1
|
Borrero J, Mogollon Perez E, Wright DS, Lozano-Urrego D, Rueda-Muñoz G, Pardo-Diaz C, Salazar C, Montgomery SH, Merrill RM. Weighting of sensory cues reflect changing patterns of visual investment during ecological divergence in Heliconius butterflies. Biol Lett 2024; 20:20240377. [PMID: 39439357 PMCID: PMC11496948 DOI: 10.1098/rsbl.2024.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Integrating information across sensory modalities enables animals to orchestrate a wide range of complex behaviours. The relative importance placed on one sensory modality over another reflects the reliability of cues in a particular environment and corresponding differences in neural investment. As populations diverge across environmental gradients, the reliability of sensory cues may shift, favouring divergence in neural investment and the weight given to different sensory modalities. During their divergence across closed-forest and forest-edge habitats, closely related butterflies Heliconius cydno and Heliconius melpomene evolved distinct brain morphologies, with the former investing more in vision. Quantitative genetic analyses suggest that selection drove these changes, but their behavioural consequences remain uncertain. We hypothesized that divergent neural investment may alter sensory weighting. We trained individuals in an associative learning experiment using multimodal colour and odour cues. When positively rewarded stimuli were presented in conflict, i.e. pairing positively trained colour with negatively trained odour and vice versa, H. cydno favoured visual cues more strongly than H. melpomene. Hence, differences in sensory weighting may evolve early during divergence and are predicted by patterns of neural investment. These findings, alongside other examples, imply that differences in sensory weighting stem from divergent investment as adaptations to local sensory environments.
Collapse
Affiliation(s)
- José Borrero
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Elisa Mogollon Perez
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Daniel Shane Wright
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Daniela Lozano-Urrego
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Geraldine Rueda-Muñoz
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Camilo Salazar
- Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Richard M. Merrill
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
2
|
Cama B, Heaton K, Thomas-Oates J, Schulz S, Dasmahapatra KK. Complexity of Chemical Emissions Increases Concurrently with Sexual Maturity in Heliconius Butterflies. J Chem Ecol 2024; 50:197-213. [PMID: 38478290 PMCID: PMC11233321 DOI: 10.1007/s10886-024-01484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 07/10/2024]
Abstract
Pheromone communication is widespread among animals. Since it is often involved in mate choice, pheromone production is often tightly controlled. Although male sex pheromones (MSPs) and anti-aphrodisiacs have been studied in some Heliconius butterfly species, little is known about the factors affecting their production and release in these long-lived butterflies. Here, we investigate the effect of post-eclosion age on chemical blends from pheromone-emitting tissues in Heliconius atthis and Heliconius charithonia, exhibiting respectively free-mating and pupal-mating strategies that are hypothesised to differently affect the timing of their pheromone emissions. We focus on two different tissues: the wing androconia, responsible for MSPs used in courtship, and the genital tip, the production site for anti-aphrodisiac pheromones that affect post-mating behaviour. Gas chromatography-mass spectrometric analysis of tissue extracts from virgin males and females of both species from day 0 to 8 post-eclosion demonstrates the following. Some ubiquitous fatty acid precursors are already detectable at day 0. The complexity of the chemical blends increases with age regardless of tissue or sex. No obvious difference in the time course of blend production was evident between the two species, but female tissues in H. charithonia were more affected by age than in H. atthis. We suggest that compounds unique to male androconia and genitals and whose amount increases with age are potential candidates for future investigation into their roles as pheromones. While this analysis revealed some of the complexity in Heliconius chemical ecology, the effects of other factors, such as the time of day, remain unknown.
Collapse
Affiliation(s)
- Bruna Cama
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, UK.
| | - Karl Heaton
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK
| | - Jane Thomas-Oates
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig, 38106, Germany
| | | |
Collapse
|
3
|
Sebastianelli M, Lukhele SM, Secomandi S, de Souza SG, Haase B, Moysi M, Nikiforou C, Hutfluss A, Mountcastle J, Balacco J, Pelan S, Chow W, Fedrigo O, Downs CT, Monadjem A, Dingemanse NJ, Jarvis ED, Brelsford A, vonHoldt BM, Kirschel ANG. A genomic basis of vocal rhythm in birds. Nat Commun 2024; 15:3095. [PMID: 38653976 DOI: 10.1038/s41467-024-47305-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Vocal rhythm plays a fundamental role in sexual selection and species recognition in birds, but little is known of its genetic basis due to the confounding effect of vocal learning in model systems. Uncovering its genetic basis could facilitate identifying genes potentially important in speciation. Here we investigate the genomic underpinnings of rhythm in vocal non-learning Pogoniulus tinkerbirds using 135 individual whole genomes distributed across a southern African hybrid zone. We find rhythm speed is associated with two genes that are also known to affect human speech, Neurexin-1 and Coenzyme Q8A. Models leveraging ancestry reveal these candidate loci also impact rhythmic stability, a trait linked with motor performance which is an indicator of quality. Character displacement in rhythmic stability suggests possible reinforcement against hybridization, supported by evidence of asymmetric assortative mating in the species producing faster, more stable rhythms. Because rhythm is omnipresent in animal communication, candidate genes identified here may shape vocal rhythm across birds and other vertebrates.
