1
|
Gao C, Iles M, Larvin H, Bishop DT, Bunce D, Ide M, Sun F, Pavitt S, Wu J, Kang J. Genome-wide association studies on periodontitis: A systematic review. PLoS One 2024; 19:e0306983. [PMID: 39240858 PMCID: PMC11379206 DOI: 10.1371/journal.pone.0306983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 09/08/2024] Open
Abstract
OBJECTIVES This study aims to systematically review the existing literature and critically appraise the evidence of genome-wide association studies (GWAS) on periodontitis. This study also aims to synthesise the findings of genetic risk variants of periodontitis from included GWAS. METHODS A systematic search was conducted on PubMed, GWAS Catalog, MEDLINE, GLOBAL HEALTH and EMBASE via Ovid for GWAS on periodontitis. Only studies exploring single-nucleotide polymorphisms(SNPs) associated with periodontitis were eligible for inclusion. The quality of the GWAS was assessed using the Q-genie tool. Information such as study population, ethnicity, genomic data source, phenotypic characteristics(definition of periodontitis), and GWAS methods(quality control, analysis stages) were extracted. SNPs that reached conventional or suggestive GWAS significance level(5e-8 or 5e-06) were extracted and synthesized. RESULTS A total of 15 good-quality GWAS on periodontitis were included (Q-genie scores ranged from 38-50). There were huge heterogeneities among studies. There were 11 identified risk SNPs (rs242016, rs242014, rs10491972, rs242002, rs2978951, rs2738058, rs4284742, rs729876, rs149133391, rs1537415, rs12461706) at conventional GWAS significant level (p<5x10-8), and 41 at suggestive level (p<5x10-6), but no common SNPs were found between studies. Three SNPs (rs4284742 [G], rs11084095 [A], rs12461706 [T]) from three large studies were from the same gene region-SIGLEC5. CONCLUSION GWAS of periodontitis showed high heterogeneity of methodology used and provided limited SNPs statistics, making identifying reliable risk SNPs challenging. A clear guidance in dental research with requirement of expectation to make GWAS statistics available to other investigators are needed.
Collapse
Affiliation(s)
- Chenyi Gao
- School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Mark Iles
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Harriet Larvin
- Wolfson Institute of Population Health, Queen Mary, University of London, London, United Kingdom
| | - David Timothy Bishop
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - David Bunce
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Mark Ide
- Centre for Host Microbial Interactions, Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Fanyiwen Sun
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Susan Pavitt
- School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Jianhua Wu
- Wolfson Institute of Population Health, Queen Mary, University of London, London, United Kingdom
| | - Jing Kang
- Oral Clinical Research Unit, Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Fujihara C, Hafiyyah OA, Murakami S. Identification of disease-associate variants of aggressive periodontitis using genome-wide association studies. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:357-364. [PMID: 37860752 PMCID: PMC10582758 DOI: 10.1016/j.jdsr.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
Aggressive periodontitis (AgP), Stage III or IV and Grade C according to the new periodontitis classification, is characterized by the rapid destruction of periodontal tissues in the systemically healthy population and often causes premature tooth loss. The presence of familial aggregation suggests the involvement of genetic factors in the pathogenesis. However, the genes associated with the onset and progression of the disease and details of its pathogenesis have not yet been fully identified. In recent years, the genome-wide approach (GWAS), a comprehensive genome analysis method using bioinformatics, has been used to search for disease-related genes, and the results have been applied in genomic medicine for various diseases, such as cancer. In this review, we discuss GWAS in the context of AgP. First, we introduce the relationship between single-nucleotide polymorphisms (SNPs) and susceptibility to diseases and how GWAS is useful for searching disease-related SNPs. Furthermore, we summarize the recent findings of disease-related genes using GWAS on AgP inside and outside Japan and a possible mechanism of the pathogenesis of AgP based on available literature and our research findings. These findings will lead to advancements in the prevention, prognosis, and treatment of AgP.
Collapse
Affiliation(s)
- Chiharu Fujihara
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Osa Amila Hafiyyah
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
3
|
Next-Generation Examination, Diagnosis, and Personalized Medicine in Periodontal Disease. J Pers Med 2022; 12:jpm12101743. [PMID: 36294882 PMCID: PMC9605396 DOI: 10.3390/jpm12101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023] Open
Abstract
Periodontal disease, a major cause of tooth loss, is an infectious disease caused by bacteria with the additional aspect of being a noncommunicable disease closely related to lifestyle. Tissue destruction based on chronic inflammation is influenced by host and environmental factors. The treatment of periodontal disease varies according to the condition of each individual patient. Although guidelines provide standardized treatment, optimization is difficult because of the wide range of treatment options and variations in the ideas and skills of the treating practitioner. The new medical concepts of “precision medicine” and “personalized medicine” can provide more predictive treatment than conventional methods by stratifying patients in detail and prescribing treatment methods accordingly. This requires a new diagnostic system that integrates information on individual patient backgrounds (biomarkers, genetics, environment, and lifestyle) with conventional medical examination information. Currently, various biomarkers and other new examination indices are being investigated, and studies on periodontal disease-related genes and the complexity of oral bacteria are underway. This review discusses the possibilities and future challenges of precision periodontics and describes the new generation of laboratory methods and advanced periodontal disease treatment approaches as the basis for this new field.
Collapse
|
4
|
Yang T, Cheng B, Noble JM, Reitz C, Papapanou PN. Replication of gene polymorphisms associated with periodontitis-related traits in an elderly cohort: the Washington Heights/Inwood Community Aging Project Ancillary Study of Oral Health. J Clin Periodontol 2022; 49:414-427. [PMID: 35179257 PMCID: PMC9012699 DOI: 10.1111/jcpe.13605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
Abstract
AIM We sought to replicate findings from published genome-wide association studies (GWAS), linking specific candidate gene loci with periodontitis-related clinical/microbial traits. MATERIALS AND METHODS In the published GWAS, a total of 2196 single nucleotide polymorphisms associated with periodontitis-related traits at a p ≤ 5 × 10-6 and mapped to 136 gene loci. The replication cohort included 1124 individuals, 65-98 years old (67% female, 45% Hispanic, 30% Black, 23% White) with available genome-wide genotypes and full-mouth periodontal status. Microbial profiles using checkerboard DNA-DNA hybridization and 16SrRNA sequencing were available from 912 and 739 participants, respectively. RESULTS Using gene-specific p-values after linkage disequilibrium pruning, the following gene/phenotype associations replicated successfully: CLEC19A with edentulism and %teeth with pocket depth (PD) ≥4 mm; IL37, HPVC1, TRPS1, ABHD12B, LDLRAD4 (C180rF1), TGM3, and GRK5 with %teeth with PD ≥4 mm; DAB2IP with presence of PD ≥6 mm; KIAA1715(LNPK), ROBO2, RAB28, LINC01017, NELL1, LDLRAD4(C18orF1), and CRYBB2P1 with %teeth with clinical attachment level (CAL) ≥3 mm; RUNX2 and LAMA2 with %teeth with CAL ≥5 mm; and KIAA1715(LNPK) with high colonization by Aggregatibacter actinomycetemcomitans. In addition, CLEC19A, IQSEC1, and EMR1 associated with microbial abundance based on checkerboard data, LBP and NCR2 with abundance based on sequencing data, and NCR2 with microbial diversity based on sequencing data. CONCLUSIONS Several gene loci identified in published GWAS as associated with periodontitis-related phenotypes replicated successfully in an elderly cohort.
Collapse
Affiliation(s)
- Teresa Yang
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York, USA
| | - Bin Cheng
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - James M Noble
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, GH Sergievsky Center and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, GH Sergievsky Center and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Panos N Papapanou
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
5
|
Cheng X, Shi J, Jia Z, Ha P, Soo C, Ting K, James AW, Shi B, Zhang X. NELL-1 in Genome-Wide Association Studies across Human Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:395-405. [PMID: 34890556 PMCID: PMC8895422 DOI: 10.1016/j.ajpath.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023]
Abstract
Neural epidermal growth factor-like (EGFL)-like protein (NELL)-1 is a potent and key osteogenic factor in the development and regeneration of skeletal tissues. Intriguingly, accumulative data from genome-wide association studies (GWASs) have started unveiling potential broader roles of NELL-1 beyond its functions in bone and cartilage. With exploration of the genetic variants of the entire genome in large-scale disease cohorts, GWASs have been used for establishing the connection between specific single-nucleotide polymorphisms of NELL1, in addition to osteoporosis, metabolic diseases, inflammatory conditions, neuropsychiatric diseases, neurodegenerative disorders, and malignant tumors. This review summarizes the findings from GWASs on the manifestation, significance level, implications on function, and correlation of specific NELL1 single-nucleotide polymorphisms in various disorders in humans. By offering a unique and comprehensive correlation between genetic variants and plausible functions of NELL1 in GWASs, this review illustrates the wide range of potential effects of a single gene on the pathogenesis of multiple disorders in humans.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and the Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Jiayu Shi
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and the Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pin Ha
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California-Los Angeles, Los Angeles, California
| | - Kang Ting
- Forsyth Institute, affiliate of the Harvard School of Dental Medicine, Boston, Massachusetts
| | - Aaron W James
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bing Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and the Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California.
| |
Collapse
|
6
|
Wang YB, Yan SY, Li XH, Huang Q, Luo LS, Wang YY, Huang J, Jin YH, Zeng XT. Causal Association Between Periodontitis and Type 2 Diabetes: A Bidirectional Two-Sample Mendelian Randomization Analysis. Front Genet 2022; 12:792396. [PMID: 35082834 PMCID: PMC8784400 DOI: 10.3389/fgene.2021.792396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Previous observational studies have reported a bidirectional association between periodontitis and type 2 diabetes, but the causality of these relationships remains unestablished. We clarified the bidirectional causal association through two-sample Mendelian randomization (MR). Methods: We obtained summary-level data for periodontitis and type 2 diabetes from several published large-scale genome-wide association studies (GWAS) of individuals of European ancestry. For the casual effect of periodontitis on type 2 diabetes, we used five independent single-nucleotide polymorphisms (SNPs) specific to periodontitis from three GWAS. The summary statistics for the associations of exposure-related SNPs with type 2 diabetes were drawn from the GWAS in the Diabetes Genetics Replication and Meta-analysis (DIAGRAM) consortium and the FinnGen consortium R5 release, respectively. For the reversed causal inference, 132 and 49 SNPs associated with type 2 diabetes from the DIAGRAM consortium and the FinnGen consortium R5 release were included, and the summary-level statistics were obtained from the Gene-Lifestyle Interactions in Dental Endpoints consortium. Multiple approaches of MR were carried out. Results: Periodontitis was not causally related with the risk of type 2 diabetes (all p > 0.05). No causal effect of type 2 diabetes on periodontitis was found (all p > 0.05). Estimates were consistent across multiple MR analyses. Conclusion: This study based on genetic data does not support a bidirectional causal association between periodontitis and type 2 diabetes.
