1
|
Chowdhury R, Bhuia MS, Wilairatana P, Afroz M, Hasan R, Ferdous J, Rakib AI, Sheikh S, Mubarak MS, Islam MT. An insight into the anticancer potentials of lignan arctiin: A comprehensive review of molecular mechanisms. Heliyon 2024; 10:e32899. [PMID: 38988539 PMCID: PMC11234030 DOI: 10.1016/j.heliyon.2024.e32899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024] Open
Abstract
Natural products are being developed as possible treatment options due to the rising prevalence of cancer and the harmful side effects of synthetic medications. Arctiin is a naturally occurring lignan found in numerous plants and exhibits different pharmacological activities, along with cancer. To elucidate the anticancer properties and underlying mechanisms of action, a comprehensive search of various electronic databases was conducted using appropriate keywords to identify relevant publications. The findings suggest that arctiin exhibits anticancer properties against tumor formation and various cancers such as cervical, myeloma, prostate, endothelial, gastric, and colon cancers in several preclinical pharmacological investigations. This naturally occurring compound exerts its anticancer effect through different cellular mechanisms, including mitochondrial dysfunction, cell cycle at different phases (G2/M), inhibition of cell proliferation, apoptotic cell death, and cytotoxic effects, as well as inhibition of migration and invasion of various malignant cells. Moreover, the study also revealed that, among the various cellular pathways, arctiin was shown to be more potent in terms of the PI3K/AKT and JAK/STAT signaling pathways. However, pharmacokinetic investigation indicated the compound's poor oral bioavailability. Because of these findings, arctiin might be considered a promising chemotherapeutic drug candidate.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Salehin Sheikh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
2
|
Yang N, Zhang N, Lu G, Zeng S, Xing Y, Du L. RNA-binding proteins potentially regulate the alternative splicing of cell cycle-associated genes in proliferative diabetic retinopathy. Sci Rep 2024; 14:6731. [PMID: 38509306 PMCID: PMC10954754 DOI: 10.1038/s41598-024-57516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 03/22/2024] Open
Abstract
RNA-binding proteins (RBPs) contribute to the pathogenesis of proliferative diabetic retinopathy (PDR) by regulating gene expression through alternative splicing events (ASEs). However, the RBPs differentially expressed in PDR and the underlying mechanisms remain unclear. Thus, this study aimed to identify the differentially expressed genes in the neovascular membranes (NVM) and retinas of patients with PDR. The public transcriptome dataset GSE102485 was downloaded from the Gene Expression Omnibus database, and samples of PDR and normal retinas were analyzed. A mouse model of oxygen-induced retinopathy was used to confirm the results. The top 20 RBPs were screened for co-expression with alternative splicing genes (ASGs). A total of 403 RBPs were abnormally expressed in the NVM and retina samples. Functional analysis demonstrated that the ASGs were enriched in cell cycle pathways. Cell cycle-associated ASEs and an RBP-AS regulatory network, including 15 RBPs and their regulated ASGs, were extracted. Splicing factor proline/glutamine rich (SFPQ), microtubule-associated protein 1 B (MAP1B), heat-shock protein 90-alpha (HSP90AA1), microtubule-actin crosslinking factor 1 (MACF1), and CyclinH (CCNH) expression remarkably differed in the mouse model. This study provides novel insights into the RBP-AS interaction network in PDR and for developing screening and treatment options to prevent diabetic retinopathy-related blindness.
Collapse
Affiliation(s)
- Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guojing Lu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyu Zeng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Du
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Biswas A, Choudhury AD, Agrawal S, Bisen AC, Sanap SN, Verma SK, Kumar M, Mishra A, Kumar S, Chauhan M, Bhatta RS. Recent Insights into the Etiopathogenesis of Diabetic Retinopathy and Its Management. J Ocul Pharmacol Ther 2024; 40:13-33. [PMID: 37733327 DOI: 10.1089/jop.2023.0068] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Purpose: Diabetic retinopathy (DR) is a microvascular retinal disease associated with chronic diabetes mellitus, characterized by the damage of blood vessels in the eye. It is projected to become the leading cause of blindness, given the increasing burden of the diabetic population worldwide. The diagnosis and management of DR pose significant challenges for physicians because of the involvement of multiple biochemical pathways and the complexity of ocular tissues. This review aims to provide a comprehensive understanding of the molecular pathways implicated in the pathogenesis of DR, including the polyo pathway, hexosamine pathway, protein kinase C (PKC), JAK/STAT signaling pathways, and the renin-angiotensin system (RAS). Methods: Academic databases such as PubMed, Scopus, Google Scholar and Web of Science was systematically searched using a carefully constructed search strategy incorporating keywords like "Diabetic Retinopathy," "Molecular Pathways," "Pharmacological Treatments," and "Clinical Trials" to identify relevant literature for the comprehensive review. Results: In addition to activating other inflammatory cascades, these pathways contribute to the generation of oxidative stress within the retina. Furthermore, it aims to explore the existing pharmacotherapy options available for the treatment of DR. In addition to conventional pharmacological therapies such as corticosteroids, antivascular endothelial growth factors, and nonsteroidal anti-inflammatory drugs (NSAIDs), this review highlights the potential of repurposed drugs, phyto-pharmaceuticals, and novel pipeline drugs currently undergoing various stages of clinical trials. Conclusion: Overall, this review serves as a technical exploration of the complex nature of DR, highlighting both established and emerging molecular pathways implicated in its pathogenesis. Furthermore, it delves into the available pharmacological treatments, as well as the promising repurposed drugs, phyto-pharmaceuticals, and novel drugs currently being evaluated in clinical trials, with a focus on their specific mechanisms of action.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mridula Chauhan
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
4
|
Li M, Pan Z, He Q, Xiao J, Chen B, Wang F, Kang P, Luo H, Li J, Zeng J, Li S, Yang J, Wang H, Zhou C. Arctiin attenuates iron overload‑induced osteoporosis by regulating the PI3K/Akt pathway. Int J Mol Med 2023; 52:108. [PMID: 37800616 PMCID: PMC10558215 DOI: 10.3892/ijmm.2023.5311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Iron overload is a prevalent pathological factor observed among elderly individuals and those with specific hematological disorders, and is frequently associated with an elevated incidence of osteoporosis. Although arctiin (ARC) has been shown to possess antioxidant properties and the ability to mitigate bone degeneration, its mechanism of action in the treatment of iron overload‑induced osteoporosis (IOOP) remains incompletely understood. To explore the potential molecular mechanisms underlying the effects of ARC, the MC3T3‑E1 cell osteoblast cell line was used. Cell Counting Kit was used to assess MC3T3‑E1 cell viability. Alkaline phosphatase staining and alizarin red staining were assessed for osteogenic differentiation. Calcein AM assay was used to assess intracellular iron concentration. In addition, intracellular levels of reactive oxygen species (ROS), lipid peroxides, mitochondrial ROS, apoptosis rate and mitochondrial