1
|
Liu T, Xu S, Yang J, Xing X. Roles of LncRNAs in the Pathogenesis of Pulmonary Hypertension. Rev Cardiovasc Med 2024; 25:217. [PMID: 39076325 PMCID: PMC11270120 DOI: 10.31083/j.rcm2506217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 07/31/2024] Open
Abstract
Pulmonary hypertension (PH) is a persistently progressive, incurable, multifactorial associated fatal pulmonary vascular disease characterized by pulmonary vascular remodeling. Long noncoding RNAs (lncRNAs) are involved in regulating pathological processes such as pulmonary vasoconstriction, thickening, remodeling, and inflammatory cell infiltration in PH by acting on different cell types. Because of their differential expression in PH patients, as demonstrated by the observation that some lncRNAs are significantly upregulated while others are significantly downregulated in PH patients, lncRNAs are potentially useful biomarkers for assessing disease progression and diagnosis or prognosis in PH patients. This article provides an overview of the different mechanisms by which lncRNAs are involved in the pathogenesis of PH.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of
Yunnan University, 650021 Kunming, Yunnan, China
- Graduate School, Kunming Medical University,
650500 Kunming, Yunnan, China
| | - Shuanglan Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of
Yunnan University, 650021 Kunming, Yunnan, China
| | - Jiao Yang
- Department of Pulmonary and Critical Care Medicine, First Affiliated
Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Xiqian Xing
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of
Yunnan University, 650021 Kunming, Yunnan, China
| |
Collapse
|
2
|
Zheng H, Wu D, Chen X, He W, Hua J, Li Q, Ji Y. Endothelial downregulation of nuclear m6A reader YTHDC1 promotes pulmonary vascular remodeling in sugen hypoxia model of pulmonary hypertension. Heliyon 2024; 10:e24963. [PMID: 38318069 PMCID: PMC10838804 DOI: 10.1016/j.heliyon.2024.e24963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Background Pulmonary hypertension (PH) is characterized with vascular remodeling, which is intiated by vascular endothelial dysfunction. N6-methyladenosine (m6A) modification mediates gene expression in many ways including mediating RNA degradation, splicing, nuclear export et al. m6A modification have been found to be associated with the development of PH. However, the role of m6A regulators in pulmonary artery endothelial cells (PAECs) dysfunction of PH is still under research. Methods The expression levels of m6A regulators in PAECs were analyzed with the single-cell sequencing Data(scRNA). Next, the target differentially expressed genes (DEGs) of m6A regulators in PAECs were functionally annotated. The analysis of cellular interactions included the examination of receptor-ligand pairs regulated by m6A regulators. Pseudo-time trajectory analyses and a ceRNA network involving lncRNAs, miRNAs, and mRNAs were conducted in PAECs. Furthermore, microarray data (GSE180169) for Sugen Hypoxia PH (SuHx PH) mouse models was screened for DEGs and m6A regulators in PAECs. Moreover, the expression of YTHDC1 in the lung samples of SuHx PH models was determined using immunofluorescence. In vitro, the mRNA expression of YTHDC1 in HPAECs under hypoxia conditions was detected. The effect of YTHDC1 recombinant protein on HPAEC proliferation was detected by Cell Counting Kit-8 (CCK8). Results Dysregulation of m6A regulators was observed in mouse PAECs. The m6A reader of YTHDC1 was decreased in PAECs in scRNA data and RNAseq data of isolated PAECs of SuHx PH models. Downregulation of YTHDC1 was caused by hypoxia in PAECs in vitro and similar results was observed in PAECs of SuHx PH mouse models. Next, YTHDC1 recombinant protein was found to inhibit HPAECs proliferation. The DEGs targeted by YTHDC1 were enriched in angiogenesis, endothelial cell migration, fluid shear stress, and stem cell maintenance. Analysis indicates that interactions among endothelial cells, smooth muscle cells, fibroblasts, and immune cells, mediated by specific YTHDC1 target genes (e.g., PTPRC-MRC1, ITBG2-ICAM1, COL4A1-CD44), contribute to PH development. Also, the YTHDC1 expression were consistent with Thioredoxin interacting protein (TXNIP). What's more, the predicted transcription factors showed that NFKB1, Foxd3 may be involved in the regulation of YTHDC1. Lastly, our data suggest that YTHDC1 may be involved in regulating PAECs dysfunction through lncRNA/miRNA/mRNA network. Conclusion For the first time, we analyzed changes in the expression and biological functions of m6A regulators in SuHx PH mouse models. We causatively linked YTHDC1 to PAECs dysfunction, providing novel insight into and opportunities to diagnose and treat PH.
