1
|
Wang J, Yu X, Yang H, Feng H, Wang Y, Zhang N, Xia H, Li J, Xing L, Wang J, He Y. Adapted evolution towards flagellar loss in Pseudomonas syringae. Microbiol Res 2025; 290:127969. [PMID: 39561607 DOI: 10.1016/j.micres.2024.127969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
The flagellum is a complex molecular nanomachine crucial for cell motility. Its assembly requires coordinated expression of over 50 flagellar genes, regulated by the transcription activator FleQ. Phylogenomic analyses suggest that many non-flagellated bacterial species have evolved from flagellated ancestors by losing specific flagellar components, though the evolutionary mechanisms driving this process remain unclear. In this study, we examined the evolutionary dynamics of Pseudomonas syringae DC3000 under standard laboratory conditions using quantitative proteomics. We observed a notable reduction in flagellar gene expression following prolonged serial passages. Whole-genome sequencing revealed multiple adaptive mutations in fleQ, dksA, and glnE, all of which are associated with flagellar biosynthesis. Furthermore, our findings demonstrate that nonmotile ΔfleQ cells can hitchhike onto wild-type cells, potentially facilitated by increased production of the surfactant syringafactin. Our study suggests that the high metabolic costs associated with flagella biosynthesis, coupled with advantageous hitchhiking properties, contribute to the degenerative evolution of flagella.
Collapse
Affiliation(s)
- Jiarong Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Xiaoquan Yu
- Institute of Urology, Gansu Province Clinical Research Center for urinary system disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730030, PR China
| | - Hao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Hanzhong Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yujuan Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Haining Xia
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jie Li
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Lei Xing
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
2
|
Lindsay RJ, Holder PJ, Hewlett M, Gudelj I. Experimental evolution of yeast shows that public-goods upregulation can evolve despite challenges from exploitative non-producers. Nat Commun 2024; 15:7810. [PMID: 39242624 PMCID: PMC11379824 DOI: 10.1038/s41467-024-52043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Microbial secretions, such as metabolic enzymes, are often considered to be cooperative public goods as they are costly to produce but can be exploited by others. They create incentives for the evolution of non-producers, which can drive producer and population productivity declines. In response, producers can adjust production levels. Past studies suggest that while producers lower production to reduce costs and exploitation opportunities when under strong selection pressure from non-producers, they overproduce secretions when these pressures are weak. We challenge the universality of this trend with the production of a metabolic enzyme, invertase, by Saccharomyces cerevisiae, which catalyses sucrose hydrolysis into two hexose molecules. Contrary to past studies, overproducers evolve during evolutionary experiments even when under strong selection pressure from non-producers. Phenotypic and competition assays with a collection of synthetic strains - engineered to have modified metabolic attributes - identify two mechanisms for suppressing the benefits of invertase to those who exploit it. Invertase overproduction increases extracellular hexose concentrations that suppresses the metabolic efficiency of competitors, due to the rate-efficiency trade-off, and also enhances overproducers' hexose capture rate by inducing transporter expression. Thus, overproducers are maintained in the environment originally thought to not support public goods production.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Mark Hewlett
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Mutlu A, Vanderpool EJ, Rumbaugh KP, Diggle SP, Griffin AS. Exploiting cooperative pathogen behaviour for enhanced antibiotic potency: A Trojan horse approach. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001454. [PMID: 38687006 PMCID: PMC11084615 DOI: 10.1099/mic.0.001454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Antimicrobial resistance poses an escalating global threat, rendering traditional drug development approaches increasingly ineffective. Thus, novel alternatives to antibiotic-based therapies are needed. Exploiting pathogen cooperation as a strategy for combating resistant infections has been proposed but lacks experimental validation. Empirical findings demonstrate the successful invasion of cooperating populations by non-cooperating cheats, effectively reducing virulence in vitro and in vivo. The idea of harnessing cooperative behaviours for therapeutic benefit involves exploitation of the invasive capabilities of cheats to drive medically beneficial traits into infecting populations of cells. In this study, we employed Pseudomonas aeruginosa quorum sensing cheats to drive antibiotic sensitivity into both in vitro and in vivo resistant populations. We demonstrated the successful invasion of cheats, followed by increased antibiotic effectiveness against cheat-invaded populations, thereby establishing an experimental proof of principle for the potential application of the Trojan strategy in fighting resistant infections.
Collapse
Affiliation(s)
- Alper Mutlu
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | |
Collapse
|
4
|
Kotil SE, Vetsigian K. Investigating the eco-evolutionary tunnels for establishing cooperative communities. Math Biosci 2023; 356:108959. [PMID: 36586576 DOI: 10.1016/j.mbs.2022.108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Diversity is abundant among microbial communities. Understanding the assembly of diverse microbial communities is a significant challenge. One of the recent plausible explanations for the assembly involves eco-evolutionary tunnels, where species interact in the same timescale with the mutational rate. Analysis of data generated by agent-based models was used to understand these tunnels. However, modeling the interactions explicitly by dynamic models is lacking. Here, we present the modeling and characterization of eco-evolutionary tunnels that give rise to cooperative evolutionary stable communities (ESC). We find that higher order, but common interactions are sufficient for eco-evolutionary tunnels. We identify three distinct scenarios: evolution of costly cooperation, mutationally inaccessible assembly, and bistability. Biological interpretations of the models are shedding light on the evolution of cooperation. One of the important findings is that if species maximize their benefit by preying on the other strain when dominant and cooperating at intermediate abundances, the assembly process needs eco-evolutionary tunneling. In addition, we characterize the importance of genetic drift with respect to eco-evolutionary tunnels, intermittently stable communities, and the effect of high population limits on the tunnels.
Collapse
Affiliation(s)
- Seyfullah Enes Kotil
- Department of Biophysics, Medical School, Bahcesehir University, Istanbul, Turkey; Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey.