membrane potential changes in MC3T3‑E1 cells were examined using flow cytometry and corresponding fluorescent dyes. The relationship between ARC and the PI3K/Akt pathway was then explored by western blotting and immunofluorescence. In addition, the effects of ARC on IOOP was verified using an iron overload mouse model. Immunohistochemistry was performed to evaluate expression of osteogenesis‑related proteins. Micro-CT and H&E were used to analyze bone microstructural parameters and histomorphometric indices in the bone tissue. Notably, ARC treatment reversed the decreased viability and increased apoptosis in MC3T3‑E1 cells originally induced by ferric ammonium citrate, whilst promoting the formation of mineralized bone nodules in MC3T3‑E1 cells. Furthermore, iron overload induced a decrease in the mitochondrial membrane potential, augmented lipid peroxidation and increased the accumulation of ROS in MC3T3‑E1 cells. ARC not only positively regulated the anti‑apoptotic and osteogenic capabilities of these cells via modulation of the PI3K/Akt pathway, but also exhibited antioxidant properties by reducing oxidative stress. In vivo experiments confirmed that ARC improved bone microarchitecture and biochemical parameters in a mouse model of iron overload. In conclusion, ARC exhibits potential as a therapeutic agent for IOOP by modulating the PI3K/Akt pathway, and via its anti‑apoptotic, antioxidant and osteogenic properties.
Collapse
Affiliation(s)
- Miao Li
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhaofeng Pan
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qi He
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Baihao Chen
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fanchen Wang
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Pan Kang
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Haoran Luo
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jianliang Li
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jiaxu Zeng
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shaocong Li
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Junzheng Yang
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Haibin Wang
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Chi Zhou
- First School of Clinical Medicine, Guangzhou, Guangdong 510405, P.R. China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, Guangdong 525022, P.R. China
| |
Collapse
|
5
|
Huang B, Lu Y, Ni Z, Liu J, He Y, An H, Ye F, Shen J, Lin M, Chen Y, Lin J. ANRIL promotes the regulation of colorectal cancer on lymphatic endothelial cells via VEGF-C and is the key target for Pien Tze Huang to inhibit cancer metastasis. Cancer Gene Ther 2023; 30:1260-1273. [PMID: 37286729 PMCID: PMC10501904 DOI: 10.1038/s41417-023-00635-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
lncRNA ANRIL is an oncogene, however the role of ANRIL in the regulation of colorectal cancer on human lymphatic endothelial cells (HLECs) is remain elusive. Pien Tze Huang (PZH, PTH) a Tradition Chinese Medicine (TCM) as an adjunctive medication could inhibit the cancer metastasis, however the mechanism still uncovering. We used network pharmacology, subcutaneous and orthotopic transplanted colorectal tumors models to determine the effect of PZH on tumor metastasis. Differential expressions of ANRIL in colorectal cancer cells, and stimulating the regulation of cancer cells on HLECs by culturing HLECs with cancer cells' supernatants. Network pharmacology, transcriptomics, and rescue experiments were carried out to verify key targets of PZH. We found PZH interfered with 32.2% of disease genes and 76.7% of pathways, and inhibited the growth of colorectal tumors, liver metastasis, and the expression of ANRIL. The overexpression of ANRIL promoted the regulation of cancer cells on HLECs, leading to lymphangiogenesis, via upregulated VEGF-C secretion, and alleviated the effect of PZH on inhibiting the regulation of cancer cells on HLECs. Transcriptomic, network pharmacology and rescue experiments show that PI3K/AKT pathway is the most important pathway for PZH to affect tumor metastasis via ANRIL. In conclusion, PZH inhibits the regulation of colorectal cancer on HLECs to alleviate tumor lymphangiogenesis and metastasis by downregulating ANRIL dependent PI3K/AKT/VEGF-C pathway.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| | - Yao Lu
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Zhuona Ni
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| | - Jinhong Liu
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Yanbin He
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| | - Honglin An
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| | - Feimin Ye
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Jiayu Shen
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Minghe Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Yong Chen
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Jiumao Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China.
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China.
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Alfair BM, Jabarti AA, Albalawi SS, Khodir AE, Al-Gayyar MM. Arctiin Inhibits Inflammation, Fibrosis, and Tumor Cell Migration in Rats With Ehrlich Solid Carcinoma. Cureus 2023; 15:e44987. [PMID: 37701157 PMCID: PMC10495034 DOI: 10.7759/cureus.44987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVES ESC or Ehrlich solid carcinoma is a type of tumor originating from a spontaneous mammary adenocarcinoma in mice. It is a highly aggressive and fast-growing carcinoma that can create a solid mass when inserted under the skin. Its solid, undifferentiated form makes it an ideal model for researching cancer biology, tumor immunology, and testing various anti-cancer treatments. Additionally, arctiin has multiple beneficial properties, such as anti-proliferative, anti-oxidative, anti-adipogenic, and anti-bacterial. This study aimed to explore the potential anti-cancer benefits of arctiin in rats with ESC while also analyzing its effects on cell fibrosis markers, tumor cell migration, and inflammasome pathways. METHODS Rats were given a tumor in their left hind limb via an intramuscular injection consisting of 2×106 cells. After eight days, some of the rats received a daily oral dose of 30 mg/kg of arctiin for three weeks. Muscle samples were observed under an electron microscope or stained with hematoxylin/eosin. Additionally, gene expression and protein levels of toll-like receptor 4 (TLR4), NLR family pyrin domain containing 3 (NLRP3), signal transducer and activator of transcription 3 (STAT3), transforming growth factor (TGF)-β, endothelial growth factor (VEGF), and cyclin D1 were assessed in another part of the muscle samples. RESULTS When ESC rats were given arctiin as a treatment, their mean survival time increased and their tumor volume and weight decreased. Additionally, when tumor tissue was examined under an electron microscope, it showed signs of pleomorphic cells, necrosis, nuclear fragmentation, membrane damage with cytoplasmic content spilling, and loss of cellular junction. The stained sections with hematoxylin/eosin showed a dense cellular mass and compressed, degenerated, and atrophied muscle. However, treatment with arctiin improved all these effects. Finally, the expression of TLR4, NLRP3, STAT3, TGF-β, VEGF, and cyclin D1 was significantly reduced with arctiin treatment. CONCLUSIONS Through the use of arctiin, tumor size and weight were effectively reduced, leading to an increase in the average survival time of rats and an improvement in muscle structure. Additional research has shown that arctiin is able to suppress inflammation, fibrosis, and the migration of tumor cells by inhibiting STAT3, TGF-β1, TLR4, NLRP3, VEGF, and cyclin D1.