Collapse
Affiliation(s)
| | | | - Xiangyu Chen
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Wenjuan He
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Jing Hua
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Qiang Li
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - YingQun Ji
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| |
Collapse
|
3
|
Xi J, Ma Y, Liu D, Li R. Astragaloside IV restrains pyroptosis and fibrotic development of pulmonary artery smooth muscle cells to ameliorate pulmonary artery hypertension through the PHD2/HIF1α signaling pathway. BMC Pulm Med 2023; 23:386. [PMID: 37828459 PMCID: PMC10568875 DOI: 10.1186/s12890-023-02660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Astragaloside (AS)-IV, extracted from traditional Chinese medicine Astragalus mongholicus, has been widely used in the anti-inflammatory treatment for cardiovascular disease. However, the mechanism by which AS-IV affects pulmonary artery hypertension (PAH) development remains largely unknown. METHODS Monocrotaline (MCT)-induced PAH model rats were administered with AS-IV, and hematoxylin-eosin staining and Masson staining were performed to evaluate the histological change in pulmonary tissues of rats. Pulmonary artery smooth muscle cells (PASMCs) were treated by hypoxia and AS-IV. Pyroptosis and fibrosis were assessed by immunofluorescence, western blot and enzyme-linked immunosorbent assay. RESULTS AS-IV treatment alleviated pulmonary artery structural remodeling and pulmonary hypertension progression induced by MCT in rats. AS-IV suppressed the expression of pyroptosis-related markers, the release of pro-inflammatory cytokine interleukin (IL)-1β and IL-18 and fibrosis development in pulmonary tissues of PAH rats and in hypoxic PAMSCs. Interestingly, the expression of prolyl-4-hydroxylase 2 (PHD2) was restored by AS-IV administration in PAH model in vivo and in vitro, while hypoxia inducible factor 1α (HIF1α) was restrained by AS-IV. Mechanistically, silencing PHD2 reversed the inhibitory effect of AS-IV on pyroptosis, fibrosis trend and pyroptotic necrosis in hypoxia-cultured PASMCs, while the HIF1α inhibitor could prevent these PAH-like phenomena. CONCLUSION Collectively, AS-IV elevates PHD2 expression to alleviate pyroptosis and fibrosis development during PAH through downregulating HIF1α. These findings may provide a better understanding of AS-IV preventing PAH, and the PHD2/HIF1α axis may be a potential anti-pyroptosis target during PAH.
Collapse
Affiliation(s)
- Jie Xi
- Outpatient department, Urumqi Youai Hospital, Xinjiang Uygur Autonomous Region, Urumqi, 830063, China
| | - Yan Ma
- Department of Critical Care Medicine, Urumqi Youai Hospital, Urumqi, 830063, Xinjiang Uygur Autonomous Region, China.
- Department of Critical Care Medicine, Urumqi Youai Hospital, Xinjiang Uygur Autonomous Region, No. 3838, Convention and Exhibition Avenue, Midong District, Urumqi, 830063, China.
| | - Dongmei Liu
- Department of Gynaecology, Urumqi Maternal and Child Health Care Hospital, Xinjiang Uygur Autonomous Region, Urumqi, 830063, China
| | - Rong Li
- Traditional Chinese Medicine department, Urumqi Maternal and Child Health Care Hospital, Xinjiang Uygur Autonomous Region, Urumqi, 830063, China
| |
Collapse
|
4
|
Dave J, Jagana V, Janostiak R, Bisserier M. Unraveling the epigenetic landscape of pulmonary arterial hypertension: implications for personalized medicine development. J Transl Med 2023; 21:477. [PMID: 37461108 DOI: 10.1186/s12967-023-04339-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial disease associated with the remodeling of pulmonary blood vessels. If left unaddressed, PAH can lead to right heart failure and even death. Multiple biological processes, such as smooth muscle proliferation, endothelial dysfunction, inflammation, and resistance to apoptosis, are associated with PAH. Increasing evidence suggests that epigenetic factors play an important role in PAH by regulating the chromatin structure and altering the expression of critical genes. For example, aberrant DNA methylation and histone modifications such as histone acetylation and methylation have been observed in patients with PAH and are linked to vascular remodeling and pulmonary vascular dysfunction. In this review article, we provide a comprehensive overview of the role of key epigenetic targets in PAH pathogenesis, including DNA methyltransferase (DNMT), ten-eleven translocation enzymes (TET), switch-independent 3A (SIN3A), enhancer of zeste homolog 2 (EZH2), histone deacetylase (HDAC), and bromodomain-containing protein 4 (BRD4). Finally, we discuss the potential of multi-omics integration to better understand the molecular signature and profile of PAH patients and how this approach can help identify personalized treatment approaches.