| | - Kalin Vetsigian
- Department of Bacteriology and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Abstract
The success of many viruses depends upon cooperative interactions between viral genomes. However, whenever cooperation occurs, there is the potential for 'cheats' to exploit that cooperation. We suggest that: (1) the biology of viruses makes viral cooperation particularly susceptible to cheating; (2) cheats are common across a wide range of viruses, including viral entities that are already well studied, such as defective interfering genomes, and satellite viruses. Consequently, the evolutionary theory of cheating could help us understand and manipulate viral dynamics, while viruses also offer new opportunities to study the evolution of cheating.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| |
Collapse
|
6
|
O'Brien S, Baumgartner M, Hall AR. Species interactions drive the spread of ampicillin resistance in human-associated gut microbiota. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:256-266. [PMID: 34447576 PMCID: PMC8385247 DOI: 10.1093/emph/eoab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Background and objectives Slowing the spread of antimicrobial resistance is urgent if we are to continue treating infectious diseases successfully. There is increasing evidence microbial interactions between and within species are significant drivers of resistance. On one hand, cross-protection by resistant genotypes can shelter susceptible microbes from the adverse effects of antibiotics, reducing the advantage of resistance. On the other hand, antibiotic-mediated killing of susceptible genotypes can alleviate competition and allow resistant strains to thrive (competitive release). Here, by observing interactions both within and between species in microbial communities sampled from humans, we investigate the potential role for cross-protection and competitive release in driving the spread of ampicillin resistance in the ubiquitous gut commensal and opportunistic pathogen Escherichia coli. Methodology Using anaerobic gut microcosms comprising E.coli embedded within gut microbiota sampled from humans, we tested for cross-protection and competitive release both within and between species in response to the clinically important beta-lactam antibiotic ampicillin. Results While cross-protection gave an advantage to antibiotic-susceptible E.coli in standard laboratory conditions (well-mixed LB medium), competitive release instead drove the spread of antibiotic-resistant E.coli in gut microcosms (ampicillin boosted growth of resistant bacteria in the presence of susceptible strains). Conclusions and implications Competition between resistant strains and other members of the gut microbiota can restrict the spread of ampicillin resistance. If antibiotic therapy alleviates competition with resident microbes by killing susceptible strains, as here, microbiota-based interventions that restore competition could be a key for slowing the spread of resistance. Lay Summary Slowing the spread of global antibiotic resistance is an urgent task. In this paper, we ask how interactions between microbial species drive the spread of resistance. We show that antibiotic killing of susceptible microbes can free up resources for resistant microbes and allow them to thrive. Therefore, we should consider microbes in light of their social interactions to understand the spread of resistance.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK.,Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Michael Baumgartner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Alex R Hall
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
7
|
Figueiredo ART, Wagner A, Kümmerli R. Ecology drives the evolution of diverse social strategies in Pseudomonas aeruginosa. Mol Ecol 2021; 30:5214-5228. [PMID: 34390514 PMCID: PMC9291133 DOI: 10.1111/mec.16119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/03/2021] [Accepted: 07/28/2021] [Indexed: 11/27/2022]
Abstract
Bacteria often cooperate by secreting molecules that can be shared as public goods between cells. Because the production of public goods is subject to cheating by mutants that exploit the good without contributing to it, there has been great interest in elucidating the evolutionary forces that maintain cooperation. However, little is known about how bacterial cooperation evolves under conditions where cheating is unlikely to be of importance. Here we use experimental evolution to follow changes in the production of a model public good, the iron‐scavenging siderophore pyoverdine, of the bacterium Pseudomonas aeruginosa. After 1200 generations of evolution in nine different environments, we observed that cheaters only reached high frequency in liquid medium with low iron availability. Conversely, when adding iron to reduce the cost of producing pyoverdine, we observed selection for pyoverdine hyperproducers. Similarly, hyperproducers also spread in populations evolved in highly viscous media, where relatedness between interacting individuals is increased. Whole‐genome sequencing of evolved clones revealed that hyperproduction is associated with mutations involving genes encoding quorum‐sensing communication systems, while cheater clones had mutations in the iron‐starvation sigma factor or in pyoverdine biosynthesis genes. Our findings demonstrate that bacterial social traits can evolve rapidly in divergent directions, with particularly strong selection for increased levels of cooperation occurring in environments where individual dispersal is reduced, as predicted by social evolution theory. Moreover, we establish a regulatory link between pyoverdine production and quorum‐sensing, showing that increased cooperation with respect to one trait (pyoverdine) can be associated with the loss (quorum‐sensing) of another social trait.
Collapse
Affiliation(s)
- Alexandre R T Figueiredo
- Department of Quantitative Biomedicine, University of Zurich, 8057, Zurich, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, 8057, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| |
Collapse
|
8
|
Butaitė E, Kramer J, Kümmerli R. Local adaptation, geographical distance and phylogenetic relatedness: Assessing the drivers of siderophore-mediated social interactions in natural bacterial communities. J Evol Biol 2021; 34:1266-1278. [PMID: 34101930 PMCID: PMC8453950 DOI: 10.1111/jeb.13883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
In heterogenous, spatially structured habitats, individuals within populations can become adapted to the prevailing conditions in their local environment. Such local adaptation has been reported for animals and plants, and for pathogens adapting to hosts. There is increasing interest in applying the concept of local adaptation to microbial populations, especially in the context of microbe-microbe interactions. Here, we tested whether cooperation and cheating on cooperation can spur patterns of local adaptation in soil and pond communities of Pseudomonas bacteria, collected across a geographical scale of 0.5 to 50 m. We focussed on the production of pyoverdines, a group of secreted iron-scavenging siderophores that often differ among pseudomonads in their chemical structure and the receptor required for their uptake. A combination of supernatant-feeding and competition assays between isolates from four distance categories revealed tremendous variation in the extent to which pyoverdine non- and low-producers can benefit from pyoverdines secreted by producers. However, this variation was not explained by geographical distance, but primarily depended on the phylogenetic relatedness between interacting isolates. A notable exception occurred in local pond communities, where the effect of phylogenetic relatedness was eroded in supernatant assays, probably due to the horizontal transfer of receptor genes. While the latter result could be a signature of local adaptation, our results overall indicate that common ancestry and not geographical distance is the main predictor of siderophore-mediated social interactions among pseudomonads.
Collapse
Affiliation(s)
- Elena Butaitė
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jos Kramer
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Abstract
Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant-pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Plant Pathology and Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
10
|
Kramer J, López Carrasco MÁ, Kümmerli R. Positive linkage between bacterial social traits reveals that homogeneous rather than specialised behavioral repertoires prevail in natural Pseudomonas communities. FEMS Microbiol Ecol 2020; 96:5643885. [PMID: 31769782 DOI: 10.1093/femsec/fiz185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022] Open
Abstract
Bacteria frequently cooperate by sharing secreted metabolites such as enzymes and siderophores. The expression of such 'public good' traits can be interdependent, and studies on laboratory systems have shown that trait linkage affects eco-evolutionary dynamics within bacterial communities. Here, we examine whether linkage among social traits occurs in natural habitats by examining investment levels and correlations between five public goods (biosurfactants, biofilm components, proteases, pyoverdines and toxic compounds) in 315 Pseudomonas isolates from soil and freshwater communities. Our phenotypic assays revealed that (i) social trait expression profiles varied dramatically; (ii) correlations between traits were frequent, exclusively positive and sometimes habitat-specific; and (iii) heterogeneous (specialised) trait repertoires were rarer than homogeneous (unspecialised) repertoires. Our results show that most isolates lie on a continuum between a 'social' type producing multiple public goods, and an 'asocial' type showing low investment into social traits. This segregation could reflect local adaptation to different microhabitats, or emerge from interactions between different social strategies. In the latter case, our findings suggest that the scope for competition among unspecialised isolates exceeds the scope for mutualistic exchange of different public goods between specialised isolates. Overall, our results indicate that complex interdependencies among social traits shape microbial lifestyles in nature.
