(s)
- Ledan Wang
- Department of Ophthalmology, Ophthalmology Center, Taizhou Hospital of Zhejiang Province, 150 Ximen Street, Linhai, 317000, China
| | - Xin Zhang
- Department of Ophthalmology, Ophthalmology Center, Taizhou Hospital of Zhejiang Province, 150 Ximen Street, Linhai, 317000, China
| | - Huijun Li
- Department of Ophthalmology, Ophthalmology Center, Taizhou Hospital of Zhejiang Province, 150 Ximen Street, Linhai, 317000, China
| | - Yuehong Mou
- Department of Ophthalmology, Ophthalmology Center, Taizhou Hospital of Zhejiang Province, 150 Ximen Street, Linhai, 317000, China
| | - Gangfeng Cui
- Department of Ophthalmology, Ophthalmology Center, Taizhou Hospital of Zhejiang Province, 150 Ximen Street, Linhai, 317000, China.
| |
Collapse
|
5
|
Wu Q, Liu C, Shu X, Duan L. Mechanistic and therapeutic perspectives of non-coding RNA-modulated apoptotic signaling in diabetic retinopathy. Cell Biol Toxicol 2024; 40:53. [PMID: 38970639 PMCID: PMC11227466 DOI: 10.1007/s10565-024-09896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
Diabetic retinopathy (DR), a significant and vision-endangering complication associated with diabetes mellitus, constitutes a substantial portion of acquired instances of preventable blindness. The progression of DR appears to prominently feature the loss of retinal cells, encompassing neural retinal cells, pericytes, and endothelial cells. Therefore, mitigating the apoptosis of retinal cells in DR could potentially enhance the therapeutic approach for managing the condition by suppressing retinal vascular leakage. Recent advancements have highlighted the crucial regulatory roles played by non-coding RNAs (ncRNAs) in diverse biological processes. Recent advancements have highlighted that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), act as central regulators in a wide array of biogenesis and biological functions, exerting control over gene expression associated with histogenesis and cellular differentiation within ocular tissues. Abnormal expression and activity of ncRNAs has been linked to the regulation of diverse cellular functions such as apoptosis, and proliferation. This implies a potential involvement of ncRNAs in the development of DR. Notably, ncRNAs and apoptosis exhibit reciprocal regulatory interactions, jointly influencing the destiny of retinal cells. Consequently, a thorough investigation into the complex relationship between apoptosis and ncRNAs is crucial for developing effective therapeutic and preventative strategies for DR. This review provides a fundamental comprehension of the apoptotic signaling pathways associated with DR. It then delves into the mutual relationship between apoptosis and ncRNAs in the context of DR pathogenesis. This study advances our understanding of the pathophysiology of DR and paves the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Qin Wu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, 250021, China.
| | | | - Xiangwen Shu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, 250021, China
| | - Lian Duan
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
6
|
Li Z, Deng X, Lan Y. Identification of a potentially functional circRNA-miRNA-mRNA regulatory network in type 2 diabetes mellitus by integrated microarray analysis. Minerva Endocrinol (Torino) 2024; 49:33-46. [PMID: 33792237 DOI: 10.23736/s2724-6507.21.03370-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) function as miRNA sponges by adsorbing microRNAs (miRNAs), thereby regulating messenger RNA (mRNA) expression. The circRNA-miRNA-mRNA regulatory network associated with type 2 diabetes mellitus (T2DM) has rarely been explored. A circRNA-miRNA-mRNA regulatory network associated with T2DM was established to help deepen our understanding of the molecular mechanism of and therapeutic targets for T2DM. METHODS Differentially expressed circRNAs (DEcircRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were derived from the Gene Expression Omnibus (GEO) microarray datasets GSE114248, GSE51674 and GSE95849, respectively. A circRNA-miRNA-mRNA regulatory network associated with T2DM and its subnetwork were constructed. The hub genes were screened using a protein-protein interaction (PPI) network. Finally, a hub gene-related network was constructed. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. RESULTS The circRNA-miRNA-mRNA network included 9 circRNAs, 24 miRNAs and 320 mRNAs. When four key circRNAs (circMYO9B, circGRAMD1B, circTHAP4 and circTMC7) were chosen, the subnetwork contained 4 circRNAs, 18 miRNAs and 307 mRNAs. Afterwards, 8 hub genes (SIRT1, GNG7, KDR, FOS, SIN3B, STAT1, SP1, and MAPK3) were extracted from the PPI network. GO and KEGG pathway analyses revealed that the network might be involved in oxidative stress responses, regulation of inflammation, neovascularization, endocrine and cancer-related processes, etc. CONCLUSIONS A circRNA-miRNA-hub gene regulatory network was constructed, and the potential functions of the hub genes were analyzed. Four important circRNAs (circMYO9B, circGRAMD1B, circTHAP4 and circTMC7) might be involved in the occurrence and development of T2DM, and this finding provides new insight into the molecular mechanism of and therapeutic targets for T2DM and its complications. Future studies are needed to validate the sponge effects and mechanisms of these 4 circRNAs.
Collapse
Affiliation(s)
- Zijing Li
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Provincial Clinical Research Center of Diabetes Mellitus and its Chronic Complications, Guangzhou, China
- Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Deng
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Provincial Clinical Research Center of Diabetes Mellitus and its Chronic Complications, Guangzhou, China
- Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuqing Lan
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China -
- Provincial Clinical Research Center of Diabetes Mellitus and its Chronic Complications, Guangzhou, China
- Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Gong Q, Zhou D, Chen C, Shen H, Xu X, Qian T. Knockdown of lncRNA PVT1 protects human trabecular meshwork cells against H 2O 2-induced injury via the regulation of the miR-29a-3p/VEGF/MMP-2 axis. Heliyon 2024; 10:e23607. [PMID: 38173510 PMCID: PMC10761783 DOI: 10.1016/j.heliyon.2023.e23607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose Human trabecular meshwork cell (HTMC) dysfunction results in imbalanced aqueous humor inflow and outflow, leading to an increase in intraocular pressure (IOP). Uncontrolled high IOP can promote the occurrence of glaucoma, an irreversible optic neuropathy. Here, we explored whether the long non-coding RNA plasmacytoma variant translocation 1 (lncRNA PVT1)/microRNA-29a-3p (miR-29a-3p) axis could ameliorate HTMC dysfunction under oxidative stress by modulating the expression of the proangiogenic factor vascular endothelial growth factor (VEGFA) and the profibrotic factor metalloproteinase-2 (MMP-2). Methods HTMCs were cultured under H2O2-induced oxidative stress for 48 h. The expression of lncRNA PVT1, miR-29a-3p, VEGFA, MMP-2, intracellular adhesion molecule-1 (ICAM-1), and alpha-smooth muscle actin (α-SMA) was detected by reverse transcription quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence. Interference experiments were conducted via the transfection of HTMCs with small interfering RNA (siRNA) targeting lncRNA PVT1 or miR-29a-3p mimics. A luciferase reporter assay was undertaken to identify the presence of a miR-29a-3p binding site in lncRNA PVT1. Flow cytometry and Transwell and Cell Counting Kit-8 assays were employed to evaluate HTMC functions under oxidative stress with different treatments. Results In HTMCs, the expression of lncRNA PVT1 was induced by H2O2 treatment, whereas that of miR-29a-3p was inhibited. The levels of angiogenic factors (VEGFA, ICAM-1) and fibrosis-associated mediators (MMP-2, α-SMA) were upregulated in HTMCs under oxidative stress. The siRNA-mediated suppression of lncRNA PVT1 or the upregulation of miR-29a-3p significantly suppressed the expression of VEGFA, MMP-2, ICAM-1, and α-SMA. A luciferase reporter assay confirmed that lncRNA PVT1 directly targeted miR-29a-3p and acted as a miR-29a-3p sponge. The knockdown of lncRNA PVT1 restored the level of miR-29a-3p in H2O2-treated HTMCs, thereby inhibiting VEGFA and MMP-2, its target mRNAs. HTMC dysfunction, including increased apoptosis and decreased cell mobility and viability, could be effectively ameliorated by lncRNA PVT1 downregulation or miR-29a-3p overexpression under oxidative stress. Conclusion LncRNA PVT1 has potential as a therapeutic target for inhibiting VEGFA and MMP-2, thus protecting HTMCs, suppressing the progression of fibrosis, and, consequently, improving the outcome of glaucoma filtration surgery.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Danjing Zhou