Collapse
Affiliation(s)
- Jaydev Dave
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA
- Department of Physiology, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA
| | - Vineeta Jagana
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA
- Department of Physiology, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA
| | - Radoslav Janostiak
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Malik Bisserier
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA.
- Department of Physiology, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA.
| |
Collapse
|
5
|
Li J, Pei M, Xiao W, Liu X, Hong L, Yu Z, Peng Y, Zhang J, Yang P, Lin J, Wu X, Lin Z, Tang W, Zhi F, Li G, Xiang L, Li A, Liu S, Chen Y, Wang J. The HOXD9-mediated PAXIP1-AS1 regulates gastric cancer progression through PABPC1/PAK1 modulation. Cell Death Dis 2023; 14:341. [PMID: 37225681 DOI: 10.1038/s41419-023-05862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been functionally characterised in various diseases. LncRNA PAX-interacting protein 1-antisense RNA 1 (PAXIP1-AS1) has reportedly been associated with cancer development. However, its role in gastric cancer (GC) remains poorly understood. Here, we showed that PAXIP1-AS1 was transcriptionally repressed by homeobox D9 (HOXD9) and was significantly downregulated in GC tissues and cells. Decreased expression of PAXIP1-AS1 was positively correlated with tumour progression, while PAXIP1-AS1 overexpression inhibited cell growth and metastasis both in vitro and in vivo. PAXIP1-AS1 overexpression significantly attenuated HOXD9-enhanced epithelial-to-mesenchymal transition (EMT), invasion and metastasis in GC cells. Poly(A)-binding protein cytoplasmic 1 (PABPC1), an RNA-binding protein, was found to enhance the stability of PAK1 mRNA, leading to EMT progress and GC metastasis. PAXIP1-AS1 was found to directly bind to and destabilise PABPC1, thereby regulating EMT and metastasis of GC cells. In summary, PAXIP1-AS1 suppressed metastasis, and the HOXD9/PAXIP1-AS1/PABPC1/PAK1 signalling axis may be involved in the progression of GC.
Collapse
Affiliation(s)
- Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Miaomiao Pei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wushuang Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuehua Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Gastroenterology, Shunde Hospital, Southern Medical University, Foshan, 528300, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Yu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianjiao Lin
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Xiang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Ye Chen
- Department of Gastroenterology, Integrative Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Yang Q, Fan W, Lai B, Liao B, Deng M. lncRNA-TCONS_00008552 expression in patients with pulmonary arterial hypertension due to congenital heart disease. PLoS One 2023; 18:e0281061. [PMID: 36893166 PMCID: PMC9997923 DOI: 10.1371/journal.pone.0281061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/16/2023] [Indexed: 03/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are potential regulators of a variety of cardiovascular diseases. Therefore, there is a series of differentially expressed lncRNAs in pulmonary arterial hypertension (PAH) that may be used as markers to diagnose PAH and even predict the prognosis. However, their specific mechanisms remain largely unknown. Therefore, we investigated the biological role of lncRNAs in patients with PAH. First, we screened patients with PAH secondary to ventricular septal defect (VSD) and those with VSD without PAH to assess differences in lncRNA and mRNA expression between the two groups. Our results revealed the significant upregulation of 813 lncRNAs and 527 mRNAs and significant downregulation of 541 lncRNAs and 268 mRNAs in patients with PAH. Then, we identified 10 hub genes in a constructed protein-protein interaction network. Next, we performed bioinformatics analyses, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis and subsequently constructed coding-noncoding co-expression networks. We screened lncRNA-TCONS_00008552 and lncRNA-ENST00000433673 as candidate genes and verified the expression levels of the lncRNAs using quantitative reverse-transcription PCR. Although expression levels of lncRNA-TCONS_00008552 in the plasma from the PAH groups were significantly increased compared with the control groups, there was no significant difference in the expression of lncRNA-ENST00000433673 between the two groups. This study bolsters our understanding of the role of lncRNA in PAH occurrence and development and indicates that lncRNA-TCONS_00008552 is a novel potential molecular marker for PAH.