Collapse
Affiliation(s)
- Yong-Bo Wang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Si-Yu Yan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xu-Hui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li-Sha Luo
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yun-Yun Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying-Hui Jin
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Complementary Experimental Methods in Genetics Open Up New Avenues of Research to Elucidate the Pathogenesis of Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:209-227. [DOI: 10.1007/978-3-030-96881-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Shah PD, Schooling CM, Borrell LN. Impact of Liability to Periodontitis on Glycemic Control and Type II Diabetes Risk: A Mendelian Randomization Study. Front Genet 2021; 12:767577. [PMID: 34899852 PMCID: PMC8660586 DOI: 10.3389/fgene.2021.767577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
While the association of periodontitis with Type II diabetes (T2DM) is well-established, the causal relationship remains uncertain. We examined the causal association of periodontitis with glycemic traits (HbA1c, fasting glucose, and fasting insulin) and T2DM using Mendelian randomization (MR) taking advantage of large genome-wide association studies of European and East Asian adults, i.e., the UK Biobank (n ≈ 350,000) (HbA1c), trans-ancestral MAGIC (HbA1c, fasting glucose, and insulin), and DIAMANTE (74,124 cases/824,006 controls), and AGEN for T2DM in Europeans and East Asians, respectively. Periodontitis was instrumented using single-nucleotide polymorphisms (SNPs), strongly and independently predicting liability to periodontitis in each ancestry group. SNP-specific Wald estimates were combined using inverse variance weighting. Sensitivity analyses were performed using the weighted median and MR-Egger with meta-analysis of MR estimates for Europeans and East Asians. Genetically instrumented liability to periodontitis was not associated with glycemic traits or T2DM in either ancestry or when ancestry specific estimates were meta-analyzed. Our findings do not support a causal association of liability to periodontitis with glycemic traits or T2DM. However, further research is required confirming these findings among other racial/ethnic groups, especially groups who carry a heavy burden of both periodontitis and T2DM.
Collapse
Affiliation(s)
- Parth D Shah
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY, United States
| | - C M Schooling
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY, United States
| | - Luisa N Borrell
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY, United States
| |
Collapse
|
9
|
Tegelberg P, Leppilahti JM, Ylöstalo A, Tervonen T, Kettunen J, Suominen AL, Ylöstalo P. Genome-wide association study of periodontal pocketing in Finnish adults. BMC Oral Health 2021; 21:611. [PMID: 34847907 PMCID: PMC8638186 DOI: 10.1186/s12903-021-01964-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Background A genome‐wide association study is an analytical approach that investigates whether genetic variants across the whole genome contribute to disease progression. The aim of this study was to investigate genome-wide associations of periodontal condition measured as deepened periodontal pockets (≥ 4 mm) in Finnish adults. Methods This study was based on the data of the national Health 2000 Survey (BRIF8901) in Finland and the Northern Finland Birth Cohort 1966 Study totalling 3,245 individuals. The genotype data were analyzed using the SNPTEST v.2.4.1. The number of teeth with deepened periodontal pockets (≥ 4 mm deep) was employed as a continuous response variable in additive regression analyses performed separately for the two studies and the results were combined in a meta-analysis applying a fixed effects model. Results Genome-wide significant associations with the number of teeth with ≥ 4 mm deep pockets were not found at the p-level of < 5 × 10−8, while in total 17 loci reached the p-level of 5 × 10−6. Of the top hits, SNP rs4444613 in chromosome 20 showed the strongest association (p = 1.35 × 10−7). Conclusion No statistically significant genome-wide associations with deepened periodontal pockets were found in this study.
Collapse
Affiliation(s)
- Paula Tegelberg
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | - Atte Ylöstalo
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland.,Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tellervo Tervonen
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,National Institute for Health and Welfare, Helsinki, Finland
| | - Anna Liisa Suominen
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Oral and Maxillofacial Surgery, Kuopio University Hospital, Kuopio, Finland.,Department of Public Health and Welfare, National Institute for Health and Welfare, Helsinki, Finland
| | - Pekka Ylöstalo
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Oral and Maxillofacial Surgery, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
10
|
de Coo A, Cruz R, Quintela I, Herrera D, Sanz M, Diz P, Rodríguez Grandío S, Vallcorba N, Ramos I, Oteo A, Serrano C, Esmatges A, Enrile F, Mateos L, García R, Álvarez-Novoa P, Noguerol B, Zabalegui I, Blanco-Moreno J, Alonso Á, Lorenzo R, Carracedo A, Blanco J. Genome-wide association study of stage III/IV grade C periodontitis (former aggressive periodontitis) in a Spanish population. J Clin Periodontol 2021; 48:896-906. [PMID: 33745150 DOI: 10.1111/jcpe.13460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/18/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
AIM To identify loci associated with stages III/IV, grade C periodontitis (PIII/IV-C) through a genome-wide association study (GWAS). MATERIALS AND METHODS 441 Caucasian Spanish PIII/IV-C cases from the SEPA Network of Research Clinics and 1141 controls from the Banco Nacional de ADN were genotyped with "Axiom Spain Biobank Array," which contains 757836 markers, including rare and low-frequency Spanish variants. The analysis of the individual association and subsequently the gene-level analysis with Sequence Kernel Association Test (SKAT) were carried out adjusting for age, sex and PC1 covariates. Pathway Analysis was additionally performed with Ingenuity Pathway Analysis (IPA) software on the top associated genes. RESULTS In the individual analyses, no genome-wide significant signals were detected. However, 8 SNPs of 8 loci reached suggestive evidence of association with PIII/IV-C, including FAT3 rs35709256, CSNK1G2 rs4807188, MYH13 rs2074872, CNTN2 rs116611488, ANTXR1 rs4854545, 8p23.2 rs78672540, ANGPT1 rs13439823 and PLEC rs11993287 (p < 5 × 10-6 ). SKAT analysis identified other interesting signals at CNTN2, FBXO44, AP1M2, RSPO4, KRI1, BPIFB1 and INMT, although their probability does not exceed the multiple-test correction. IPA indicated significant enrichment of pathways related to cAMP, IL-2, CD28, VDR/RXR and PI3K/Akt. CONCLUSIONS: GWAS found no SNPs significantly associated with PIII/IV-C.
Collapse
Affiliation(s)
- Alicia de Coo
- Grupo de Medicina Xenómica, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,CIBERER-Instituto de Salud Carlos III, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares - Instituto de Salud Carlos III (CeGen-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, Madrid, Spain.,SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, Madrid, Spain
| | - Pedro Diz
- Grupo de Investigación en Odontología Médico-Quirúrgica (OMEQUI), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Segundo Rodríguez Grandío
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Nuria Vallcorba
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Isabel Ramos
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Alfonso Oteo
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Cristina Serrano
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Alejandro Esmatges
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Francisco Enrile
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Leopoldo Mateos
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Roberto García
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Pablo Álvarez-Novoa
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Blas Noguerol
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Ion Zabalegui
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - José Blanco-Moreno
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Ángel Alonso
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Ramón Lorenzo
- SEPA Network of Research Clinics (Red de Clínicas de Investigación de la Sociedad Española de Periodoncia y Osteointegración, SEPA), Madrid, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenómica, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,CIBERER-Instituto de Salud Carlos III, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares - Instituto de Salud Carlos III (CeGen-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica- SERGAS, Santiago de Compostela, Spain
| | - Juan Blanco
- Grupo de Investigación en Odontología Médico-Quirúrgica (OMEQUI), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
11
|
Sayad A, Gholami L, Mirzajani S, Omrani MD, Ghafouri-Fard S, Taheri M. Genetic susceptibility for periodontitis with special focus on immune-related genes: A concise review. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Bell S, Gibson JT, Harshfield EL, Markus HS. Is periodontitis a risk factor for ischaemic stroke, coronary artery disease and subclinical atherosclerosis? A Mendelian randomization study. Atherosclerosis 2020; 313:111-117. [PMID: 33038664 PMCID: PMC7660116 DOI: 10.1016/j.atherosclerosis.2020.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Observational studies have reported an association between periodontitis and cardiovascular disease but whether this association is causal is uncertain. We therefore used Mendelian randomization to test whether periodontitis is causally associated with stroke, coronary artery disease, or subclinical atherosclerosis. METHODS A two-sample Mendelian randomization analysis was carried out using five single nucleotide polymorphisms previously associated with periodontitis in genome-wide association studies. Summary data were drawn from MEGASTROKE and combined with de novo analyses of UK Biobank for stroke and its major subtypes (up to 44,221 cases, 739,957 controls) and CARDIoGRAMplusC4D and UK Biobank for coronary artery disease (122,733 cases, 424,528 controls). We used existing data on carotid intima-media thickness in UK Biobank as a marker of subclinical atherosclerosis (N = 22,179). Causal estimates were obtained using inverse-variance weighted Mendelian randomization. Sensitivity analyses were performed using weighted median and MR-Egger approaches. RESULTS No association was found between periodontitis and any stroke (odds ratio [OR] per doubling in the odds of periodontitis 0.99, 95% confidence interval [CI] 0.97 to 1.02), ischaemic stroke (OR 1.00, 95% CI 0.97 to 1.03) or its major subtypes (p > 0.4), or coronary artery disease (OR 1.01, 95% CI 0.99 to 1.03). Similarly, we found no association for periodontitis and subclinical atherosclerosis (β -0.002, 95% CI -0.004 to 0.001). These results were consistent across a series of sensitivity analyses. CONCLUSIONS These findings provide no robust evidence for a causal relationship between periodontitis and stroke or coronary artery disease. This suggests that associations reported in observational studies may represent confounding.
Collapse
Affiliation(s)
- Steven Bell
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Joel T Gibson
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eric L Harshfield
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Kim HD, Kim S, Jeon S, Kim SJ, Cho HJ, Choi YN. Diagnostic and Prognostic ability of salivary MMP-9 and S100A8 for periodontitis. J Clin Periodontol 2020; 47:1191-1200. [PMID: 32744384 DOI: 10.1111/jcpe.13349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Salivary diagnostic using matrix metalloproteinase (MMP) and S100 for periodontitis is a promising issue. However, its prognostic effect is still unclear. This study aimed to evaluate the prognostic ability of salivary MMP-9 and S100A8 for periodontitis through non-surgical periodontitis treatment clinical trial. MATERIALS AND METHODS Total 149 participants, 99 periodontitis and 50 healthy, were recruited. Among 99 non-surgical periodontitis treatment participants, 74 participants were revisited after three months. Periodontitis was classified as stage II-IV of new classification of periodontitis proposed at 2018. Enzyme-linked immunosorbent assay kit was used to quantify salivary MMP-9 and S100A8. Receiver operating characteristic curve was applied for diagnostic ability. Paired t test was applied for prognostic ability evaluating changes in salivary markers between pre- and post-treatment. RESULTS Salivary MMP-9 and S100A8 were associated with periodontitis (p < .05). The screening ability of algorithm using salivary MMP-9 and S100A8 for periodontitis was 0.86 (p < .05). After treatment, reduction rate of salivary S100A8 and MMP-9 was 83.7% and 23.5%, respectively, (p < .05): only salivary S100A8 was superior compared to clinical parameters. CONCLUSION Algorithm using salivary MMP-9 and S100A8 showed high diagnostic power for periodontitis. Both salivary S100A8 and MMP-9 showed prognostic ability for periodontitis, but S100A8 was better.