Collapse
Affiliation(s)
- Jos Kramer
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Miguel Ángel López Carrasco
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Departamento de Biología Celular, Genética y Fisiología, University of Málaga, Bulevar Louis Pasteur 31, 29010 Málaga, Spain
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
11
|
Khan S, Voordouw MJ, Hill JE. Competition Among Gardnerella Subgroups From the Human Vaginal Microbiome. Front Cell Infect Microbiol 2019; 9:374. [PMID: 31737577 PMCID: PMC6834547 DOI: 10.3389/fcimb.2019.00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022] Open
Abstract
Gardnerella spp. are hallmarks of bacterial vaginosis, a clinically significant dysbiosis of the vaginal microbiome. Gardnerella has four subgroups (A, B, C, and D) based on cpn60 sequences. Multiple subgroups are often detected in individual women, and interactions between these subgroups are expected to influence their population dynamics and associated clinical signs and symptoms of bacterial vaginosis. In the present study, contact-independent and contact-dependent interactions between the four Gardnerella subgroups were investigated in vitro. The cell free supernatants of mono- and co-cultures had no effect on growth rates of the Gardnerella subgroups suggesting that there are no contact-independent interactions (and no contest competition). For contact-dependent interactions, mixed communities of 2, 3, or 4 subgroups were created and the initial (0 h) and final population sizes (48 h) were quantified using subgroup-specific PCR. Compared to the null hypothesis of neutral interactions, most (69.3%) of the mixed communities exhibited competition. Competition reduced the growth rates of subgroups A, B, and C. In contrast, the growth rate of subgroup D increased in the presence of the other subgroups. All subgroups were able to form biofilm alone and in mixed communities. Our study suggests that there is scramble competition among Gardnerella subgroups, which likely contributes to the observed distributions of Gardnerella spp. in vaginal microbiomes and the formation of the multispecies biofilms characteristic of bacterial vaginosis.
Collapse
Affiliation(s)
- Salahuddin Khan
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
O'Brien S, Kümmerli R, Paterson S, Winstanley C, Brockhurst MA. Transposable temperate phages promote the evolution of divergent social strategies in Pseudomonas aeruginosa populations. Proc Biol Sci 2019; 286:20191794. [PMID: 31594506 DOI: 10.1098/rspb.2019.1794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transposable temperate phages randomly insert into bacterial genomes, providing increased supply and altered spectra of mutations available to selection, thus opening alternative evolutionary trajectories. Transposable phages accelerate bacterial adaptation to new environments, but their effect on adaptation to the social environment is unclear. Using experimental evolution of Pseudomonas aeruginosa in iron-limited and iron-rich environments, where the cost of producing cooperative iron-chelating siderophores is high and low, respectively, we show that transposable phages promote divergence into extreme siderophore production phenotypes. Iron-limited populations with transposable phages evolved siderophore overproducing clones alongside siderophore non-producing cheats. Low siderophore production was associated with parallel mutations in pvd genes, encoding pyoverdine biosynthesis, and pqs genes, encoding quinolone signalling, while high siderophore production was associated with parallel mutations in phenazine-associated gene clusters. Notably, some of these parallel mutations were caused by phage insertional inactivation. These data suggest that transposable phages, which are widespread in microbial communities, can mediate the evolutionary divergence of social strategies.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
13
|
Sathe S, Mathew A, Agnoli K, Eberl L, Kümmerli R. Genetic architecture constrains exploitation of siderophore cooperation in the bacterium Burkholderia cenocepacia. Evol Lett 2019; 3:610-622. [PMID: 31844554 PMCID: PMC6906993 DOI: 10.1002/evl3.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Explaining how cooperation can persist in the presence of cheaters, exploiting the cooperative acts, is a challenge for evolutionary biology. Microbial systems have proved extremely useful to test evolutionary theory and identify mechanisms maintaining cooperation. One of the most widely studied system is the secretion and sharing of iron‐scavenging siderophores by Pseudomonas bacteria, with many insights gained from this system now being considered as hallmarks of bacterial cooperation. Here, we introduce siderophore secretion by the bacterium Burkholderia cenocepacia H111 as a novel parallel study system, and show that this system behaves differently. For ornibactin, the main siderophore of this species, we discovered a novel mechanism of how cheating can be prevented. Particularly, we found that secreted ornibactin cannot be exploited by ornibactin‐defective mutants because ornibactin receptor and synthesis genes are co‐expressed from the same operon, such that disruptive mutations in synthesis genes compromise receptor availability required for siderophore uptake and cheating. For pyochelin, the secondary siderophore of this species, we found that cheating was possible, but the relative success of cheaters was positive frequency dependent, thus diametrically opposite to the Pseudomonas and other microbial systems. Altogether, our results highlight that expanding our repertoire of microbial study systems leads to new discoveries and suggest that there is an enormous diversity of social interactions out there in nature, and we might have only looked at the tip of the iceberg so far.
Collapse
Affiliation(s)
- Santosh Sathe
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.,Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland
| | - Anugraha Mathew
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Kirsty Agnoli
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.,Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Andersen SB, Ghoul M, Marvig RL, Lee ZB, Molin S, Johansen HK, Griffin AS. Privatisation rescues function following loss of cooperation. eLife 2018; 7:e38594. [PMID: 30558711 PMCID: PMC6298776 DOI: 10.7554/elife.38594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
A single cheating mutant can lead to the invasion and eventual eradication of cooperation from a population. Consequently, cheat invasion is often considered equal to extinction in empirical and theoretical studies of cooperator-cheat dynamics. But does cheat invasion necessarily equate extinction in nature? By following the social dynamics of iron metabolism in Pseudomonas aeruginosa during cystic fibrosis lung infection, we observed that individuals evolved to replace cooperation with a 'private' behaviour. Phenotypic assays showed that cooperative iron acquisition frequently was upregulated early in infection, which, however, increased the risk of cheat invasion. With whole-genome sequencing we showed that if, and only if, cooperative iron acquisition is lost from the population, a private system was upregulated. The benefit of upregulation depended on iron availability. These findings highlight the importance of social dynamics of natural populations and emphasizes the potential impact of past social interaction on the evolution of private traits.