Collapse
Affiliation(s)
- Qi Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Banghui Lai
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- * E-mail: (BL); (MD)
| | - Mingbin Deng
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- * E-mail: (BL); (MD)
| |
Collapse
|
7
|
Bernardi N, Bianconi E, Vecchi A, Ameri P. Noncoding RNAs in Pulmonary Arterial Hypertension. Heart Fail Clin 2023; 19:137-152. [DOI: 10.1016/j.hfc.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Identification of JPX-RABEP1 Pair as an Immune-Related Biomarker and Therapeutic Target in Pulmonary Arterial Hypertension by Bioinformatics and Experimental Analyses. Int J Mol Sci 2022; 23:ijms232415559. [PMID: 36555200 PMCID: PMC9779127 DOI: 10.3390/ijms232415559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease characterized by pulmonary vascular remodeling and right heart enlargement the pathogenesis of PAH is complicated; no biologic-based therapy is available for the treatment of PAH, but recent studies suggest that inflammatory response and abnormal proliferation of pulmonary artery smooth muscle cells are the main pathogenic mechanism, while the role of immune-related long non-coding RNAs (lncRNAs) remains unclear. The aim of this study was to systematically analyze immune-related lncRNAs in PAH. Here, we downloaded a publicly available microarray data from PAH and control patients (GSE113439). A total of 243 up-regulated and 203 down-regulated differentially expressed genes (DEGs) were screened, and immune-related DEGs were further obtained from ImmPort. The immune-related lncRNAs were obtained by co-expression analysis of immune-related mRNAs. Then, immune-related lncRNAs-mRNAs network including 2 lncRNAs and 6 mRNAs was constructed which share regulatory miRNAs and have significant correlation. Among the lncRNA-mRNA pairs, one pair (JPX-RABEP1) was verified in the validating dataset GSE53408 and PAH mouse model. Furthermore, the immune cell infiltration analysis of the GSE113439 dataset revealed that the JPX-RABEP1 pair may participate in the occurrence and development of PAH through immune cell infiltration. Together, our findings reveal that the lncRNA-mRNA pair JPX-RABEP1 may be a novel biomarker and therapeutic target for PAH.
Collapse
|
9
|
Zheng H, Hua J, Li H, He W, Chen X, Ji Y, Li Q. Comprehensive analysis of the expression of N6-methyladenosine RNA methylation regulators in pulmonary artery hypertension. Front Genet 2022; 13:974740. [PMID: 36171892 PMCID: PMC9510777 DOI: 10.3389/fgene.2022.974740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by pulmonary vascular remodeling. The development of PAH involves N6-methyladenosine (m6A) modification. However, the functional role of m6A regulators in PAH and the underlying regulatory mechanisms remain unknown so far. Methods: Microarray data (GSE149713) for monocrotaline induced PAH (MCT-PAH) rat models were downloaded and screened for differentially expressed genes (DEGs) and m6A regulators. Next, we screened for differentially expressed m6A regulators in endothelial cells (ECs), smooth muscle cells (SMCs), fibroblasts, interstitial macrophages, NK cells, B cells, T cells, regulatory T cells (Tregs) using scRNA sequencing data. The target DEGs of m6A regulators in ECs, SMCs, fibroblasts, and Tregs were functionally annotated using the Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In addition, the cellular interaction analysis was performed to reveal the receptor—ligand pairs regulated by m6A regulators. Pseudo-time trajectory analyses were performed and a ceRNA network of lncRNAs-miRNAs-mRNAs was constructed in SMCs. Furthermore, the RNA transcriptome sequencing data for the SMCs isolated from idiopathic PAH (IPAH) patients (GSE144274) were validated for differentially expressed m6A regulators. Moreover, the HNRNPA2B1 levels in the lung samples from PAH patients and MCT-PAH were determined using immunohistochemistry. Results: The m6A regulators were observed to be dysregulated in PAH. HNRNPA2B1expression level was increased in the PASMCs of scRNAs and IPAH patients. The target DEGs of HNRNPA2B1 were enriched in the regulation of muscle cell differentiation and vasculature development in PASMCs. The HNRNPA2B1 expression levels determined were consistent with the proliferation-related and collagen synthesis-related gene COL4A1. Moreover, the predicted transcription factors (TFs) foxd2/3 and NFκB could be involved in the regulation of HNRNPA2B1. HNRNPA2B1 might be regulating SMCs proliferation and phenotypic transition via rno-miR-330–3p/TGFβR3 and rno-miR-125a-3p/slc39a1. In addition, HNRNPA2B1 was observed to be highly expressed in the lung samples from MCT-PAH rat models and patients with PAH. Conclusion: In summary, the present study identified certain key functional m6A regulators that are involved in pulmonary vascular remodeling. The investigation of m6A patterns might be promising and provide biomarkers for diagnosis and treatment of PAH in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingqun Ji