Collapse
Affiliation(s)
- Hyun-Duck Kim
- Department of Preventive and Social Dentistry, School of Dentistry, Seoul National University, Seoul, Korea.,Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sungtae Kim
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea
| | - Sumin Jeon
- Department of Microbiology and Immunity, School of Dentistry, Seoul National University, Seoul, Korea
| | - Seon-Jip Kim
- Department of Preventive and Social Dentistry, School of Dentistry, Seoul National University, Seoul, Korea
| | - Hyun-Jae Cho
- Department of Preventive and Social Dentistry, School of Dentistry, Seoul National University, Seoul, Korea.,Dental Research Institute, Seoul National University, Seoul, Korea
| | - Young-Nim Choi
- Dental Research Institute, Seoul National University, Seoul, Korea.,Department of Microbiology and Immunity, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
14
|
Papapanou PN, Park H, Cheng B, Kokaras A, Paster B, Burkett S, Watson CWM, Annavajhala MK, Uhlemann AC, Noble JM. Subgingival microbiome and clinical periodontal status in an elderly cohort: The WHICAP ancillary study of oral health. J Periodontol 2020; 91 Suppl 1:S56-S67. [PMID: 32533776 DOI: 10.1002/jper.20-0194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is a sparsity of data describing the periodontal microbiome in elderly individuals. We analyzed the association of subgingival bacterial profiles and clinical periodontal status in a cohort of participants in the Washington Heights-Inwood Columbia Aging Project (WHICAP). METHODS Dentate individuals underwent a full-mouth periodontal examination at six sites/tooth. Up to four subgingival plaque samples per person, each obtained from the mesio-lingual site of the most posterior tooth in each quadrant, were harvested and pooled. Periodontal status was classified according to the Centers for Disease Control/American Academy of Periodontology (CDC/AAP) criteria as well as based on the percentage of teeth/person with pockets ≥4 mm deep. Bacterial DNA was isolated and was processed and analyzed using Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS). Differential abundance across the periodontal phenotypes was calculated using the R package DESeq2. α- and β-diversity metrics were calculated using DADA2-based clustering. RESULTS The mean age of the 739 participants was 74.5 years, and 32% were male. Several taxa including Sneathia amnii-like sp., Peptoniphilaceae [G-1] bacterium HMT 113, Porphyromonas gingivalis, Fretibacterium fastidiosum, Filifactor alocis, and Saccharibacteria (TM7) [G-1] bacterium HMT 346 were more abundant with increasing severity of periodontitis. In contrast, species such as Veillonella parvula, Veillonella dispar, Rothia dentocariosa, and Lautropia mirabilis were more abundant in health. Microbial diversity increased in parallel with the severity and extent of periodontitis. CONCLUSIONS The observed subgingival bacterial patterns in these elderly individuals corroborated corresponding findings in younger cohorts and were consistent with the concept that periodontitis is associated with perturbations in the resident microbiome.
Collapse
Affiliation(s)
- Panos N Papapanou
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, New York, NY
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY
| | - Bin Cheng
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | | | | | - Sandra Burkett
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, New York, NY
| | - Caitlin Wei-Ming Watson
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, GH Sergievsky Center, New York, NY
| | - Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY
| | - James M Noble
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, GH Sergievsky Center, New York, NY.,Department of Neurology, Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
15
|
Zheng Y, Chai L, Fan Y, Song YQ, Zee KY, Tu WW, Jin L, Leung WK. Th2 cell regulatory and effector molecules single nucleotide polymorphisms and periodontitis. J Leukoc Biol 2020; 108:1641-1654. [PMID: 32745291 DOI: 10.1002/jlb.4ma0720-698rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 11/07/2022] Open
Abstract
To investigate the association between T helper 2 (Th2) cell regulatory and effector molecules' genetic polymorphisms and periodontitis. Single nucleotide polymorphisms (SNPs) of 11 Th2 cell regulatory or effector molecules genes (CD28, CTLA4, IL4, IL5, IL6, IL9, IL10, IL13, IL4R, GATA3, STAT6, and rs1537415; total 130 SNPs) were studied in Chinese nonsmokers (163 periodontitis-free controls, 141 periodontitis patients) using Sequenom iPlex assays. SNPs potentially associated with periodontitis (adjusted allelic P < 0.1) in this cross-sectional study were further investigated via meta-analysis. Allele G of rs4553808 in promoter of CTLA4 was more frequently detected in periodontitis than controls (P < 0.005), but did not remain significant after age and gender adjustment. Haplotype (GTT) in a block of three CTLA4 SNPs (rs4553808, rs16840252, rs5742909) was significantly associated with periodontitis. Meta-analysis of SNPs identified indicated allele T of CTLA4 rs5742909 (3 studies; 461 control, 369 periodontitis) and allele G of IL6 rs1800796 (18 studies; 2760 control, 2442 periodontitis) were significantly associated with periodontitis (OR = 1.44 and OR = 1.30, respectively). Within limitations of this study, a haplotype of CTLA4 concerning Th2 cell regulation, may be associated with periodontitis in Chinese nonsmokers followed. Meta-analysis indicated rs5742909 of CTLA4 and rs1800796 of IL6 appeared significantly associated with periodontitis.
Collapse
Affiliation(s)
- Ying Zheng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lei Chai
- Rytime Dental Hospital, Chengdu, Sichuan, China
| | - Yanhui Fan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Current address: Phil Rivers Technology, Nanshan District, Haitian Second Road, Shenzhen, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kwan-Yat Zee
- Thornleigh Periodontal Clinic, Thornleigh, New South Wales, Australia
| | - Wen Wei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
An Evidence-Based Update on the Molecular Mechanisms Underlying Periodontal Diseases. Int J Mol Sci 2020; 21:ijms21113829. [PMID: 32481582 PMCID: PMC7312805 DOI: 10.3390/ijms21113829] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Several investigators have reported about the intricate molecular mechanism underlying periodontal diseases (PD). Nevertheless, the role of specific genes, cells, or cellular mechanisms involved in the pathogenesis of periodontitis are still unclear. Although periodontitis is one of the most prevalent oral diseases globally, there are no pre-diagnostic markers or therapeutic targets available for such inflammatory lesions. A pivotal role is played by pro- and anti-inflammatory markers in modulating pathophysiological and physiological processes in repairing damaged tissues. In addition, effects on osteoimmunology is ever evolving due to the ongoing research in understanding the molecular mechanism lying beneath periodontal diseases. The aim of the current review is to deliver an evidence-based update on the molecular mechanism of periodontitis with a particular focus on recent developments. Reports regarding the molecular mechanism of these diseases have revealed unforeseen results indicative of the fact that significant advances have been made to the periodontal medicine over the past decade. There is integrated hypothesis-driven research going on. Although a wide picture of association of periodontal diseases with immune response has been further clarified with present ongoing research, small parts of the puzzle remain a mystery and require further investigations.
Collapse
|
17
|
Nashef A, Matthias M, Weiss E, Loos BG, Jepsen S, van der Velde N, Uitterlinden AG, Wellmann J, Berger K, Hoffmann P, Laudes M, Lieb W, Franke A, Dommisch H, Schäfer A, Houri-Haddad Y, Iraqi FA. Translation of mouse model to human gives insights into periodontitis etiology. Sci Rep 2020; 10:4892. [PMID: 32184465 PMCID: PMC7078197 DOI: 10.1038/s41598-020-61819-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/03/2020] [Indexed: 01/16/2023] Open
Abstract
To suggest candidate genes involved in periodontitis, we combined gene expression data of periodontal biopsies from Collaborative Cross (CC) mouse lines, with previous reported quantitative trait loci (QTL) in mouse and with human genome-wide association studies (GWAS) associated with periodontitis. Periodontal samples from two susceptible, two resistant and two lines that showed bone formation after periodontal infection were collected during infection and naïve status. Differential expressed genes (DEGs) were analyzed in a case-control and case-only design. After infection, eleven protein-coding genes were significantly stronger expressed in resistant CC lines compared to susceptible ones. Of these, the most upregulated genes were MMP20 (P = 0.001), RSPO4 (P = 0.032), CALB1 (P = 1.06×10-4), and AMTN (P = 0.05). In addition, human orthologous of candidate genes were tested for their association in a case-controls samples of aggressive (AgP) and chronic (CP) periodontitis (5,095 cases, 9,908 controls). In this analysis, variants at two loci, TTLL11/PTGS1 (rs9695213, P = 5.77×10-5) and RNASE2 (rs2771342, P = 2.84×10-5) suggested association with both AgP and CP. In the association analysis with AgP only, the most significant associations were located at the HLA loci HLA-DQH1 (rs9271850, P = 2.52×10-14) and HLA-DPA1 (rs17214512, P = 5.14×10-5). This study demonstrates the utility of the CC RIL populations as a suitable model to investigate the mechanism of periodontal disease.
Collapse
Affiliation(s)
- Aysar Nashef
- Department of Prosthodontics, Dental school, The Hebrew University, Hadassah Jerusalem, Israel
- Department of Oral and Maxillofacial surgery, Poriya Medical center, Poriya, Israel
- Department of Clinical. Microbiology and Immunology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Munz Matthias
- Department of Periodontology and Synoptic Medicine, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Ervin Weiss
- School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Bruno G Loos
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Nathalie van der Velde
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine section of Geriatrics, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jürgen Wellmann
- Institute of Epidemiology and Social Medicine, University Münster, Münster, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University Münster, Münster, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | | | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Berlin, Germany
| | - Henrik Dommisch
- Department of Oral and Maxillofacial surgery, Poriya Medical center, Poriya, Israel
| | - Arne Schäfer
- Department of Periodontology and Synoptic Medicine, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany.
