1
|
Santidrián Tomillo P. Re-Equilibrating Sex Ratios: Adjustment of Reaction Norms in Species With Temperature-Dependent Sex Determination. GLOBAL CHANGE BIOLOGY 2024; 30:e17568. [PMID: 39492691 DOI: 10.1111/gcb.17568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Fisher's general principle for sex allocation holds that population sex ratios are typically balanced because parents producing the rare sex are benefited and the rare sex alternates over time. In species that have temperature-dependent sex determination (TSD), thermal reaction norms need to be adjusted at the population level to avoid extremely biased sex ratios and extinction. Extant species with TSD experienced drastic climatic changes in the geological past and must necessarily have mechanisms of adaptation. I propose here a conceptual framework to explain how TSD curves could be adjusted by means of natural selection, based on Fisher's equilibrium sex-ratio principle. Through a process that alternatively favors mothers that tend to produce the rare sex under new temperatures, sex ratios eventually return toward a theoretical equilibrium. Prerequisites for this model are variability among mothers in the tendency to produce a particular sex at a given temperature (i.e., variability in the thermal reaction norm), inheritance of this trend, and higher fitness of the rare sex. This straightforward mechanism could facilitate thermal adaptation in species with TSD over multiple generations.
Collapse
Affiliation(s)
- Pilar Santidrián Tomillo
- Centre Oceanogràfic de les Balears, Instituto Español de Oceanografía (IEO, CSIC), Palma de Mallorca, Spain
| |
Collapse
|
2
|
Silver‐Gorges I, Shamblin BM, Ashford M, Bower P, Fuentes MMPB. Potential drivers and implications of a balanced breeding sex ratio in a small population of an imperiled species with environmental sex determination. Ecol Evol 2024; 14:e70166. [PMID: 39224154 PMCID: PMC11366973 DOI: 10.1002/ece3.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Small populations of imperiled species are susceptible to the negative consequences of skewed sex-ratios. In imperiled species with environmental sex determination such as sea turtles, examining sex ratios across a range of environments and population abundance levels can provide insight into factors that influence population resilience, which can then be the foci of management plans for these species. Breeding sex ratios (the ratio of actively breeding males to females during a reproductive season; BSRs) extrapolated from genetic parentage analyses are a common approach for enumerating sex ratios in sea turtles. Such analyses also allow for the characterization of multiple paternity within sea turtle clutches, which should reflect BSRs and breeding behaviors. We characterized the first BSR for a breeding assemblage of loggerhead sea turtles (Caretta caretta) belonging to the temperate, low-abundance Northern Gulf of Mexico Recovery Unit using genotypes of 16 microsatellite loci from nesting females and hatchlings. Unlike prior studies at both more-tropical and more-temperate, and higher-abundance, Recovery Units in this region, we found a balanced BSR of 1.3:1 males:female and a low incidence (~17%) of multiple paternity. This suggests that there are relatively few males breeding at this assemblage and within this Recovery Unit. Beaches in this region are expected to produce substantial numbers of male hatchlings based on sand temperature data. The relative dearth of mature males may then be due to hydrologic disturbances that disproportionately affect the fitness and survival of male hatchlings, or due to demographic stochasticity. More work is needed to study the factors that might influence male hatchling production and fitness in this region, particularly as climate change is predicted to lead to feminization in global sea turtle populations. Our work demonstrates the broad utility of characterizing BSRs and other sex ratios across a range of populations in imperiled, environmentally sensitive species.
Collapse
Affiliation(s)
- Ian Silver‐Gorges
- Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Brian M. Shamblin
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - Mason Ashford
- Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Paityn Bower
- Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Mariana M. P. B. Fuentes
- Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
3
|
Gissi E, Goodman MC, Elahi R, McDevitt-Irwin JM, Arnoldi NS, Arafeh-Dalmau N, Knight CJ, Olguín-Jacobson C, Palmisciano M, Tillman CM, De Leo GA, Micheli F. Sex-specific variation in species interactions matters in ecological communities. Trends Ecol Evol 2024:S0169-5347(24)00171-X. [PMID: 39107207 DOI: 10.1016/j.tree.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/09/2024]
Abstract
Understanding how natural communities and ecosystems are structured and respond to anthropogenic pressures in a rapidly changing world is key to successful management and conservation. A fundamental but often overlooked biological characteristic of organisms is sex. Sex-based responses are often considered when conducting studies at organismal and population levels, but are rarely investigated in community ecology. Focusing on kelp forests as a model system, and through a review of other marine and terrestrial ecosystems, we found evidence of widespread sex-based variation in species interactions. Sex-based variation in species interactions is expected to affect ecosystem structure and functioning via multiple trophic and nontrophic pathways. Understanding the drivers and consequences of sex-based variation in species interactions can inform more effective management and restoration.
Collapse
Affiliation(s)
- Elena Gissi
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; National Research Council, Institute of Marine Science, Venice, 30122, Italy; National Biodiversity Future Center, Palermo, 90133, Italy.
| | | | - Robin Elahi
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Jamie M McDevitt-Irwin
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93117, USA
| | - Natalie S Arnoldi
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Nur Arafeh-Dalmau
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; Department of Geography, University of California Los Angeles, Los Angeles, CA 90095, USA; Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christopher J Knight
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | | | - Melissa Palmisciano
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Ceyenna M Tillman
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Giulio A De Leo
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Fiorenza Micheli
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
4
|
Chen Y, Ge E, Zhou L, Du J, Mace R. Gender inequality in workloads explained by operational sex ratio. iScience 2024; 27:110063. [PMID: 38883828 PMCID: PMC11179575 DOI: 10.1016/j.isci.2024.110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/16/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Ecological differences between human populations can affect the relative strength of sexual selection, and hence drive gender inequality. Here, we exploit the cultural diversity of southwestern China, where some village sex ratios are female-biased, in part due to a proportion of males entering monastic celibacy, to evaluate the role of sex ratio on the sexual division of labor. We used a detachable activity tracker to measure workload by step counts in both sexes among 561 individuals in 55 villages in six different areas. We show that a lower sex ratio and a higher prevalence of monasticism are associated with higher women's workloads and reduced men's workloads in the non-celibate population. As the operational sex ratio increases, gender inequality diminishes. This study offers valuable insights into the origins of gender disparities by examining the role of sex ratio on the sexual division of labor.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Anthropology, University College London, 14 Taviton Street, WC1H 0BW London, UK
- State Key Laboratory of Grassland and Agro-Ecosystems, College of Ecology, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu Province 730000, P.R. China
| | - Erhao Ge
- Department of Anthropology, University College London, 14 Taviton Street, WC1H 0BW London, UK
- State Key Laboratory of Grassland and Agro-Ecosystems, College of Ecology, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu Province 730000, P.R. China
| | - Liqiong Zhou
- State Key Laboratory of Grassland and Agro-Ecosystems, College of Ecology, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu Province 730000, P.R. China
| | - Juan Du
- Department of Anthropology, University College London, 14 Taviton Street, WC1H 0BW London, UK
- State Key Laboratory of Grassland and Agro-Ecosystems, College of Ecology, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu Province 730000, P.R. China
| | - Ruth Mace
- Department of Anthropology, University College London, 14 Taviton Street, WC1H 0BW London, UK
- Institute for Advanced Study in Toulouse, Université de Toulouse 1 Capitole, France
| |
Collapse
|
5
|
Fresneau N, Pipoly I, Gigler D, Kosztolányi A, Székely T, Liker A. The evolution of sex roles: The importance of ecology and social environment. Proc Natl Acad Sci U S A 2024; 121:e2321294121. [PMID: 38771872 PMCID: PMC11145285 DOI: 10.1073/pnas.2321294121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/27/2024] [Indexed: 05/23/2024] Open
Abstract
Males and females often have different roles in reproduction, although the origin of these differences has remained controversial. Explaining the enigmatic reversed sex roles where males sacrifice their mating potential and provide full parental care is a particularly long-standing challenge in evolutionary biology. While most studies focused on ecological factors as the drivers of sex roles, recent research highlights the significance of social factors such as the adult sex ratio. To disentangle these propositions, here, we investigate the additive and interactive effects of several ecological and social factors on sex role variation using shorebirds (sandpipers, plovers, and allies) as model organisms that provide the full spectrum of sex role variation including some of the best-known examples of sex-role reversal. Our results consistently show that social factors play a prominent role in driving sex roles. Importantly, we show that reversed sex roles are associated with both male-skewed adult sex ratios and high breeding densities. Furthermore, phylogenetic path analyses provide general support for sex ratios driving sex role variations rather than being a consequence of sex roles. Together, these important results open future research directions by showing that different mating opportunities of males and females play a major role in generating the evolutionary diversity of sex roles, mating system, and parental care.
Collapse
Affiliation(s)
- Nolwenn Fresneau
- Evolutionary Ecology Research Group, Hungarian Research Network-University of Pannonia, Veszprém8200, Hungary
- Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém8200, Hungary
| | - Ivett Pipoly
- Evolutionary Ecology Research Group, Hungarian Research Network-University of Pannonia, Veszprém8200, Hungary
- Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém8200, Hungary
| | - Dóra Gigler
- World Wide Fund (WWF) for Nature Hungary Foundation, Budapest1141, Hungary
| | - András Kosztolányi
- Department of Zoology, University of Veterinary Medicine, Budapest1077, Hungary
| | - Tamás Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, BathBA2 7AZ, United Kingdom
- Reproductive Strategies Research Group, Department of Evolutionary Zoology, Hungarian Research Network - University of Debrecen, Debrecen4032, Hungary
- Debrecen Biodiversity Centre, University of Debrecen, Debrecen4032, Hungary
| | - András Liker
- Evolutionary Ecology Research Group, Hungarian Research Network-University of Pannonia, Veszprém8200, Hungary
- Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém8200, Hungary
| |
Collapse
|
6
|
Morandini V, Dugger KM, Schmidt AE, Varsani A, Lescroël A, Ballard G, Lyver PO, Barton K, Ainley DG. Sex-specific recruitment rates contribute to male-biased sex ratio in Adélie penguins. Ecol Evol 2024; 14:e10859. [PMID: 38384831 PMCID: PMC10879839 DOI: 10.1002/ece3.10859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/23/2024] Open
Abstract
Sex-related differences in vital rates that drive population change reflect the basic life history of a species. However, for visually monomorphic bird species, determining the effect of sex on demographics can be a challenge. In this study, we investigated the effect of sex on apparent survival, recruitment, and breeding propensity in the Adélie penguin (Pygoscelis adeliae), a monochromatic, slightly size dimorphic species with known age, known sex, and known breeding history data collected during 1996-2019 (n = 2127 birds) from three breeding colonies on Ross Island, Antarctica. Using a multistate capture-mark-recapture maximum-likelihood model, we estimated apparent survival (S ^ ), recapture (resighting) probability (p ^ ), and the probability of transitioning among breeding states and moving between colonies (ψ ^ ; colony-specific non-juvenile pre-breeders, breeders, and non-breeders). Survival rate varied by breeding status and colony, but not sex, and pre-breeders had higher survival rates than breeders and non-breeders. Females had a higher probability of recruiting into the breeding population each year and may enter the breeding pool at younger ages. In contrast, both sexes had the same probability of breeding from year to year once they had recruited. Although we detected no direct sex effects on survival, the variation in recruitment probability and age-at-first reproduction, along with lower survival rates of breeders compared to pre-breeders, likely leads to shorter lifespans for females. This is supported by our findings of a male-biased mean adult sex ratio (ASR) of 1.4 males for every female (x ^ proportion of males = 0.57, SD = 0.07) across all colonies and years in this metapopulation. Our study illustrates how important it can be to disentangle sex-related variation in population vital rates, particularly for species with complex life histories and demographic dynamics.