- *Correspondence: Yingqun Ji, ; Qiang Li,
| | - Qiang Li
- *Correspondence: Yingqun Ji, ; Qiang Li,
| |
Collapse
|
10
|
Deng L, Han X, Wang Z, Nie X, Bian J. The Landscape of Noncoding RNA in Pulmonary Hypertension. Biomolecules 2022; 12:biom12060796. [PMID: 35740920 PMCID: PMC9220981 DOI: 10.3390/biom12060796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
The transcriptome of pulmonary hypertension (PH) is complex and highly genetically heterogeneous, with noncoding RNA transcripts playing crucial roles. The majority of RNAs in the noncoding transcriptome are long noncoding RNAs (lncRNAs) with less circular RNAs (circRNAs), which are two characteristics gaining increasing attention in the forefront of RNA research field. These noncoding transcripts (especially lncRNAs and circRNAs) exert important regulatory functions in PH and emerge as potential disease biomarkers and therapeutic targets. Recent technological advancements have established great momentum for discovery and functional characterization of ncRNAs, which include broad transcriptome sequencing such as bulk RNA-sequence, single-cell and spatial transcriptomics, and RNA-protein/RNA interactions. In this review, we summarize the current research on the classification, biogenesis, and the biological functions and molecular mechanisms of these noncoding RNAs (ncRNAs) involved in the pulmonary vascular remodeling in PH. Furthermore, we highlight the utility and challenges of using these ncRNAs as biomarkers and therapeutics in PH.
Collapse
Affiliation(s)
- Lin Deng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
| | - Xiaofeng Han
- Department of Diagnostic and Interventional Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China;
| | - Ziping Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
| | - Xiaowei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China
- Correspondence: (X.N.); (J.B.)
| | - Jinsong Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
- Correspondence: (X.N.); (J.B.)
| |
Collapse
|
11
|
Ye B, Peng X, Su D, Liu D, Huang Y, Huang Y, Pang Y. Effects of YM155 on the proliferation and apoptosis of pulmonary artery smooth muscle cells in a rat model of high pulmonary blood flow-induced pulmonary arterial hypertension. Clin Exp Hypertens 2022; 44:470-479. [PMID: 35507763 DOI: 10.1080/10641963.2022.2071919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMCs) play an important role in the occurrence and development of pulmonary arterial hypertension (PAH). The purpose of this study was to investigate the effects of survivin inhibitor YM155 on the proliferation and apoptosis of PASMCs in rats with PAH induced by high pulmonary blood flow. METHODS Thirty male Sprague-Dawley (SD) rats were randomly divided into control, model, and YM155 intervention groups. A rat model of PAH induced by high pulmonary blood flow was established, and it was confirmed by assessments of right-ventricular pressure (RVP) and right ventricular hypertrophy index (RVHI). Immunohistochemical staining and western blot analysis were used to detect the expression of survivin, and the proliferation and apoptosis of PASMCs. Lastly, the effects of in vivo treatment of YM155 were tested. RESULTS The increased expression of survivin mRNA and protein were observed in the model group, accompanied by pulmonary arteriolar wall thickening, lumen stenosis, and perivascular inflammatory cell infiltration. Elevated expression of survivin and pulmonary vascular remodeling were significantly mitigated after YM155 treatment. Specifically, the YM155 intervention group had a significantly lower PASMC proliferation rate and a higher PASMC apoptotic rate. CONCLUSION YM155 suppressed PASMC proliferation and promoted PASMC apoptosis by inhibiting survivin expression and thereby reducing pulmonary vascular remodeling in high pulmonary blood flow-induced PAH in vivo.