- Institute for Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany.
| | - Yael Houri-Haddad
- Department of Prosthodontics, Dental school, The Hebrew University, Hadassah Jerusalem, Israel.
| | - Fuad A Iraqi
- Department of Clinical. Microbiology and Immunology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
18
|
Li W, Zheng Q, Meng H, Chen D. Integration of genome-wide association study and expression quantitative trait loci data identifies AIM2 as a risk gene of periodontitis. J Clin Periodontol 2020; 47:583-593. [PMID: 32031269 DOI: 10.1111/jcpe.13268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
AIM To identify risk variants associated with gene expression in peripheral blood and to identify genes whose expression change may contribute to the susceptibility to periodontitis. MATERIAL AND METHODS We systematically integrated the genetic associations from a recent large-scale periodontitis GWAS and blood expression quantitative trait loci (eQTL) data using Sherlock, a Bayesian statistical framework. We then validated the potential causal genes in independent gene expression data sets. Gene co-expression analysis was used to explore the functional relationship for the identified causal genes. RESULTS Sherlock analysis identified 10 genes (rs7403881 for MT1L, rs12459542 for SIGLEC5, rs12459542 for SIGLEC14, rs6680386 for S100A12, rs10489524 for TRIM33, rs11962642 for HIST1H3E, rs2814770 for AIM2, rs7593959 for FASTKD2, rs10416904 for PKN1, and rs10508204 for WDR37) whose expression may influence periodontitis. Among these genes, AIM2 was consistent significantly upregulated in periodontium of periodontitis patients across four data sets. The cis-eQTL (rs2814770, ~16 kb upstream of AIM2) showed significant association with AIM2 (p = 6.63 × 10-6 ) and suggestive association with periodontitis (p = 7.52 × 10-4 ). We also validated the significant association between rs2814770 and AIM2 expression in independent expression data set. Pathway analysis revealed that genes co-expressed with AIM2 were significantly enriched in immune- and inflammation-related pathways. CONCLUSION Our findings implicate that AIM2 is a susceptibility gene, expression of which in gingiva may influence periodontitis risk. Further functional investigation of AIM2 may provide new insight for periodontitis pathogenesis.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qiwen Zheng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Huanxin Meng
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
19
|
Abstract
In this review we critically summarize the evidence base and the progress to date regarding the genomic basis of periodontal disease and tooth morbidity (ie, dental caries and tooth loss), and discuss future applications and research directions in the context of precision oral health and care. Evidence for these oral/dental traits from genome-wide association studies first emerged less than a decade ago. Basic and translational research activities in this domain are now under way by multiple groups around the world. Key departure points in the oral health genomics discourse are: (a) some heritable variation exists for periodontal and dental diseases; (b) the environmental component (eg, social determinants of health and behavioral risk factors) has a major influence on the population distribution but probably interacts with factors of innate susceptibility at the person-level; (c) sizeable, multi-ethnic, well-characterized samples or cohorts with high-quality measures on oral health outcomes and genomics information are required to make decisive discoveries; (d) challenges remain in the measurement of oral health and disease, with current periodontitis and dental caries traits capturing only a part of the health-disease continuum, and are little or not informed by the underlying biology; (e) the substantial individual heterogeneity that exists in the clinical presentation and lifetime trajectory of oral disease can be identified and leveraged in a precision medicine framework or, if unappreciated, can hamper translational efforts. In this review we discuss how composite or biologically informed traits may offer improvements over clinically defined ones for the genomic interrogation of oral diseases. We demonstrate the utility of the results of genome-wide association studies for the development and testing of a genetic risk score for severe periodontitis. We conclude that exciting opportunities lie ahead for improvements in the oral health of individual patients and populations via advances in our understanding of the genomic basis of oral health and disease. The pace of new discoveries and their equitable translation to practice will largely depend on investments in the education and training of the oral health care workforce, basic and population research, and sustained collaborative efforts..
Collapse
Affiliation(s)
- Thiago Morelli
- Department of PeriodontologySchool of DentistryUniversity of North Carolina at Chapel HillChapel HillNorth Carolina, USA
| | - Cary S. Agler
- Department of Oral and Craniofacial Health SciencesSchool of DentistryUniversity of North Carolina at Chapel HillChapel HillNorth Carolina, USA
| | - Kimon Divaris
- Department of Pediatric DentistrySchool of DentistryUniversity of North Carolina at Chapel HillChapel HillNorth Carolina, USA
- Department of EpidemiologyGillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth Carolina, USA
| |
Collapse
|
20
|
Lee JH, Lee SA, Kim HD. Periodontitis and intake of thiamine, riboflavin and niacin among Korean adults. Community Dent Oral Epidemiol 2019; 48:21-31. [PMID: 31583741 DOI: 10.1111/cdoe.12496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Adequate intake of vitamin B complex could be prerequisite to health. However, few studies have been reported on the association of thiamine (vit B1 ), riboflavin (vit B2 ) and niacin (vit B3 ) with periodontal health. This study described the association between periodontal health and dietary vit B1 , vit B2 and vit B3 intake in the Korean population. METHODS A total of 12 750 adults aged over 19 years were selected for this study as a sub-sample of the national data set from Korean National Health and Nutrition Examination Survey (IV and V). Periodontitis and gingivitis were defined as Community Periodontal Index (CPI) scores of 3-4 and 1-2, respectively. Information on dietary vit B1 , vit B2 and vit B3 intake was from 24-hour dietary recall method. Multivariable complex logistic regression analyses estimated association between vit B1 , vit B2 and vit B3 intakes and periodontal health after adjusting for various potential confounders. Stratified analyses by age, sex, dyslipidemia and total energy intake were also undertaken. RESULTS The overall estimated prevalence of periodontitis (CPI 3-4) and gingivitis (CPI 1-2) was 29.9% and 46.6%, respectively. Our data showed none of the inadequate intake of vit B1 , vit B2 and B3 showed significant association with gingivitis after adjusting for potential confounders. Inadequate intake of vit B3 showed higher prevalence odds of periodontitis by 1.25 times (adjusted odds ratio = 1.25, 95% CI = 1.07-1.46). The association of vit B3 with periodontitis was stronger in females and participants aged 40-59 years. CONCLUSIONS Inadequate dietary intake of vit B3 was associated with periodontitis.
Collapse
Affiliation(s)
- Jung-Hoo Lee
- Department of Preventive and Social Dentistry, School of Dentistry, Seoul National University, Seoul, Korea
| | - Sang-Ah Lee
- Department of Preventive Medicine, School of Medicine, Kang Won National University, Chun Cheon, Korea
| | - Hyun-Duck Kim
- Department of Preventive and Social Dentistry, School of Dentistry, Seoul National University, Seoul, Korea.,Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
21
|
Janicki PK, Eyileten C, Ruiz-Velasco V, Pordzik J, Czlonkowska A, Kurkowska-Jastrzebska I, Sugino S, Imamura Kawasawa Y, Mirowska-Guzel D, Postula M. Increased burden of rare deleterious variants of the KCNQ1 gene in patients with large‑vessel ischemic stroke. Mol Med Rep 2019; 19:3263-3272. [PMID: 30816480 DOI: 10.3892/mmr.2019.9987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/30/2019] [Indexed: 11/06/2022] Open
Abstract
The impact of rare and damaging variants in genes associated with platelet function in large‑vessel ischemic stroke (LVIS) remains unknown. The aim of this study was to investigate the contribution of some of these variants to the genetic susceptibility to LVIS in Polish patients using a deep re‑sequencing of 54 selected genes, coding for proteins associated with altered platelet function. Targeted pooled re‑sequencing (Illumina HiSeq 2500) was performed on genomic DNA of 500 cases (patients with history of clinically proven diagnosis of LVIS) and 500 age‑, smoking status‑, and sex‑matched controls (no history of any type of stroke), and from the same population as patients with LVIS. After quality control and prioritization based on allele frequency and damaging probability, individual genotyping of all deleterious rare variants was performed in patients from the original cohort, and stratified to concomitant cardiac conditions differing between the study and stroke groups. We demonstrated a statistically significant increase in the number of rare and potentially damaging variants in some of the investigated genes in the LVIS pool (an increase in the genomic variants burden). Furthermore, we identified an association between LVIS and 6 rare functional and damaging variants in the Kv7.1 potassium channel gene (KCNQ1). The predicted functional properties (partial loss‑of function) for the three most damaging variants in KCNQ1 coding locus were further confirmed in vitro by analyzing the membrane potential changes in cell lines co‑transfected heterogeneously with human muscarinic type 1 receptor and wild‑type or mutated KCNQ1 cDNA constructs using fluorescence imaging plate reader. The study demonstrated an increased rare variants burden for 54 genes associated with platelet function, and identified a putative role for rare damaging variants in the KCNQ1 gene on LVIS susceptibility in the Polish population.
Collapse
Affiliation(s)
- Piotr K Janicki
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Justyna Pordzik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | - Anna Czlonkowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | | | - Shigekazu Sugino
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | - Marek Postula
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
22
|
Guzeldemir-Akcakanat E, Alkan B, Sunnetci-Akkoyunlu D, Gurel B, Balta VM, Kan B, Akgun E, Yilmaz EB, Baykal AT, Cine N, Olgac V, Gumuslu E, Savli H. Molecular signatures of chronic periodontitis in gingiva: A genomic and proteomic analysis. J Periodontol 2019; 90:663-673. [PMID: 30653263 DOI: 10.1002/jper.18-0477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND To elucidate molecular signatures of chronic periodontitis (CP) using gingival tissue samples through omics-based whole-genome transcriptomic and whole protein profiling. METHODS Gingival tissues from 18 CP and 25 controls were analyzed using gene expression microarrays to identify gene expression patterns and the proteins isolated from these samples were subjected to comparative proteomic analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The data from transcriptomics and proteomics were integrated to reveal common shared genes and proteins. RESULTS The most upregulated genes in CP compared with controls were found as MZB1, BMS1P20, IGLL1/IGLL5, TNFRSF17, ALDH1A1, KIAA0125, MMP7, PRL, MGC16025, ADAM11, and the most upregulated proteins in CP compared with controls were BPI, ITGAM, CAP37, PCM1, MMP-9, MZB1, UGTT1, PLG, RAB1B, HSP90B1. Functions of the identified genes were involved cell death/survival, DNA replication, recombination/repair, gene expression, organismal development, cell-to-cell signaling/interaction, cellular development, cellular growth/proliferation, cellular assembly/organization, cellular function/maintenance, cellular movement, B-cell development, and identified proteins were involved in protein folding, response to stress, single-organism catabolic process, regulation of peptidase activity, and negative regulation of cell death. The integration and validation analysis of the transcriptomics and proteomics data revealed two common shared genes and proteins, MZB1 and ECH1. CONCLUSION Integrative data from transcriptomics and proteomics revealed MZB1 as a potent candidate for chronic periodontitis.