Collapse
Affiliation(s)
| | | | | | - Ahmed E Khodir
- Pharmacology and Toxicology, Horus University, New Damietta, EGY
| | - Mohammed M Al-Gayyar
- Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, SAU
- Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, EGY
| |
Collapse
|
7
|
Cao D, Wang C, Zhou L. Identification and comprehensive analysis of ferroptosis-related genes as potential biomarkers for the diagnosis and treatment of proliferative diabetic retinopathy by bioinformatics methods. Exp Eye Res 2023; 232:109513. [PMID: 37207868 DOI: 10.1016/j.exer.2023.109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/22/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Diabetic retinopathy (DR) is the most common retinal vascular disease. Proliferative DR (PDR) is the aggressive stage of DR with angiogenesis as a pathological hallmark, which is the main cause of blindness. There is growing evidence that ferroptosis plays a vital role in diabetics as well as its complications including DR. However, the potential functions and mechanisms of ferroptosis have not been completely elucidated in PDR. The ferroptosis-related differentially expressed genes (FRDEGs) were identified in GSE60436 and GSE94019. Then we constructed a protein-protein interaction (PPI) network and screened ferroptosis-related hub genes (FRHGs). The GO functional annotation and the KEGG pathway enrichment analyses of FRHGs were performed. The miRNet and miRTarbase databases were applied to construct the ferroptosis-related mRNA-miRNA-lncRNA network, and the Drug-Gene Interaction Database (DGIdb) was used for predicting potential therapeutic drugs. Finally, we identified 21 upregulated and 9 downregulated FRDEGs, among which 10 key target genes (P53, TXN, PTEN, SLC2A1, HMOX1, PRKAA1, ATG7, HIF1A, TGFBR1, and IL1B) were recognized with enriched functions, mainly relating to responses to oxidative stress and hypoxia in biological processes of PDR. HIF-1, FoxO and MAPK signalling may be the main pathways that influence ferroptosis in PDR. Moreover, a mRNA-miRNA-lncRNA network was constructed based on the 10 FRHGs and their co-expressed miRNAs. Finally, potential drugs targeting 10 FRHGs for PDR were predicted. Results of the receiver operator characteristic (ROC) curve indicated, with high predictive accuracy in two testing datasets (AUC>0.8), that ATG7, TGFB1, TP53, HMOX1 and ILB1 had the potential to be biomarkers of PDR.
Collapse
Affiliation(s)
- Dan Cao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Gao D, Chen H, Li H, Yang X, Guo X, Zhang Y, Ma J, Yang J, Ma S. Extraction, structural characterization, and antioxidant activity of polysaccharides derived from Arctium lappa L. Front Nutr 2023; 10:1149137. [PMID: 37025610 PMCID: PMC10070700 DOI: 10.3389/fnut.2023.1149137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Arctium lappa L. root has high nutritional and medicinal values and has been identified as a healthy food raw material by the Ministry of Health of the People's Republic of China. Methods In the present study, an aqueous two-phase system (ATPS) of polyethylene glycol (PEG)-(NH4)2SO4 was used to extract Arctium lappa L. polysaccharides (ALPs) from the Arctium lappa L. roots, the optimal extraction conditions of crude ALPs were optimized by using the single-factor experiment and response surface methodology. The structure and composition of ALPs were determined by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high-performance liquid chromatography (HPLC). At the same time, the antioxidant activity of ALPs was investigated by in vitro antioxidant experiment. Results The optimized extraction parameters for extraction ALPs were as follows: the PEG relative molecular weight of 6,000, a quality fraction of PEG 25%, a quality fraction of (NH4)2SO4 18%, and an extraction temperature of 80°C. Under these conditions, the extraction rate of ALPs could reach 28.83%. FTIR, SEM and HPLC results showed that ALPs were typical acidic heteropolysaccharides and had uneven particle size distribution, an irregular shape, and a rough surface. The ALPs were chiefly composed of glucose, rhamnose, arabinose, and galactose with a molar ratio of 70.19:10.95:11.16:6.90. In addition, the ALPs had intense antioxidant activity in vitro with IC50 values in the ·OH radical (1.732 mg/ml), DPPH radical (0.29 mg/ml), and superoxide anion (0.15 mg/ml) scavenging abilities. Discussion The results showed that ATPS was an efficient method to extract polysaccharides and could be used for the extraction of other polysaccharides. These results indicated that ALPs had great prospects as a functional food and could be exploited in multiple fields.