- Department of Radiology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Chong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Hangqi Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Tianwei Qian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| |
Collapse
|
8
|
Guo Z, Ma X, Zhang RX, Yan H. Oxidative stress, epigenetic regulation and pathological processes of lens epithelial cells underlying diabetic cataract. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:180-186. [PMID: 38106550 PMCID: PMC10724013 DOI: 10.1016/j.aopr.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023]
Abstract
Background Cataract is a blinding disease worldwide. It is an age-related disease that mainly occurs in people over 65 years old. Cataract is also prevalent in patients with diabetes mellites (DM). The pathological mechanisms underlying diabetic cataract (DC) are more complex than that of age-related cataract. Studies have identified that polyol pathway, advanced glycation end products (AGEs) and oxidative stress are the primary pathogenesis of DC. In recent years, molecular-level regulations and pathological processes of lens epithelial cells (LECs) have been confirmed to play roles in the initiation and progression of DC. A comprehensive understanding and elucidation of how chronic hyperglycemia drives molecular-level regulations and cytopathological processes in the lens will shed lights on the prevention, delay and treatment of DC. Main text Excessive glucose in the lens enhances polyol pathway and AGEs formation. Polyol pathway causes imbalance in the ratio of NADPH/NADP+ and NADH/NAD+. Decrease in NADPH/NADP+ ratio compromises antioxidant enzymes, while increase in NADH/NAD+ ratio promotes reactive oxygen species (ROS) overproduction in mitochondria, resulting in oxidative stress. Oxidative stress in the lens causes oxidation of DNA, proteins and lipids, leading to abnormalities in their structure and functions. Glycation of proteins by AGEs decreases solubility of proteins. High glucose triggered epigenetic regulations directly or indirectly affect expressions of genes and proteins in LECs. Changes in autophagic activity, increases in fibrosis and apoptosis of LECs destroy the morphological structure and physiological functions of the lens epithelium, disrupting lens homeostasis. Conclusions In both diabetic animal models and diabetics, oxidative stress plays crucial roles in the formation of cataract. Epigenetic regulations, include lncRNA, circRNA, microRNA, methylation of RNA and DNA, histone acetylation and pathological processes, include autophagy, fibrosis and apoptosis of LECs also involved in DC.
Collapse
Affiliation(s)
- Zaoxia Guo
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Xiaopan Ma
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Rui Xue Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Zhou S, Cao C, Hu J. Long Non-Coding RNA Small Nucleolar RNA Host Gene 4 Induced by Transcription Factor SP1 Promoted the Progression of Nasopharyngeal Carcinoma Through Modulating microRNA-510-5p/Centromere Protein F Axis. Biochem Genet 2023; 61:1967-1986. [PMID: 36899270 DOI: 10.1007/s10528-023-10351-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Long non-coding RNAs (LncRNAs) are implicated with tumorigenesis and the development of nasopharyngeal carcinoma (NPC). Previous studies suggested that long non-coding RNA small nucleolar RNA host gene 4 (SNHG4) exerted oncogenic roles in various cancers. However, the function and molecular mechanism of SNHG4 in NPC have not been investigated. In our study, it was confirmed that the SNHG4 level was enriched in NPC tissues and cells. Functional assays indicated that SNHG4 depletion inhibited the proliferation and metastasis but promoted apoptosis of NPC cells. Furthermore, we identified miR-510-5p as a downstream gene of SNHG4 in NPC cells and SNHG4 upregulated CENPF expression by binding to miR-510-5p. Moreover, there was a positive (or negative) association between CENPF and SNHG4 (or miR-510-5p) expression in NPC. In addition, rescue experiments verified that CENPF overexpression or miR-510-5p silencing abrogated inhibitory effects on NPC tumorigenesis caused by SNHG4 deficiency. The study demonstrated that SNHG4 promoted NPC progression via miR-510-5p/CENPF axis, providing a novel potential therapeutic target for NPC treatments.
Collapse
Affiliation(s)
- Shao Zhou
- Department of Otorhinolaryngology, The Affiliated People's Hospital of Ningbo University, No. 251 East Baizhang Road, Ningbo, 315000, Zhejiang, China.
| | - Cheng Cao
- Department of Otorhinolaryngology, The Affiliated People's Hospital of Ningbo University, No. 251 East Baizhang Road, Ningbo, 315000, Zhejiang, China
| | - Jiandao Hu
- Department of Otorhinolaryngology, The Affiliated People's Hospital of Ningbo University, No. 251 East Baizhang Road, Ningbo, 315000, Zhejiang, China
| |
Collapse
|
10
|
Chen S, Zhang C, Shen L, Hu J, Chen X, Yu Y. Noncoding RNAs in cataract formation: star molecules emerge in an endless stream. Pharmacol Res 2022; 184:106417. [PMID: 36038044 DOI: 10.1016/j.phrs.2022.106417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
For decades, research on the pathological mechanism of cataracts has usually focused on the abnormal protein changes caused by a series of risk factors. However, an entire class of molecules, termed non-coding RNA (ncRNA), was discovered in recent years and proven to be heavily involved in cataract formation. Recent studies have recognized the key regulatory roles of ncRNAs in cataracts by shaping cellular activities such as proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT). This review summarizes our current insight into the biogenesis, properties and functions of ncRNAs and then discusses the development of research on ncRNAs in cataracts. Considering the significant role of ncRNA in cataract formation, research on novel associated regulatory mechanisms is urgently needed, and the development of therapeutic alternatives for the treatment of cataracts seems promising.
Collapse
Affiliation(s)
- Silong Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Chengshou Zhang
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Lifang Shen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Jianghua Hu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, China.
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| |
Collapse
|
11
|
Knockdown of PVT1 Exerts Neuroprotective Effects against Ischemic Stroke Injury through Regulation of miR-214/Gpx1 Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1393177. [PMID: 35978647 PMCID: PMC9377929 DOI: 10.1155/2022/1393177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Previous studies have reported that lncRNA PVT1 was closely related to ischemic stroke. Here, the role of PVT1 in ischemic stroke and the underlying mechanism were investigated. OGDR-stimulated PC12 cells were used to construct a cell model to mimic ischemic stroke. si-PVT1, miR-214 mimic, inhibitor, or the negative controls were transfected into PC12 cells prior to OGDR treatment. PVT1, miR-214, and Gpx1 expression was measured by qRT-PCR and western blotting assays. Cell proliferation and apoptosis were tested by CCK-8 assay and western blotting. The expression levels of inflammatory factors were determined by ELISA Kit. Results showed that PVT1 was increased significantly in OGDR PC12 cells. PVT1 knockdown significantly enhanced cell viability and attenuated cell apoptosis, ROS generation, and inflammation in OGDR PC12 cells. More importantly, PVT1 or Gpx1 was a target of miR-214. Mechanistically, PVT1 acted as a competing endogenous RNA of miR-214 to regulate the downstream gene Gpx1. In conclusion, PVT1 knockdown attenuated OGDR PC12 cell injury by modulating miR-214/Gpx1 axis. These findings offer a potential novel strategy for ischemic stroke therapy.