Collapse
Affiliation(s)
- Sandra Breum Andersen
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Melanie Ghoul
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
| | | | - Zhuo-Bin Lee
- Department of ZoologyUniversity of OxfordOxfordUnited Kingdom
| | - Søren Molin
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Helle Krogh Johansen
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | |
Collapse
|
15
|
Cheating on Cheaters Stabilizes Cooperation in Pseudomonas aeruginosa. Curr Biol 2018; 28:2070-2080.e6. [DOI: 10.1016/j.cub.2018.04.093] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/27/2018] [Accepted: 04/27/2018] [Indexed: 01/07/2023]
|
16
|
Bauer MA, Kainz K, Carmona-Gutierrez D, Madeo F. Microbial wars: Competition in ecological niches and within the microbiome. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:215-219. [PMID: 29796386 PMCID: PMC5961915 DOI: 10.15698/mic2018.05.628] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/22/2022]
Abstract
Many microbial communities live in highly competitive surroundings, in which the fight for resources determines their survival and genetic persistence. Humans live in a close relationship with microbial communities, which includes the health- and disease-determining interactions with our microbiome. Accordingly, the understanding of microbial competitive activities are essential at physiological and pathophysiological levels. Here we provide a brief overview on microbial competition and discuss some of its roles and consequences that directly affect humans.
Collapse
Affiliation(s)
- Maria A. Bauer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
17
|
Becker F, Wienand K, Lechner M, Frey E, Jung H. Interactions mediated by a public good transiently increase cooperativity in growing Pseudomonas putida metapopulations. Sci Rep 2018; 8:4093. [PMID: 29511247 PMCID: PMC5840296 DOI: 10.1038/s41598-018-22306-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/21/2018] [Indexed: 01/13/2023] Open
Abstract
Bacterial communities have rich social lives. A well-established interaction involves the exchange of a public good in Pseudomonas populations, where the iron-scavenging compound pyoverdine, synthesized by some cells, is shared with the rest. Pyoverdine thus mediates interactions between producers and non-producers and can constitute a public good. This interaction is often used to test game theoretical predictions on the "social dilemma" of producers. Such an approach, however, underestimates the impact of specific properties of the public good, for example consequences of its accumulation in the environment. Here, we experimentally quantify costs and benefits of pyoverdine production in a specific environment, and build a model of population dynamics that explicitly accounts for the changing significance of accumulating pyoverdine as chemical mediator of social interactions. The model predicts that, in an ensemble of growing populations (metapopulation) with different initial producer fractions (and consequently pyoverdine contents), the global producer fraction initially increases. Because the benefit of pyoverdine declines at saturating concentrations, the increase need only be transient. Confirmed by experiments on metapopulations, our results show how a changing benefit of a public good can shape social interactions in a bacterial population.
Collapse
Affiliation(s)
- Felix Becker
- Microbiology, Department Biology 1, Ludwig-Maximilians-Universität Munich, Grosshaderner Strasse 2-4, D-82152 Martinsried, Germany
| | - Karl Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333, Munich, Germany
| | - Matthias Lechner
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333, Munich, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333, Munich, Germany.
| | - Heinrich Jung
- Microbiology, Department Biology 1, Ludwig-Maximilians-Universität Munich, Grosshaderner Strasse 2-4, D-82152 Martinsried, Germany.
| |
Collapse
|
18
|
A common evolutionary pathway for maintaining quorum sensing in Pseudomonas aeruginosa. J Microbiol 2018; 56:83-89. [PMID: 29392560 DOI: 10.1007/s12275-018-7286-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
In the bacterium Pseudomonas aeruginosa, the synthesis and secretion of extracellular protease is a typical cooperative behavior regulated by quorum sensing. However, this type of cooperative behavior is easily exploited by other individuals who do not synthesize public goods, which is known as the "tragedy of the commons". Here P. aeruginosa was inoculated into casein media with different nitrogen salts added. In casein broth, protease (a type of public good) is necessary for bacterial growth. After 30 days of sequential transfer, some groups propagated stably and avoided "tragedy of the commons". The evolved cooperators who continued to synthesize protease were isolated from these stable groups. By comparing the characteristics of quorum sensing in these cooperators, an identical evolutionary pattern was found. A variety of cooperative behaviors regulated by quorum sensing, such as the synthesis and secretion of protease and signals, were significantly reduced during the process of evolution. Such reductions improved the efficiency of cooperation, helping to prevent cheating. In addition, the production of pyocyanin, which is regulated by the RhlIR system, increased during the process of evolution, possibly due to its role in stabilizing the cooperation. This study contributes towards our understanding of the evolution of quorum sensing of P. aeruginosa.
Collapse
|
19
|
Weigert M, Kümmerli R. The physical boundaries of public goods cooperation between surface-attached bacterial cells. Proc Biol Sci 2018; 284:rspb.2017.0631. [PMID: 28701557 DOI: 10.1098/rspb.2017.0631] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/02/2017] [Indexed: 01/17/2023] Open
Abstract
Bacteria secrete a variety of compounds important for nutrient scavenging, competition mediation and infection establishment. While there is a general consensus that secreted compounds can be shared and therefore have social consequences for the bacterial collective, we know little about the physical limits of such bacterial social interactions. Here, we address this issue by studying the sharing of iron-scavenging siderophores between surface-attached microcolonies of the bacterium Pseudomonas aeruginosa Using single-cell fluorescence microscopy, we show that siderophores, secreted by producers, quickly reach non-producers within a range of 100 µm, and significantly boost their fitness. Producers in turn respond to variation in sharing efficiency by adjusting their pyoverdine investment levels. These social effects wane with larger cell-to-cell distances and on hard surfaces. Thus, our findings reveal the boundaries of compound sharing, and show that sharing is particularly relevant between nearby yet physically separated bacteria on soft surfaces, matching realistic natural conditions such as those encountered in soft tissue infections.
Collapse
Affiliation(s)
- Michael Weigert
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland .,Department of Biology I, Division of Microbiology, Ludwig Maximilians University Munich, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
20
|
Harrison F, McNally A, da Silva AC, Heeb S, Diggle SP. Optimised chronic infection models demonstrate that siderophore 'cheating' in Pseudomonas aeruginosa is context specific. THE ISME JOURNAL 2017; 11:2492-2509. [PMID: 28696423 PMCID: PMC5649161 DOI: 10.1038/ismej.2017.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022]
Abstract
The potential for siderophore mutants of Pseudomonas aeruginosa to attenuate virulence during infection, and the possibility of exploiting this for clinical ends, have attracted much discussion. This has largely been based on the results of in vitro experiments conducted in iron-limited growth medium, in which siderophore mutants act as social 'cheats:' increasing in frequency at the expense of the wild type to result in low-productivity, low-virulence populations dominated by mutants. We show that insights from in vitro experiments cannot necessarily be transferred to infection contexts. First, most published experiments use an undefined siderophore mutant. Whole-genome sequencing of this strain revealed a range of mutations affecting phenotypes other than siderophore production. Second, iron-limited medium provides a very different environment from that encountered in chronic infections. We conducted cheating assays using defined siderophore deletion mutants, in conditions designed to model infected fluids and tissue in cystic fibrosis lung infection and non-healing wounds. Depending on the environment, siderophore loss led to cheating, simple fitness defects, or no fitness effect at all. Our results show that it is crucial to develop defined in vitro models in order to predict whether siderophores are social, cheatable and suitable for clinical exploitation in specific infection contexts.