Collapse
Affiliation(s)
- Bingbing Ye
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Xiaofei Peng
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China.,Department of Pediatrics, Hengyang Central Hospital, Hengyang, GX, China
| | - Danyan Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Dongli Liu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yanyun Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yuqin Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yusheng Pang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| |
Collapse
|
12
|
Liu P, Zhang J, Wang Y, Shen Z, Wang C, Chen DQ, Qiu X. The Active Compounds and Therapeutic Target of Tripterygium wilfordii Hook. f. in Attenuating Proteinuria in Diabetic Nephropathy: A Review. Front Med (Lausanne) 2021; 8:747922. [PMID: 34621768 PMCID: PMC8490618 DOI: 10.3389/fmed.2021.747922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Tripterygium wilfordii Hook. f. (TWHF) is a traditional Chinese herbal medicine and widely used to treat diabetic kidney disease in China. Emerging evidences have revealed its ability to attenuate diabetic nephropathy (DN). Tripterygium wilfordii polyglycosides (TWPs), triptolide (TP), and celastrol are predominantly active compounds isolated from TWHF. The effects and molecular mechanisms of TWHF and its active compounds have been investigated in recent years. Currently, it is becoming clearer that the effects of TWHF and its active compounds involve in anti-inflammation, anti-oxidative stress, anti-fibrosis, regulating autophagy, apoptosis, and protecting podocytes effect. This review presents an overview of the current findings related to the effects and mechanisms of TWHF and its active compounds in therapies of DN, thus providing a systematic understanding of the mechanisms and therapeutic targets by which TWHF and its active compounds affect cells and tissues in vitro and in vivo.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jing Zhang
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Yun Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Zhengri Shen
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chen Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Xinping Qiu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Song R, Lei S, Yang S, Wu SJ. LncRNA PAXIP1-AS1 fosters the pathogenesis of pulmonary arterial hypertension via ETS1/WIPF1/RhoA axis. J Cell Mol Med 2021; 25:7321-7334. [PMID: 34245091 PMCID: PMC8335679 DOI: 10.1111/jcmm.16761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life‐threatening disease featured with elevated pulmonary vascular resistance and progressive pulmonary vascular remodelling. It has been demonstrated that lncRNA PAXIP1‐AS1 could influence the transcriptome in PAH. However, the exact molecular mechanism of PAXIP1‐AS1 in PAH pathogenesis remains largely unknown. In this study, in vivo rat PAH model was established by monocrotaline (MCT) induction and hypoxia was used to induce in vitro PAH model using human pulmonary artery smooth muscle cells (hPASMCs). Histological examinations including H&E, Masson's trichrome staining and immunohistochemistry were subjected to evaluate the pathological changes of lung tissues. Expression patterns of PAXIP1‐AS1 and RhoA were assessed using qRT‐PCR and Western blotting, respectively. CCK‐8, BrdU assay and immunofluorescence of Ki67 were performed to measure the cell proliferation. Wound healing and transwell assays were employed to evaluate the capacity of cell migration. Dual‐luciferase reporter assay, co‐immunoprecipitation, RIP and CHIP assays were employed to verify the PAXIP1‐AS1/ETS1/WIPF1/RhoA regulatory network. It was found that the expression of PAXIP1‐AS1 and RhoA was remarkably higher in both lung tissues and serum of MCT‐induced PAH rats, as well as in hypoxia‐induced hPASMCs. PAXIP1‐AS1 knockdown remarkably suppressed hypoxia‐induced cell viability and migration of hPASMCs. PAXIP1‐AS1 positively regulated WIPF1 via recruiting transcriptional factor ETS1, of which knockdown reversed PAXIP1‐AS1‐mediated biological functions. Co‐immunoprecipitation validated the WIPF1/RhoA interaction. In vivo experiments further revealed the role of PAXIP1‐AS1 in PAH pathogenesis. In summary, lncRNA PAXIP1‐AS1 promoted cell viability and migration of hPASMCs via ETS1/WIPF1/RhoA, which might provide a potential therapeutic target for PAH treatment.
Collapse
Affiliation(s)
- Rong Song
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Si Lei
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Song Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shang-Jie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|