Collapse
|
12
|
Zhang X, Ren L, Wei J, Ni Y, Sun L, Zhao X, Zhang Y, Qiao H. Silencing long noncoding RNA-CES1P1 suppresses glomerular endothelial cell inflammation in diabetic nephropathy. Int Immunopharmacol 2022; 110:108820. [PMID: 35834955 DOI: 10.1016/j.intimp.2022.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
Diabetic nephropathy (DN) has become the main cause of end-stage renal disease worldwide. Inflammation is associated with the occurrence and development of DN, and long noncoding RNAs (lncRNAs) are involved in the regulation of inflammatory processes. This study aims to determine the role and mechanism of lncRNA-CES1P1 in DN.C57BL/6 mice and human umbilical vein endothelial cells (HUVECs) were used for this experimental study. In vivo experimental intraperitoneal injection of streptozotocin (STZ) to construct a diabetes mellitus (DM) model in C57BL/6 mice caused increased expression of lncRNA-CES1P1, decreased expression of miR-214-3p in kidney tissue, and produced renal inflammation and proteinuria. Exogenous knockdown of lncRNA-CES1P1 expression decreased renal inflammatory infiltration. In vitro experiments using high glucose (HG) stimulation of HUVECs cell revealed increased expression of lncRNA-CES1P1, decreased expression of miR-214-3p, and increased expression of the inflammatory factors IL-17, IκB, NF-κB, and IL-6. Luciferase reporter assays showed direct targets of miR-214-3p interaction with lncRNA-CES1P1 and IL-17. These results suggest that hyperglycemia represses miR-214-3p by inducing lncRNA-CES1P1, which promotes the expression of the inflammatory factors IL-17, IκB, NF-κB and IL-6 ultimately leading to the development of DN. Interfering with lncRNA-CES1P1 can reduce hyperglycemia-induced DN.
Collapse
Affiliation(s)
- Xiaona Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Long Ren
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Jiaxing Wei
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yanan Ni
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Lulu Sun
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xiaoyu Zhao
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yaguang Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Hong Qiao
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
13
|
Xiao Y, Li X, Qiu S, Wang Y, Zhang D. LncRNA 122049 suppresses apoptosis of renal tubular epithelial cells in ischemic AKI by targeting the miR-330-5p/ELK1 axis. FASEB J 2022; 36:e22395. [PMID: 35695811 DOI: 10.1096/fj.202200064rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 01/13/2023]
Abstract
Several studies have reported that long non-coding RNAs (LncRNAs) were associated with the progression of acute kidney injury (AKI). However, the role and regulation mechanism of lncRNA122049 in ischemic AKI remains unknown. In the present study, we found that lncRNA 122049 protected against the ischemia/reperfusion (I/R) induced apoptosis in BUMPT cells. Mechanistically, the lncRNA 122049 directly sponged miR-330-5p, then increased the expression of ELK1(ETS transcription factor ELK1) to decrease renal cell apoptosis. In addition, miR-330-5p inhibitor completely reversed the pro-apoptotic effect of LncRNA 122049 siRNA on I/R-induced BUMPT cells apoptosis. Finally, overexpression of lncRNA 122049 attenuated ischemic mice AKI via targeting of the miR-330-5p/ELK1 axis. Collectively, the data demonstrated that LncRNA 122049 prevented the I/R-induced renal cell apoptosis via regulation of the miR-330-5p/ELK1 axis, which brings new insights into the pathogenesis and potential targeted treatment of ischemic AKI.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Blood Transfusion, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shuangfa Qiu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yongjun Wang
- Department of Blood Transfusion, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
14
|
Wu F, Zhu Y, Zhou C, Gui W, Li H, Lin X. Regulation mechanism and pathogenic role of lncRNA plasmacytoma variant translocation 1 (PVT1) in human diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
15
|
Guo J, Chen Y, Xu J, Li L, Dang W, Xiao F, Ren W, Zhu Y, Du Q, Li Q, Li X. Long noncoding RNA PVT1 regulates the proliferation and apoptosis of ARPE-19 cells in vitro via the miR-1301-3p/KLF7 axis. Cell Cycle 2022; 21:1590-1598. [PMID: 35451342 PMCID: PMC9291708 DOI: 10.1080/15384101.2022.2058839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Diabetic retinopathy (DR) as a frequent diabetic microvascular complication shows signs in one-third of diabetic patients. Long non-coding RNAs (lncRNAs) have drawn increasing attention because of their regulatory roles in DR. LncRNA plasmacytoma variant translocation 1 (PVT1) is documented to be upregulated in diabetes-related diseases, while its effects in DR remains unexplored. ARPE-19 cells under the treatment of high-glucose (HG) were used as DR cell models. The gene expression in ARPE-19 cells was examined using RT-qPCR. The viability and apoptosis of ARPE-19 cells were determined by MTT and TUNEL assays. The levels of inflammation-associated proteins or mRNA were measured using western blot. Luciferase reporter assay and RNA pull down assay were conducted for the exploration of the underlying mechanism of PVT1. PVT1 was revealed to be upregulated in DR cell models. Silencing of PVT1 promoted the viability and inhibited apoptosis of HG-stimulated ARPE-19 cells. The results revealed that PVT1 can bind with miR-1301-3p. PVT1 negatively modulated miR-1301-3p expression. Additionally, KLF7 was targeted by miR-1301-3p. PVT1 upregulated KLF7 expression by binding with miR-1301-3p. The silenced PVT1-mediated influence on cell viability and cell apoptosis was rescued by overexpression of KLF7. PVT1 suppresses proliferation and promotes apoptosis of ARPE-19 cells treated with HG in vitro by binding with miR-1301-3p to upregulate KLF7.
Collapse
Affiliation(s)
- Jianjin Guo
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Chen
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiajia Xu
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liqi Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjiao Dang
- School of Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feng Xiao
- Department of Oncology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wei Ren
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Yikun Zhu
- Department of Endocrinology and Metabolism, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiujing Du
- School of Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qian Li
- School of Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xing Li
- Department of Endocrinology and Metabolism, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
16
|
Guo M, Su F, Chen Y, Su B. Interfering Hsa_circRNA_0060640 Suppresses TGF-β2-Induced Proliferation, Motility and EMT in Human Lens Epithelium Cells by Targeting miR-214-3p and Collagen Type I alpha2 Chain. Curr Eye Res 2022; 47:735-746. [PMID: 35392747 DOI: 10.1080/02713683.2022.2053724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Circular RNA (circRNA) is a novel star factor in the research of ocular diseases including cataract and the most common postoperative complication posterior capsule opacification (PCO). Hsa_circRNA_0060640 (circ_0060640) is an age-related cataract-related circRNA. However, its role in cataractogenesis is unrevealed yet. METHODS PCO in vitro model was established in human lens epithelium cells (hLECs) induced by transforming growth factor-beta2 (TGF-β2). RNA and protein expressions were respectively detected by quantitative PCR and western blotting. Direct interaction between two RNAs was predicted by Starbase tool and confirmed by dual-luciferase reporter assay. MTS and EdU assays measured cell proliferation; Transwell, starch wound and western blotting assays evaluated cell motility and epithelial-mesenchymal transition (EMT). RESULTS Circ_0060640 expression is higher in anterior lens capsule tissues from human cataractous eyes and TGF-β2-stimulated hLECs cells line SRA01/04. RNA interference of circ_0060640 could prevent SRA01/04 cells from TGF-β2-induced cell proliferation, migration and invasion, accompanied with decreased N-cadherin and α-smooth muscle actin and increased E-cadherin. Mechanistically, circ_0060640 directly controls microRNA (miR)-214-3p expression and then regulates gene expression of collagen type I alpha2 chain (COL1A2). Notably, COL1A2 inhibition is underlying the protective role of circ_0060640 silencing and miR-214-3p ectopic expression in TGF-β2-stimulated SRA01/04 cells. CONCLUSION Circ_0060640 is a novel cataract-related gene and its silencing could block TGF-β2-evoked hLECs proliferation, motility and EMT in vitro via targeting miR-214-3p-COL1A2 axis. Therefore, targeting circ_0060640 via RNA interference might be a treatment strategy for PCO development.