Collapse
Affiliation(s)
- Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ana C da Silva
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephan Heeb
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephen P Diggle
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
21
|
Abdullah AS, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A. Host-Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1806. [PMID: 29118773 PMCID: PMC5660990 DOI: 10.3389/fpls.2017.01806] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/04/2017] [Indexed: 05/04/2023]
Abstract
Studies of plant-pathogen interactions have historically focused on simple models of infection involving single host-single disease systems. However, plant infections often involve multiple species and/or genotypes and exhibit complexities not captured in single host-single disease systems. Here, we review recent insights into co-infection systems focusing on the dynamics of host-multi-pathogen interactions and the implications for host susceptibility/resistance. In co-infection systems, pathogen interactions include: (i) Competition, in which competing pathogens develop physical barriers or utilize toxins to exclude competitors from resource-dense niches; (ii) Cooperation, whereby pathogens beneficially interact, by providing mutual biochemical signals essential for pathogenesis, or through functional complementation via the exchange of resources necessary for survival; (iii) Coexistence, whereby pathogens can stably coexist through niche specialization. Furthermore, hosts are also able to, actively or passively, modulate niche competition through defense responses that target at least one pathogen. Typically, however, virulent pathogens subvert host defenses to facilitate infection, and responses elicited by one pathogen may be modified in the presence of another pathogen. Evidence also exists, albeit rare, of pathogens incorporating foreign genes that broaden niche adaptation and improve virulence. Throughout this review, we draw upon examples of co-infection systems from a range of pathogen types and identify outstanding questions for future innovation in disease control strategies.
Collapse
Affiliation(s)
- Araz S. Abdullah
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Caroline S. Moffat
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Francisco J. Lopez-Ruiz
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Mark R. Gibberd
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - John Hamblin
- Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Ayalsew Zerihun
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| |
Collapse
|
22
|
Popat R, Harrison F, da Silva AC, Easton SAS, McNally L, Williams P, Diggle SP. Environmental modification via a quorum sensing molecule influences the social landscape of siderophore production. Proc Biol Sci 2017; 284:rspb.2017.0200. [PMID: 28404780 PMCID: PMC5394672 DOI: 10.1098/rspb.2017.0200] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Bacteria produce a wide variety of exoproducts that favourably modify their environment and increase their fitness. These are often termed ‘public goods’ because they are costly for individuals to produce and can be exploited by non-producers (cheats). The outcome of conflict over public goods is dependent upon the prevailing environment and the phenotype of the individuals in competition. Many bacterial species use quorum sensing (QS) signalling molecules to regulate the production of public goods. QS, therefore, determines the cooperative phenotype of individuals, and influences conflict over public goods. In addition to their regulatory functions, many QS molecules have additional properties that directly modify the prevailing environment. This leads to the possibility that QS molecules could influence conflict over public goods indirectly through non-signalling effects, and the impact of this on social competition has not previously been explored. The Pseudomonas aeruginosa QS signal molecule PQS is a powerful chelator of iron which can cause an iron starvation response. Here, we show that PQS stimulates a concentration-dependent increase in the cooperative production of iron scavenging siderophores, resulting in an increase in the relative fitness of non-producing siderophore cheats. This is likely due to an increased cost of siderophore output by producing cells and a concurrent increase in the shared benefits, which accrue to both producers and cheats. Although PQS can be a beneficial signalling molecule for P. aeruginosa, our data suggest that it can also render a siderophore-producing population vulnerable to competition from cheating strains. More generally, our results indicate that the production of one social trait can indirectly affect the costs and benefits of another social trait.
Collapse
Affiliation(s)
- Roman Popat
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Freya Harrison
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.,School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Ana C da Silva
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Scott A S Easton
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Luke McNally
- Centre for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Stephen P Diggle
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
23
|
Bruce JB, Cooper GA, Chabas H, West SA, Griffin AS. Cheating and resistance to cheating in natural populations of the bacteriumPseudomonas fluorescens. Evolution 2017; 71:2484-2495. [DOI: 10.1111/evo.13328] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Affiliation(s)
- John B. Bruce
- Department of Zoology; University of Oxford; Oxford UK
| | - Guy A. Cooper
- Department of Zoology; University of Oxford; Oxford UK
| | - Hélène Chabas
- CEFE UMR 5175, CNRS-Université de Montpellier; Université Paul-Valéry Montpellier; Montpellier Cedex 5 France
| | | | | |
Collapse
|
24
|
Granato ET, Kümmerli R. The path to re-evolve cooperation is constrained in Pseudomonas aeruginosa. BMC Evol Biol 2017; 17:214. [PMID: 28893176 PMCID: PMC5594463 DOI: 10.1186/s12862-017-1060-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/01/2017] [Indexed: 01/26/2023] Open
Abstract
Background A common form of cooperation in bacteria is based on the secretion of beneficial metabolites, shareable as public good among cells within a group. Because cooperation can be exploited by “cheating” mutants, which contribute less or nothing to the public good, there has been great interest in understanding the conditions required for cooperation to remain evolutionarily stable. In contrast, much less is known about whether cheats, once fixed in the population, are able to revert back to cooperation when conditions change. Here, we tackle this question by subjecting experimentally evolved cheats of Pseudomonas aeruginosa, partly deficient for the production of the iron-scavenging public good pyoverdine, to conditions previously shown to favor cooperation. Results Following approximately 200 generations of experimental evolution, we screened 720 evolved clones for changes in their pyoverdine production levels. We found no evidence for the re-evolution of full cooperation, even in environments with increased spatial structure, and reduced costs of public good production – two conditions that have previously been shown to maintain cooperation. In contrast, we observed selection for complete abolishment of pyoverdine production. The patterns of complete trait degradation were likely driven by “cheating on cheats” in unstructured, iron-limited environments where pyoverdine is important for growth, and selection against a maladaptive trait in iron-rich environments where pyoverdine is superfluous. Conclusions Our study shows that the path to re-evolve public-goods cooperation can be constrained. While a limitation of the number of mutational targets potentially leading to reversion might be one reason for the observed pattern, an alternative explanation is that the selective conditions required for revertants to spread from rarity are much more stringent than those needed to maintain cooperation. Electronic supplementary material The online version of this article (10.1186/s12862-017-1060-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa T Granato
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun 2017; 8:414. [PMID: 28871205 PMCID: PMC5583256 DOI: 10.1038/s41467-017-00509-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/29/2017] [Indexed: 11/17/2022] Open
Abstract
All social organisms experience dilemmas between cooperators performing group-beneficial actions and cheats selfishly exploiting these actions. Although bacteria have become model organisms to study social dilemmas in laboratory systems, we know little about their relevance in natural communities. Here, we show that social interactions mediated by a single shareable compound necessary for growth (the iron-scavenging pyoverdine) have important consequences for competitive dynamics in soil and pond communities of Pseudomonas bacteria. We find that pyoverdine non- and low-producers co-occur in many natural communities. While non-producers have genes coding for multiple pyoverdine receptors and are able to exploit compatible heterologous pyoverdines from other community members, producers differ in the pyoverdine types they secrete, offering protection against exploitation from non-producers with incompatible receptors. Our findings indicate that there is both selection for cheating and cheating resistance, which could drive antagonistic co-evolution and diversification in natural bacterial communities. Lab strains of Pseudomonas are model systems for the evolution of cooperation over public goods (iron-scavenging siderophores). Here, Butaitė et al. add ecological and evolutionary insight into this system by showing that cheating and resistance to cheating both shape competition for iron in natural Pseudomonas communities.