Collapse
Affiliation(s)
- Dandan Gao
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xuhua Yang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xingchen Guo
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yuxuan Zhang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jinpu Ma
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jutian Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| | - Shuwen Ma
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
9
|
Lai F, Dai S, Zhao Y, Sun Y. Combination of PDGF-BB and adipose-derived stem cells accelerated wound healing through modulating PTEN/AKT pathway. Injury 2023:S0020-1383(23)00123-7. [PMID: 37028952 DOI: 10.1016/j.injury.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 04/09/2023]
Abstract
Adipose-derived stem cells (ADSCs) have been widely proven to facilitate wound healing. Our study aimed to estimate the influence of combined ADSCs and platelet-derived growth factor-BB (PDGF-BB) on wound healing. We utilized 4 healthy SD rats to isolate ADSCs. Platelet-rich plasma (PRP) was acquired utilizing a two-step centrifugation technology. The role of PRP, PDGF-BB, and PDGF-BB combined with a PI3k inhibitor LY294002 on the viability, migration, and PTEN/AKT pathway in ADSCs were examined utilizing CCK-8, Transwell, and western blot assays. Then, we constructed an open trauma model in SD rats. Effects of ADSCs treated with PDGF-BB on pathological changes, CD31, and PTEN/AKT pathway of wound closure were assessed by hematoxylin & eosin (H&E) staining, Masson staining, immunohistochemical, and western blot assays, respectively. PRP and PDGF-BB intensified the viability and migration of ADSCs by modulating the PTEN/AKT pathway. Interestingly, LY294002 reversed the role of PDGF-BB on ADSCs. In vivo experiments, combined intervention with ADSCs plus PDGF-BB/PRP facilitated wound closure and ameliorated histological injury. Moreover, combined intervention with ADSCs and PDGF-BB attenuated the PTEN level and elevated the CD31 level as well as the ratio of p-AKT/AKT in the skin tissues. A combination of ADSCs and PDGF-BB facilitated wound healing might associate with the regulation of the PTEN/AKT pathway.
Collapse
Affiliation(s)
- Fangyuan Lai
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shijie Dai
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ye Zhao
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yi Sun
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Wang M, Sheng KJ, Fang JC, Zhao H, Lu SM, Liu ZY, Chen BT. Redox signaling in diabetic retinopathy and opportunity for therapeutic intervention through natural products. Eur J Med Chem 2022; 244:114829. [DOI: 10.1016/j.ejmech.2022.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
|
11
|
He W, Wang Y, Yang R, Ma H, Qin X, Yan M, Rong Y, Xie Y, Li L, Si J, Li X, Ma K. Molecular Mechanism of Naringenin Against High-Glucose-Induced Vascular Smooth Muscle Cells Proliferation and Migration Based on Network Pharmacology and Transcriptomic Analyses. Front Pharmacol 2022; 13:862709. [PMID: 35754483 PMCID: PMC9219407 DOI: 10.3389/fphar.2022.862709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Although the protective effects of naringenin (Nar) on vascular smooth muscle cells (VSMCs) have been confirmed, whether it has anti-proliferation and anti-migration effects in high-glucose-induced VSMCs has remained unclear. This study aimed to clarify the potential targets and molecular mechanism of Nar when used to treat high-glucose-induced vasculopathy based on transcriptomics, network pharmacology, molecular docking, and in vivo and in vitro assays. We found that Nar has visible anti-proliferation and anti-migration effects both in vitro (high-glucose-induced VSMC proliferation and migration model) and in vivo (type 1 diabetes mouse model). Based on the results of network pharmacology and molecular docking, vascular endothelial growth factor A (VEGFA), the proto-oncogene tyrosine-protein kinase Src (Src) and the kinase insert domain receptor (KDR) are the core targets of Nar when used to treat diabetic angiopathies, according to the degree value and the docking score of the three core genes. Interestingly, not only the Biological Process (BP), Molecular Function (MF), and KEGG enrichment results from network pharmacology analysis but also transcriptomics showed that phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) is the most likely downstream pathway involved in the protective effects of Nar on VSMCs. Notably, according to the differentially expressed genes (DEGs) in the transcriptomic analysis, we found that cAMP-responsive element binding protein 5 (CREB5) is a downstream protein of the PI3K/Akt pathway that participates in VSMCs proliferation and migration. Furthermore, the results of molecular experiments in vitro were consistent with the bioinformatic analysis. Nar significantly inhibited the protein expression of the core targets (VEGFA, Src and KDR) and downregulated the PI3K/Akt/CREB5 pathway. Our results indicated that Nar exerted anti-proliferation and anti-migration effects on high-glucose-induced VSMCs through decreasing expression of the target protein VEGFA, and then downregulating the PI3K/Akt/CREB5 pathway, suggesting its potential for treating diabetic angiopathies.
Collapse
Affiliation(s)
- Wenjun He
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Yanming Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Rui Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Huihui Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xuqing Qin
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Yi Rong
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Yufang Xie
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
12
|
Liu Y, Hou M, Pan Z, Tian X, Zhao Z, Liu T, Yang H, Shi Q, Chen X, Zhang Y, He F, Zhu X. Arctiin-reinforced antioxidant microcarrier antagonizes osteoarthritis progression. J Nanobiotechnology 2022; 20:303. [PMID: 35761235 PMCID: PMC9235181 DOI: 10.1186/s12951-022-01505-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
Loss of extracellular matrix (ECM) of cartilage due to oxidative stress injury is one of the main characteristics of osteoarthritis (OA). As a bioactive molecule derived from the traditional Chinese Burdock, arctiin exerts robust antioxidant properties to modulate redox balance. However, the potential therapeutic effects of arctiin on OA and the underlying mechanisms involved are still unknown. Based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) tool, Burdock-extracted small molecule arctiin was identified as a potential anti-arthritic component. In vitro, treatment using arctiin rescued the interleukin (IL)-1β-induced activation of proteinases and promoted the cartilage ECM synthesis in human chondrocytes. In vivo, intraperitoneal injection of arctiin ameliorated cartilage erosion and encountered subchondral bone sclerosis in the post-traumatic OA mice. Transcriptome sequencing uncovered that arctiin-enhanced cartilage matrix deposition was associated with restricted oxidative stress. Mechanistically, inhibition of nuclear factor erythroid 2-related factor 2 (NRF2) abolished arctiin-mediated anti-oxidative and anti-arthritic functions. To further broaden the application prospects, a gellan gum (GG)-based bioactive gel (GG-CD@ARC) encapsulated with arctiin was made to achieve long-term and sustained drug release. Intra-articular injection of GG-CD@ARC counteracted cartilage degeneration in the severe (12 weeks) OA mice model. These findings indicate that arctiin may be a promising anti-arthritic agent. Furthermore, GG-modified bioactive glue loaded with arctiin provides a unique strategy for treating moderate to severe OA.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Zejun Pan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China. .,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China. .,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China. .,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