Collapse
Affiliation(s)
| | - Begum Alkan
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey
| | | | - Busra Gurel
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - V Merve Balta
- Department of Periodontology, Faculty of Dentistry, Kocaeli University, Kocaeli, Turkey
| | - Bahadir Kan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Kocaeli University, Kocaeli, Turkey
| | - Emel Akgun
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Elif Busra Yilmaz
- Department of Medical Genetics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Naci Cine
- Department of Medical Genetics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Vakur Olgac
- Department of Tumor Pathology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Esen Gumuslu
- Department of Medical Genetics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Hakan Savli
- Department of Medical Genetics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
23
|
Tong H, Wei Z, Yin J, Zhang B, Zhang T, Deng C, Huang Y, Zhang N. Genetic susceptibility of common polymorphisms in NIN and SIGLEC5 to chronic periodontitis. Sci Rep 2019; 9:2088. [PMID: 30765789 PMCID: PMC6376118 DOI: 10.1038/s41598-019-38632-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic periodontitis (CP) is a common oral disease characterized by the slow progression of alveolar attachment loss and bone destruction. Genetic components have been reported to play an important role in the onset and development of CP. In the present study, we aimed to replicate the association signals of NIN and SIGLEC5 identified in previous genome-wide association studies (GWASs) of samples from Chinese Han individuals. Association signals between clinical severity indicators of CP and relevant single nucleotide polymorphisms (SNPs) were also examined. A total of 3,160 study subjects, including 1,076 CP patients and 2,084 healthy controls, were recruited. A total of 32 SNPs, including 22 from NIN and 10 from SIGLEC5, were selected for genotyping. SNPs rs12883458 (OR = 1.45, P = 1.22 × 10-5, NIN) and rs4284742 (OR = 0.75, P = 1.69 × 10-5, SIGLEC5) were significantly associated with CP disease status. rs4284742 was significantly associated with all 3 clinical severity indicators, including bleeding on probing (BOP), probing depth (PD) and clinical attachment loss (CAL). According to evidence from bioinformatics analyses, both significant SNPs, rs12883458 and rs4284742, are likely surrogates of underlying variants with true effects. In summary, our findings provide direct evidence for the association of NIN and SIGLEC5 with CP susceptibility.
Collapse
Affiliation(s)
- Hua Tong
- Department of Stomatology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Zhuliang Wei
- Department of Stomatology, Jinan Stomatological Hospital, Jinan, China
| | - Jing Yin
- Department of Stomatology, Jinan Stomatological Hospital, Jinan, China
| | - Bo Zhang
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chunni Deng
- Department of Stomatology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yali Huang
- Department of Stomatology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Nan Zhang
- Department of Stomatology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
24
|
Lee CM, Song DW, Ro WB, Kang MH, Park HM. Genome-wide association study of degenerative mitral valve disease in Maltese dogs. J Vet Sci 2019; 20:63-71. [PMID: 30541184 PMCID: PMC6351756 DOI: 10.4142/jvs.2019.20.1.63] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association study (GWAS) is a powerful tool for identifying the genetic causes of various diseases. This study was conducted to identify genomic variation in Maltese dog genomes associated with degenerative mitral valve disease (DMVD) development and to evaluate the association of each biological condition with DMVD in Maltese dogs. DNA was extracted from blood samples obtained from 48 Maltese dogs (32 with DMVD and 16 controls). Genome-wide single nucleotide polymorphism (SNP) genotyping was performed. The top 30 SNPs from each association of various conditions and genetic variations were mapped to their gene locations. A total of 173,662 loci were successfully genotyped, with an overall genotype completion rate of 99.41%. Quality control analysis excluded 46,610 of these SNPs. Manhattan plots were produced using allelic tests with various candidate clinical conditions. A significant peak of association was observed between mitral valve prolapse (MVP) and SNPs on chromosome 17. The present study revealed significant SNPs in several genes associated with cardiac function, including PDZ2, Armadillo repeat protein detected in velo-cardio-facial syndrome, catenin (cadherin-associated protein) alpha 3, low-density lipoprotein receptor class A domain containing protein 4, and sterile alpha motif domain containing protein 3. To our knowledge, this is the first study of a genetic predisposition to DMVD in Maltese dogs. Although only a limited number of cases were analyzed, these data could be the basis for further research on the genetic predisposition to MVP and DMVD in Maltese dogs.
Collapse
Affiliation(s)
- Chang-Min Lee
- Department of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Doo-Won Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05030, Korea
| | - Woong-Bin Ro
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05030, Korea
| | - Min-Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05030, Korea
| | - Hee-Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05030, Korea
| |
Collapse
|
25
|
Agler CS, Shungin D, Ferreira Zandoná AG, Schmadeke P, Basta PV, Luo J, Cantrell J, Pahel TD, Meyer BD, Shaffer JR, Schaefer AS, North KE, Divaris K. Protocols, Methods, and Tools for Genome-Wide Association Studies (GWAS) of Dental Traits. Methods Mol Biol 2019; 1922:493-509. [PMID: 30838596 PMCID: PMC6613560 DOI: 10.1007/978-1-4939-9012-2_38] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oral health and disease are known to be influenced by complex interactions between environmental (e.g., social and behavioral) factors and innate susceptibility. Although the exact contribution of genomics and other layers of "omics" to oral health is an area of active research, it is well established that the susceptibility to dental caries, periodontal disease, and other oral and craniofacial traits is substantially influenced by the human genome. A comprehensive understanding of these genomic factors is necessary for the realization of precision medicine in the oral health domain. To aid in this direction, the advent and increasing affordability of high-throughput genotyping has enabled the simultaneous interrogation of millions of genetic polymorphisms for association with oral and craniofacial traits. Specifically, genome-wide association studies (GWAS) of dental caries and periodontal disease have provided initial insights into novel loci and biological processes plausibly implicated in these two common, complex, biofilm-mediated diseases. This paper presents a summary of protocols, methods, tools, and pipelines for the conduct of GWAS of dental caries, periodontal disease, and related traits. The protocol begins with the consideration of different traits for both diseases and outlines procedures for genotyping, quality control, adjustment for population stratification, heritability and association analyses, annotation, reporting, and interpretation. Methods and tools available for GWAS are being constantly updated and improved; with this in mind, the presented approaches have been successfully applied in numerous GWAS and meta-analyses among tens of thousands of individuals, including dental traits such as dental caries and periodontal disease. As such, they can serve as a guide or template for future genomic investigations of these and other traits.
Collapse
Affiliation(s)
- Cary S Agler
- Oral and Craniofacial Health Sciences, UNC School of Dentistry, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Dmitry Shungin
- Department of Odontology, Umeå University, Umeå, Sweden
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Andrea G Ferreira Zandoná
- Department of Comprehensive Dentistry, Tufts University School of Dental Medicine, Tufts University, Boston, MA, USA
| | - Paige Schmadeke
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Biospecimen Core Processing Facility, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Patricia V Basta
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Biospecimen Core Processing Facility, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Jason Luo
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Mammalian Genotyping Core, University of North Carolina, Chapel Hill, NC, USA
| | - John Cantrell
- Oral and Craniofacial Health Sciences, UNC School of Dentistry, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Thomas D Pahel
- Oral and Craniofacial Health Sciences, UNC School of Dentistry, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Beau D Meyer
- Department of Pediatric Dentistry, UNC School of Dentistry, CB#7450, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - John R Shaffer
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arne S Schaefer
- Department of Periodontology, Institute of Dental, Oral and Maxillary Medicine, Charité-University Medicine Berlin, Berlin, Germany
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Carolina Center for Genome Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Kimon Divaris
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.
- Department of Pediatric Dentistry, UNC School of Dentistry, CB#7450, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Moon KH. Screening of Genetic Factor in the Interaction Between Periodontitis and Metabolic Traits Using Candidate Gene Association Study (CGAS). Biochem Genet 2018; 57:466-474. [PMID: 30547318 PMCID: PMC6556154 DOI: 10.1007/s10528-018-9899-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/04/2018] [Indexed: 02/03/2023]
Abstract
Periodontitis has been reported to relate to metabolic syndrome traits such as obesity, blood pressure, and so on. However, the relation between periodontitis and metabolic syndrome remains unclear. The present study aimed to confirm common genetic factors between periodontitis and metabolic traits using Candidate gene association study (CGAS) in the Korean population. Based on the analysis of CGAS, this study performed linear regression analyses to examine the single-nucleotide polymorphisms (SNPs) between periodontitis and metabolic syndrome traits. Among the analyzed SNPs, 2649 SNPs in five genes (TENM2, LDLRAD4, SLC9C2, MFSD1, and A2BP1) showed a statistical significance at p < 0.05. Interestingly, A2BP1 and TENM2 were related to obesity. Also, elevated levels of LDLRAD4, SLC9C2, and MFSD1 were observed in the patients with high blood pressure. Taken together, the present study suggests that some of the SNPs are related to periodontitis. Therefore, if any of TENM2, A2BP1, LDLRAD4, SLC9C2, and MFSD1 is detected in the patients with periodontitis, obesity and blood pressure have to be treated simultaneously.
Collapse
Affiliation(s)
- Kyung-Hui Moon
- Department of Dental Hygiene, Jinju Health College, Uibyeong-ro 51, Jinju, Korea.
| |
Collapse
|
27
|
Masumoto R, Kitagaki J, Fujihara C, Matsumoto M, Miyauchi S, Asano Y, Imai A, Kobayashi K, Nakaya A, Yamashita M, Yamada S, Kitamura M, Murakami S. Identification of genetic risk factors of aggressive periodontitis using genomewide association studies in association with those of chronic periodontitis. J Periodontal Res 2018; 54:199-206. [PMID: 30303256 DOI: 10.1111/jre.12620] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 08/13/2018] [Accepted: 09/08/2018] [Indexed: 12/19/2022]
Abstract
To identify the genetic risk factors for aggressive periodontitis (AgP), it is important to understand the progression and pathogenesis of AgP. The purpose of this review was to summarize the genetic risk factors for AgP identified through a case-control genomewide association study (GWAS) and replication study. The initial studies to identify novel AgP risk factors were potentially biased because they relied on previous studies. To overcome this kind of issue, an unbiased GWAS strategy was introduced to identify genetic risk factors for various diseases. Currently, three genes glycosyltransferase 6 domain containing 1 (GLT6D1), defensin α1 and α3 (DEFA1A3), and sialic acid-binding Ig-like lectin 5 (SIGLEC5) that reach the threshold for genomewide significance have been identified as genetic risk factors for AgP through a case-control GWAS.