Collapse
|
26
|
Abstract
Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. In response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.
Collapse
Affiliation(s)
- Lauren D Palmer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212;
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212;
- Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, Tennessee 37212
| |
Collapse
|
27
|
Ghoul M, Mitri S. The Ecology and Evolution of Microbial Competition. Trends Microbiol 2016; 24:833-845. [DOI: 10.1016/j.tim.2016.06.011] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/15/2016] [Accepted: 06/28/2016] [Indexed: 01/23/2023]
|
28
|
|
29
|
Song C, Kidarsa TA, van de Mortel JE, Loper JE, Raaijmakers JM. Living on the edge: emergence of spontaneous gac mutations in Pseudomonas protegens during swarming motility. Environ Microbiol 2016; 18:3453-3465. [PMID: 26945503 DOI: 10.1111/1462-2920.13288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/02/2016] [Indexed: 11/28/2022]
Abstract
Swarming motility is a flagella-driven multicellular behaviour that allows bacteria to colonize new niches and escape competition. Here, we investigated the evolution of specific mutations in the GacS/GacA two-component regulatory system in swarming colonies of Pseudomonas protegens Pf-5. Experimental evolution assays showed that repeated rounds of swarming by wildtype Pf-5 drives the accumulation of gacS/gacA spontaneous mutants on the swarming edge. These mutants cannot swarm on their own because they lack production of the biosurfactant orfamide A, but they do co-swarm with orfamide-producing wildtype Pf-5. These co-swarming assays further demonstrated that ΔgacA mutant cells indeed predominate on the edge and that initial ΔgacA:wildtype Pf-5 ratios of at least 2:1 lead to a collapse of the swarming colony. Subsequent whole-genome transcriptome analyses revealed that genes associated with motility, resource acquisition, chemotaxis and efflux were significantly upregulated in ΔgacA mutant on swarming medium. Moreover, transmission electron microscopy showed that ΔgacA mutant cells were longer and more flagellated than wildtype cells, which may explain their predominance on the swarming edge. We postulate that adaptive evolution through point mutations is a common feature of range-expanding microbial populations and that the putative fitness benefits of these mutations during dispersal of bacteria into new territories are frequency-dependent.
Collapse
Affiliation(s)
- Chunxu Song
- Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands.,Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Teresa A Kidarsa
- Agricultural Research Service, US Department of Agriculture, Corvallis, OR, 97330, USA
| | - Judith E van de Mortel
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Joyce E Loper
- Agricultural Research Service, US Department of Agriculture, Corvallis, OR, 97330, USA
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands. .,Microbial Biotechnology Department, Institute of Biology (IBL), Leiden University, Leiden, The Netherlands.
| |
Collapse
|
30
|
Mitri S, Foster KR. Pleiotropy and the low cost of individual traits promote cooperation. Evolution 2016; 70:488-94. [DOI: 10.1111/evo.12851] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Sara Mitri
- Department of Fundamental Microbiology; University of Lausanne; Lausanne Switzerland
| | - Kevin R. Foster
- Department of Zoology; University of Oxford; Oxford UK
- Oxford Centre for Integrative Systems Biology; University of Oxford; Oxford UK
| |
Collapse
|
31
|
Elgar MA. Integrating insights across diverse taxa: challenges for understanding social evolution. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
32
|
Connelly BD, Dickinson KJ, Hammarlund SP, Kerr B. Negative niche construction favors the evolution of cooperation. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9803-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Live to cheat another day: bacterial dormancy facilitates the social exploitation of β-lactamases. ISME JOURNAL 2015; 10:778-87. [PMID: 26505830 PMCID: PMC4817691 DOI: 10.1038/ismej.2015.154] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 01/27/2023]
Abstract
The breakdown of antibiotics by β-lactamases may be cooperative, since resistant cells can detoxify their environment and facilitate the growth of susceptible neighbours. However, previous studies of this phenomenon have used artificial bacterial vectors or engineered bacteria to increase the secretion of β-lactamases from cells. Here, we investigated whether a broad-spectrum β-lactamase gene carried by a naturally occurring plasmid (pCT) is cooperative under a range of conditions. In ordinary batch culture on solid media, there was little or no evidence that resistant bacteria could protect susceptible cells from ampicillin, although resistant colonies could locally detoxify this growth medium. However, when susceptible cells were inoculated at high densities, late-appearing phenotypically susceptible bacteria grew in the vicinity of resistant colonies. We infer that persisters, cells that have survived antibiotics by undergoing a period of dormancy, founded these satellite colonies. The number of persister colonies was positively correlated with the density of resistant colonies and increased as antibiotic concentrations decreased. We argue that detoxification can be cooperative under a limited range of conditions: if the toxins are bacteriostatic rather than bacteridical; or if susceptible cells invade communities after resistant bacteria; or if dormancy allows susceptible cells to avoid bactericides. Resistance and tolerance were previously thought to be independent solutions for surviving antibiotics. Here, we show that these are interacting strategies: the presence of bacteria adopting one solution can have substantial effects on the fitness of their neighbours.