Collapse
Affiliation(s)
- Ming Guo
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University (Jingzhou Central Hospital), Jingzhou, China
| | - Fanfan Su
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University (Jingzhou Central Hospital), Jingzhou, China
| | - Yao Chen
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University (Jingzhou Central Hospital), Jingzhou, China
| | - Bo Su
- Department of Pathology, School of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
17
|
Yingrui W, Zheng L, Guoyan L, Hongjie W. Research progress of active ingredients of Scutellaria baicalensis in the treatment of type 2 diabetes and its complications. Biomed Pharmacother 2022; 148:112690. [DOI: 10.1016/j.biopha.2022.112690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
|
18
|
Li X, Sun M, Cheng A, Zheng G. LncRNA GAS5 regulates migration and epithelial-to-mesenchymal transition in lens epithelial cells via the miR-204-3p/TGFBR1 axis. J Transl Med 2022; 102:452-460. [PMID: 34916611 DOI: 10.1038/s41374-021-00713-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic cataract (DC) is a major ocular complication secondary to diabetes mellitus. The epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is an important event in DC progression. Long non-coding RNAs (lncRNAs) and microRNAs are involved in various biological processes and disorders. The aim of this study was to investigate the roles of lncRNA growth arrest-specific transcript 5 (GAS5) and microRNA-204-3p (miR-204-3p) deregulation in the pathogenic mechanism of high glucose (HG)-stimulated LECs. The results show that GAS5 was up-regulated, whereas miR-204-3p was down-regulated in anterior lens capsule tissues of DC patients and in HG-treated LECs compared to their controls, respectively. Functional experiments suggest that the lentivirus-mediated depletion of GAS5, as well as overexpression of miR-204-3p, suppressed migration and EMT in HG-treated LECs. Further mechanistic studies revealed that lncRNA GAS5/miR-204-3p/type 1 receptor of transforming growth factor-beta (TGFBR1) has a regulatory role in the process. Collectively, we demonstrated that dysregulation of GAS5 affects lens epithelial cell migration and EMT under HG conditions via the miR-204-3p/TGFBR1 axis. The current findings may provide new insights into the molecular mechanisms of DC development.
Collapse
Affiliation(s)
- Xiao Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Miaomiao Sun
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Anran Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
19
|
Tao D, Liu Z, Wang L, Li C, Zhang R, Ni N. CircPAG1 interacts with miR-211-5p to promote the E2F3 expression and inhibit the high glucose-induced cell apoptosis and oxidative stress in diabetic cataract. Cell Cycle 2022; 21:708-719. [PMID: 35174780 PMCID: PMC8973334 DOI: 10.1080/15384101.2021.2018213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Circular RNAs (circRNAs) are regulatory endogenous RNAs in human diseases by sponging microRNAs (miRNAs) to affect the gene expression. However, little research focused on the circRNA/miRNA/mRNA axis in diabetic cataract. This study was performed for the exploration of circRNA phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (circPAG1) in diabetic cataract. Human lens epithelial cells were treated with high glucose. The quantitative real-time polymerase chain reaction was used for the expression detection of circPAG1, microRNA-211-5p (miR-211-5p), and E2F transcription factor 3 (E2F3). Cell viability and proliferation were detected using Cell Counting Kit-8 assay and EdU assay. Cell apoptosis was analyzed by flow cytometry. The protein levels were measured by Western blot. Oxidative stress was assessed by malondialdehyde, reactive oxygen species, and superoxide dismutase via the corresponding detection kits. The target interaction was validated using the dual-luciferase reporter assay and RNA immunoprecipitation assay. The expression of circPAG1 was downregulated in diabetic cataract patients. The upregulation of circPAG1 could attenuate the high glucose-induced inhibition of cell viability and proliferation but promotion of cell apoptosis and oxidative stress. CircPAG1 served as a miR-211-5p sponge, and the protective role of circPAG1 was partly achieved by sponging miR-211-5p. MiR-211-5p targeted E2F3 and circPAG1 upregulated the E2F3 level by absorbing miR-211-5p. Inhibition of miR-211-5p repressed the high glucose-mediated cell dysfunction by increasing the expression of E2F3. This study clarified that circPAG1 protected human lens epithelial cells from the high glucose-induced cell damages by the mediation of miR-211-5p/E2F3 axis.
Collapse
Affiliation(s)
- Dan Tao
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Zeyuan Liu
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Ling Wang
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Chunli Li
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Rongci Zhang
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Ninghua Ni
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China,CONTACT Ninghua Ni Department of Ophthalmology, The First People’s Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming City, Yunnan Province650031, China
| |
Collapse
|
20
|
Wang X, Chen W, Lao W, Chen Y. Silencing LncRNA PVT1 Reverses High Glucose-Induced Regulation of the High Expression of PVT1 in HRMECs by Targeting miR-128-3p. Horm Metab Res 2022; 54:119-125. [PMID: 35130573 DOI: 10.1055/a-1730-5091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This paper aims to discuss the possibility of lncRNA PVT1 as a diagnostic biomarker for diabetic retinopathy (DR) and explore the underlying mechanism. Real-time quantitative polymerase chain reaction (RT-qPCR) was selected to determine the expression level of lncRNA PVT1 in the serum of all subjects. The receiver operating characteristic (ROC) curve reflected the diagnostic significance of PVT1 for DR patients. The Cell Counting Kit-8 (CCK-8) and Transwell assays were used to evaluate the effect of PVT1 expression on the proliferation and migration of human retinal microvascular endothelial cells (HRMECs). The luciferase reporter gene was selected to verify the interaction between PVT1 and miR-128-3p. The relative expression level of PVT1 in serum was higher in both the DB and DR group than in the healthy controls group (HC), and it was highest in the DR group. ROC curve indicated that serum PVT1 could distinguish between HC and DB patients, DB patients and DR patients, respectively. In vitro, high glucose induction significantly increased the proliferation and migration capabilities of HRMECs, but silencing PVT1 (si-PVT1) downregulated the proliferation and migration capabilities of HRMECs. The detection of luciferase reporter gene showed that lncRNA PVT1 targeted miR-128-3p, and there was a negative correlation in the serum of DR patients. In conclusion, this study confirmed that lncRNA PVT1 might regulate the process of DR by targeting miR-128-3p, and has the potential as a biomarker for the diagnosis of DR.