Collapse
Affiliation(s)
- Virginia Morandini
- Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and WildlifeOregon State UniversityCorvallisOregonUSA
- Migres FoundationCIMATarifaSpain
| | - Katie M. Dugger
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and WildlifeOregon State UniversityCorvallisOregonUSA
| | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life SciencesArizona State UniversityTempeArizonaUSA
| | | | - Grant Ballard
- Point Blue Conservation SciencePetalumaCaliforniaUSA
| | - Phil O'B. Lyver
- Manaaki Whenua Landcare Research New Zealand Ltd.LincolnNew Zealand
| | - Kerry Barton
- Manaaki Whenua Landcare Research New Zealand Ltd.LincolnNew Zealand
| | - David G. Ainley
- H.T. Harvey & Associates Ecological ConsultantsLos GatosCaliforniaUSA
| |
Collapse
|
7
|
Szemán K, Végvári Z, Gőri S, Kapocsi I, Székely T, Manning JA. Harem size should be measured by more than the sum of its parts: Phenology-based measurements reveal joint effects of intrinsic and extrinsic factors on a polygamous herbivore under non-stationary climatic conditions. Ecol Evol 2024; 14:e10865. [PMID: 38322007 PMCID: PMC10844713 DOI: 10.1002/ece3.10865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/02/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Social behaviour is thought to be a major component of survival, reproduction, and resilience of populations. Thus, it is a key component in management and conservation of wild populations. In polygynous breeding species, group size influences the reproductive success of males and females, and hence it is essential to understand the environmental and demographic factors that shape the phenology of group size within populations. Here, we investigate harem size and its determinants using a 15-year dataset of annual harem size phenology-based metrics from a reintroduced population of wild Przewalski horses in Hortobágy National Park, Hungary. From the initial reintroduction of 21 animals in 1997, the population grew to 174 animals in 2012. During that same period, the number of harems increased from three to 23. Despite the 8-fold increase in population size, harem sizes remained stable, and variability among harems within years decreased. The annual phenological cycle of harem size was not consistent over the 15-year period, and the associated annual phenology-based metrics varied differently over the years. The best predictors of our phenology-based harem size metrics were adult sex ratio, annual adult mortality and annual mean number of harems, with some evidence that mean age of harem stallions and drought severity were contributing factors. Our findings reveal that complex interactions between demography, climate, and harem size can emerge in social animals. Taken together, our results demonstrate that intrinsic population processes can regulate group size even in the presence of non-stationary climatic conditions during periods of growth in human-introduced, semi-free ranging animal populations.
Collapse
Affiliation(s)
- Karola Szemán
- Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
| | - Zsolt Végvári
- Centre for Ecological ResearchInstitute of Aquatic EcologyBudapestHungary
- Senckenberg Deutsches Entomologisches InstitutMunchebergGermany
| | - Szilvia Gőri
- Hortobágy National Park DirectorateDebrecenHungary
| | | | - Tamás Székely
- Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
- Milner Centre of EvolutionUniversity of BathBathUK
| | - Jeffrey A. Manning
- School of the Environment, Washington State UniversityPullmanWashingtonUSA
| |
Collapse
|
8
|
Hagen RV, Scelza BA. Sex ratios and gender norms: why both are needed to understand sexual conflict in humans. EVOLUTIONARY HUMAN SCIENCES 2024; 6:e10. [PMID: 38414809 PMCID: PMC10897493 DOI: 10.1017/ehs.2024.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 02/29/2024] Open
Abstract
Sexual conflict theory has been successfully applied to predict how in non-human animal populations, sex ratios can lead to conflicting reproductive interests of females and males and affect their bargaining positions in resolving such conflicts of interests. Recently this theory has been extended to understand the resolution of sexual conflict in humans, but with mixed success. We argue that an underappreciation of the complex relationship between gender norms and sex ratios has hampered a successful understanding of sexual conflict in humans. In this paper, we review and expand upon existing theory to increase its applicability to humans, where gender norms regulate sex ratio effects on sexual conflict. Gender norms constrain who is on the marriage market and how they are valued, and may affect reproductive decision-making power. Gender norms can also directly affect sex ratios, and we hypothesize that they structure how individuals respond to market value gained or lost through biased sex ratios. Importantly, gender norms are in part a product of women's and men's sometimes conflicting reproductive interests, but these norms are also subject to other evolutionary processes. An integration of sexual conflict theory and cultural evolutionary theory is required to allow for a full understanding of sexual conflict in humans.
Collapse
Affiliation(s)
- Renée V Hagen
- Department of Anthropology, University of California, Los Angeles. United States of America
| | - Brooke A Scelza
- Department of Anthropology, University of California, Los Angeles. United States of America
| |
Collapse
|
9
|
Banhos A, Sanaiotti TM, Coser R, Gravena W, Aguiar-Silva FH, Kaizer M, Hrbek T, Farias IP. Long-term female bias in sex ratios across life stages of Harpy Eagle, a large raptor exhibiting reverse sexual size dimorphism. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231443. [PMID: 38026037 PMCID: PMC10645098 DOI: 10.1098/rsos.231443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
The primary (PSR), secondary (SSR) and adult (ASR) sex ratios of sexually reproducing organisms influence their life histories. Species exhibiting reversed sexual size dimorphism (RSD) may imply a higher cost of female production or lower female survival, thus generating biases in PSR, SSR and/or ASR towards males. The Harpy Eagle is the world's largest eagle exhibiting RSD. This species is found in the Neotropical region and is currently threatened with extinction. We used molecular markers to determine the sex of 309 Harpy Eagles spanning different life stages-eaglets, subadults and adults-from 1904 to 2021 within the Amazon Rainforest and Atlantic Forest. Sex ratios for all life stages revealed a female-biased deviation across all periods and regions. Our results suggest that the population bias towards females is an evolutionary ecological pattern of this species, and SSR and ASR likely emerged from the PSR. This natural bias towards females may be compensated by an earlier sexual maturation age of males, implying a longer reproductive lifespan and a higher proportion of sexually active males. A better understanding of the Harpy Eagle's life history can contribute to understanding sex-role evolution and enable more appropriate conservation strategies for the species.
Collapse
Affiliation(s)
- Aureo Banhos
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo - UFES, Alto Universitário, s/n°, Guararema, 29500-000 Alegre, Espírito Santo, Brazil
- Programa de Pós-Graduação em Ciências Biológicas (Biologia Animal) - PPGBAN, Universidade Federal do Espírito Santo - UFES, Avenida Fernando Ferrari, 514, Prédio Barbara Weinberg, 29075-910 Vitória, Espírito Santo, Brazil
- Projeto Harpia (Harpy Eagle Project - Brazil), Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
- Projeto Harpia – Mata Atlântica (Harpy Eagle Project - Atlantic Forest), Universidade Federal do Espírito Santo - UFES, Alto Universitário, Guararema, 29500-000 Alegre, Espírito Santo, Brazil
- Laboratório de Evolução e Genética Animal - LEGAL, Universidade Federal do Amazonas - UFAM, Av. General Rodrigo Octavio Jordão Ramos, 6200 - Coroado I, 69080-900 Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
| | - Tânia Margarete Sanaiotti
- Projeto Harpia (Harpy Eagle Project - Brazil), Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
- Projeto Harpia – Mata Atlântica (Harpy Eagle Project - Atlantic Forest), Universidade Federal do Espírito Santo - UFES, Alto Universitário, Guararema, 29500-000 Alegre, Espírito Santo, Brazil
- Coordenaçãode Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
| | - Renan Coser
- Projeto Harpia (Harpy Eagle Project - Brazil), Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
- Projeto Harpia – Mata Atlântica (Harpy Eagle Project - Atlantic Forest), Universidade Federal do Espírito Santo - UFES, Alto Universitário, Guararema, 29500-000 Alegre, Espírito Santo, Brazil
- Laboratório de Evolução e Genética Animal - LEGAL, Universidade Federal do Amazonas - UFAM, Av. General Rodrigo Octavio Jordão Ramos, 6200 - Coroado I, 69080-900 Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
| | - Waleska Gravena
- Laboratório de Evolução e Genética Animal - LEGAL, Universidade Federal do Amazonas - UFAM, Av. General Rodrigo Octavio Jordão Ramos, 6200 - Coroado I, 69080-900 Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
- Instituto de Saúde e Biotecnologia, Universidade Federal do Amazonas - UFAM, Estrada Coari Mamiá, 305, Espírito Santo, 69460-000 Coari, Amazonas, Brazil
| | - Francisca Helena Aguiar-Silva
- Projeto Harpia (Harpy Eagle Project - Brazil), Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
- Projeto Harpia – Mata Atlântica (Harpy Eagle Project - Atlantic Forest), Universidade Federal do Espírito Santo - UFES, Alto Universitário, Guararema, 29500-000 Alegre, Espírito Santo, Brazil
- Coordenaçãode Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
| | - Mylena Kaizer
- Projeto Harpia (Harpy Eagle Project - Brazil), Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
- Projeto Harpia – Mata Atlântica (Harpy Eagle Project - Atlantic Forest), Universidade Federal do Espírito Santo - UFES, Alto Universitário, Guararema, 29500-000 Alegre, Espírito Santo, Brazil
- Laboratório de Evolução e Genética Animal - LEGAL, Universidade Federal do Amazonas - UFAM, Av. General Rodrigo Octavio Jordão Ramos, 6200 - Coroado I, 69080-900 Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Zoologia - PPGZOO, Universidade Federal do Amazonas - UFAM, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, 69080-900 Manaus, Amazonas, Brazil
| | - Tomas Hrbek
- Projeto Harpia (Harpy Eagle Project - Brazil), Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
- Laboratório de Evolução e Genética Animal - LEGAL, Universidade Federal do Amazonas - UFAM, Av. General Rodrigo Octavio Jordão Ramos, 6200 - Coroado I, 69080-900 Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Zoologia - PPGZOO, Universidade Federal do Amazonas - UFAM, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, 69080-900 Manaus, Amazonas, Brazil
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, 69080-900 Manaus, Amazonas, Brazil
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Izeni Pires Farias
- Projeto Harpia (Harpy Eagle Project - Brazil), Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
- Laboratório de Evolução e Genética Animal - LEGAL, Universidade Federal do Amazonas - UFAM, Av. General Rodrigo Octavio Jordão Ramos, 6200 - Coroado I, 69080-900 Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo, 2936, Aleixo, 69067-375 Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Zoologia - PPGZOO, Universidade Federal do Amazonas - UFAM, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, 69080-900 Manaus, Amazonas, Brazil
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, 69080-900 Manaus, Amazonas, Brazil
| |
Collapse
|
10
|
Long X, Weissing FJ. Transient polymorphisms in parental care strategies drive divergence of sex roles. Nat Commun 2023; 14:6805. [PMID: 37884497 PMCID: PMC10603145 DOI: 10.1038/s41467-023-42607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
The parental roles of males and females differ considerably between and within species. By means of individual-based evolutionary simulations, we strive to explain this diversity. We show that the conflict between the sexes creates a sex bias (towards maternal or paternal care), even if the two sexes are initially identical. When including sexual selection, there are two outcomes: either female mate choice and maternal care or no mate choice and paternal care. Interestingly, the care pattern drives sexual selection and not vice versa. Longer-term simulations exhibit rapid switches between alternative parental care patterns, even in constant environments. Hence, the evolutionary lability of sex roles observed in phylogenetic studies is not necessarily caused by external changes. Overall, our findings are in striking contrast to the predictions of mathematical models. We show that the discrepancies are caused by transient within-sex polymorphisms in parental strategies, a factor largely neglected in current sex-role theory.