Collapse
|
34
|
Lee W, van Baalen M, Jansen VAA. Siderophore production and the evolution of investment in a public good: An adaptive dynamics approach to kin selection. J Theor Biol 2015; 388:61-71. [PMID: 26471069 DOI: 10.1016/j.jtbi.2015.09.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023]
Abstract
Like many other bacteria, Pseudomonas aeruginosa sequesters iron from the environment through the secretion, and subsequent uptake, of iron-binding molecules. As these molecules can be taken up by other bacteria in the population than those who secreted them, this is a form of cooperation through a public good. Traditionally, this problem has been studied by comparing the relative fitnesses of siderophore-producing and non-producing strains, but this gives no information about the fate of strains that do produce intermediate amounts of siderophores. Here, we investigate theoretically how the amount invested in this form of cooperation evolves. We use a mechanistic description of the laboratory protocols used in experimental evolution studies to describe the competition and cooperation of the bacteria. From this dynamical model we derive the fitness following the adaptive dynamics method. The results show how selection is driven by local siderophore production and local competition. Because siderophore production reduces the growth rate, local competition decreases with the degree of relatedness (which is a dynamical variable in our model). Our model is not restricted to the analysis of small phenotypic differences and allows for theoretical exploration of the effects of large phenotypic differences between cooperators and cheats. We predict that an intermediate ESS level of cooperation (molecule production) should exist. The adaptive dynamics approach allows us to assess evolutionary stability, which is often not possible in other kin-selection models. We found that selection can lead to an intermediate strategy which in our model is always evolutionarily stable, yet can allow invasion of strategies that are much more cooperative. Our model describes the evolution of a public good in the context of the ecology of the microorganism, which allows us to relate the extent of production of the public good to the details of the interactions.
Collapse
Affiliation(s)
- William Lee
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Minus van Baalen
- Eco-Evolutionary Mathematics, Institut Biologie de l׳ENS (UMR 8197), Ecole Normale Supérieure, 75005 Paris, France; Eco-Evolutionary Mathematics, Institut Biologie de l׳ENS (UMR 8197), Centre National de la Recherche Scientifique, 75005 Paris, France
| | - Vincent A A Jansen
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
35
|
Barber MF, Elde NC. Buried Treasure: Evolutionary Perspectives on Microbial Iron Piracy. Trends Genet 2015; 31:627-636. [PMID: 26431675 PMCID: PMC4639441 DOI: 10.1016/j.tig.2015.09.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/18/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022]
Abstract
Host–pathogen interactions provide valuable systems for the study of evolutionary genetics and natural selection. The sequestration of essential iron has emerged as a crucial innate defense system termed nutritional immunity, leading pathogens to evolve mechanisms of ‘iron piracy’ to scavenge this metal from host proteins. This battle for iron carries numerous consequences not only for host–pathogen evolution but also microbial community interactions. Here we highlight recent and potential future areas of investigation on the evolutionary implications of microbial iron piracy in relation to molecular arms races, host range, competition, and virulence. Applying evolutionary genetic approaches to the study of microbial iron acquisition could also provide new inroads for understanding and combating infectious disease. The battle between microbes and their hosts for nutrient iron is emerging as a new front of evolutionary genetic conflict. Molecular arms races can emerge between host iron-binding proteins and microbial ‘iron piracy’ factors that steal this nutrient for growth. Such rapid evolution may also contribute to the host range of pathogenic microbes. Iron acquisition plays an important role in evolutionary interactions between microbes, both in the environment and within the host. Competition for iron can prevent infection by pathogens, while genetic changes in iron acquisition systems can enhance microbial virulence. Evolutionary conflicts for nutrient iron are revealing potential new genetic mechanisms of disease resistance as well as avenues for therapeutic development.
Collapse
Affiliation(s)
- Matthew F Barber
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
36
|
Kümmerli R, Santorelli LA, Granato ET, Dumas Z, Dobay A, Griffin AS, West SA. Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. J Evol Biol 2015; 28:2264-74. [PMID: 26348785 DOI: 10.1111/jeb.12751] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023]
Abstract
The production of beneficial public goods is common in the microbial world, and so is cheating--the exploitation of public goods by nonproducing mutants. Here, we examine co-evolutionary dynamics between cooperators and cheats and ask whether cooperators can evolve strategies to reduce the burden of exploitation, and whether cheats in turn can improve their exploitation abilities. We evolved cooperators of the bacterium Pseudomonas aeruginosa, producing the shareable iron-scavenging siderophore pyoverdine, together with cheats, defective in pyoverdine production but proficient in uptake. We found that cooperators managed to co-exist with cheats in 56% of all replicates over approximately 150 generations of experimental evolution. Growth and competition assays revealed that co-existence was fostered by a combination of general adaptions to the media and specific adaptions to the co-evolving opponent. Phenotypic screening and whole-genome resequencing of evolved clones confirmed this pattern, and suggest that cooperators became less exploitable by cheats because they significantly reduced their pyoverdine investment. Cheats, meanwhile, improved exploitation efficiency through mutations blocking the costly pyoverdine-signalling pathway. Moreover, cooperators and cheats evolved reduced motility, a pattern that likely represents adaptation to laboratory conditions, but at the same time also affects social interactions by reducing strain mixing and pyoverdine sharing. Overall, we observed parallel evolution, where co-existence of cooperators and cheats was enabled by a combination of adaptations to the abiotic and social environment and their interactions.
Collapse
Affiliation(s)
- R Kümmerli
- Microbial Evolutionary Ecology, Institute of Plant Biology, University of Zürich, Zürich, Switzerland.,Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | | | - E T Granato
- Microbial Evolutionary Ecology, Institute of Plant Biology, University of Zürich, Zürich, Switzerland
| | - Z Dumas
- Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - A Dobay
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - A S Griffin
- Department of Zoology, University of Oxford, Oxford, UK
| | - S A West
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Popat R, Pollitt EJG, Harrison F, Naghra H, Hong KW, Chan KG, Griffin AS, Williams P, Brown SP, West SA, Diggle SP. Conflict of interest and signal interference lead to the breakdown of honest signaling. Evolution 2015; 69:2371-83. [PMID: 26282874 PMCID: PMC4862024 DOI: 10.1111/evo.12751] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 01/04/2023]
Abstract
Animals use signals to coordinate a wide range of behaviors, from feeding offspring to predator avoidance. This poses an evolutionary problem, because individuals could potentially signal dishonestly to coerce others into behaving in ways that benefit the signaler. Theory suggests that honest signaling is favored when individuals share a common interest and signals carry reliable information. Here, we exploit the opportunities offered by bacterial signaling to test these predictions with an experimental evolution approach. We show that: (1) reduced relatedness leads to the relative breakdown of signaling, (2) signaling breaks down by the invasion of mutants that show both reduced signaling and reduced response to signal, (3) the genetic route to signaling breakdown is variable, and (4) the addition of artificial signal, to interfere with signal information, also leads to reduced signaling. Our results provide clear support for signaling theory, but we did not find evidence for previously predicted coercion at intermediate relatedness, suggesting that mechanistic details can alter the qualitative nature of specific predictions. Furthermore, populations evolved under low relatedness caused less mortality to insect hosts, showing how signal evolution in bacterial pathogens can drive the evolution of virulence in the opposite direction to that often predicted by theory.