Collapse
Affiliation(s)
- Xuyang Wang
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China
| | - Wangling Chen
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China
| | - Wei Lao
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China
| | - Yunxin Chen
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China
| |
Collapse
|
21
|
Bai J, Jiang G, Zhao M, Wang S. Ghrelin Mitigates High-Glucose-Induced Oxidative Damage and Apoptosis in Lens Epithelial Cells. J Diabetes Res 2022; 2022:1373533. [PMID: 36589628 PMCID: PMC9797303 DOI: 10.1155/2022/1373533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress induced by high glucose (HG) plays an important role in the mechanism of diabetic cataract. Evidence has shown that effects from oxidative stress induced damage of lens or human lens epithelial (HLE) cells. Antioxidant supplementation is a plausible strategy to avoid oxidative stress and maintain the function of lens. Ghrelin have been used in treatment of many diseases. In this study, we found that ghrelin attenuated HG-induced loss of cell viability, reduced oxidative damage, and cell apoptosis in HLE cells. Ghrelin inhibited apoptosis through the downregulation of Bax and the upregulation of Bcl-2. Our results suggest that ghrelin could be considered as a promising therapeutic intervention for diabetic cataract. We also observed rat lens transparent in cultured media and examined lens histopathological changes. The results showed that ghrelin could inhibit the histopathological injury of lenses and ultrastructural changes induced by HG. In conclusion, ghrelin may play a role in the treatment of ocular diseases involving diabetic cataract.
Collapse
Affiliation(s)
- Jie Bai
- Department of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000 Zhejiang, China
| | - Ganggang Jiang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000 Zhejiang, China
| | - Mengdan Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical College, Haikou 571199, China
| |
Collapse
|
22
|
Wang C, Zhao R, Zhang S. lncRNA XIST knockdown suppresses cell proliferation and promotes apoptosis in diabetic cataracts through the miR‑34a/SMAD2 axis. Mol Med Rep 2021; 25:7. [PMID: 34751414 PMCID: PMC8600409 DOI: 10.3892/mmr.2021.12523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/22/2021] [Indexed: 11/06/2022] Open
Abstract
According to emerging evidence, long non-coding RNAs (lncRNAs) play critical roles in diabetes. The aim of the present study was to investigate the role and mechanism of X-inactive specific transcript (XIST) in cell proliferation, migration and apoptosis in diabetic cataracts (DC). SRA01/04 lens epithelial cells were treated with high glucose (HG). The levels of XIST, microRNA (miR)-34a and SMAD family member 2 (SMAD2) were examined via reverse transcription-quantitative PCR. MTT, Transwell, wound healing and TUNEL assays were performed to examine cell proliferation, invasion, migration and apoptosis, respectively. The interaction between miR-34a and XIST or SMAD2 was verified by luciferase reporter assay. It was found that the expression of XIST was increased and that of miR-34a was decreased in DC tissues and HG-treated SRA01/04 cells. XIST knockdown or miR-34a overexpression attenuated cell proliferation and migration, and induced apoptosis in HG-treated SRA01/04 cells. XIST targeted miR-34a and regulated DC progression through miR-34a. SMAD2 was identified as a target gene of miR-34a and was positively modulated by XIST. XIST knockdown inhibited cell proliferation and migration, and accelerated apoptosis in HG-stimulated SRA01/04 cells, and these effects were abrogated by SMAD2 overexpression. In conclusion, XIST promoted cell proliferation, migration and invasion, and inhibited apoptosis, through the miR-34a/SMAD2 axis in DC.
Collapse
Affiliation(s)
- Chao Wang
- Department of Ophthalmology, Shandong Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| | - Ruiling Zhao
- Department of Ophthalmology, Shandong Tengzhou Central People's Hospital, Zaozhuang, Shandong, 277599, P.R. China
| | - Suhong Zhang
- Department of Ophthalmology, Shandong Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
23
|
Shi J, Yang C, An J, Hao D, Liu C, Liu J, Sun J, Jiang J. KLF5-induced BBOX1-AS1 contributes to cell malignant phenotypes in non-small cell lung cancer via sponging miR-27a-5p to up-regulate MELK and activate FAK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:148. [PMID: 33931086 PMCID: PMC8086369 DOI: 10.1186/s13046-021-01943-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is a major histological subtype of lung cancer with high mortality and morbidity. A substantial amount of evidence demonstrates long non-coding RNAs (lncRNA) as critical regulators in tumorigeneis and malignant progression of human cancers. The oncogenic role of BBOX1 anti-sense RNA 1 (BBOX1-AS1) has been reported in several tumors. As yet, the potential functions and mechanisms of BBOX1-AS1 in NSCLC are obscure. Methods The gene and protein expression was detected by qRT-PCR and western blot. Cell function was determined by CCK-8, colony forming, would healing and transwell assays. Bioinformatics tools, ChIP assays, dual luciferase reporters system and RNA pull-down experiments were used to examine the interaction between molecules. Subcutaneous tumor models in nude mice were established to investigate in vivo NSCLC cell behavior. Results BBOX1-AS1 was highly expressed in NSCLC tissues and cells. High BBOX1-AS1 expression was associated with worse clinical parameters and poor prognosis. BBOX1-AS1 up-regulation was induced by transcription factor KLF5. BBOX1-AS1 deficiency resulted in an inhibition of cell proliferation, migration, invasion and EMT in vitro. Also, knockdown of BBOX1-AS1 suppressed NSCLC xenograft tumor growth in mice in vivo. Mechanistically, BBOX1-AS1 acted act as a competetive “sponge” of miR-27a-5p to promote maternal embryonic leucine zipper kinase (MELK) expression and activate FAK signaling. miR-27a-5p was confirmed as a tumor suppressor in NSCLC. Moreover, BBOX1-AS1-induced increase of cell proliferation, migration, invasion and EMT was greatly reversed due to the overexpression of miR-27a-5p. In addition, the suppressive effect of NSCLC progression owing to BBOX1-AS1 depletion was abated by the up-regulation of MELK. Consistently, BBOX1-AS1-mediated carcinogenicity was attenuated in NSCLC after treatment with a specific MELK inhibitor OTSSP167. Conclusions KLF5-induced BBOX1-AS1 exerts tumor-promotive roles in NSCLC via sponging miR-27a-5p to activate MELK/FAK signaling, providing the possibility of employing BBOX1-AS1 as a therapeutic target for NSCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01943-5.