Collapse
Affiliation(s)
- Xiaoyan Long
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747AG, The Netherlands
- Institute of Biology I, University of Freiburg, Freiburg im Breisgau, 79104, Germany
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747AG, The Netherlands.
| |
Collapse
|
11
|
Du S, Murray RL. Road salt pollution alters sex ratios in emerging mosquito populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122203. [PMID: 37453680 DOI: 10.1016/j.envpol.2023.122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
De-icing road salt is a persistent emerging pollutant in temperate freshwater systems, where winter salting is necessary for road and pedestrian safety. Experts argue that road salts may increase salt-tolerant mosquito populations and, potentially, disease transmission in urban areas. Only adult females consume bloodmeals and may carry zoonotic diseases. While there are some species with naturally occurring male-biased sex ratios, it is unclear whether road salt differentially affects male and female mosquitoes to alter sex ratios. We hypothesized that road salts would masculinize emergence sex ratios and decrease female success because females may face higher exposure to stressors during their lengthy juvenile development compared to males. We measured mosquito emergence sex ratios of control (0 g/L added salt) and salt (4.5 g/L added salt) mesocosms in southern Ontario, Canada across the West Nile Virus season (May to October). We found female-biased sex ratios (i.e., <50% male frequency) in both 0 and 4.5 g/L. While mosquito abundance was significantly higher in 4.5 g/L compared to 0 g/L, road salt significantly increased the proportion of emerging males from 32.8% to 40.8% (Negative Binomial Model; Estimate ± SE = 0.283 ± 0.108; P = 0.009); mosquitoes shift their sex ratios from female-biased towards parity (50:50) in response to salt. Our study illustrates the need to evaluate sex-specific abundance in pollution-related mosquito population studies. By showing a shift toward more male mosquitoes emerging in high salinity compared to control treatments, our results suggest that road salts may have the potential to decrease female mosquito success and indirectly reduce disease transmission in cities.
Collapse
Affiliation(s)
- Sherry Du
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada; Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada.
| | - Rosalind L Murray
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada; Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
12
|
Ram M, Sahu A, Srivastava N, Chaudhary R, Jhala L, Zala Y. The semi-arid ecosystem of Asiatic Lion Landscape in Saurashtra, Gujarat: Population density, biomass and conservation of nine wild prey species. PLoS One 2023; 18:e0292048. [PMID: 37768920 PMCID: PMC10538734 DOI: 10.1371/journal.pone.0292048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
The present study aimed to assess the population density, structure, and population change of nine wild prey species in the semi-arid landscape of Saurashtra, Gujarat, India. A total of eight sites, representing a gradient from highly protected woodlands and grasslands to unreserved grasslands, were selected for sampling. We employed the road transect methodology under a distance sampling framework to achieve our objectives. We evaluated the realized growth rate of the Gir ungulate population through linear regression analysis. Our findings revealed that deer species exhibited higher density and biomass in woodlands compared to grasslands and coastal forests. On the other hand, antelopes showed higher density and biomass in grasslands and coastal forests compared to woodlands. The density gradient of wild prey species was influenced by various factors, including habitat structure, social organization, grouping tendencies, and topography. Over the last four decades, the population of wild prey species in Gir showed minimal changes. Our study provides a comprehensive understanding of wild prey species' density and biomass patterns at the landscape level. The inclusion of findings from ecologically significant and unique areas, such as coastal forests, further enhances the importance of this study. The implications of this study extend beyond the conservation of wild prey species alone; they also contribute to the conservation of the large carnivore guild in the Saurashtra landscape.
Collapse
Affiliation(s)
- Mohan Ram
- Wildlife Division, Sasan-Gir, Junagadh, Gujarat, India
| | | | | | - Rohit Chaudhary
- Department of Wildlife Sciences, Navsari Agricultural University, Navsari, Gujarat, India
| | - Lahar Jhala
- Wildlife Division, Sasan-Gir, Junagadh, Gujarat, India
| | - Yashpal Zala
- Wildlife Division, Sasan-Gir, Junagadh, Gujarat, India
| |
Collapse
|
13
|
Chiba S, Iwamoto A, Shimabukuro S, Matsumoto H, Inoue K. Mechanisms that can cause population decline under heavily skewed male-biased adult sex ratios. J Anim Ecol 2023; 92:1893-1903. [PMID: 37434418 DOI: 10.1111/1365-2656.13980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/02/2023] [Indexed: 07/13/2023]
Abstract
While adult sex ratio (ASR) is a crucial component for population management, there is still a limited understanding of how its fluctuation affects population dynamics. To demonstrate mechanisms that hinder population growth under a biased ASR, we examined changes in reproductive success with ASR using a decapod crustacean exposed to female-selective harvesting. We examined the effect of ASR on the spawning success of females. A laboratory experiment showed that the number of eggs carried by females decreased as the proportion of males in the mating groups increased. Although the same result was not observed in data collected over 25 years in the wild, the negative effect of ASR was suggested when success in carrying eggs was considered as a spawning success. These results indicate that a surplus of males results in females failing to carry eggs, probably due to sexual coercion, and the negative effect of ASR can be detected at the population level only when the bias increases because failure in spawning success occurs in part of population. We experimentally examined how male-biased sex ratios affected the maintenance of genetic diversity in a population. The diversity of paternity in a clutch increased with the number of candidate fathers. However, over 50% of a clutch was fertilised by a single male regardless of the sex ratio, and the degree of diversity was less than half of the highest diversity expected in each mating group. We also experimentally examined the mating ability of males during the breeding season. The experiment showed that multiple mating by males could not compensate for the risk that their genotypes would be lost when multiple males competed for one female. These results suggest that a male-biased ASR could trigger a decline of genetic diversity in a population. We show that ASR skewed by female-selective harvesting decreases reproductive success not only of males that have few mating opportunities but also of females. We discuss that we may still underestimate the significance of ASR on population persistence due to the difficulty of revealing the effect of ASR.
Collapse
Affiliation(s)
- Susumu Chiba
- Graduate School of Ocean and Fisheries Sciences, Tokyo University of Agriculture, Abashiri, Japan
- Department of Ocean and Fisheries Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Aya Iwamoto
- Department of Ocean and Fisheries Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Seina Shimabukuro
- Department of Ocean and Fisheries Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Hiroyuki Matsumoto
- Graduate School of Ocean and Fisheries Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Karin Inoue
- Graduate School of Ocean and Fisheries Sciences, Tokyo University of Agriculture, Abashiri, Japan
| |
Collapse
|
14
|
Kappeler PM, Benhaiem S, Fichtel C, Fromhage L, Höner OP, Jennions MD, Kaiser S, Krüger O, Schneider JM, Tuni C, van Schaik J, Goymann W. Sex roles and sex ratios in animals. Biol Rev Camb Philos Soc 2023; 98:462-480. [PMID: 36307924 DOI: 10.1111/brv.12915] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
In species with separate sexes, females and males often differ in their morphology, physiology and behaviour. Such sex-specific traits are functionally linked to variation in reproductive competition, mate choice and parental care, which have all been linked to sex roles. At the 150th anniversary of Darwin's theory on sexual selection, the question of why patterns of sex roles vary within and across species remains a key topic in behavioural and evolutionary ecology. New theoretical, experimental and comparative evidence suggests that variation in the adult sex ratio (ASR) is a key driver of variation in sex roles. Here, we first define and discuss the historical emergence of the sex role concept, including recent criticisms and rebuttals. Second, we review the various sex ratios with a focus on ASR, and explore its theoretical links to sex roles. Third, we explore the causes, and especially the consequences, of biased ASRs, focusing on the results of correlational and experimental studies of the effect of ASR variation on mate choice, sexual conflict, parental care and mating systems, social behaviour, hormone physiology and fitness. We present evidence that animals in diverse societies are sensitive to variation in local ASR, even on short timescales, and propose explanations for conflicting results. We conclude with an overview of open questions in this field integrating demography, life history and behaviour.