Collapse
Affiliation(s)
- Roman Popat
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.,Centre for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, United Kingdom
| | - Eric J G Pollitt
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Freya Harrison
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Hardeep Naghra
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Kar-Wai Hong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ashleigh S Griffin
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - Paul Williams
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sam P Brown
- Centre for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, United Kingdom
| | - Stuart A West
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - Stephen P Diggle
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
38
|
Bashey F. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140301. [PMID: 26150667 PMCID: PMC4528499 DOI: 10.1098/rstb.2014.0301] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/11/2022] Open
Abstract
Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases.
Collapse
Affiliation(s)
- Farrah Bashey
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
39
|
Abstract
Variation in the routes to social success has led to the designation of 'cheats' and 'cooperators', but new work shows that selection on non-social traits can give the illusion of social cheating in the social amoeba Dictyostelium discoideum.
Collapse
Affiliation(s)
- Siobhan O'Brien
- Department of Biosciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK; Department of Biology, University of York, York, YO10 5DD, UK
| | | |
Collapse
|
40
|
Sociality in Escherichia coli: Enterochelin Is a Private Good at Low Cell Density and Can Be Shared at High Cell Density. J Bacteriol 2015; 197:2122-2128. [PMID: 25733620 DOI: 10.1128/jb.02596-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/25/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Many bacteria produce secreted iron chelators called siderophores, which can be shared among cells with specific siderophore uptake systems regardless of whether the cell produces siderophores. Sharing secreted products allows freeloading, where individuals use resources without bearing the cost of production. Here we show that the Escherichia coli siderophore enterochelin is not evenly shared between producers and nonproducers. Wild-type Escherichia coli grows well in low-iron minimal medium, and an isogenic enterochelin synthesis mutant (ΔentF) grows very poorly. The enterochelin mutant grows well in low-iron medium supplemented with enterochelin. At high cell densities the ΔentF mutant can compete equally with the wild type in low-iron medium. At low cell densities the ΔentF mutant cannot compete. Furthermore, the growth rate of the wild type is unaffected by cell density. The wild type grows well in low-iron medium even at very low starting densities. Our experiments support a model where at least some enterochelin remains associated with the cells that produce it, and the cell-associated enterochelin enables iron acquisition even at very low cell density. Enterochelin that is not retained by producing cells at low density is lost to dilution. At high cell densities, cell-free enterochelin can accumulate and be shared by all cells in the group. Partial privatization is a solution to the problem of iron acquisition in low-iron, low-cell-density habitats. Cell-free enterochelin allows for iron scavenging at a distance at higher population densities. Our findings shed light on the conditions under which freeloaders might benefit from enterochelin uptake systems. IMPORTANCE Sociality in microbes has become a topic of great interest. One facet of sociality is the sharing of secreted products, such as the iron-scavenging siderophores. We present evidence that the Escherichia coli siderophore enterochelin is relatively inexpensive to produce and is partially privatized such that it can be efficiently shared only at high producer cell densities. At low cell densities, cell-free enterochelin is scarce and only enterochelin producers are able to grow in low-iron medium. Because freely shared products can be exploited by freeloaders, this partial privatization may help explain how enterochelin production is stabilized in E. coli and may provide insight into when enterochelin is available for freeloaders.
Collapse
|
41
|
Kemen E. Microbe-microbe interactions determine oomycete and fungal host colonization. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:75-81. [PMID: 24845577 DOI: 10.1016/j.pbi.2014.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/22/2014] [Accepted: 04/24/2014] [Indexed: 05/03/2023]
Abstract
Microbial organisms sharing habitats aim for maximum fitness that they can only reach by collaboration. Developing stable networks within communities are crucial and can be achieved by exchanging common goods and genes that benefit the community. Only recently was it shown that horizontal gene transfer is not only common between prokaryotes but also into eukaryotic organisms such as fungi and oomycetes benefiting communal stability. Eukaryotic plant symbionts and pathogens coevolve with the plant microbiome and can acquire the ability to communicate or even collaborate, facilitating communal host colonization. Understanding communal infection will lead to a mechanistic understanding in how new hosts can be colonized under natural conditions and how we can counteract.
Collapse
Affiliation(s)
- Eric Kemen
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne 50829, Germany.
| |
Collapse
|
42
|
Affiliation(s)
- Thomas W Kuyper
- Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - E Toby Kiers
- Faculty of Earth and Life Sciences, Institute of Ecological Science, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
43
|
García-Contreras R, Nuñez-López L, Jasso-Chávez R, Kwan BW, Belmont JA, Rangel-Vega A, Maeda T, Wood TK. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME JOURNAL 2014; 9:115-25. [PMID: 24936763 DOI: 10.1038/ismej.2014.98] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 12/24/2022]
Abstract
Quorum sensing (QS) coordinates the expression of virulence factors and allows bacteria to counteract the immune response, partly by increasing their tolerance to the oxidative stress generated by immune cells. Despite the recognized role of QS in enhancing the oxidative stress response, the consequences of this relationship for the bacterial ecology remain unexplored. Here we demonstrate that QS increases resistance also to osmotic, thermal and heavy metal stress. Furthermore a QS-deficient lasR rhlR mutant is unable to exert a robust response against H2O2 as it has less induction of catalase and NADPH-producing dehydrogenases. Phenotypic microarrays revealed that the mutant is very sensitive to several toxic compounds. As the anti-oxidative enzymes are private goods not shared by the population, only the individuals that produce them benefit from their action. Based on this premise, we show that in mixed populations of wild-type and the mexR mutant (resistant to the QS inhibitor furanone C-30), treatment with C-30 and H2O2 increases the proportion of mexR mutants; hence, oxidative stress selects resistance to QS compounds. In addition, oxidative stress alone strongly selects for strains with active QS systems that are able to exert a robust anti oxidative response and thereby decreases the proportion of QS cheaters in cultures that are otherwise prone to invasion by cheats. As in natural environments stress is omnipresent, it is likely that this QS enhancement of stress tolerance allows cells to counteract QS inhibition and invasions by social cheaters, therefore having a broad impact in bacterial ecology.
Collapse
Affiliation(s)
| | - Leslie Nuñez-López
- Biochemistry Department, National Institute of Cardiology, Mexico City, Mexico
| | | | - Brian W Kwan
- Department of Chemical Engineeringy, Pennsylvania State University, University Park, PA, USA
| | - Javier A Belmont
- Biochemistry Department, National Institute of Cardiology, Mexico City, Mexico
| | - Adrián Rangel-Vega
- Internal Medicine Department, Speciality Hospital, National Medical Center 'Siglo XXI', IMSS, Mexico City, Mexico
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Thomas K Wood
- 1] Department of Chemical Engineeringy, Pennsylvania State University, University Park, PA, USA [2] Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|