Collapse
Affiliation(s)
- Jiang Shi
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chao Yang
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlu An
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dexun Hao
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cong Liu
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jumin Liu
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Sun
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junguang Jiang
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
24
|
Fani A, Sofia K, Theodora P, Antonia S. Pseudoexfoliation syndrome in diabetic patients: transmission electron microscopy study of anterior lens epithelial cells. Rom J Ophthalmol 2021; 65:38-45. [PMID: 33817432 PMCID: PMC7995516 DOI: 10.22336/rjo.2021.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose: to examine the lens epithelial cells in diabetic patients with pseudoexfoliation to ultramicroscope and to compare the findings with those of patients without diabetes mellitus (DM) and/or without pseudoexfoliation (PEX). Materials and Methods: Forty patients aged 65-86 years were enrolled in the study. All patients had senile cataract and were divided into four groups of ten patients in each group. Group I: patients without pseudoexfoliation, without DM, Group II: without pseudoexfoliation, with DM, Group III: with pseudoexfoliation, without DM, Group IV (Pseudoexfoliation-Diabetic Group): with pseudoexfoliation, with DM. In all cases, part of the central portion of anterior lens capsule was removed during routine cataract surgery, and was properly prepared in order to be examined under a transmission electron microscope. Results: In the control group, mainly degenerative alterations to varying extents were observed. In all groups, intracellular and extracellular oedema, multilayering, apoptosis, completely destroyed cells adjacent to normal cellswere described. In the diabetic group, alterations were more severe with respect to group I. In PEX cases, the additionalirregularity of the epithelium surface, loose intercellular connection, as well as the loose connection between cells and basement membrane were described with the presence of PEX material free and within the basement membrane. In cases with PEX and DM, degenerative alterations and PEX material were observed as well, but the epithelium was better conserved compared to the PEX group. Conclusion: the observed lesions were more extended and more frequent in the pseudoexfoliation group, followed by the diabetic group. The pseudoexfoliation-diabetic group presented less intense modifications raising questions about the interaction of these different diseases. Abbreviations: DM = Diabetes Mellitus, PEX = Pseudoexfoliation, PXM = Pseudoexfoliative Material, AD = Alzheimer disease, TGF-β1 = Transforming Growth Factor beta 1, WHO = World Health Organization, LEC = Lens Epithelium Cells, BM = Basement Membrane, CM = Cytoplasmic Membrane
Collapse
Affiliation(s)
- Akritidou Fani
- Department of Ophthalmology, General Hospital of Serres, Serres, Greece
| | | | - Papamitsou Theodora
- Laboratory of Histology-Embryology, Department of Medicine, School of Health Sciences, AUTH (Aristotle University of Thessaloniki), Thessaloniki, Greece
| | - Sioga Antonia
- Laboratory of Histology-Embryology, Department of Medicine, School of Health Sciences, AUTH (Aristotle University of Thessaloniki), Thessaloniki, Greece
| |
Collapse
|
25
|
Kaempferol ameliorates the regulatory effects of PVT1/ miR-214 on epithelial-mesenchymal transition through the PAK4/β-catenin axis in SRA01/04 cells. Future Med Chem 2021; 13:613-623. [PMID: 33527844 DOI: 10.4155/fmc-2020-0381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To investigate whether kaempferol exhibits a protective effect on high glucose-induced epithelial-mesenchymal transition (EMT) by mediating the PVT1/miR-214 and PAK4/β-catenin pathways in SRA01/04 cells. Methods & methods: qRT-PCR and western blot assays were used for gene and protein determination, and migration and invasion assays were conducted. A coimmunoprecipitation assay was used for determining protein interactions. Results: High glucose effectively upregulated PVT1 expression, downregulated miR-214 expression and promoted cell migration and invasion. Kaempferol attenuated high glucose-induced EMT by increasing PVT1 expression and decreasing miR-214 expression. PAK4 was identified as a direct target of miR-214. PAK4 overexpression could rescue the effects of PVT1 deficiency on SRA01/04 cells. Conclusion: Kaempferol ameliorated the regulatory effects of PVT1/miR-214 on high glucose-induced EMT through PAK4/β-catenin in SRA01/04 cells.
Collapse
|
26
|
Zhang H, Niu Q, Liang K, Li X, Jiang J, Bian C. Effect of LncPVT1/miR-20a-5p on Lipid Metabolism and Insulin Resistance in NAFLD. Diabetes Metab Syndr Obes 2021; 14:4599-4608. [PMID: 34848984 PMCID: PMC8627263 DOI: 10.2147/dmso.s338097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is closely related to lipid metabolism and insulin resistance. The current research mainly attempted to verify the clinical value of LncRNA plasmacytoma variant translocation 1 (PVT1), and whether microRNA regulates lipid metabolism and insulin resistance to participate in NAFLD. PATIENTS AND METHODS 81 patients with NAFLD and 78 healthy individuals were enrolled in this study. In addition, C57BL/6 mice were fed a high-fat diet to establish NAFLD model in vivo. Serum PVT1 and miR-20a-5p expression in NAFLD patients and mice were assessed by RT-qPCR. ROC curves determine the diagnostic value of PVT1 and miR-20a-5p. NAFLD mice were subjected to IPGTT to detect changes in insulin sensitivity, and the common indicators of lipid metabolism and insulin resistance were also evaluated. Dual-luciferase reporter assay verified the regulation mechanism of PVT1 and miR-20a-5p. RESULTS PVT1 was upregulated in NAFLD patients and mice, while miR-20a-5p was decreased. Their expression trends were similar in patients with HOMA-IR ≥2.5. What's more, miR-20a-5p, FBG, ALT, and HOMA-IR were independently correlated with PVT1. And PVT1 and miR-20a-5p show high clinical diagnostic value. Bodyweight, insulin sensitivity, lipid metabolism inductors were increased in NAFLD mice, but these increases were attenuated by PVT1 elimination. Finally, miR-20a-5p might function as the possible miRNA target of PVT1 via the binding sites at 3'-UTR and negatively regulated by it. CONCLUSION PVT1 and miR-20a-5p are potential clinical biomarkers of NAFLD, and PVT1 promotes the occurrence of NAFLD by regulating insulin sensitivity and lipid metabolism, which may be achieved by targeting miR-20a-5p.
Collapse
Affiliation(s)
- Han Zhang
- Department of Liver Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Qinghui Niu
- Department of Liver Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
- Correspondence: Qinghui Niu Department of Liver Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, People’s Republic of ChinaTel +86-0532-82915998 Email
| | - Kun Liang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Xuesen Li
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Jing Jiang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Cheng Bian
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
27
|
Qi S, Han Q, Xing D, Qian L, Yu X, Ren D, Wang H, Chen Q. Functional Analysis of Estrogen Receptor 1 in Diabetic Wound Healing: A Knockdown Cell-Based and Bioinformatic Study. Med Sci Monit 2020; 26:e928788. [PMID: 33338031 PMCID: PMC7754692 DOI: 10.12659/msm.928788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Diabetic wound (DW) treatment is a serious challenge for clinicians, and the underlying mechanisms of DWs remain elusive. We sought to identify the critical genes in the development of DWs and provide potential targets for DW therapies. Material/Methods Datasets of GSE38396 from the Gene Expression Omnibus (GEO) database were reviewed. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology term analyses were carried out, and Cytoscape software (Cytoscape 3.7.2) was used to construct the protein interaction network. Serum samples from patients with diabetes and control participants were collected, and the expression of estrogen receptor 1 (ESR1) was measured by quantitative reverse-transcription polymerase chain reaction. In addition, the function of ESR1 in human skin fibroblasts was investigated in vitro. Results Eight samples were analyzed using the Morpheus online tool, which identified 637 upregulated and 448 downregulated differentially expressed genes. The top 5 KEGG pathways of upregulated differentially expressed genes were associated with sphingolipid metabolism, estrogen signaling, ECM-receptor interaction, MAPK signaling, and PI3K-Akt signaling. The hub genes for DWs were JUN, ESR1, CD44, SMARCA4, MMP2, BMP4, GSK3B, WDR5, PTK2, and PTGS2. JUN, MMP2, and ESR1 were the upregulated hub genes, and ESR1 was found to be consistently enriched in DW patients. Inhibition of ESR1 had a stimulative role in human skin fibroblasts. Conclusions ESR1 was identified as a crucial gene in the development of DWs, which suggests potential therapeutic targets for DW healing.