Collapse
Affiliation(s)
- Matteo Sebastianelli
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden.
| | - Sifiso M Lukhele
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Simona Secomandi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Stacey G de Souza
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Michaella Moysi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Christos Nikiforou
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Alexander Hutfluss
- Behavioural Ecology, Faculty of Biology, LMU Munich (LMU), 82152, Planegg-Martinsried, Germany
| | | | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | | | | | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Colleen T Downs
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, Pretoria, South Africa
| | - Niels J Dingemanse
- Behavioural Ecology, Faculty of Biology, LMU Munich (LMU), 82152, Planegg-Martinsried, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Bridgett M vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alexander N G Kirschel
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus.
| |
Collapse
|
4
|
Adams SA, Gurajapu A, Qiang A, Gerbaulet M, Schulz S, Tsutsui ND, Ramirez SR, Gillespie RG. Chemical species recognition in an adaptive radiation of Hawaiian Tetragnatha spiders (Araneae: Tetragnathidae). Proc Biol Sci 2024; 291:20232340. [PMID: 38593845 PMCID: PMC11003775 DOI: 10.1098/rspb.2023.2340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Studies of adaptive radiations have played a central role in our understanding of reproductive isolation. Yet the focus has been on human-biased visual and auditory signals, leaving gaps in our knowledge of other modalities. To date, studies on chemical signals in adaptive radiations have focused on systems with multimodal signalling, making it difficult to isolate the role chemicals play in reproductive isolation. In this study we examine the use of chemical signals in the species recognition and adaptive radiation of Hawaiian Tetragnatha spiders by focusing on entire communities of co-occurring species, and conducting behavioural assays in conjunction with chemical analysis of their silks using gas chromatography-mass spectrometry. Male spiders significantly preferred the silk extracts of conspecific mates over those of sympatric heterospecifics. The compounds found in the silk extracts, long chain alkyl methyl ethers, were remarkably species-specific in the combination and quantity. The differences in the profile were greatest between co-occurring species and between closely related sibling species. Lastly, there were significant differences in the chemical profile between two populations of a particular species. These findings provide key insights into the role chemical signals play in the attainment and maintenance of reproductive barriers between closely related co-occurring species.
Collapse
Affiliation(s)
- Seira A. Adams
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
- Center for Population Biology, University of California, 2320 Storer Hall, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, 2320 Storer Hall, Davis, CA 95616, USA
| | - Anjali Gurajapu
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
| | - Albert Qiang
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
| | - Moritz Gerbaulet
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Neil D. Tsutsui
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
| | - Santiago R. Ramirez
- Center for Population Biology, University of California, 2320 Storer Hall, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, 2320 Storer Hall, Davis, CA 95616, USA
| | - Rosemary G. Gillespie
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Martins ARP, Warren NB, McMillan WO, Barrett RDH. Spatiotemporal dynamics in butterfly hybrid zones. INSECT SCIENCE 2024; 31:328-353. [PMID: 37596954 DOI: 10.1111/1744-7917.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Evaluating whether hybrid zones are stable or mobile can provide novel insights for evolution and conservation biology. Butterflies exhibit high sensitivity to environmental changes and represent an important model system for the study of hybrid zone origins and maintenance. Here, we review the literature exploring butterfly hybrid zones, with a special focus on their spatiotemporal dynamics and the potential mechanisms that could lead to their movement or stability. We then compare different lines of evidence used to investigate hybrid zone dynamics and discuss the strengths and weaknesses of each approach. Our goal with this review is to reveal general conditions associated with the stability or mobility of butterfly hybrid zones by synthesizing evidence obtained using different types of data sampled across multiple regions and spatial scales. Finally, we discuss spatiotemporal dynamics in the context of a speciation/divergence continuum, the relevance of hybrid zones for conservation biology, and recommend key topics for future investigation.