13
|
Chen DQ, Guo Y, Li X, Zhang GQ, Li P. Small molecules as modulators of regulated cell death against ischemia/reperfusion injury. Med Res Rev 2022; 42:2067-2101. [PMID: 35730121 DOI: 10.1002/med.21917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/11/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (IR) injury contributes to disability and mortality worldwide. Due to the complicated mechanisms and lack of proper therapeutic targets, few interventions are available that specifically target the pathogenesis of IR injury. Regulated cell death (RCD) of endothelial and parenchymal cells is recognized as the promising intervening target. Recent advances in IR injury suggest that small molecules exhibit beneficial effects on various RCD against IR injury, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, and parthanatos. Here, we describe the mechanisms behind these novel promising therapeutic targets and explain the machinery powering the small molecules. These small molecules exert protection by targeting endothelial or parenchymal cells to alleviate IR injury. Therapies of the ideal combination of small molecules targeting multiple cell types have shown potent synergetic therapeutic effects, laying the foundation for novel strategies to attenuate IR injury.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xin Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
14
|
Kong L, Sun Y, Sun H, Zhang AH, Zhang B, Ge N, Wang XJ. Chinmedomics Strategy for Elucidating the Pharmacological Effects and Discovering Bioactive Compounds From Keluoxin Against Diabetic Retinopathy. Front Pharmacol 2022; 13:728256. [PMID: 35431942 PMCID: PMC9008273 DOI: 10.3389/fphar.2022.728256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/24/2022] [Indexed: 01/31/2023] Open
Abstract
Keluoxin (KLX) is an active agent in the treatment of diabetic retinopathy (DR). However, its mechanism, targets, and effective constituents against DR are still unclear, which seriously restricts its clinical application. Chinmedomics has the promise of explaining the pharmacological effects of herbal medicines and investigating the effective mechanisms. The research results from electroretinography and electron microscope showed that KLX could reduce retinal dysfunction and pathological changes by the DR mouse model. Based on effectiveness, we discovered 64 blood biomarkers of DR by nontargeted metabolomics analysis, 51 of which returned to average levels after KLX treatment including leukotriene D4 and A4, l-tryptophan, 6-hydroxymelatonin, l-phenylalanine, l-tyrosine, and gamma-linolenic acid (GLA). The metabolic pathways involved were phenylalanine metabolism, steroid hormone biosynthesis, sphingolipid metabolism, etc. Adenosine monophosphate-activated protein kinase (AMPK), extracellular signal-regulated protein kinase1/2 (ERK1/2), phosphatidylinositol-3-kinase (PI3K), and protein 70 S6 kinase (p70 S6K) might be potential targets of KLX against DR. This was related to the mammalian target of rapamycin (mTOR) signaling and AMPK signaling pathways. We applied the chinmedomics strategy, integrating serum pharm-chemistry of traditional Chinese medicine (TCM) with metabolomics, to discover astragaloside IV (AS-IV), emodin, rhein, chrysophanol, and other compounds, which were the core effective constituents of KLX when against DR. Our study was the first to apply the chinmedomics strategy to discover the effective constituents of KLX in the treatment of DR, which fills the gap of unclear effective constituents of KLX. In the next step, the research of effective constituents can be used to optimize prescription preparation, improve the quality standard, and develop an innovative drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi-jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
15
|
Wang H, Fang F, Chen S, Jing X, Zhuang Y, Xie Y. Dual efficacy of Fasudil at improvement of survival and reinnervation of flap through RhoA/ROCK/PI3K/Akt pathway. Int Wound J 2022; 19:2000-2011. [PMID: 35315211 PMCID: PMC9705174 DOI: 10.1111/iwj.13800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022] Open
Abstract
Fasudil is reported to be effective at protecting against ischaemic diseases, and at augmenting axon growth. In this study, we aim to evaluate its efficacy in promoting flap survival and reinnervation. Ninety-two Institute of Cancer Research (ICR) mice were used and divided into the control, Fasudil, LY294002, Fasudil+LY294002 groups, receiving a daily intraperitoneal injection of normal saline, Fasudil (10 mg/kg), LY294002 (5 mg/kg), and Fasudil (10 mg/kg) + LY294002 (5 mg/kg), respectively. On days 0 and 5, the blood perfusion and diameter of the iliolumbar artery in the pedicle of the flaps in the four groups were evaluated using laser speckling contrast imaging (LSCI). On day 5, the flaps were photographed and the necrosis rate of the flaps was calculated using Photoshop CS6. In addition, tissues were harvested from the flaps and divided into two parts. One part underwent routine cryosection and immunofluorescent staining using the antibody against CD31 for evaluation of the microvascular density in the four groups. In the other part, the expression of RhoA, ROCK1+2, p-CPI-17, p-MYPT, p-PTEN, p-PI3K, p-Akt, and vascular endothelial growth factor (VEGF) within the flaps were determined using western blotting. Moreover, at days 0, 7, 15, and 30 after flap surgery, the axons within the flaps were evaluated using immunofluorescent staining with the antibody against Neurofilament-200. It turned out that the necrosis rate was (24.4 ± 7.7)%, (5.2 ± 1.6)%, (29.8 ± 4.2)%, and (30.9 ± 7.1)%, respectively, in the control, Fasudil, LY294002, LY294002+Fasudil groups. There was a significant reduction in the necrosis rate of the flaps in the Fasudil group (P < .001). The LSCI and immunofluorescent staining demonstrated that Fasudil could significantly expand the diameter of the iliolumbar artery in the pedicle, boost the overall blood perfusion, and increase the microvascular density of the flaps in the Fasudil group (P < .05), which could all be abolished by PI3K inhibitor LY294002. On day 5, the expression of p-CPI-17, p-MYPT, and p-PTEN were downregulated, whereas pPI3K, p-Akt, and VEGF were upregulated in the Fasudil group (P < .001). As for reinnervation, Neurofilament-200 fluorescent staining revealed that at days 15 and 30 after flap harvest, only in the Fasudil group could new axons be observed. It can be concluded that Fasudil could simultaneously improve the survival and axon growth after flap harvest, a dual efficacy achieved by inhibition of the RhoA/ROCK pathway, which in turn activates /PI3K/AKT pathway.