Collapse
Affiliation(s)
- Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center - Leibniz Institute of Primatology, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Sociobiology/Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
| | - Sarah Benhaiem
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center - Leibniz Institute of Primatology, Kellnerweg 4, 37077, Göttingen, Germany
| | - Lutz Fromhage
- Department of Biological and Environmental Science, Ambiotica, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
| | - Oliver P Höner
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
| | - Michael D Jennions
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, RN Robertson Building, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149, Münster, Germany
| | - Oliver Krüger
- Department of Animal Behavior, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany
| | - Jutta M Schneider
- Department of Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany
| | - Cristina Tuni
- Department of Biology II, Ludwig Maximilians University of Munich, Großhaderner Str 2, 82152, Planegg-Martinsried, Germany
| | - Jaap van Schaik
- Applied Zoology and Nature Conservation, University of Greifswald, Loitzer Str. 26, 17489, Greifswald, Germany
| | - Wolfgang Goymann
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str. 6a, D-82319, Seewiesen, Germany
| |
Collapse
|
15
|
Ozmen O, Albayrak T. Pathological and Immunohistochemical Examinations in Chukar Partridge (Alectoris chukar) of Wild and Captive Populations. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2023. [DOI: 10.1590/1806-9061-2021-1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- O Ozmen
- Burdur Mehmet Akif Ersoy University, Turkey
| | - T Albayrak
- Burdur Mehmet Akif Ersoy University, Turkey
| |
Collapse
|
16
|
Schacht R, Beissinger SR, Wedekind C, Jennions MD, Geffroy B, Liker A, Kappeler PM, Weissing FJ, Kramer KL, Hesketh T, Boissier J, Uggla C, Hollingshaus M, Székely T. Adult sex ratios: causes of variation and implications for animal and human societies. Commun Biol 2022; 5:1273. [PMID: 36402823 PMCID: PMC9675760 DOI: 10.1038/s42003-022-04223-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
Converging lines of inquiry from across the social and biological sciences target the adult sex ratio (ASR; the proportion of males in the adult population) as a fundamental population-level determinant of behavior. The ASR, which indicates the relative number of potential mates to competitors in a population, frames the selective arena for competition, mate choice, and social interactions. Here we review a growing literature, focusing on methodological developments that sharpen knowledge of the demographic variables underlying ASR variation, experiments that enhance understanding of the consequences of ASR imbalance across societies, and phylogenetic analyses that provide novel insights into social evolution. We additionally highlight areas where research advances are expected to make accelerating contributions across the social sciences, evolutionary biology, and biodiversity conservation.
Collapse
Affiliation(s)
- Ryan Schacht
- Department of Anthropology, East Carolina University, Greenville, NC, USA.
| | - Steven R Beissinger
- Department of Environmental Science, Policy and Management and Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USA
| | - Claus Wedekind
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Michael D Jennions
- Ecology & Evolution, Research School of Biology, The Australian National University, Acton, Canberra, 2601, Australia
| | - Benjamin Geffroy
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - András Liker
- ELKH-PE Evolutionary Ecology Research Group, University of Pannonia, 8210, Veszprém, Hungary
- Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, 8210, Veszprém, Hungary
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primate Biology, 37077, Göttingen, Germany
- Department of Sociobiology/Anthropology, University of Göttingen, 37077, Göttingen, Germany
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Karen L Kramer
- Department of Anthropology, University of Utah, Salt Lake City, UT, USA
| | - Therese Hesketh
- Institute of Global Health, University College London, London, UK
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jérôme Boissier
- IHPE Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Caroline Uggla
- Stockholm University Demography Unit, Sociology Department, Stockholm University, 106 91, Stockholm, Sweden
| | - Mike Hollingshaus
- Kem C. Gardner Policy Institute, David Eccles School of Business, University of Utah, Salt Lake City, UT, USA
| | - Tamás Székely
- Milner Centre for Evolution, University of Bath, Bath, BA2 7AY, UK.
- ELKH-DE Reproductive Strategies Research Group, Department of Zoology and Human Biology, University of Debrecen, H-4032, Debrecen, Hungary.
| |
Collapse
|
17
|
Ma Y, Xiao Y, Xiao Z, Wu Y, Zhao H, Li J. Identification of Male-Specific Molecular Marker and Development of PCR-Based Genetic Sex Identification Technique in Spotted Knifejaw (Oplegnathus punctatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:969-978. [PMID: 36109406 DOI: 10.1007/s10126-022-10160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Spotted knifejaw (Oplegnathus punctatus) is a marine teleost species that is economically important for aquaculture and marine pasture proliferation and shows obvious bisexual growth dimorphism, but molecular sex markers are currently lacking. A 290 bp (base pair) insertion with two fragments (230 bp and 60 bp) was identified in male individuals of O. punctatus based on whole-genome sequencing scanning and structural variation analyses. The gene annotation results showed that the insertion event occurred in the Igfn1 gene of male O. punctatus. The results of amino acid analysis further showed that the insertion event resulted in the functional variation of Igfn1 in male O. punctatus, and recombination caused the inactivation of Igfn1. According to the male-specific insertion information, we designed a PCR-based genetic amplification technique for rapid sex identification in O. punctatus. The results of agarose gel electrophoresis showed that two DNA fragments of 635 bp and 925 bp were amplified in male O. punctatus, while only a single DNA fragment of 635 bp was amplified in female individuals. The sex of individuals identified by this method was consistent with their known phenotypic sex, which will improve sex identification efficiency. This method provides a new DNA marker for rapid sex identification in O. punctatus, which has great significance and application value in monosex breeding and provides new insights for the study of Igfn1 gene recombination and inactivation in male O. punctatus.
Collapse
Affiliation(s)
- Yuting Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Weihai Haohuigan Marine Biotechnology Co, Weihai, 264400, China
| | - Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Wedekind C, Vonlanthen P, de Guttry C, Stadelmann R, Stadelmann N, Pirat A, Perroud G. Persistent high hatchery recruitment despite advanced reoligotrophication and significant natural spawning in a whitefish. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
19
|
Quevarec L, Réale D, Dufourcq‐Sekatcheff E, Car C, Armant O, Dubourg N, Adam‐Guillermin C, Bonzom J. Male frequency in Caenorhabditis elegans increases in response to chronic irradiation. Evol Appl 2022; 15:1331-1343. [PMID: 36187185 PMCID: PMC9488675 DOI: 10.1111/eva.13420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/09/2023] Open
Abstract
Outcrossing can be advantageous in a changing environment because it promotes the purge of deleterious mutations and increases the genetic diversity within a population, which may improve population persistence and evolutionary potential. Some species may, therefore, switch their reproductive mode from inbreeding to outcrossing when under environmental stress. This switch may have consequences on the demographic dynamics and evolutionary trajectory of populations. For example, it may directly influence the sex ratio of a population. However, much remains to be discovered about the mechanisms and evolutionary implications of sex ratio changes in a population in response to environmental stress. Populations of the androdioecious nematode Caenorhabditis elegans, are composed of selfing hermaphrodites and rare males. Here, we investigate the changes in the sex ratio of C. elegans populations exposed to radioactive pollution for 60 days or around 20 generations. We experimentally exposed populations to three levels of ionizing radiation (i.e., 0, 1.4, and 50 mGy.h-1). We then performed reciprocal transplant experiments to evaluate genetic divergence between populations submitted to different treatments. Finally, we used a mathematical model to examine the evolutionary mechanisms that could be responsible for the change in sex ratio. Our results showed an increase in male frequency in irradiated populations, and this effect increased with the dose rate. The model showed that an increase in male fertilization success or a decrease in hermaphrodite self-fertilization could explain this increase in the frequency of males. Moreover, males persisted in populations after transplant back into the control conditions. These results suggested selection favoring outcrossing under irradiation conditions. This study shows that ionizing radiation can sustainably alter the reproductive strategy of a population, likely impacting its long-term evolutionary history. This study highlights the need to evaluate the impact of pollutants on the reproductive strategies of populations when assessing the ecological risks.
Collapse
Affiliation(s)
- Loïc Quevarec
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Denis Réale
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalQuebecCanada
| | | | - Clément Car
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Olivier Armant
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Nicolas Dubourg
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Christelle Adam‐Guillermin
- PSE‐SANTE/SDOS/LMDN, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Jean‐Marc Bonzom
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| |
Collapse
|
20
|
Espinoza ZS, Weckerly FW. Drivers of a temporal change in the adult sex ratio of a Roosevelt elk ( Cervus canadensis roosevelti) population. J Mammal 2022. [DOI: 10.1093/jmammal/gyac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Ecological processes driving female-skewed adult sex ratios (ASRs; males:females) in populations with polygynous mating systems have been addressed theoretically, but empirical support is scarce. The theoretical framework of the female substitution hypothesis (FSH) asserts that a female-skewed ASR at carrying capacity reflects an overall fitness benefit for females and for males competitive in acquiring access to reproductive females. The FSH predicts that as population abundance increases females should acquire forage more efficiently than males, thereby leading to passive displacement of males. The result is declining ASR associated with differential habitat use by both sexes as food resources are depleted by female scramble competition. We characterized the temporal variation in ASR in a Roosevelt elk population inhabiting the Redwood National and State Parks, California, across 24 years, and determined which of two possible ecological mechanisms was the driver of a declining ASR. The first mechanism explored was that increasing female abundance associated with declining forage in the study area led to the passive displacement of males into the study periphery over time. The second mechanism explored was that a declining ASR was precipitated by a lack of males within the study area and the study periphery. Systematic population surveys from a vehicle were done to estimate abundance and ASR as well as assess male abundance in the study periphery. Forage biomass was estimated in quarter-m2 plots randomly placed in meadows inhabited by female elk. Our multiple regression analysis revealed an inverse relationship between abundance and ASR indicating density dependence. We found numerous males in the study periphery when females were abundant. Our least squares models indicated declining food resources across years when female abundance increased. Our results showed that the first, and not the second, ecological mechanism examined was responsible for a female-skewed ASR. Our findings provide empirical support for the theoretical framework of the FSH in a nonmigratory population protected from hunting.