Collapse
Affiliation(s)
- Ananda R Pereira Martins
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Natalie B Warren
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Rowan D H Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Rossi M, Hausmann AE, Alcami P, Moest M, Roussou R, Van Belleghem SM, Wright DS, Kuo CY, Lozano-Urrego D, Maulana A, Melo-Flórez L, Rueda-Muñoz G, McMahon S, Linares M, Osman C, McMillan WO, Pardo-Diaz C, Salazar C, Merrill RM. Adaptive introgression of a visual preference gene. Science 2024; 383:1368-1373. [PMID: 38513020 PMCID: PMC7616200 DOI: 10.1126/science.adj9201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024]
Abstract
Visual preferences are important drivers of mate choice and sexual selection, but little is known of how they evolve at the genetic level. In this study, we took advantage of the diversity of bright warning patterns displayed by Heliconius butterflies, which are also used during mate choice. Combining behavioral, population genomic, and expression analyses, we show that two Heliconius species have evolved the same preferences for red patterns by exchanging genetic material through hybridization. Neural expression of regucalcin1 correlates with visual preference across populations, and disruption of regucalcin1 with CRISPR-Cas9 impairs courtship toward conspecific females, providing a direct link between gene and behavior. Our results support a role for hybridization during behavioral evolution and show how visually guided behaviors contributing to adaptation and speciation are encoded within the genome.
Collapse
Affiliation(s)
- Matteo Rossi
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | - Pepe Alcami
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Markus Moest
- Department of Ecology and Research Department for Limnology, Mondsee; University of Innsbruck, Innsbruck, Austria
| | - Rodaria Roussou
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | | | - Chi-Yun Kuo
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Smithsonian Tropical Research Institute; Gamboa, Panama
| | - Daniela Lozano-Urrego
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Arif Maulana
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Lina Melo-Flórez
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Geraldine Rueda-Muñoz
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Saoirse McMahon
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Mauricio Linares
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Christof Osman
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | | | - Camilo Salazar
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Richard M. Merrill
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Smithsonian Tropical Research Institute; Gamboa, Panama
| |
Collapse
|
7
|
Page E, Queste LM, Rosser N, Salazar PA, Nadeau NJ, Mallet J, Srygley RB, McMillan WO, Dasmahapatra KK. Pervasive mimicry in flight behavior among aposematic butterflies. Proc Natl Acad Sci U S A 2024; 121:e2300886121. [PMID: 38408213 PMCID: PMC10945825 DOI: 10.1073/pnas.2300886121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
Flight was a key innovation in the adaptive radiation of insects. However, it is a complex trait influenced by a large number of interacting biotic and abiotic factors, making it difficult to unravel the evolutionary drivers. We investigate flight patterns in neotropical heliconiine butterflies, well known for mimicry of their aposematic wing color patterns. We quantify the flight patterns (wing beat frequency and wing angles) of 351 individuals representing 29 heliconiine and 9 ithomiine species belonging to ten color pattern mimicry groupings. For wing beat frequency and up wing angles, we show that heliconiine species group by color pattern mimicry affiliation. Convergence of down wing angles to mimicry groupings is less pronounced, indicating that distinct components of flight are under different selection pressures and constraints. The flight characteristics of the Tiger mimicry group are particularly divergent due to convergence with distantly related ithomiine species. Predator-driven selection for mimicry also explained variation in flight among subspecies, indicating that this convergence can occur over relatively short evolutionary timescales. Our results suggest that the flight convergence is driven by aposematic signaling rather than shared habitat between comimics. We demonstrate that behavioral mimicry can occur between lineages that have separated over evolutionary timescales ranging from <0.5 to 70 My.