Collapse
Affiliation(s)
- Hai Wang
- Orthopedic Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Fang Fang
- Department of pharmacology, Fujian Medical University, Fuzhou, China
| | - Shaofeng Chen
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Institute of Clinical Applied Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xing Jing
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Institute of Clinical Applied Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuehong Zhuang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Institute of Clinical Applied Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yun Xie
- Orthopedic Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Wei L, Mo W, Lan S, Yang H, Huang Z, Liang X, Li L, Xian J, Xie X, Qin Y, Lin F, Luo Z. GLP-1 RA Improves Diabetic Retinopathy by Protecting the Blood-Retinal Barrier through GLP-1R-ROCK-p-MLC Signaling Pathway. J Diabetes Res 2022; 2022:1861940. [PMID: 36387940 PMCID: PMC9649324 DOI: 10.1155/2022/1861940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND GLP-1 receptor agonists (GLP-1RA) are common clinical agents that are clinically protective against diabetic complications, such as diabetic retinopathy (DR). Previous studies have shown that the RhoA/ROCK pathway plays an important role in the development of DR. However, the specific mechanism of action between GLP-1RA and DR remains unclear. The aim of this study was thus to investigate the main mechanism involved in the protective effect of GLP-1RA on DR. METHODS Type 2 diabetic mice were fed a high-sugar, high-fat diet. Changes in the retinal structure were observed via HE staining and transmission electron microscopy. The expression of retinal GLP-1R, blood-retinal barrier- (BRB-) related proteins, inflammatory factors, and related pathway proteins were studied via Western blot or immunohistochemistry/immunofluorescence analysis. RESULTS GLP-1RA treatment reduced the blood glucose and lipid levels as well as the body weight of the diabetic mice while also improving retinal thickness, morphology, and vascular ultrastructure. Moreover, restored GLP-1R expression, increased Occludin and ZO-1 levels, and decreased albumin expression led to reduced retinal leakage and improved the BRB by inhibiting the RhoA/ROCK pathway. CONCLUSIONS We found that the protective effect of GLP-1RA on the retina may be realized through the GLP-1R-ROCK-p-MLC signaling pathway.
Collapse
Affiliation(s)
- Liufeng Wei
- Department of Laboratory, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Weiwei Mo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
- Department of Renal Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545000 Guangxi, China
| | - Shanshan Lan
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Haiyan Yang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Zhenxing Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Xinghuan Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Li Li
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Jing Xian
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Xuemei Xie
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Faquan Lin
- Department of Laboratory, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi, China
| |
Collapse
|
17
|
Zhao Y, Li A. miR-19b-3p relieves intervertebral disc degeneration through modulating PTEN/PI3K/Akt/mTOR signaling pathway. Aging (Albany NY) 2021; 13:22459-22473. [PMID: 34554926 PMCID: PMC8507280 DOI: 10.18632/aging.203553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 09/03/2021] [Indexed: 12/13/2022]
Abstract
Emerging studies have revealed that non-coding RNAs contribute to regulating intervertebral disc degeneration (IVDD). Here, we intended to probe into the function of miR-19b-3p in IVDD evolvement. The miR-19b-3p level in the intervertebral disc (IVD) tissues of IVDD patients and IL-1β/TNF-α/hydrogen peroxide-treated human nucleus pulposus cells (HNPCs) was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Also, qRT-PCR was conducted to examine the profiles of MMP-3, MMP-9, MMP-13, ADAMTS-4 and ADAMTS-5. The PTEN/PI3K/Akt/mTOR pathway was examined by Western blot (WB). The miR-19b-3p overexpression assay was carried out, and HNPC proliferation and apoptosis were compared by the cell counting kit-8 (CCK-8) assay and flow cytometry (FCM). In addition, the mechanism of action of miR-19b-3p was clarified using the PTEN inhibitor (VO-Ohpic triphosphate) or the mTOR inhibitor (Rapamycin) on the basis of IL-1β intervention and miR-19b-3p mimics transfection. Our results testified that miR-19b-3p expression was curbed in IVD tissues of the IVDD patients (vs. normal IVD tissues) and IL-1β-, TNF-α, or hydrogen peroxide-treated HNPCs. Up-regulating miR-19b-3p enhanced HNPC proliferation and hampered its apoptosis. Moreover, miR-19b-3p dampened the PTEN profile and activated the PI3K/Akt/mTOR pathway. Interestingly, attenuating PTEN reduced IL-1β-, TNF-α-, or hydrogen peroxide-mediated HNPC apoptosis and up-regulated PI3K/Akt/mTOR, while inhibiting the mTOR pathway offset the protective function of miR-19b-3p. Further mechanism studies illustrated that miR-19b-3p targeted the 3'untranslated region (UTR) of PTEN and abated the PTEN level. This research confirmed that miR-19b-3p suppressed HNPC apoptosis in the in-vitro model of IVDD by regulating PTEN/PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yulin Zhao
- Department of Spine Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, ShanDong University, Qingdao 266035, ShanDong, China
| | - Aimin Li
- Department of Spine Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, ShanDong University, Qingdao 266035, ShanDong, China
| |
Collapse
|
18
|
Yu YY, Liu QP, Li MT, An P, Chen YY, Luan X, Lv C, Zhang H. Hu-Zhang-Qing-Mai-Yin Inhibits Proliferation of Human Retinal Capillary Endothelial Cells Exposed to High Glucose. Front Pharmacol 2021; 12:732655. [PMID: 34421625 PMCID: PMC8377758 DOI: 10.3389/fphar.2021.732655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 11/27/2022] Open
Abstract