Collapse
Affiliation(s)
- Zaavian S Espinoza
- Department of Biology, Texas State University , San Marcos, Texas 78666 , USA
- Department of Ecology and Evolutionary Biology, University of Tennessee , Knoxville, Tennessee 37996 , USA
| | - Floyd W Weckerly
- Department of Biology, Texas State University , San Marcos, Texas 78666 , USA
| |
Collapse
|
21
|
Hudel L, Kappeler PM. Sex-specific movement ecology of the shortest-lived tetrapod during the mating season. Sci Rep 2022; 12:10053. [PMID: 35710848 PMCID: PMC9203456 DOI: 10.1038/s41598-022-14156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Sex-specific reproductive strategies are shaped by the distribution of potential mates in space and time. Labord’s chameleon (Furcifer labordi) from southwestern Madagascar is the shortest-lived tetrapod whose life-time mating opportunities are restricted to a few weeks. Given that these chameleons grow to sexual maturity within about three months and that all individuals die soon after breeding, their mating strategies should be adapted to these temporal constraints. The reproductive tactics of this or any other Malagasy chameleon species have not been studied, however. Radio-tracking and observations of 21 females and 18 males revealed that females exhibit high site fidelity, move small cumulative and linear distances, have low corresponding dispersal ratios and small occurrence distributions. In contrast, males moved larger distances in less predictable fashion, resulting in dispersal ratios and occurrence distributions 7–14 times larger than those of females, and males also had greater ranges of their vertical distribution. Despite synchronous hatching, males exhibited substantial inter-individual variation in body mass and snout-vent length that was significantly greater than in females, but apparently unrelated to their spatial tactics. Females mated with up to 6 individually-known mates, but frequent encounters with unmarked individuals indicate that much higher number of matings may be common, as are damaging fights among males. Thus, unlike perennial chameleons, F. labordi males do not seem to maintain and defend territories. Instead, they invest vastly more time and energy into locomotion for their body size than other species. Pronounced variation in key somatic traits may hint at the existence of alternative reproductive tactics, but its causes and consequences require further study. This first preliminary study of the mating system of a Malagasy chameleon indicates that, as in other semelparous tetrapods, accelerated life histories are tied to a mating system with intense contest and scramble competition among males.
Collapse
Affiliation(s)
- Lennart Hudel
- Department of Sociobiology/Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Department of Sociobiology/Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany. .,Behavioral Ecology Unit, German Primate Center, Leibniz Institute of Primate Biology, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
22
|
Chuard PJC, Grant JWA, Brown GE. Mating competition and adult sex ratio in wild Trinidadian guppies. Behav Ecol 2022. [DOI: 10.1093/beheco/arac058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Most experimental tests of mating systems theory have been conducted in the laboratory, using operational sex ratios (ratio of ready-to-mate male to ready-to-mate female) that are often not representative of natural conditions. Here, we first measured the range of adult sex ratio (proportion of adult males to adult females; ASR) in two populations of Trinidadian guppies (Poecilia reticulata) differing in ambient predation risk (high vs. low). We then explored, under semi-wild conditions, the effect of ASR (i.e., 0.17, 0.50, 0.83) on mating competition patterns in these populations. ASR in the wild was female-biased and did not significantly differ between the two populations. The range of ASR in our experiment was representative of natural ASRs. As expected, we observed an increase in intrasexual aggression rates in both sexes as the relative abundance of competitors increased. In support of the risky competition hypothesis, all measured behaviors had lower rates in a high versus low predation-risk population, likely due to the costs of predation. In terms of mating tactics, a male-biased ASR did not lead males to favor forced mating over courtship, indicating that males did not compensate for the cost of competition by switching to a less costly alternative mating tactic. Overall, this study highlights the need for field experiments using natural ranges of ASRs to test the validity of mating systems theory in a more complex, ecologically relevant context.
Collapse
Affiliation(s)
- Pierre J C Chuard
- Department of Geography, Planning and Environment, Concordia University , Montréal, QC , Canada
| | - James W A Grant
- Department of Biology, Concordia University , Montréal, QC , Canada
| | - Grant E Brown
- Department of Biology, Concordia University , Montréal, QC , Canada
| |
Collapse
|
23
|
Song Z, Liker A, Liu Y, Székely T. Evolution of social organization: phylogenetic analyses of ecology and sexual selection in weavers. Am Nat 2022; 200:250-263. [DOI: 10.1086/720270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Klug H, Langley C, Reyes E. Cascading effects of pre-adult survival on sexual selection. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211973. [PMID: 35425633 PMCID: PMC9006037 DOI: 10.1098/rsos.211973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/18/2022] [Indexed: 05/03/2023]
Abstract
Sexual selection influences broad-scale patterns of biodiversity. While a large body of research has investigated the effect of mate competition on sexual selection, less work has examined how pre-adult life history influences sexual selection. We used a mathematical framework to explore the influence of pre-adult survival on sexual selection. Our model suggests that pre-adult male mortality will affect the strength of sexual selection when a fixed number of adult males have an advantageous mate-acquisition trait. When a fixed number of males have an advantageous mate-acquisition trait, sexual selection is expected to increase when pre-adult mortality is relatively low. By contrast, if a fixed proportion (rather than number) of adult males have a mate-acquisition trait, pre-adult male mortality is not expected to affect the strength of sexual selection. Further, if the advantageous mating trait affects pre-adult survival, natural and sexual selection can interact to influence the overall selection on the mating trait. Given that pre-adult mortality is often shaped by natural selection, our results highlight conditions under which natural selection can have cascading effects on sexual selection.
Collapse
Affiliation(s)
- Hope Klug
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN, USA
- SimCenter, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Chelsea Langley
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Elijah Reyes
- Department of Biological Sciences, Simon Fraser University, Burnaby, CA, USA
| |
Collapse
|
25
|
Gong J, Li B, Zhao J, Zhou Z, Ke Q, Zhu Q, Xu D, Zhou T, Xu P. Sex-Specific Genomic Region Identification and Molecular Sex Marker Development of Rock Bream (Oplegnathus fasciatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:163-173. [PMID: 35122574 DOI: 10.1007/s10126-022-10095-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Rock bream (Oplegnathus fasciatus) is a valuable commercial marine teleost species, which exhibits sexual dimorphism in growth performance. However, the absence of a rapid and cost-effective sex identification method based on sex-specific genetic marker has impeded study on sex determination mechanisms and breeding applications. In the present study, we firstly developed the PCR method for identifying potential sex-specific sequences in Oplegnathus fasciatus with the next-generation sequencing. Sex-specific genomic regions/loci for sex determination were discovered on Chr2 and Chr6 by genome-wide association analysis, sequencing depth, and heterozygosity comparison between females and males. Candidate sex-determining genes (CCDC63, ITR, WNT4) were furtherly detected in transcriptome data of testes and ovaries. Taken together, a male-specific 34-bp deletion on the Chr2 was identified and developed into molecular marker of sex for O. fasciatus. After validation in individuals with known phenotypic sexes, the accuracy was 100%. This study gives an insight into the mechanism of sex determination in O. fasciatus, and the gender marker is crucial both for future genomic research and for development of efficient and sustainable aquaculture practice.
Collapse
Affiliation(s)
- Jie Gong
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Bijun Li
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Qihui Zhu
- Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Dongdong Xu
- Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.
| |
Collapse
|
26
|
Gonzalez-Voyer A, Thomas GH, Liker A, Krüger O, Komdeur J, Székely T. Sex roles in birds: Phylogenetic analyses of the influence of climate, life histories and social environment. Ecol Lett 2022; 25:647-660. [PMID: 35199926 DOI: 10.1111/ele.13938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Sex roles describe sex differences in courtship, mate competition, social pair-bonds and parental care. A key challenge is to identify associations among the components and the drivers of sex roles. Here, we investigate sex roles using data from over 1800 bird species. We found extensive variation and lability in proxies of sex roles, indicating remarkably independent evolution among sex role components. Climate and life history showed weak associations with sex roles. However, adult sex ratio is associated with sexual dimorphism, mating system and parental care, suggesting that social environment is central to explaining variation in sex roles among birds. Our results suggest that sex differences in reproductive behaviour are the result of diverse and idiosyncratic responses to selection. Further understanding of sex roles requires studies at the population level to test how local responses to ecology, life histories and mating opportunities drive processes that shape sex role variation among higher taxa.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Voyer
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gavin H Thomas
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - András Liker
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém, Hungary.,Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Tamás Székely
- Milner Centre for Evolution, University of Bath, Bath, UK.,Department of Evolutionary Zoology and Human Behaviour, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
27
|
Sex differences in immune gene expression in the brain of a small shorebird. Immunogenetics 2022; 74:487-496. [PMID: 35084547 PMCID: PMC8792134 DOI: 10.1007/s00251-022-01253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
Males and females often exhibit differences in behaviour, life histories, and ecology, many of which are typically reflected in their brains. Neuronal protection and maintenance include complex processes led by the microglia, which also interacts with metabolites such as hormones or immune components. Despite increasing interest in sex-specific brain function in laboratory animals, the significance of sex-specific immune activation in the brain of wild animals along with the variables that could affect it is widely lacking. Here, we use the Kentish plover (Charadrius alexandrinus) to study sex differences in expression of immune genes in the brain of adult males and females, in two wild populations breeding in contrasting habitats: a coastal sea-level population and a high-altitude inland population in China. Our analysis yielded 379 genes associated with immune function. We show a significant male-biased immune gene upregulation. Immune gene expression in the brain did not differ in upregulation between the coastal and inland populations. We discuss the role of dosage compensation in our findings and their evolutionary significance mediated by sex-specific survival and neuronal deterioration. Similar expression profiles in the coastal and inland populations suggest comparable genetic control by the microglia and possible similarities in pathogen pressures between habitats. We call for further studies on gene expression of males and females in wild population to understand the implications of immune function for life-histories and demography in natural systems.
Collapse
|
28
|
Barretto J, Baena ML, Domínguez IH, Escobar F. Spatiotemporal variation in the adult sex ratio, male aggregation, and movement of two tropical cloud forest dung beetles. Curr Zool 2021; 68:635-644. [PMID: 36743229 PMCID: PMC9892795 DOI: 10.1093/cz/zoab101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
While theory suggests that at conception the sex ratio should be balanced (1:1), this can be variable across space and time in wild populations. Currently, studies of the environmental factors that regulate adult sex ratio (ASR) in species with different life history traits are scarce. Using capture-recapture over a year, we analyzed the influence of habitat type (forest and nonforest) and season (rainy and dry) on variation in ASR, male aggregation and the trajectory movement of 2 dung beetle species with different life history traits: Deltochilum mexicanum (a hornless roller species) and Dichotomius satanas (a tunneler species with horns on its head and thorax). We found opposite tendencies. The D. mexicanum population tends to be female-biased, but the population of D. satanas tends to be predominantly male, and observed values were not related to habitat type or season. However, the 95% confidence intervals estimated were highly variable between seasons depending on habitat. On examining the monthly variation in ASR for both habitats, we found that it depends on the species. In addition, male aggregation differed between species depending on habitat type and season, and species movement patterns were closely related to their habitat preferences. Based on our results, we argue that comparative population studies of species with different life history traits are necessary to understand the variation in demographic parameters as well as its ecological and evolutionary implications in the face of spatial and climatic environmental variation.