Collapse
Affiliation(s)
- Risa Masumoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Jirouta Kitagaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Chiharu Fujihara
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masahiro Matsumoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shizuka Miyauchi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsuko Imai
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kaori Kobayashi
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Medical Solutions Division, NEC Corporation, Tokyo, Japan
| | - Akihiro Nakaya
- Medical Solutions Division, NEC Corporation, Tokyo, Japan
| | - Motozo Yamashita
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Satoru Yamada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.,Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
28
|
Zhao B, Li X, Li R. Genetic Relationship Between IL-6 rs1800796 Polymorphism and Susceptibility to Periodontitis. Immunol Invest 2018; 48:268-282. [PMID: 30300034 DOI: 10.1080/08820139.2018.1517365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND There are accumulating reports for the potential role of Interleukin-6 (IL-6) rs1800796 polymorphism in the risk of periodontitis. However, distinct conclusions are observed. In this study, we have an interest in comprehensively analyzing the genetic relationship between IL-6 rs1800796 and the susceptibility to periodontitis. METHODS We retrieved the eligible case-control studies from on-line database and conducted a meta-analysis. P-value of association test, OR (odd ratios) and 95% CI (confidence interval) were calculated for the assessment of potential genetic association. RESULTS We enrolled a total of 20 case-control studies for pooling analysis. A positive association between periodontitis cases and controls was observed in the overall meta-analysis under all genetic models (all P < 0.05, OR > 1). Similar results were detected in the "population-based, PB" and "China" subgroups (all P < 0.05, OR > 1). In the "Asian" subgroup, there is an increased periodontitis risk under the allele, homozygote, heterozygote, dominant and carrier models (all P < 0.05, OR > 1). Nevertheless, negative results were found in the "Caucasian" subgroup under all models [all P > 0.05]. In addition, a positive association between IL-6 rs1800796 and the risk of chronic periodontitis was detected under the models of allele [G vs. C], GG vs. CC, GG vs. CC+ CG and carrier [G vs. C] (all P < 0.05, OR > 1). CONCLUSION IL-6 rs1800796 may serve as one genetic risk factor for periodontitis patients in the Asian population, especially the Chinese population. G/G genotype of IL-6 rs1800796 appears to be associated with an increased risk of chronic periodontitis.
Collapse
Affiliation(s)
- Bo Zhao
- a Dental Department , Tianjin First Center Hospital , Tianjin , People's Republic of China
| | - Xiaoqian Li
- a Dental Department , Tianjin First Center Hospital , Tianjin , People's Republic of China
| | - Ronghua Li
- a Dental Department , Tianjin First Center Hospital , Tianjin , People's Republic of China
| |
Collapse
|
29
|
Meta-analysis of genome-wide association studies of aggressive and chronic periodontitis identifies two novel risk loci. Eur J Hum Genet 2018; 27:102-113. [PMID: 30218097 DOI: 10.1038/s41431-018-0265-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 07/06/2018] [Accepted: 08/09/2018] [Indexed: 01/08/2023] Open
Abstract
Periodontitis is one of the most common inflammatory diseases, with a prevalence of 11% worldwide for the severe forms and an estimated heritability of 50%. It is classified into the widespread moderate form chronic periodontitis (CP) and the rare early-onset and severe phenotype aggressive periodontitis (AgP). These different disease manifestations are thought to share risk alleles and predisposing environmental factors. To obtain novel insights into the shared genetic etiology and the underlying molecular mechanisms of both forms, we performed a two step-wise meta-analysis approach using genome-wide association studies of both phenotypes. Genotypes from imputed genome-wide association studies (GWAS) of AgP and CP comprising 5,095 cases and 9,908 controls of North-West European genetic background were included. Two loci were associated with periodontitis at a genome-wide significance level. They located within the pseudogene MTND1P5 on chromosome 8 (rs16870060-G, P = 3.69 × 10-9, OR = 1.36, 95% CI = [1.23-1.51]) and intronic of the long intergenic non-coding RNA LOC107984137 on chromosome 16, downstream of the gene SHISA9 (rs729876-T, P = 9.77 × 10-9, OR = 1.24, 95% CI = [1.15-1.34]). This study identified novel risk loci of periodontitis, adding to the genetic basis of AgP and CP.
Collapse
|
30
|
Schaefer AS. Genetics of periodontitis: Discovery, biology, and clinical impact. Periodontol 2000 2018; 78:162-173. [DOI: 10.1111/prd.12232] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arne S Schaefer
- Department of Periodontology and Synoptic Dentistry; Institute for Dental and Craniofacial Sciences; Research Centre ImmunoSciences; Charité - University Medicine Berlin; Berlin Germany
| |
Collapse
|
31
|
Nibali L, Di Iorio A, Tu YK, Vieira AR. Host genetics role in the pathogenesis of periodontal disease and caries. J Clin Periodontol 2018; 44 Suppl 18:S52-S78. [PMID: 27754553 DOI: 10.1111/jcpe.12639] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND This study aimed to produce the latest summary of the evidence for association of host genetic variants contributing to both periodontal diseases and caries. MATERIALS AND METHODS Two systematic searches of the literature were conducted in Ovid Medline, Embase, LILACS and Cochrane Library for large candidate gene studies (CGS), systematic reviews and genome-wide association studies reporting data on host genetic variants and presence of periodontal disease and caries. RESULTS A total of 124 studies were included in the review (59 for the periodontitis outcome and 65 for the caries outcome), from an initial search of 15,487 titles. Gene variants associated with periodontitis were categorized based on strength of evidence and then compared with gene variants associated with caries. Several gene variants showed moderate to strong evidence of association with periodontitis, although none of them had also been associated with the caries trait. CONCLUSIONS Despite some potential aetiopathogenic similarities between periodontitis and caries, no genetic variants to date have clearly been associated with both diseases. Further studies or comparisons across studies with large sample size and clear phenotype definition could shed light into possible shared genetic risk factors for caries and periodontitis.
Collapse
Affiliation(s)
- Luigi Nibali
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University London (QMUL), London, UK
| | - Anna Di Iorio
- Library Services, UCL Eastman Dental Institute, London, UK
| | - Yu-Kang Tu
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Alexandre R Vieira
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Yu Y, Doucette-Stamm L, Rogus J, Moss K, Zee R, Steffensen B, Ridker P, Buring J, Offenbacher S, Kornman K, Chasman D. Family History of MI, Smoking, and Risk of Periodontal Disease. J Dent Res 2018; 97:1106-1113. [PMID: 29928831 PMCID: PMC6169032 DOI: 10.1177/0022034518782189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Periodontal disease (PD) shares common risk factors with cardiovascular disease. Our hypothesis was that having a family history of myocardial infarction (FamHxMI) may be a novel risk factor for PD. Risk assessment based on FamHxMI, conditional on smoking status, was examined given the strong influence of smoking on PD. Exploratory analysis with inflammatory biomarkers and genetic determinants was conducted to understand potential mechanistic links. The Women's Genome Health Study (WGHS) is a prospective cohort of US female health care professionals who provided blood samples at baseline in the Women's Health Study, a 2 × 2 factorial clinical trial investigating vitamin E and aspirin in the prevention of cardiovascular disease and cancer. PD was ascertained via self-report over 12 y of follow-up. Prevalence (3,442 cases), incidence (1,365 cases), and survival analysis of PD were investigated for associations of FamHxMI as well as in strata of FamHxMI by smoking. Kruskal-Wallis, chi-square tests, multivariate regression, and Cox proportional hazard models were used for the analyses. In the WGHS, women with FamHxMI showed higher risk of ever having PD. A particularly high-risk group of having both FamHxMI and smoking at baseline was highlighted in the prevalence and risk of developing PD. PD risk increased according to the following strata: no FamHxMI and nonsmokers (reference), FamHxMI and nonsmokers (hazard ratio [HR] = 1.2, 95% CI = 1.0 to 1.5), smokers without FamHxMI (HR = 1.3, 95% CI = 1.2 to 1.5), and smokers with FamHxMI (HR = 1.5, 95% CI = 1.2 to 1.8). An independent analysis by the dental Atherosclerosis Risk in Communities study ( N = 5,552) identified more severe periodontitis cases among participants in the high-risk group (smokers with FamHxMI). Further examination of interactions among inflammatory biomarkers or genetic exploration with FamHxMI did not explain the risk increase of PD associated with FamHxMI in the WGHS. Future efforts based on an integrative-omics approach may facilitate validation of these findings and suggest a mechanistic link between PD and FamHxMI.
Collapse
Affiliation(s)
- Y.H. Yu
- Department of Periodontology, School of Dental Medicine, Tufts University, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - J. Rogus
- Interleukin Genetics, Waltham, MA, USA
| | - K. Moss
- Department of Periodontology, University of North Carolina, Chapel Hill, NC, USA
| | - R.Y.L. Zee
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pediatric Dentistry, School of Dental Medicine, Tufts University, Boston, MA, USA
| | - B. Steffensen
- Department of Periodontology, School of Dental Medicine, Tufts University, Boston, MA, USA
| | - P.M. Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - J.E. Buring
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - S. Offenbacher
- Department of Periodontology, University of North Carolina, Chapel Hill, NC, USA
| | | | - D.I. Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
de Coo A, Quintela I, Blanco J, Diz P, Carracedo Á. Assessment of genotyping tools applied in genetic susceptibility studies of periodontal disease: A systematic review. Arch Oral Biol 2018; 92:38-50. [DOI: 10.1016/j.archoralbio.2018.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/14/2022]
|
34
|
Association between the rs1143634 polymorphism in interleukin-1B and chronic periodontitis: Results from a meta-analysis composed by 54 case/control studies. Gene 2018; 668:97-106. [DOI: 10.1016/j.gene.2018.05.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022]
|
35
|
Population-Specific Associations of Deleterious Rare Variants in Coding Region of P2RY1-P2RY12 Purinergic Receptor Genes in Large-Vessel Ischemic Stroke Patients. Int J Mol Sci 2017; 18:ijms18122678. [PMID: 29232918 PMCID: PMC5751280 DOI: 10.3390/ijms18122678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 01/13/2023] Open
Abstract
The contribution of low-frequency and damaging genetic variants associated with platelet function to ischemic stroke (IS) susceptibility remains unknown. We employed a deep re-sequencing approach in Polish patients in order to investigate the contribution of rare variants (minor allele frequency, MAF < 1%) to the IS genetic susceptibility in this population. The genes selected for re-sequencing consisted of 26 genes coding for proteins associated with the surface membrane of platelets. Targeted pooled re-sequencing (Illumina HiSeq 2500) was performed on genomic DNA of 500 cases (patients with history of clinically proven diagnosis of large-vessel IS) and 500 controls. After quality control and prioritization based on allele frequency and damaging probability, follow-up individual genotyping of deleterious rare variants was performed in patients from the original cohort. Gene-based analyses identified an association between IS and 6 rare functional and damaging variants in the purinergic genes (P2RY1 and P2RY12 locus). The predicted properties of the most damaging rare variants in P2RY1 and P2RY12 were confirmed by using mouse fibroblast cell cultures transfected with plasmid constructs containing cDNA of mutated variants (FLIPR on FlexStation3). This study identified a putative role for rare variants in P2RY1 and P2RY12 genes involved in platelet reactivity on large-vessel IS susceptibility in a Polish population.