Background: Diabetic retinopathy (DR) is one of the serious complications of diabetes and an important cause of blindness. Despite much research on the pathogenesis of DR, there is still a lack of safe and effective treatment methods. Hu-zhang-qing-mai-yin (HZQMY), a Chinese medicine formula, has been clinically used in the safe and effective treatment of DR for many years. However, the systematic pharmacological research is lacking. The aim of this study was to evaluate the anti-DR effects of HZQMY and explore the possible mechanism involved. Methods: The constituents of HZQMY were analyzed by LC-MS/MS. DR model was established by high glucose simulation on human retinal capillary endothelial cells (HRCECs) in vitro. The cell viability, cell proliferation, cell apoptosis, and tube formation were assessed. Subsequently the related mechanisms were analyzed by assays for JC-1 mitochondrial membrane potential (MMP), intracellular ROS, ATP, western blot and proteomics. Results: 27 main chemical components contained in HZQMY were identified. HZQMY significantly inhibited the viability and proliferation of HRCECs exposed to high glucose, and promoted the apoptosis. In addition, HZQMY also boosted the release of ROS and suppressed tube formation of HRCECs under high glucose exposure. Meanwhile, HRCECs treated with high glucose released more ROS than normal cells, which could be markedly inhibited by HZQMY in a dose-dependent manner. Additionally, western blot assay indicated that HZQMY increased the expression of proteins related to the P38 signaling pathway and inhibited nuclear factor kappa-B (NF-κB) pathway. Proteomic analysis predicted that HSPA4, MAPK3, ENO1, EEF2 and ERPS may be the candidate targets of HZQMY in HRCECs. Conclusions: HZQMY inhibited the proliferation and promoted the Mitochondria related apoptosis of HRCECs exposed to high glucose possibly through regulating P38 and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuan-Yuan Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng-Ting Li
- Department of Neurology, Yueyang Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Lv
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Lebon C, Neubauer H, Berdugo M, Delaunay K, Markert E, Becker K, Baum-Kroker KS, Prestle J, Fuchs H, Bakker RA, Behar-Cohen F. Evaluation of an Intravitreal Rho-Associated Kinase Inhibitor Depot Formulation in a Rat Model of Diabetic Retinopathy. Pharmaceutics 2021; 13:pharmaceutics13081105. [PMID: 34452066 PMCID: PMC8401380 DOI: 10.3390/pharmaceutics13081105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023] Open
Abstract
Rho-associated kinase (ROCK) activation was shown to contribute to microvascular closure, retinal hypoxia, and to retinal pigment epithelium (RPE) barrier disruption in a rat model of diabetic retinopathy. Fasudil, a clinically approved ROCK inhibitor, improved retinal perfusion and reduced edema in this model, indicating that ROCK inhibition could be a promising new therapeutic approach for the treatment of diabetic retinopathy. However, due to its short intravitreal half-life, fasudil is not suitable for long-term treatment. In this study, we evaluated a very potent ROCK1/2 inhibitor (BIRKI) in a depot formulation administered as a single intravitreal injection providing a slow release for at least four weeks. Following BIRKI intravitreal injection in old Goto-Kakizaki (GK) type 2 diabetic rats, we observed a significant reduction in ROCK1 activity in the retinal pigment epithelium/choroid complex after 8 days and relocation of ROCK1 to the cytoplasm and nucleus in retinal pigment epithelium cells after 28 days. The chronic ROCK inhibition by the BIRKI depot formulation restored retinal pigment epithelial cell morphology and distribution, favored retinal capillaries dilation, and reduced hypoxia and inner blood barrier leakage observed in the diabetic retina. No functional or morphological negative effects were observed, indicating suitable tolerability of BIRKI after intravitreous injection. In conclusion, our data suggest that sustained ROCK inhibition, provided by BIRKI slow-release formulation, could be a valuable treatment option for diabetic retinopathy, especially with regard to the improvement of retinal vascular infusion and protection of the outer retinal barrier.
Collapse
Affiliation(s)
- Cecile Lebon
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
| | - Heike Neubauer
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Marianne Berdugo
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
| | - Kimberley Delaunay
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
| | - Elke Markert
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (E.M.); (K.B.)
| | - Kolja Becker
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (E.M.); (K.B.)
| | - Katja S. Baum-Kroker
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany;
| | - Jürgen Prestle
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Holger Fuchs
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Remko A. Bakker
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Francine Behar-Cohen
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
- Assistance Publique, Hôpitaux de Paris, Hôpital Cochin, Ophthalmopole, 75014 Paris, France
- Correspondence:
| |
Collapse
|
20
|
Zhang Y, Yao Y, Yang Y, Wu H. Investigation of Anti-SARS, MERS, and COVID-19 Effect of Jinhua Qinggan Granules Based on a Network Pharmacology and Molecular Docking Approach. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211020619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective Jinhua Qinggan Granules (JQGs) have achieved certain results in the prevention and treatment of COVID-19 in China during this coronavirus storm. In this study, we aimed to analyze the common mechanisms of JQG in the treatment of coronavirus-induced diseases, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and COVID-19 via network pharmacology and molecular docking. Methods The active compounds of JQG were collected through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The common targets associated with these 3 diseases were screened from GeneCards database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of JQG’s core targets were analyzed using The Database for Annotation, Visualization, and Integrated Discovery and KOBAS 3.0 system. Further, the protein-protein interaction network was built using STRING database. The compound-target- signaling pathway network was constructed using Cytoscape 3.7.2. The core components of JQG were docked with core targets, COVID-19 coronavirus 3 Cl hydrolase, and angiotensin-converting enzyme 2 (ACE2) via Discovery Studio 2016 software. Results A total of 139 active compounds, 50 core targets, and 122 signaling pathways were screened out. The results of molecular docking showed that arctiin and linarin had a higher docking score with 3 Cl, ACE2, and core targets of JQH for antiviral effect. Conclusion The potential mechanism of action of JHQ in the treatment of MERS, SARS, and COVID-19 may be associated with the regulation of genes co-expressed with ACE2 and immune- related signaling pathways.