Collapse
Affiliation(s)
- Julliana Barretto
- Red de Ecoetología, Instituto de Ecología, Xalapa, C.P. 91073, Mexico
| | | | - Israel Huesca Domínguez
- Instituto de Investigaciones Biológicas, Universidad Veracruzana. Av. Luis Castelazo Ayala s/n Col. Industrial Ánimas, Xalapa, C.P. 91190, Mexico
| | - Federico Escobar
- Red de Ecoetología, Instituto de Ecología, Xalapa, C.P. 91073, Mexico
| |
Collapse
|
29
|
Heimerl D, Dudová P, Wacker K, Schenkel E, Despréaux G, Tuni C. Adult sex ratio and male body condition affect alternative reproductive tactics in a spider. Behav Ecol 2021. [DOI: 10.1093/beheco/arab138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Biases in adult sex ratios can alter the intensity of sexual selection by enhancing competition for mates. Under intense competition males increase their investment in behaviors to outcompete rivals (e.g., fighting). Yet, given that in male-biased environments mating opportunities are rare males may alternatively reduce costly courtship and/or adopt alternative reproductive tactics (ARTs). Males of the spider Pisaura mirabilis adopt different mating tactics, offering females genuine nuptial gifts (prey), nutritionally worthless gifts (prey leftovers), or no gifts. To test whether behavioral shifts between gift tactics are triggered by changes in the competitive environment, we established replicate spider populations under natural conditions at varying adult sex ratios (male-biased, female-biased and equal) and sampled gift tactics repeatedly over time. We additionally explored how male individual traits, such as body size and condition, affect the expression of ARTs. In male-biased populations males produced more gifts but of low quality, suggesting competition to trigger increased mating effort to ensure mate acquisition and fertilizations, but through a worthless gift tactic. Production of gifts and of genuine gifts was favored by high body condition, pointing to energetic limitations as being central for male reproductive capacity. We hence highlight two co-existing mechanisms at play to explain ARTs in this system, the competitive social environment where expression of gift tactics is based on optimal-decision making to overcome competition, and a conditional strategy linked to the individual’s energetic state.
Collapse
Affiliation(s)
- Daniel Heimerl
- Department of Biology, Ludwig Maximilian University of Munich, Großhaderner Str. 2 82152 Planegg-Martinsried, Germany
| | - Pavla Dudová
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 1160/31, České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1645/31A, České Budějovice, Czech Republic
| | - Karoline Wacker
- Department of Biology, Ludwig Maximilian University of Munich, Großhaderner Str. 2 82152 Planegg-Martinsried, Germany
| | - Elisa Schenkel
- Department of Biology, Ludwig Maximilian University of Munich, Großhaderner Str. 2 82152 Planegg-Martinsried, Germany
| | - Garance Despréaux
- Department of Biology, Ludwig Maximilian University of Munich, Großhaderner Str. 2 82152 Planegg-Martinsried, Germany
| | - Cristina Tuni
- Department of Biology, Ludwig Maximilian University of Munich, Großhaderner Str. 2 82152 Planegg-Martinsried, Germany
| |
Collapse
|
30
|
Haines BA, Barradale F, Dumont BL. Patterns and mechanisms of sex ratio distortion in the Collaborative Cross mouse mapping population. Genetics 2021; 219:iyab136. [PMID: 34740238 PMCID: PMC8570777 DOI: 10.1093/genetics/iyab136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022] Open
Abstract
In species with single-locus, chromosome-based mechanisms of sex determination, the laws of segregation predict an equal ratio of females to males at birth. Here, we show that departures from this Mendelian expectation are commonplace in the 8-way recombinant inbred Collaborative Cross (CC) mouse population. More than one-third of CC strains exhibit significant sex ratio distortion (SRD) at wean, with twice as many male-biased than female-biased strains. We show that these pervasive sex biases persist across multiple breeding environments, are stable over time, and are not mediated by random maternal effects. SRD exhibits a heritable component, but QTL mapping analyses fail to nominate any large effect loci. These findings, combined with the reported absence of sex ratio biases in the CC founder strains, suggest that SRD manifests from multilocus combinations of alleles only uncovered in recombined CC genomes. We explore several potential complex genetic mechanisms for SRD, including allelic interactions leading to sex-biased lethality, genetic sex reversal, chromosome drive mediated by sex-linked selfish elements, and incompatibilities between specific maternal and paternal genotypes. We show that no one mechanism offers a singular explanation for this population-wide SRD. Instead, our data present preliminary evidence for the action of distinct mechanisms of SRD at play in different strains. Taken together, our work exposes the pervasiveness of SRD in the CC population and nominates the CC as a powerful resource for investigating diverse genetic causes of biased sex chromosome transmission.
Collapse
Affiliation(s)
| | | | - Beth L Dumont
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
31
|
Josi D, Flury JM, Reyes-Contreras M, Tanaka H, Taborsky M, Frommen JG. Sex-Specific Routes to Independent Breeding in a Polygynous Cooperative Breeder. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.750483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
How can individuals obtain a breeding position and what are the benefits associated with philopatry compared to dispersal? These questions are particularly intriguing in polygamous cooperative breeders, where dispersal strategies reflect major life history decisions, and routes to independent breeding may utterly differ between the sexes. We scrutinized sex-dependent life-history routes by investigating dispersal patterns, growth rates and mortality in a wild colony of the cooperatively breeding cichlid Neolamprologus savoryi. Our data reveal that female helpers typically obtain dominant breeding positions immediately after reaching sexual maturity, which is associated with strongly reduced growth. In contrast, males obtain breeder status only at twice the age of females. After reaching sexual maturity, males follow one of two strategies: (i) they may retain their subordinate status within the harem of a dominant male, which may provide protection against predators but involves costs by helping in territory maintenance, defence and brood care; or (ii) they may disperse and adopt a solitary status, which diminishes survival chances and apparently reflects a best-of-a-bad-job strategy, as there are no obvious compensating future fitness benefits associated with this pathway. Our study illustrates that sex-dependent life history strategies strongly relate to specific social structures and mating patterns, with important implications for growth rates, the age at which breeding status is obtained, and survival.
Collapse
|
32
|
Pirrie A, Ashby B. Does differential mortality after parental investment affect sex ratio evolution? No. Evolution 2021; 75:3175-3180. [PMID: 34633080 DOI: 10.1111/evo.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
The classical view of sex ratio evolution, popularized by R. A. Fisher, is that the sex ratio at birth should be equal when males and females require the same level of parental investment. Thus, although differences in mortality between the sexes during parental investment will cause deviations from an equal sex ratio at birth, differential mortality after parental investment should have no effect. However, a recent theoretical model appears to contradict this view, suggesting that differential mortality after the period of parental investment does cause deviations from an equal sex ratio at birth. Moreover, the life stage at which mortality differs (juvenile vs. adult) is predicted to cause contrasting effects on sex ratio evolution. These results are in stark contrast with Fisher's hypothesis. Here, we resolve this disparity by analyzing a stage- and sex- structured model of population dynamics. We find that selection always drives the population to an equal sex ratio at birth regardless of differential mortality effects after parental investment, thus confirming Fisher's hypothesis. The disparity appears to be due to incorrect accounting of mutant-resident unions, which we avoid by considering separate union classes for different types of mutant-resident unions.
Collapse
Affiliation(s)
- Alistair Pirrie
- Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Ben Ashby
- Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
33
|
Collado GA, Chihuailaf E, Muñoz-Herrera N, Contreras M, Novoa F, Valladares MA. Reproductive aspects of the poorly known and critically endangered freshwater snail Heleobia atacamensis (Gastropoda: Truncatelloidea). PeerJ 2021; 9:e11550. [PMID: 34458016 PMCID: PMC8378341 DOI: 10.7717/peerj.11550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Knowing the reproductive biology of threatened species is essential for conservation and to establish proper management plans. Heleobia atacamensis, a freshwater snail only known from two locations in the Atacama Saltpan, northern Chile, is currently classified as Data Deficient on the IUCN Red List and Critically Endangered by the Ministerio del Medio Ambiente of Chile. Based on size-frequency distribution, multivariate analysis of shell measurements, and microdissections, we studied the reproductive strategy, recruitment period, sex ratio and sexual dimorphism in this species. Heleobia atacamensis is an oviparous species, with direct development (non-planktotrophic). Females lay capsules of a single egg from which a juvenile resembling a miniature adult hatches after intracapsular metamorphosis is completed. The development type was confirmed by the observation of a paucispiral protoconch (= protoconch I) using scanning electron microscopy. Recruitment was observed across the four seasons of the year, with an increment at the end of austral summer. Results also showed that sex ratio was 1:1, whereas sexual dimorphism was not detected using univariate and multivariate analysis of the shell. The reproductive data provided in this study are a starting point for future management plans.
Collapse
Affiliation(s)
- Gonzalo A Collado
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | | | | | | | | | - Moisés A Valladares
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| |
Collapse
|
34
|
Fritzsche K, Henshaw JM, Johnson BD, Jones AG. The 150th anniversary of The Descent of Man: Darwin and the impact of sex-role reversal on sexual selection research. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The year 2021 marks the 150th anniversary of the publication of Charles Darwin’s extraordinary book The Descent of Man and Selection in Relation to Sex. Here, we review the history and impact of a single profound insight from The Descent of Man: that, in some few species, females rather than males compete for access to mates. In other words, these species are ‘sex-role reversed’ with respect to mating competition and sexual selection compared to the majority of species in which sexual selection acts most strongly on males. Over the subsequent 150 years, sex-role-reversed species have motivated multiple key conceptual breakthroughs in sexual selection. The surprising mating dynamics of such species challenged scientists’ preconceptions, forcing them to examine implicit assumptions and stereotypes. This wider worldview has led to a richer and more nuanced understanding of animal mating systems and, in particular, to a proper appreciation for the fundamental role that females play in shaping these systems. Sex-role-reversed species have considerable untapped potential and will continue to contribute to sexual selection research in the decades to come.