Collapse
Affiliation(s)
- Sha Qi
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Qiong Han
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Danmou Xing
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Long Qian
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Xiang Yu
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Dong Ren
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Huan Wang
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Quan Chen
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
28
|
Li Y, Yan J, Wang Y, Wang C, Zhang C, Li G. LINC00240 promotes gastric cancer cell proliferation, migration and EMT via the miR-124-3p / DNMT3B axis. Cell Biochem Funct 2020; 38:1079-1088. [PMID: 32526811 DOI: 10.1002/cbf.3551] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/02/2020] [Accepted: 05/03/2020] [Indexed: 01/17/2023]
Abstract
Gastric cancer (GC) remains one of prevalent causes of cancer-related deaths worldwide. Long noncoding RNA is related to various cancers. Our study was conducted to explore the biological effects of LINC00240 on the tumorigenesis of GC and uncover its possible mechanisms. LINC00240 expression was determined in GC cell lines and samples through quantitative Real-time Polymerase Chain Reaction (qRT-PCR). The functional effects of LINC00240 were validated using in vitro and in vivo assays. Targets were assessed by AGO2-dependent RNA immunoprecipitation assay and dual-luciferase report assays. Our findings suggested higher LINC00240 expression in GC tissues and cells. Through downregulating LINC00240, cell proliferation, invasion and migration were retarded in vitro, and tumorigenesis of GC cells was notably suppressed in vivo. Further research showed that LINC00240 was a cytoplasmic lncRNA that shared miRNA response elements of microRNA (miR)-124-3p with DNMT3B, thus forming a LINC00240/miR-124-3p/DNMT3B axis explaining the functions of LINC00240. In a word, our study reveals that LINC00240 promotes GC tumorigenesis via a LINC00240/miR-124-3p/DNMT3B axis as an oncogene. These findings objectivise that LINC00240 may be a potential diagnostic biomarker for GC. SIGNIFICANCE OF THE STUDY: Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related death across the world. Then we analysed lncRNA microarray of GC and selected LINC00240 as the study object. Therefore, the potential molecular mechanism as well as physiological function of LINC00240 in GC was discussed. Then we reveal that LINC00240 acts as an oncogene in GC progression via the miR-99a-5p/IGF1R axis. This study is the first to demonstrate the roles of LINC00240 in GC.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Yan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiting Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Caifeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohua Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Cao L, Qin P, Zhang J, Qiao H, Shi P, Huo H. LncRNA PVT1 Suppresses the Progression of Renal Fibrosis via Inactivation of TGF-β Signaling Pathway. Drug Des Devel Ther 2020; 14:3547-3557. [PMID: 32921988 PMCID: PMC7457787 DOI: 10.2147/dddt.s245244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/31/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Renal fibrosis is a frequent pathway leading to end-stage kidney dysfunction. In addition, renal fibrosis is the ultimate manifestation of chronic kidney diseases (CKD). Long noncoding RNAs (lncRNAs) are known to be involved in occurrence of renal fibrosis, and lncRNA plasmacytoma variant translocation 1 (PVT1) has been reported to act as a key biomarker in renal diseases. However, the role of PVT1 in renal fibrosis remains unclear. MATERIALS AND METHODS HK-2 cells were treated with TGF-β1 to mimic renal fibrosis in vitro. Gene and protein expressions in HK-2 cells were measured by qRT-PCR and Western-blot, respectively. ELISA was used to test the level of creatinine (CR) and blood urea nitrogen (BUN) in serum of mice. Additionally, unilateral ureteral obstruction (UUO)-induced renal fibrosis mice model was established to investigate the effect of PVT1 on renal fibrosis in vivo. RESULTS PVT1 was upregulated in TGF-β1-treated HK-2 cells. In addition, TGF-β1-induced upregulation of α-SMA and fibronectin in HK-2 cells was significantly reversed by PVT1 knockdown. Meanwhile, PVT1 bound to miR-181a-5p in HK-2 cells. Moreover, miR-181a-5p directly targeted TGF-βR1. Furthermore, miR-181a-5p antagonist could significantly reverse the anti-fibrotic effect of PVT1 knockdown. Besides, knockdown of PVT1 notably attenuated the symptom of renal fibrosis in vivo. CONCLUSION Knockdown of PVT1 significantly inhibited the progression of renal fibrosis in vitro and in vivo. Thus, PVT1 may serve as a potential target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Lu Cao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450000, People’s Republic of China
| | - Peng Qin
- Department of Cancer Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan450000, People’s Republic of China
| | - Jianjiang Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450000, People’s Republic of China
| | - Huiju Qiao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450000, People’s Republic of China
| | - Peipei Shi
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450000, People’s Republic of China
| | - Huali Huo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450000, People’s Republic of China
| |
Collapse
|
30
|
Lu J, Xu F, Lu H. LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci 2020; 260:118305. [PMID: 32827544 DOI: 10.1016/j.lfs.2020.118305] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
AIM The study aims to investigate the roles of LncRNA and miRNA in ferroptosis in brain ischemia/reperfusion (I/R) in vivo and in vitro. MATERIALS AND METHODS qPCR assay was used to analyze lncRNA PVT1 and miR-214 expressions in acute ischemic stroke (AIS) patients. Then, we established brain I/R mice models and OGD/R PC12 cell models to analyze the mechanism of ferroptosis. I/R mice were treated by lncRNA PVT silencing or miR-214 overexpressing lentivirus via lateral ventricles. Infarct size was analyzed by TTC staining, accompanied by the detection of ferroptosis indicators through Perls'Prussian blue staining, iron kit, MDA kit, glutathione kit, GPx activities kit and Western blotting (WB). Dual luciferase reporter assay was used to assess whether miR-214 bound to PVT1, TP53 or TFR1. Co-IP analyzed the interplay of p53 with SLC7A11. KEY FINDINGS We found that the levels of PVT1 were upregulated and miR-214 levels were downregulated in plasma of AIS patients. NIHSS score was positively correlated with PVT1 levels but was negatively with miR-214 levels. PVT1 silencing or miR-214 overexpression significantly reduced infarct size and suppressed ferroptosis in vivo. miR-214 overexpression markedly decreased PVT1 levels. Specifically, miR-214 could bind to 3'untranslated region (3'UTR) of PVT1, TP53 or TFR1. PVT1 overexpression or miR-214 silencing markedly abolished the effects of Ferrostatin-1 on ferroptosis indicators except for TFR1 expression. Besides, miR-214 silencing counteracted the effects of PVT1 knockdown on the ferroptosis-related proteins. CONCLUSION PVT1 regulated ferroptosis through miR-214-mediated TFR1 and TP53 expression. There was a positive feedback loop of lncRNA PVT1/miR-214/p53 possibly.
Collapse
Affiliation(s)
- Jingjing Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Feng Xu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
31
|
Zhang R, Li Y, Liu X, Qin S, Guo B, Chang L, Huang L, Liu S. FOXO3a-mediated long non-coding RNA LINC00261 resists cardiomyocyte hypoxia/reoxygenation injury via targeting miR23b-3p/NRF2 axis. J Cell Mol Med 2020; 24:8368-8378. [PMID: 32558131 PMCID: PMC7412708 DOI: 10.1111/jcmm.15292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemia/reperfusion (I/R)‐mediated acute myocardial infarction (AMI) is a major pathological factor implicated in the progression of ischemic heart disease (IHD). Long non‐coding RNA plays an important role in regulating the occurrence and development of cardiovascular disease. The aim of this study was to investigate the regulating role of LINC00261 in hypoxia/reoxygenation (H/R)‐induced cardiomyocyte apoptosis. The relative expression of LINC00261, miR‐23b‐3p and NRF2 were determined in rats I/R myocardial tissues and H/R‐induced cardiomyocytes. The rat model and cell model of LINC00261 overexpression were established to investigate the biological function of LINC00261 on H9C2 cell. The interaction between LINC00261, miR‐23b‐3p, NRF2 and FOXO3a was identified using bioinformatics analysis, luciferase reporter assay, RNA immunoprecipitation (RIP) assay, chromatin immunoprecipitation (CHIP) assay and qRT‐PCR. The expression of LINC00261 was significantly down‐regulated in myocardial tissues and H9C2 cell. Overexpression of LINC00261 improves cardiac function and reduces myocardium apoptosis. Interestingly, transcription factor FOXO3a was found to promote LINC00261 transcription. Moreover, LINC00261 was confirmed as a spong of miR23b‐3p and thereby positively regulates NRF2 expression in cardiomyocytes. Our findings reveal a novel role for LINC00261 in regulating H/R cardiomyocyte apoptosis and the potency of the LINC00261/miR‐23b‐3p/NRF2 axis as a therapeutic target for the treatment of MIRI.