Collapse
|
36
|
Munz M, Willenborg C, Richter GM, Jockel-Schneider Y, Graetz C, Staufenbiel I, Wellmann J, Berger K, Krone B, Hoffmann P, van der Velde N, Uitterlinden AG, de Groot LCPGM, Sawalha AH, Direskeneli H, Saruhan-Direskeneli G, Guzeldemir-Akcakanat E, Keceli HG, Laudes M, Noack B, Teumer A, Holtfreter B, Kocher T, Eickholz P, Meyle J, Doerfer C, Bruckmann C, Lieb W, Franke A, Schreiber S, Nohutcu RM, Erdmann J, Loos BG, Jepsen S, Dommisch H, Schaefer AS. A genome-wide association study identifies nucleotide variants at SIGLEC5 and DEFA1A3 as risk loci for periodontitis. Hum Mol Genet 2017; 26:2577-2588. [PMID: 28449029 DOI: 10.1093/hmg/ddx151] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/12/2017] [Indexed: 01/26/2023] Open
Abstract
Periodontitis is one of the most common inflammatory diseases, with a prevalence of 11% worldwide for the severe forms and an estimated heritability of 50%. The disease is characterized by destruction of the alveolar bone due to an aberrant host inflammatory response to a dysbiotic oral microbiome. Previous genome-wide association studies (GWAS) have reported several suggestive susceptibility loci. Here, we conducted a GWAS using a German and Dutch case-control sample of aggressive periodontitis (AgP, 896 cases, 7,104 controls), a rare but highly severe and early-onset form of periodontitis, validated the associations in a German sample of severe forms of the more moderate phenotype chronic periodontitis (CP) (993 cases, 1,419 controls). Positive findings were replicated in a Turkish sample of AgP (223 cases, 564 controls). A locus at SIGLEC5 (sialic acid binding Ig-like lectin 5) and a chromosomal region downstream of the DEFA1A3 locus (defensin alpha 1-3) showed association with both disease phenotypes and were associated with periodontitis at a genome-wide significance level in the pooled samples, with P = 1.09E-08 (rs4284742,-G; OR = 1.34, 95% CI = 1.21-1.48) and P = 5.48E-10 (rs2738058,-T; OR = 1.28, 95% CI = 1.18-1.38), respectively. SIGLEC5 is expressed in various myeloid immune cells and classified as an inhibitory receptor with the potential to mediate tyrosine phosphatases SHP-1/-2 dependent signaling. Alpha defensins are antimicrobial peptides with expression in neutrophils and mucosal surfaces and a role in phagocyte-mediated host defense. This study identifies the first shared genetic risk loci of AgP and CP with genome-wide significance and highlights the role of innate and adaptive immunity in the etiology of periodontitis.
Collapse
Affiliation(s)
- Matthias Munz
- Department of Periodontology and Synoptic Dentistry, Institute of Dental, Oral and Maxillary Medicine, Charité - University Medicine Berlin, Germany.,Institute for Integrative and Experimental Genomics, University Medical Center Schleswig-Holstein - Campus Lübeck, Germany
| | - Christina Willenborg
- Institute for Integrative and Experimental Genomics, University Medical Center Schleswig-Holstein - Campus Lübeck, Germany
| | - Gesa M Richter
- Department of Periodontology and Synoptic Dentistry, Institute of Dental, Oral and Maxillary Medicine, Charité - University Medicine Berlin, Germany
| | - Yvonne Jockel-Schneider
- Department of Periodontology, Clinic of Preventive Dentistry and Periodontology, University Medical Center of the Julius-Maximilians-University, Würzburg, Germany
| | - Christian Graetz
- Department of Operative Dentistry and Periodontology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | - Ingmar Staufenbiel
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Hannover, Germany
| | - Jürgen Wellmann
- Institute of Epidemiology and Social Medicine, University Münster, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University Münster, Germany
| | - Bastian Krone
- Institute of Medical Informatics, Biometry and Epidemiology, University Clinic Essen, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Germany.,Human Genomics Research Group, Department of Biomedicine, University Hospital of Basel, Switzerland
| | - Nathalie van der Velde
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine Section of Geriatrics, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lisette C P G M de Groot
- Department of Epidemiology and the EMGO Institute of Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, USA
| | - Haner Direskeneli
- Division of Rheumatology, Marmara University, School of Medicine, Istanbul, Turkey
| | | | | | - Huseyin Gencay Keceli
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Matthias Laudes
- Clinic of Internal Medicine, University Clinic Schleswig-Holstein, Kiel, Germany
| | - Barbara Noack
- Clinic of Conservational Dentistry, Center of Dental, Oral and Maxillary Medicine, University Medical Center Carl-Gustav-Carus, Technical University Dresden, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Birte Holtfreter
- Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Pedodontics, Dental School, University Medicine Greifswald, Germany
| | - Thomas Kocher
- Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Pedodontics, Dental School, University Medicine Greifswald, Germany
| | - Peter Eickholz
- Department of Periodontology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Jörg Meyle
- Department of Periodontology, University Medical Center Giessen and Marburg, Germany
| | - Christof Doerfer
- Department of Operative Dentistry and Periodontology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | - Corinna Bruckmann
- Department of Conservative Dentistry and Periodontology, Medical University Vienna, School of Dentistry, Vienna, Austria
| | - Wolfgang Lieb
- Institute of Epidemiology, Biobank PopGen, Christian-Albrechts-University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Stefan Schreiber
- Clinic of Internal Medicine, University Clinic Schleswig-Holstein, Kiel, Germany.,Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Rahime M Nohutcu
- Department of Periodontology, Faculty of Dentistry, Kocaeli University, Turkey
| | - Jeanette Erdmann
- Institute for Integrative and Experimental Genomics, University Medical Center Schleswig-Holstein - Campus Lübeck, Germany
| | - Bruno G Loos
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, The Netherlands
| | - Soeren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Henrik Dommisch
- Department of Periodontology and Synoptic Dentistry, Institute of Dental, Oral and Maxillary Medicine, Charité - University Medicine Berlin, Germany
| | - Arne S Schaefer
- Department of Periodontology and Synoptic Dentistry, Institute of Dental, Oral and Maxillary Medicine, Charité - University Medicine Berlin, Germany
| |
Collapse
|
37
|
Shusterman A, Munz M, Richter G, Jepsen S, Lieb W, Krone B, Hoffman P, Laudes M, Wellmann J, Berger K, Kocher T, Offenbacher S, Divaris K, Franke A, Schreiber S, Dommisch H, Weiss E, Schaefer A, Houri-Haddad Y, Iraqi F. The PF4/PPBP/CXCL5 Gene Cluster Is Associated with Periodontitis. J Dent Res 2017; 96:945-952. [PMID: 28467728 PMCID: PMC5502958 DOI: 10.1177/0022034517706311] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Periodontitis is a common dysbiotic inflammatory disease with an estimated heritability of 50%. Due to the limited sample size of available periodontitis cohorts and the underlying trait heterogeneity, genome-wide association studies (GWAS) of chronic periodontitis (CP) have been unsuccessful in discovering susceptibility factors. A strategy that combines agnostic GWAS with a well-powered candidate-gene approach has the potential to discover novel loci. We combined RNA-seq data from gingival tissues with quantitative trait loci (QTLs) that were identified in a F2-cross of mice resistant and susceptible to infection with oral bacterial pathogens. Four genes, which were located within the mapped QTLs, showed differential expression. The chromosomal regions across the human orthologous were interrogated for putative periodontitis-associated variants using existing GWAS data from a German case-control sample of aggressive periodontitis (AgP; 651 cases, 4,001 controls), the most severe and early onset form of periodontitis. Two haplotype blocks, one upstream to the coding region of UGT2A1 (rs146712414, P = 9.1 × 10-5; odds ratio [OR], 1.34; 95% confidence interval [CI], 1.16-1.56) and one downstream of the genes PF4/PPBP/CXCL5 (rs1595009, P = 1.3 × 10-4; OR, 1.32; 95% CI, 1.15-1.52), were associated with AgP. The association of rs1595009 was validated in an independent cohort of CP of European Americans (1,961 cases and 1,864 controls; P = 0.03; OR, 1.45; 95% CI, 1.01-1.29). This association was further replicated in another sample of 399 German CP cases (disease onset <60 y of age) and 1,633 controls ( P = 0.03; OR, 1.75; 95% CI, 1.06-2.90). The combined estimates of association from all samples were P = 2.9 × 10-5 (OR, 1.2; 95% CI, 1.1-1.3). This study shows the strength of combining QTL mapping and RNA-Seq data from a mouse model with association studies in human case-control samples to identify genetic risk variants of periodontitis.
Collapse
Affiliation(s)
- A. Shusterman
- Department of Prosthodontics, Hadassah Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - M. Munz
- Department of Periodontology and Synoptic Medicine, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, Berlin, Germany
- Institute for Integrative and Experimental Genomics, University Medical Center Schleswig-Holstein–Campus Lübeck, Lübeck, Germany
| | - G. Richter
- Department of Periodontology and Synoptic Medicine, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, Berlin, Germany
| | - S. Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - W. Lieb
- Institute of Epidemiology, Biobank popgen, Christian-Albrechts-University, Kiel, Germany
| | - B. Krone
- Institute of Medical Informatics, Biometry and Epidemiology, University Clinic Essen, Essen, Germany
| | - P. Hoffman
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Germany und Human Genomics Research Group, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - M. Laudes
- Clinic of Internal Medicine, University Clinic Schleswig-Holstein, Kiel, Germany
| | - J. Wellmann
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - K. Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - T. Kocher
- Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Pedodontics, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - S. Offenbacher
- University of North Carolina–Chapel Hill, School of Dentistry, Department of Periodontology, Chapel Hill, NC, USA
| | - K. Divaris
- University of North Carolina–Chapel Hill, School of Dentistry, Department of Pediatric Dentistry, Chapel Hill, NC, USA
- University of North Carolina–Chapel Hill, Gillings School of Global Public Health, Department of Epidemiology, Chapel Hill, NC, USA
| | - A. Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - S. Schreiber
- Clinic of Internal Medicine, University Clinic Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - H. Dommisch
- Department of Periodontology and Synoptic Medicine, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, Berlin, Germany
| | - E. Weiss
- Maurice and Gabriella Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A.S. Schaefer
- Department of Periodontology and Synoptic Medicine, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, Berlin, Germany
| | - Y. Houri-Haddad
- Department of Prosthodontics, Hadassah Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - F.A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Park BR, Ma JK, Park KB, Hong KW. Recapitulation of Genome-wide Association Study on Chronic Periodontitis in a Korean Population. ACTA ACUST UNITED AC 2017. [DOI: 10.15616/bsl.2017.23.2.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bo-Ruem Park
- TheragenEtex Bio Institute, Suwon, Gyeonggi-do 16229, Korea
| | | | | | - Kyung-Won Hong
- TheragenEtex Bio Institute, Suwon, Gyeonggi-do 16229, Korea
| |
Collapse
|
39
|
Abstract
Periodontal diseases comprise a wide range of inflammatory conditions that affect the supporting structures of the teeth (the gingiva, bone and periodontal ligament), which could lead to tooth loss and contribute to systemic inflammation. Chronic periodontitis predominantly affects adults, but aggressive periodontitis may occasionally occur in children. Periodontal disease initiation and propagation is through a dysbiosis of the commensal oral microbiota (dental plaque), which then interacts with the immune defences of the host, leading to inflammation and disease. This pathophysiological situation persists through bouts of activity and quiescence, until the affected tooth is extracted or the microbial biofilm is therapeutically removed and the inflammation subsides. The severity of the periodontal disease depends on environmental and host risk factors, both modifiable (for example, smoking) and non-modifiable (for example, genetic susceptibility). Prevention is achieved with daily self-performed oral hygiene and professional removal of the microbial biofilm on a quarterly or bi-annual basis. New treatment modalities that are actively explored include antimicrobial therapy, host modulation therapy, laser therapy and tissue engineering for tissue repair and regeneration.