Collapse
Affiliation(s)
- Karoline Fritzsche
- Institute of Biology I, University of Freiburg, Hauptstraße 1, D-79104 Freiburg, Germany
| | - Jonathan M Henshaw
- Institute of Biology I, University of Freiburg, Hauptstraße 1, D-79104 Freiburg, Germany
| | | | - Adam G Jones
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
35
|
Holtmann B, Lara CE, Santos ESA, Gillum JE, Gemmell NJ, Nakagawa S. The association between personalities, alternative breeding strategies and reproductive success in dunnocks. J Evol Biol 2021; 35:539-551. [PMID: 34314544 DOI: 10.1111/jeb.13906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022]
Abstract
Although consistent between-individual differences in behaviour (i.e. animal personality) are ubiquitous in natural populations, relatively few studies have examined how personalities influence the formation of social relationships. Yet, behavioural characteristics of both sexes might be key when it comes to pair-bond formation, and cooperation with partners to successfully rear offspring. We here use a wild population of dunnocks (Prunella modularis) to first investigate whether individuals mate nonrandomly (i.e. assortative mating) with regard to four behavioural traits-flight-initiation distance (FID), provisioning, activity and vigilance-that differ in repeatability and have previously been associated with mating patterns and fitness in other species. Second, we test whether an individual's FID is associated with variability in the dunnocks' mating system (i.e. monogamous pairs vs. polygamous groups). Finally, we determine whether FID and provisioning of males and females associate with their reproductive success. We found no statistical support for assortative mating in FID between males and females. Interestingly, in polygamous groups, co-breeding males differed in their FIDs with dominant alpha males having significantly shorter FIDs compared with subordinate beta-males. Moreover, there was evidence for assortative mating in provisioning for alpha males and females in polygamous groups. We also found that male provisioning influenced reproductive success of both sexes, whereas female provisioning rates only positively correlated with her own but not their partner(s) reproductive output. Our results suggest that personality differences may have important implications for social relationships, the emergence of different mating patterns and ultimately reproductive success within populations.
Collapse
Affiliation(s)
- Benedikt Holtmann
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany.,Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Carlos E Lara
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Eduardo S A Santos
- BECO Lab, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Joanne E Gillum
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Shinichi Nakagawa
- Department of Zoology, University of Otago, Dunedin, New Zealand.,Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
36
|
How do biases in sex ratio and disease characteristics affect the spread of sexually transmitted infections? J Theor Biol 2021; 527:110832. [PMID: 34252402 DOI: 10.1016/j.jtbi.2021.110832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/05/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
The epidemiology of sexually transmitted infections (STIs) is inherently linked to host mating dynamics. Studies across many taxa show that adult sex ratio, a major determinant of host mating dynamics, is often skewed - sometimes strongly - toward males or females. However, few predictions exist for the effects of skewed sex ratio on STI epidemiology, and none when coupled with sex biased disease characteristics. Here we use mathematical modelling to examine how interactions between sex ratio and disease characteristics affect STI prevalence in males and females. Notably, we find that while overall disease prevalence peaks at equal sex ratios, prevalence per sex peaks at skewed sex ratios. Furthermore, disease characteristics, sex-biased or not, drive predictable differences in male and female STI prevalence as sex ratio varies, with higher transmission and lower virulence generally increasing differences between the sexes for a given sex ratio. Our work reveals new insights into how STI prevalence in males and females depends on a complex interaction between host population sex ratio and disease characteristics.
Collapse
|
37
|
Fisher DN, Kilgour RJ, Siracusa ER, Foote JR, Hobson EA, Montiglio PO, Saltz JB, Wey TW, Wice EW. Anticipated effects of abiotic environmental change on intraspecific social interactions. Biol Rev Camb Philos Soc 2021; 96:2661-2693. [PMID: 34212487 DOI: 10.1111/brv.12772] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Social interactions are ubiquitous across the animal kingdom. A variety of ecological and evolutionary processes are dependent on social interactions, such as movement, disease spread, information transmission, and density-dependent reproduction and survival. Social interactions, like any behaviour, are context dependent, varying with environmental conditions. Currently, environments are changing rapidly across multiple dimensions, becoming warmer and more variable, while habitats are increasingly fragmented and contaminated with pollutants. Social interactions are expected to change in response to these stressors and to continue to change into the future. However, a comprehensive understanding of the form and magnitude of the effects of these environmental changes on social interactions is currently lacking. Focusing on four major forms of rapid environmental change currently occurring, we review how these changing environmental gradients are expected to have immediate effects on social interactions such as communication, agonistic behaviours, and group formation, which will thereby induce changes in social organisation including mating systems, dominance hierarchies, and collective behaviour. Our review covers intraspecific variation in social interactions across environments, including studies in both the wild and in laboratory settings, and across a range of taxa. The expected responses of social behaviour to environmental change are diverse, but we identify several general themes. First, very dry, variable, fragmented, or polluted environments are likely to destabilise existing social systems. This occurs as these conditions limit the energy available for complex social interactions and affect dissimilar phenotypes differently. Second, a given environmental change can lead to opposite responses in social behaviour, and the direction of the response often hinges on the natural history of the organism in question. Third, our review highlights the fact that changes in environmental factors are not occurring in isolation: multiple factors are changing simultaneously, which may have antagonistic or synergistic effects, and more work should be done to understand these combined effects. We close by identifying methodological and analytical techniques that might help to study the response of social interactions to changing environments, highlight consistent patterns among taxa, and predict subsequent evolutionary change. We expect that the changes in social interactions that we document here will have consequences for individuals, groups, and for the ecology and evolution of populations, and therefore warrant a central place in the study of animal populations, particularly in an era of rapid environmental change.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, U.K
| | - R Julia Kilgour
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, U.S.A
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Stocker Road, Exeter, EX4 4PY, U.K
| | - Jennifer R Foote
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221, U.S.A
| | - Pierre-Olivier Montiglio
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue Président-Kennedy, Montréal, QC, H2X 3X8, Canada
| | - Julia B Saltz
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| | - Tina W Wey
- Maelstrom Research, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montréal, QC, H3G 1A4, Canada
| | - Eric W Wice
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| |
Collapse
|
38
|
Liker A, Bókony V, Pipoly I, Lemaître JF, Gaillard JM, Székely T, Freckleton RP. Evolution of large males is associated with female-skewed adult sex ratios in amniotes. Evolution 2021; 75:1636-1649. [PMID: 34021590 DOI: 10.1111/evo.14273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/30/2022]
Abstract
Body size often differs between the sexes (leading to sexual size dimorphism, SSD), as a consequence of differential responses by males and females to selection pressures. Adult sex ratio (ASR, the proportion of males in the adult population) should influence SSD because ASR relates to both the number of competitors and available mates, which shape the intensity of mating competition and thereby promotes SSD evolution. However, whether ASR correlates with SSD variation among species has not been yet tested across a broad range of taxa. Using phylogenetic comparative analyses of 462 amniotes (i.e., reptiles, birds, and mammals), we fill this knowledge gap by showing that male bias in SSD increases with increasingly female-skewed ASRs in both mammals and birds. This relationship is not explained by the higher mortality of the larger sex because SSD is not associated with sex differences in either juvenile or adult mortality. Phylogenetic path analysis indicates that higher mortality in one sex leads to skewed ASR, which in turn may generate selection for SSD biased toward the rare sex. Taken together, our findings provide evidence that skewed ASRs in amniote populations can result in the rarer sex evolving large size to capitalize on enhanced mating opportunities.
Collapse
Affiliation(s)
- András Liker
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém, H-8210, Hungary.,Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, H-8210, Hungary
| | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, H-1022, Hungary
| | - Ivett Pipoly
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém, H-8210, Hungary.,Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, H-8210, Hungary
| | - Jean-Francois Lemaître
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Villeurbanne, F-69622, France
| | - Jean-Michel Gaillard
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Villeurbanne, F-69622, France
| | - Tamás Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, United Kingdom.,Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Robert P Freckleton
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
39
|
Revathi Venkateswaran V, Roth O, Gokhale CS. Consequences of combining sex-specific traits. Evolution 2021; 75:1274-1287. [PMID: 33759452 DOI: 10.1111/evo.14204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
Males and females follow distinct life-history strategies that have co-evolved with several sex-specific traits. Higher investment into parental investment (PI) demands an increased lifespan. Thus, resource allocation toward an efficient immune system is mandatory. In contrast, resources allocated toward secondary sexual signals (ornamentation) may negatively correlate with investment into immunity and ultimately result in a shorter lifespan. Previous studies have addressed how resource allocation toward single sex-specific traits impacts lifetime reproductive success (LRS). However, the trade-offs between diverse sex-specific characteristics and their impact on LRS remain largely unassessed impeding our understanding of life-history evolution. We have designed a theoretical framework (informed by experimental data and evolutionary genetics) that explores the effects of multiple sex-specific traits and assessed how they influence LRS. From the individual sex-specific traits, we inferred the consequences at the population level by evaluating adult sex ratios (ASR). Our theory implies that sex-specific resource allocation toward the assessed traits resulted in a biased ASR. Our model focuses on the impact of PI, ornamentation, and immunity as causal to biased ASR. The framework developed herein can be employed to understand the combined impact of diverse sex-specific traits on the LRS and the eventual population dynamics of particular model systems.
Collapse
Affiliation(s)
- Vandana Revathi Venkateswaran
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August Thienemann Str. 2, Plön, 24306, Germany
| | - Olivia Roth
- GEOMAR - Helmholtz Center for Ocean Research, Düsternbrookerweg 20, Kiel, D-24105, Germany
| | - Chaitanya S Gokhale
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August Thienemann Str. 2, Plön, 24306, Germany
| |
Collapse
|
40
|
Kahn JE, Watterson JC, Hager CH, Mathies N, Hartman KJ. Calculating adult sex ratios from observed breeding sex ratios for wide‐ranging, intermittently breeding species. Ecosphere 2021. [DOI: 10.1002/ecs2.3504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- J. E. Kahn
- National Marine Fisheries Service Silver Spring Maryland20910USA
| | - J. C. Watterson
- U.S. Department of the Navy Naval Facilities Engineering Command, Atlantic Norfolk Virginia23508USA
| | - C. H. Hager
- Chesapeake Scientific Williamsburg Virginia23185USA
| | - N. Mathies
- Chesapeake Scientific Williamsburg Virginia23185USA
| | - K. J. Hartman
- Division of Forestry and Natural Resources West Virginia University Morgantown West Virginia26506USA
| |
Collapse
|
41
|
Szemán K, Liker A, Székely T. Social organization in ungulates: Revisiting Jarman's hypotheses. J Evol Biol 2021; 34:604-613. [PMID: 33706412 DOI: 10.1111/jeb.13782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Ungulates (antelopes, deer and relatives) have some of the most diverse social systems among mammals. To understand the evolution of ungulate social organization, Jarman (1974) proposed an ecological scenario of how distribution of resources, habitat and feeding style may have influenced social organization. Although Jarman's scenario makes intuitive sense and remains a textbook example of social evolution, it has not been scrutinized using modern phylogenetic comparative methods. Here we use 230 ungulate species from ten families to test Jarman's hypotheses using phylogenetic analyses. Consistent with Jarman's proposition, both habitat and feeding style predict group size, since grazing ungulates typically live in open habitats and form large herds. Group size, in turn, has a knock-on effect on mating systems and sexual size dimorphism, since ungulates that live in large herds exhibit polygamy and extensive sexual size dimorphism. Phylogenetic confirmatory path analyses suggest that evolutionary changes in habitat type, feeding style and body size directly (or indirectly) induce shifts in social organization. Taken together, these phylogenetic comparative analyses confirm Jarman's conjectures, although they also uncover novel relationships between ecology and social organization. Further studies are needed to explore the relevance of Jarman (1974) scenario for mammals beyond ungulates.