Collapse
Affiliation(s)
- Ying Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunfeng Yao
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
| |
Collapse
|
21
|
Zhang Z, Song C, Wang T, Sun L, Qin L, Ju J. miR-139-5p promotes neovascularization in diabetic retinopathy by regulating the phosphatase and tensin homolog. Arch Pharm Res 2021; 44:205-218. [PMID: 33609236 DOI: 10.1007/s12272-021-01308-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Pathological retinal neovascularization is a driver of the progression of diabetic retinopathy (DR). The present study sought to identify the microRNAs (miRNAs) that are differentially expressed during the progression of DR as well as to explore the specific regulatory mechanism of those miRNAs in retinal neovascularization. Using a microarray data set and a diabetic mouse model, it was determined that miR-139-5p was significantly upregulated during the progression of DR. The in vitro investigation revealed an elevation in the miR-139-5p level in both the high glucose (HG)-treated mouse retinal microvascular endothelial cells (mRMECs) and the HG-treated human RMECs (hRMECs). The miR-139-5p overexpression elevated cell migration, facilitated tube formation, and increased vascular endothelial growth factor (VEGF) protein level in the hRMECs. While the angiogenic effect of miR-139-5p overexpression was halted by an anti-VEGF antibody. Meanwhile, the miR-139-5p knockdown eliminated the VEGF-induced cell migration and tube formation in the hRMECs. The phosphatase and tensin homolog (PTEN) was the target gene of the miR-139-5p. PTEN overexpression removed the angiogenic effect of miR-139-5p overexpression, which led to reduced cell migration and tube formation. In the diabetic mice, the miR-139-5p antagomir effectively decreased the acellular capillaries and suppressed the formation of aberrant blood vessels in the retinal tissues. Taken together, miR-139-5p promotes retinal neovascularization by repressing PTEN expression.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Ophthalmology, Weihai Municipal Hospital, Weihai, 264200, Shandong, China
| | - Caiping Song
- Department of Ophthalmology, Weihai Municipal Hospital, Weihai, 264200, Shandong, China
| | - Tao Wang
- Department of Ophthalmology, Weihai Municipal Hospital, Weihai, 264200, Shandong, China
| | - Lei Sun
- Department of Ophthalmology, Weihai Municipal Hospital, Weihai, 264200, Shandong, China
| | - Ling Qin
- Department of Ophthalmology, Weihai Municipal Hospital, Weihai, 264200, Shandong, China
| | - Jianghua Ju
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, People's Republic of China.
| |
Collapse
|
22
|
Qian X, He L, Hao M, Li Y, Li X, Liu Y, Jiang H, Xu L, Li C, Wu W, Du L, Yin X, Lu Q. YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy. Acta Diabetol 2021; 58:47-62. [PMID: 32816106 DOI: 10.1007/s00592-020-01582-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
AIMS Glomerular mesangial cell (MC) proliferation is one of the main pathological changes in diabetic nephropathy (DN), but its mechanism needs further elaboration. The Hippo and PI3K/Akt signalling pathways are involved in the regulation of MC proliferation, but their relationship in hyperglycaemia-induced MC proliferation has not been reported. METHODS We used db/db mice and high-glucose-cultured mesangial cells to generate a diabetic nephropathy model. An MST1-knockdown plasmid was used to identify whether the PI3K/Akt pathway is linked to the Hippo pathway through MST1. LY294002 and SC79 were used to verify the role of the PI3K/Akt signalling pathway in MC cells. RNA silencing and overexpression were performed by using YAP and PTEN-expression/knockdown plasmids to investigate the function of YAP and PTEN, respectively, in the Hippo and PI3K/Akt signalling pathways. RESULTS By examining a potential feedback loop, we found decreased phosphorylation of MST1 and Lats1 and increased PI3K/Akt activation in db/db mice and high glucose-treated MCs, along with increased MC proliferation. The results of our gene silencing experiment proved PI3K/Akt-mediated intervention in the Hippo pathway and the regulatory effect of YAP on PI3K/Akt through PTEN. CONCLUSIONS The Hippo pathway is inhibited under diabetic conditions, leading to YAP activation and promoting MC proliferation. The PI3K/Akt pathway is activated through the inhibitory effect of YAP on its repressor, PTEN. Finally, activation of the PI3K/Akt pathway inhibits the Hippo pathway, resulting in nuclear YAP accumulation and accelerating MC proliferation and DN formation.
Collapse
Affiliation(s)
- Xuan Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linlin He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xizhi Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yiqi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chengcheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenya Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
23
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
24
|
Pal S, Rao GN, Pal A. High glucose-induced ROS accumulation is a critical regulator of ERK1/2-Akt-tuberin-mTOR signalling in RGC-5 cells. Life Sci 2020; 256:117914. [DOI: 10.1016/j.lfs.2020.117914] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
25
|
Zhou M, Li G, Zhu L, Zhou H, Lu L. Arctiin attenuates high glucose-induced human retinal capillary endothelial cell proliferation by regulating ROCK1/PTEN/PI3K/Akt/VEGF pathway in vitro. J Cell Mol Med 2020; 24:5695-5706. [PMID: 32297701 PMCID: PMC7214144 DOI: 10.1111/jcmm.15232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most prominent microvascular complications of diabetes, which remains the leading cause of legal blindness in the world. Arctiin, a bioactive compound from Arctium lappa L., has been reported to have antidiabetic activity. In this study, we investigated the effect of arctiin on a human retinal capillary endothelial cell (HRCEC) line and how arctiin inhibits cell proliferation in high glucose (HG)-induced HRCECs. Results showed that arctiin decreased HG-induced HRCECs proliferation in a dose-dependent manner by inducing cell cycle arrest at the G0/G1 phase. Tube formation assay and immunofluorescence staining indicated that arctiin abrogated tube formation induced by HG-induced HRCECs in a dose-dependent manner via down-regulation of VEGF expression. Mechanistic study indicated that perturbation of the ROCK1/PTEN/PI3K/Akt signalling pathway plays a vital role in the arctiin-mediated anti-proliferative effect. Furthermore, pre-incubation of HRCECs with Y-27632 attenuated arctiin-induced cell cycle arrest, cell proliferation and tube formation inhibition. Y-27632 also reversed the activation of PTEN, the inactivation/dephosphorylation of PI3K/Akt and down-regulation of VEGF. Taken together, the results demonstrated that arctiin inhibits the proliferation of HG-induced HRCECs through the activation of ROCK1 and PTEN and inactivation of PI3K and Akt, resulting in down-regulation of VEGF, which inhibits endothelial cell proliferation.
Collapse
Affiliation(s)
- Min Zhou
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqingChina
- Department of PharmacyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Guobing Li
- Department of PharmacyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqingChina
| | - Huyue Zhou
- Department of PharmacyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Laichun Lu
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqingChina
| |
Collapse
|