Collapse
Affiliation(s)
- Denis F Kinane
- University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, Pennsylvania 19104, USA
| | - Panagiota G Stathopoulou
- University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, Pennsylvania 19104, USA
| | - Panos N Papapanou
- Columbia University College of Dental Medicine, New York, New York, USA
| |
Collapse
|
40
|
Kim HD, Shin MS, Kim HT, Kim MS, Ahn YB. Incipient periodontitis and salivary molecules among Korean adults: association and screening ability. J Clin Periodontol 2016; 43:1032-1040. [DOI: 10.1111/jcpe.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Hyun-Duck Kim
- Department of Preventive and Social Dentistry; School of Dentistry; Seoul National University; Seoul Korea
- Dental Research Institute; School of Dentistry; Seoul National University; Seoul Korea
| | - Myung-Seop Shin
- Department of Preventive and Social Dentistry; School of Dentistry; Seoul National University; Seoul Korea
| | - Hyun-Tae Kim
- Department of Preventive and Social Dentistry; School of Dentistry; Seoul National University; Seoul Korea
| | - Mi-Sun Kim
- Department of Preventive and Social Dentistry; School of Dentistry; Seoul National University; Seoul Korea
| | - Yoo-Been Ahn
- Department of Preventive and Social Dentistry; School of Dentistry; Seoul National University; Seoul Korea
| |
Collapse
|
41
|
Sanders AE, Sofer T, Wong Q, Kerr KF, Agler C, Shaffer JR, Beck JD, Offenbacher S, Salazar CR, North KE, Marazita ML, Laurie CC, Singer RH, Cai J, Finlayson TL, Divaris K. Chronic Periodontitis Genome-wide Association Study in the Hispanic Community Health Study / Study of Latinos. J Dent Res 2016; 96:64-72. [PMID: 27601451 DOI: 10.1177/0022034516664509] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chronic periodontitis (CP) has a genetic component, particularly its severe forms. Evidence from genome-wide association studies (GWASs) has highlighted several potential novel loci. Here, the authors report the first GWAS of CP among a large community-based sample of Hispanics/Latinos. The authors interrogated a quantitative trait of CP (mean interproximal clinical attachment level determined by full-mouth periodontal examinations) among 10,935 adult participants (mean age: 45 y, range: 18 to 76 y) from the Hispanic Community Health Study / Study of Latinos. Genotyping was done with a custom Illumina Omni2.5M array, and imputation to approximately 20 million single-nucleotide polymorphisms was based on the 1000 Genomes Project phase 1 reference panel. Analyses were based on linear mixed models adjusting for sex, age, study design features, ancestry, and kinship and employed a conventional P < 5 × 10-8 statistical significance threshold. The authors identified a genome-wide significant association signal in the 1q42.2 locus ( TSNAX-DISC1 noncoding RNA, lead single-nucleotide polymorphism: rs149133391, minor allele [C] frequency = 0.01, P = 7.9 × 10-9) and 4 more loci with suggestive evidence of association ( P < 5 × 10-6): 1q22 (rs13373934), 5p15.33 (rs186066047), 6p22.3 (rs10456847), and 11p15.1 (rs75715012). We tested these loci for replication in independent samples of European-American ( n = 4,402) and African-American ( n = 908) participants of the Atherosclerosis Risk in Communities study. There was no replication among the European Americans; however, the TSNAX-DISC1 locus replicated in the African-American sample (rs149133391, minor allele frequency = 0.02, P = 9.1 × 10-3), while the 1q22 locus was directionally concordant and nominally significant (rs13373934, P = 4.0 × 10-2). This discovery GWAS of interproximal clinical attachment level-a measure of lifetime periodontal tissue destruction-was conducted in a large, community-based sample of Hispanic/Latinos. It identified a genome-wide significant locus that was independently replicated in an African-American population. Identifying this genetic marker offers direction for interrogation in subsequent genomic and experimental studies of CP.
Collapse
Affiliation(s)
- A E Sanders
- 1 Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T Sofer
- 2 Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Q Wong
- 2 Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - K F Kerr
- 2 Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - C Agler
- 3 Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J R Shaffer
- 4 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - J D Beck
- 1 Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S Offenbacher
- 5 Department of Periodontology and Center for Oral and Systemic Diseases, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C R Salazar
- 6 Department of Epidemiology and Department of Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, New York City, NY, USA
| | - K E North
- 7 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M L Marazita
- 4 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,8 Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,9 Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,10 Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,11 Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - C C Laurie
- 2 Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - R H Singer
- 12 Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - J Cai
- 13 Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T L Finlayson
- 14 Graduate School of Public Health, San Diego State University, San Diego, CA, USA
| | - K Divaris
- 7 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,15 Department of Pediatric Dentistry, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Kasbohm E, Holtfreter B, Völker U, Petersmann A, Samietz S, Biffar R, Völzke H, Meisel P, Kacprowski T, Homuth G, Kocher T, Teumer A. Exome Variant Analysis of Chronic Periodontitis in 2 Large Cohort Studies. J Dent Res 2016; 96:73-80. [PMID: 27655622 DOI: 10.1177/0022034516665076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Periodontitis is characterized by inflammation of the gingival tissue. The main risk factors are socioeconomic factors, sex, age, smoking, and diabetes, but periodontal disease has also a genetic background. Previous genome-wide association studies failed to reveal genome-wide significant associations of single common single-nucleotide polymorphisms with chronic periodontitis. Using the Illumina ExomeChip data of 6,576 participants of the German population-based cohort studies Study of Health in Pomerania (SHIP) and SHIP-Trend, the authors performed single variant and also gene-based association studies of rare and common exonic variations on different periodontal case definitions. Although our study comprised the largest sample size to date to assess genetic predisposition for chronic periodontitis, the authors found no significant association. This study emphasizes that for chronic periodontitis, large sample sizes will be necessary to find genetic associations, even when examining rare genetic variants.
Collapse
Affiliation(s)
- E Kasbohm
- 1 Unit of Periodontology, Department of Restorative Dentistry, Periodontology and Endodontology, Pedodontics and Preventive Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - B Holtfreter
- 1 Unit of Periodontology, Department of Restorative Dentistry, Periodontology and Endodontology, Pedodontics and Preventive Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - U Völker
- 2 Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - A Petersmann
- 3 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - S Samietz
- 4 Department of Prosthodontics, Gerostomatology and Biomaterials, Center for Oral Health, University Medicine Greifswald, Greifswald, Germany
| | - R Biffar
- 4 Department of Prosthodontics, Gerostomatology and Biomaterials, Center for Oral Health, University Medicine Greifswald, Greifswald, Germany
| | - H Völzke
- 5 Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - P Meisel
- 1 Unit of Periodontology, Department of Restorative Dentistry, Periodontology and Endodontology, Pedodontics and Preventive Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - T Kacprowski
- 2 Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - G Homuth
- 2 Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - T Kocher
- 1 Unit of Periodontology, Department of Restorative Dentistry, Periodontology and Endodontology, Pedodontics and Preventive Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - A Teumer
- 5 Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
43
|
Kitagaki J, Miyauchi S, Asano Y, Imai A, Kawai S, Michikami I, Yamashita M, Yamada S, Kitamura M, Murakami S. A Putative Association of a Single Nucleotide Polymorphism in GPR126 with Aggressive Periodontitis in a Japanese Population. PLoS One 2016; 11:e0160765. [PMID: 27509131 PMCID: PMC4979892 DOI: 10.1371/journal.pone.0160765] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022] Open
Abstract
Periodontitis is an inflammatory disease causing loss of tooth-supporting periodontal tissue. Disease susceptibility to the rapidly progressive form of periodontitis, aggressive periodontitis (AgP), appears to be influenced by genetic risk factors. To identify these in a Japanese population, we performed whole exome sequencing of 41 unrelated generalized or localized AgP patients. We found that AgP is putatively associated with single nucleotide polymorphism (SNP) rs536714306 in the G-protein coupled receptor 126 gene, GPR126 [c.3086 G>A (p.Arg1029Gln)]. Since GPR126 activates the cAMP/PKA signaling pathway, we performed cAMP ELISA analysis of cAMP concentrations, and found that rs536714306 impaired the signal transactivation of GPR126. Moreover, transfection of human periodontal ligament (HPDL) cells with wild-type or mutant GPR126 containing rs536714306 showed that wild-type GPR126 significantly increased the mRNA expression of bone sialoprotein, osteopontin, and Runx2 genes, while mutant GPR126 had no effect on the expression of these calcification-related genes. The increase in expression of these genes was through the GPR126-induced increase of bone morphogenic protein-2, inhibitor of DNA binding (ID) 2, and ID4 expression. These data indicate that GPR126 might be important in maintaining the homeostasis of periodontal ligament tissues through regulating the cytodifferentiation of HPDL cells. The GPR126 SNP rs536714306 negatively influences this homeostasis, leading to the development of AgP, suggesting that it is a candidate genetic risk factor for AgP in the Japanese population.
Collapse
Affiliation(s)
- Jirouta Kitagaki
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- * E-mail:
| | - Shizuka Miyauchi
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsuko Imai
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinji Kawai
- Challenge to Intractable Oral Diseases, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Ikumi Michikami
- Challenge to Intractable Oral Diseases, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Motozo Yamashita
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Satoru Yamada
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|