Collapse
Affiliation(s)
- Karola Szemán
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - András Liker
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém, Hungary.,Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary
| | - Tamás Székely
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.,Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
42
|
Lipkowski K, Steigerwald S, Schulte LM, Sommer-Trembo C, Jourdan J. Natural variation in social conditions affects male mate choosiness in the amphipod Gammarus roeselii. Curr Zool 2021; 68:459-468. [PMID: 36090139 PMCID: PMC9450172 DOI: 10.1093/cz/zoab016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/18/2021] [Indexed: 11/20/2022] Open
Abstract
The extent of male mate choosiness is driven by a trade-off between various environmental factors associated with the costs of mate acquisition, quality assessment and opportunity costs. Our knowledge about natural variation in male mate choosiness across different populations of the same species, however, remains limited. In this study, we compared male mate choosiness across 10 natural populations of the freshwater amphipod Gammarus roeselii (Gervais 1835), a species with overall high male mating investments, and evaluated the relative influence of population density and sex ratio (both affecting mate availability) on male mate choosiness. We investigated amplexus establishment after separating mating pairs and presenting focal males with a novel, size-matched female from the same population. Our analysis revealed considerable effects of sex ratio and (to a lesser extent) population density on time until amplexus establishment (choosiness). Male amphipods are able to perceive variable social conditions (e.g., sex ratio) and modify their mating strategy accordingly: We found choosiness to be reduced in increasingly male-biased populations, whereas selectivity increases when sex ratio becomes female biased. With this, our study expands our limited knowledge on natural variations in male mate choosiness and illustrates the importance of sex ratio (i.e., level of competition) for male mating decisions in natural environments. Accounting for variation in sex ratios, therefore, allows envisioning a distinctive variation of choosiness in natural populations and highlights the importance of considering social background information in future behavioral studies.
Collapse
Affiliation(s)
- Konrad Lipkowski
- Department of Wildlife/Zoo-Animal-Biology and Systematics, Institute for Ecology, Evolution and Diversity Goethe University Frankfurt, Max-von-Laue-Straße 13, Frankfurt am Main, D-60438, Germany
| | - Sophie Steigerwald
- Department of Wildlife/Zoo-Animal-Biology and Systematics, Institute for Ecology, Evolution and Diversity Goethe University Frankfurt, Max-von-Laue-Straße 13, Frankfurt am Main, D-60438, Germany
- Department of Environmental Science, Stockholm University, Svante Arrheniusväg 8, Stockholm, SE-11418, Sweden
| | - Lisa M Schulte
- Department of Wildlife/Zoo-Animal-Biology and Systematics, Institute for Ecology, Evolution and Diversity Goethe University Frankfurt, Max-von-Laue-Straße 13, Frankfurt am Main, D-60438, Germany
| | - Carolin Sommer-Trembo
- Zoological Institute, University of Basel, Vesalgasse 1, Basel, CH-4051, Switzerland
| | - Jonas Jourdan
- Department of Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Acker P, Daunt F, Wanless S, Burthe SJ, Newell MA, Harris MP, Grist H, Sturgeon J, Swann RL, Gunn C, Payo‐Payo A, Reid JM. Strong survival selection on seasonal migration versus residence induced by extreme climatic events. J Anim Ecol 2021; 90:796-808. [DOI: 10.1111/1365-2656.13410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/22/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Paul Acker
- School of Biological Sciences University of Aberdeen Aberdeen UK
- Centre for Biodiversity Dynamics, Institutt for Biologi NTNU Trondheim Norway
| | | | | | | | | | | | - Hannah Grist
- School of Biological Sciences University of Aberdeen Aberdeen UK
- Scottish Association for Marine Science Scottish Marine Institute Oban UK
| | - Jenny Sturgeon
- School of Biological Sciences University of Aberdeen Aberdeen UK
| | | | - Carrie Gunn
- UK Centre for Ecology & Hydrology Midlothian UK
| | - Ana Payo‐Payo
- School of Biological Sciences University of Aberdeen Aberdeen UK
| | - Jane M. Reid
- School of Biological Sciences University of Aberdeen Aberdeen UK
- Centre for Biodiversity Dynamics, Institutt for Biologi NTNU Trondheim Norway
| |
Collapse
|
44
|
McCullough K, Haukos DA, Albanese G. Regal Fritillary (Speyeria idalia) Sex Ratio in Tallgrass Prairie: Effects of Survey Timing and Management Regime. AMERICAN MIDLAND NATURALIST 2021. [DOI: 10.1674/0003-0031-185.1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Kelsey McCullough
- Kansas Cooperative Fish and Wildlife Research Unit, Kansas State University, 211 Leasure Hall Manhattan, 66506
| | - David A. Haukos
- U.S. Geological Survey, Kansas Cooperative Fish and Wildlife Research Unit, Kansas State University, 205 Leasure Hall, Manhattan, 66506
| | - Gene Albanese
- Massachusetts Audubon Society, Conservation Science Department, 208 South Great Road, Lincoln, 01773
| |
Collapse
|
45
|
Sexual Selection: Evolutionary Foundations. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Valdebenito JO, Liker A, Halimubieke N, Figuerola J, Székely T. Mortality cost of sex-specific parasitism in wild bird populations. Sci Rep 2020; 10:20983. [PMID: 33268803 PMCID: PMC7710712 DOI: 10.1038/s41598-020-77410-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
Sex-specific mortality is frequent in animals although the causes of different male versus female mortalities remain poorly understood. Parasitism is ubiquitous in nature with widespread detrimental effects to hosts, making parasitism a likely cause of sex-specific mortalities. Using sex-specific blood and gastrointestinal parasite prevalence from 96 and 54 avian host species, respectively, we test the implications of parasites for annual mortality in wild bird populations using phylogenetic comparative methods. First, we show that parasite prevalence is not different between adult males and females, although Nematodes showed a statistically significant but small male-biased parasite prevalence. Second, we found no correlation between sex-biased host mortalities and sex-biased parasite prevalence. These results were consistent in both blood and gastrointestinal parasites. Taken together, our results show little evidence for sex-dependent parasite prevalence in adults in wild bird populations, and suggest that parasite prevalence is an unlikely predictor of sex difference in adult mortalities, not withstanding sampling limitations. We propose that to understand causes of sex-biased mortalities, more complex analyses are needed that incorporate various ecological and life history components of animals life that may include sex differences in exposure to predators, immune capacity and cost of reproduction.
Collapse
Affiliation(s)
- José O Valdebenito
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - András Liker
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém, Hungary.,Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary
| | - Naerhulan Halimubieke
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - Tamás Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK. .,Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
47
|
Griffin MJ, Holwell GI, Symonds MR. From quiet-night-in to party animal: sex ratio and density affect male/female aggregations in a ‘harem’ polygynous insect. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Moldowan PD, Brooks RJ, Litzgus JD. Sex, shells, and weaponry: coercive reproductive tactics in the painted turtle, Chrysemys picta. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Regan CE, Medill SA, Poissant J, McLoughlin PD. Causes and consequences of an unusually male-biased adult sex ratio in an unmanaged feral horse population. J Anim Ecol 2020; 89:2909-2921. [PMID: 32996590 DOI: 10.1111/1365-2656.13349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/31/2020] [Indexed: 11/28/2022]
Abstract
The adult sex ratio (ASR) is important within ecology due to its predicted effects on behaviour, demography and evolution, but research examining the causes and consequences of ASR bias have lagged behind the studies of sex ratios at earlier life stages. Although ungulate ASR is relatively well-studied, exceptions to the usual female-biased ASR challenge our understanding of the underlying drivers of biased ASR and provide an opportunity to better understand its consequences. Some feral ungulate populations, including multiple horse populations, exhibit unusually male-biased ASR. For example, research suggests that the feral horse Equus ferus caballus population on Sable Island, Nova Scotia, Canada may exhibit a male-biased ASR. Such exceptions to the rule provide a valuable opportunity to reveal the contributions of environmental context and trait differences to ASR bias. We aimed to test for bias in Sable Island horse ASR, identify the demographic drivers of bias, and explore its demographic and social consequences. To do this, we used life history, movement and group membership information for hundreds of horses followed through a long-term individual-based study between 2007 and 2018. Sable Island horse ASR is male biased and this skew has increased over time, reaching 62% male in 2018. Our life table response experiment suggested that ASR skew was driven predominantly by male-biased adult survival. Further analyses pointed to sex-biased survival being driven by reduced female survival post-reproduction. Male-biased ASR was associated with reduced harem sizes, an increase in the number of social groups on the island, and reduced reproduction in young females. Our results support the idea that male-biased ASR in feral ungulate populations may be caused by a combination of high population density and high reproductive output. We suggest that female-biased mortality may be caused by females continuing to reproduce at high density, and thus being more susceptible to resource shortages. Thus, our results highlight the strong context dependence of ASR. Furthermore, our work indicates the potential for ASR to substantially alter a population's social organisation. Such changes in social structure could have knock-on consequences for demography by altering the formation/stability of social relationships, or competition for matings.
Collapse
Affiliation(s)
- Charlotte E Regan
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sarah A Medill
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jocelyn Poissant
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
50
|
Safari I, Goymann W. The evolution of reversed sex roles and classical polyandry: Insights from coucals and other animals. Ethology 2020. [DOI: 10.1111/eth.13095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ignas Safari
- Max‐Planck‐Institut für Ornithologie, Abteilung für Verhaltensneurobiologie Seewiesen Germany
- Coucal Project Chimala Tanzania
- Department of Biology University of Dodoma Dodoma Tanzania
| | - Wolfgang Goymann
- Max‐Planck‐Institut für Ornithologie, Abteilung für Verhaltensneurobiologie Seewiesen Germany
- Coucal Project Chimala Tanzania
| |
Collapse
|