Collapse
Affiliation(s)
- Ruining Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Xiaopeng Liu
- The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China.,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shan Qin
- The Graduate School, GuiZhou medical university, GuiYang, China
| | - Bingyan Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Liang Chang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Liu Huang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Suyun Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| |
Collapse
|
32
|
Weng W, Zhang Z, Huang W, Xu X, Wu B, Ye T, Shan Y, Shi K, Lin Z. Identification of a competing endogenous RNA network associated with prognosis of pancreatic adenocarcinoma. Cancer Cell Int 2020; 20:231. [PMID: 32536819 PMCID: PMC7288603 DOI: 10.1186/s12935-020-01243-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background Emerging evidence suggests that competing endogenous RNAs plays a crucial role in the development and progress of pancreatic adenocarcinoma (PAAD). The objective was to identify a new lncRNA-miRNA-mRNA network as prognostic markers, and develop and validate a multi-mRNAs-based classifier for predicting overall survival (OS) in PAAD. Methods Data on pancreatic RNA expression and clinical information of 445 PAAD patients and 328 normal subjects were downloaded from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Genotype-Tissue Expression (GTEx). The weighted correlation network analysis (WGCNA) was used to analyze long non-coding RNA (lncRNA) and mRNA, clustering genes with similar expression patterns. MiRcode was used to predict the sponge microRNAs (miRNAs) corresponding to lncRNAs. The downstream targeted mRNAs of miRNAs were identified by starBase, miRDB, miRTarBase and Targetscan. A multi-mRNAs-based classifier was develop using least absolute shrinkage and selection operator method (LASSO) COX regression model, which was tested in an independent validation cohort. Results A lncRNA-miRNA-mRNA co-expression network which consisted of 60 lncRNAs, 3 miRNAs and 3 mRNAs associated with the prognosis of patients with PAAD was established. In addition, we constructed a 14-mRNAs-based classifier based on a training cohort composed of 178 PAAD patients, of which the area under receiver operating characteristic (AUC) in predicting 1-year, 3-year, and 5-year OS was 0.719, 0.806 and 0.794, respectively. The classifier also shown good prediction function in independent verification cohorts, with the AUC of 0.604, 0.639 and 0.607, respectively. Conclusions A novel competitive endogenous RNA (ceRNA) network associated with progression of PAAD could be used as a reference for future molecular biology research.
Collapse
Affiliation(s)
- Wanqing Weng
- Zhejiang Provincial Key Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang People's Republic of China.,Precision Medicine Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang People's Republic of China
| | - Zhongjing Zhang
- Zhejiang Provincial Key Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang People's Republic of China
| | - Weiguo Huang
- Zhejiang Provincial Key Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang People's Republic of China
| | - Xiangxiang Xu
- Zhejiang Provincial Key Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang People's Republic of China
| | - Boda Wu
- Zhejiang Provincial Key Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang People's Republic of China.,Precision Medicine Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang People's Republic of China
| | - Tingbo Ye
- Zhejiang Provincial Key Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang People's Republic of China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang People's Republic of China
| | - Keqing Shi
- Zhejiang Provincial Key Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang People's Republic of China.,Precision Medicine Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang People's Republic of China
| | - Zhuo Lin
- Department of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang People's Republic of China
| |
Collapse
|
33
|
Non-coding RNA regulators of diabetic polyneuropathy. Neurosci Lett 2020; 731:135058. [PMID: 32454150 DOI: 10.1016/j.neulet.2020.135058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
Diabetic polyneuropathy is a common and disturbing complication of diabetes mellitus, presenting patients and caregivers with a substantial disease burden. Emerging mechanisms which are underlying diabetes may provide novel pathways to understand diabetic polyneuropathy (DPN). Specifically, non-coding RNA molecules consisting of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are implicated in the biological processes underlying DPN, and may link it to clinical spheres such as other metabolic and neural pathologies. Here, we elaborate on several candidate non-coding RNAs which may be associated with DPN via regulatory roles governing phenomena related to inflammatory, pain-provoking, and metabolic syndrome pathways. Specific examples include miRNAs such as miR-106a, -146a, -9, -29b, -466a, and -98; likewise, lncRNAs MIAT, PVT1, H19, MEG3, and MALAT1 are implicated, often co-affecting the involved pathways. Incorporating newly discovered regulators into what we know about specific clinical applications may highlight novel avenues for diagnosis, prevention, and intervention with DPN.
Collapse
|
34
|
N 6-Methyladenosine METTL3 Modulates the Proliferation and Apoptosis of Lens Epithelial Cells in Diabetic Cataract. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:111-116. [PMID: 32163892 PMCID: PMC7066033 DOI: 10.1016/j.omtn.2020.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/06/2020] [Accepted: 02/04/2020] [Indexed: 01/15/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent eukaryotic messenger RNA modification. Diabetic cataract (DC) is caused by high glucose (HG) in diabetes mellitus. However, the regulatory mechanism of m6A in the DC pathogenesis is poorly understood. In present research, we performed the m6A-RNA immunoprecipitation sequencing (MeRIP-Seq) analysis and detected the m6A modification profile in the HG- or normal glucose (NG)-induced human lens epithelial cells (HLECs). Results revealed that methyltransferase-like 3 (METTL3) was upregulated in the DC tissue specimens and HG-induced HLECs. Besides, total m6A modification level was higher in the HG-induced HLECs. Functionally, METTL3 knockdown promoted the proliferation and repressed the apoptosis of HLECs induced by HG. MeRIP-Seq analysis revealed that ICAM-1 might act as the target of METTL3. Mechanistically, METTL3 targets the 3′ UTR of ICAM-1 to stabilize mRNA stability. In conclusion, this research identified the regulation of METTL3 in the HG-induced HLECs, providing a potential insight of the m6A modification for DC.
Collapse
|
35
|
Yang J, Zhao S, Tian F. SP1-mediated lncRNA PVT1 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract via miR-214-3p/MMP2 axis. J Cell Mol Med 2020; 24:554-561. [PMID: 31755246 PMCID: PMC6933388 DOI: 10.1111/jcmm.14762] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence illustrates the critical roles of long non-coding RNAs (lncRNAs) in the diabetes. However, the deepgoing regulation of lncRNA PVT1 in the diabetic cataract (DC) is still unclear. Here, present research investigates the pathologic roles and underlying mechanism by which lncRNA PVT1 regulates the DC pathogenesis. Human lens epithelial (HLE) B-3 cells were induced by the high glucose (HG) to simulate the DC microenvironment models. Results revealed that lncRNA PVT1 expression was up-regulated in the HG-induced HLE B-3 cells as compared to the normal glucose group. Transcription factor SP1 could bind with the promoter region of PVT1 and activate its transcription. Functionally, PVT1 knock-down could repress the proliferation and promote the apoptosis of HLE B-3 cells. Mechanistically, PVT1 acted as the 'miRNA sponge' to target miR-214-3p/MMP2 axis. This finding revealed a novel insight of lncRNA PVT1 for the DC pathogenesis, providing an inspiration for the DC mechanism.
Collapse
Affiliation(s)
- Jun Yang
- Tianjin Medical University Eye HospitalTianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and OphthalmologyTianjinChina
| | - Shaozhen Zhao
- Tianjin Medical University Eye HospitalTianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and OphthalmologyTianjinChina
| | - Fang Tian
- Tianjin Medical University Eye HospitalTianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and OphthalmologyTianjinChina
| |
Collapse
|