Collapse
Affiliation(s)
- Edward Page
- Department of Biology, University of York, HeslingtonYO10 5DD, United Kingdom
| | - Lucie M. Queste
- Department of Biology, University of York, HeslingtonYO10 5DD, United Kingdom
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried82152, Germany
| | - Neil Rosser
- Department of Biology, University of York, HeslingtonYO10 5DD, United Kingdom
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Patricio A. Salazar
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, SheffieldS10 2TN, United Kingdom
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, CambridgeCB10 1SA, United Kingdom
| | - Nicola J. Nadeau
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Robert B. Srygley
- Smithsonian Tropical Research Institute, Apartado, Panamá0843-03092, Republic of Panama
- Pest Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Sidney, MT59270
| | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Apartado, Panamá0843-03092, Republic of Panama
| | | |
Collapse
|
8
|
Dalbosco Dell'Aglio D, Rivas-Sánchez DF, Wright DS, Merrill RM, Montgomery SH. The Sensory Ecology of Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041428. [PMID: 38052495 PMCID: PMC10759811 DOI: 10.1101/cshperspect.a041428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In this work, we explore the potential influence of sensory ecology on speciation, including but not limited to the concept of sensory drive, which concerns the coevolution of signals and sensory systems with the local environment. The sensory environment can influence individual fitness in a variety of ways, thereby affecting the evolution of both pre- and postmating reproductive isolation. Previous work focused on sensory drive has undoubtedly advanced the field, but we argue that it may have also narrowed our understanding of the broader influence of the sensory ecology on speciation. Moreover, the clearest examples of sensory drive are largely limited to aquatic organisms, which may skew the influence of contributing factors. We review the evidence for sensory drive across environmental conditions, and in this context discuss the importance of more generalized effects of sensory ecology on adaptive behavioral divergence. Finally, we consider the potential of rapid environmental change to influence reproductive barriers related to sensory ecologies. Our synthesis shows the importance of sensory conditions for local adaptation and divergence in a range of behavioral contexts and extends our understanding of the interplay between sensory ecology and speciation.
Collapse
Affiliation(s)
- Denise Dalbosco Dell'Aglio
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - David F Rivas-Sánchez
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Daniel Shane Wright
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Richard M Merrill
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Stephen H Montgomery
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| |
Collapse
|
9
|
Wright DS, Manel AN, Guachamin-Rosero M, Chamba-Vaca P, Bacquet CN, Merrill RM. Quantifying visual acuity in Heliconius butterflies. Biol Lett 2023; 19:20230476. [PMID: 38087940 PMCID: PMC10716659 DOI: 10.1098/rsbl.2023.0476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Heliconius butterflies are well-known for their colourful wing patterns, which advertise distastefulness to potential predators and are used during mate choice. However, the relative importance of different aspects of these signals will depend on the visual abilities of Heliconius and their predators. Previous studies have investigated colour sensitivity and neural anatomy, but visual acuity (the ability to perceive detail) has not been studied in these butterflies. Here, we provide the first estimate of visual acuity in Heliconius: from a behavioural optomotor assay, we found that mean visual acuity = 0.49 cycles-per-degree (cpd), with higher acuity in males than females. We also examined eye morphology and report more ommatidia in male eyes. Finally, we estimated how visual acuity affects Heliconius visual perception compared to a potential avian predator. Whereas the bird predator maintained high resolving power, Heliconius lost the ability to resolve detail at greater distances, though colours may remain salient. These results will inform future studies of Heliconius wing pattern evolution, as well as other aspects in these highly visual butterflies, which have emerged as an important system in studies of adaptation and speciation.
Collapse
Affiliation(s)
- Daniel Shane Wright
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Anupama Nayak Manel
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Michelle Guachamin-Rosero
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | - Pamela Chamba-Vaca
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | | | - Richard M. Merrill
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Wogan GOU, Yuan ML, Mahler DL, Wang IJ. Hybridization and Transgressive Evolution Generate Diversity in an Adaptive Radiation of Anolis Lizards. Syst Biol 2023; 72:874-884. [PMID: 37186031 PMCID: PMC10687355 DOI: 10.1093/sysbio/syad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Interspecific hybridization may act as a major force contributing to the evolution of biodiversity. Although generally thought to reduce or constrain divergence between 2 species, hybridization can, paradoxically, promote divergence by increasing genetic variation or providing novel combinations of alleles that selection can act upon to move lineages toward new adaptive peaks. Hybridization may, then, play a key role in adaptive radiation by allowing lineages to diversify into new ecological space. Here, we test for signatures of historical hybridization in the Anolis lizards of Puerto Rico and evaluate 2 hypotheses for the role of hybridization in facilitating adaptive radiation-the hybrid swarm origins hypothesis and the syngameon hypothesis. Using whole genome sequences from all 10 species of Puerto Rican anoles, we calculated D and f-statistics (from ABBA-BABA tests) to test for introgression across the radiation and employed multispecies network coalescent methods to reconstruct phylogenetic networks that allow for hybridization. We then analyzed morphological data for these species to test for patterns consistent with transgressive evolution, a phenomenon in which the trait of a hybrid lineage is found outside of the range of its 2 parents. Our analyses uncovered strong evidence for introgression at multiple stages of the radiation, including support for an ancient hybrid origin of a clade comprising half of the extant Puerto Rican anole species. Moreover, we detected significant signals of transgressive evolution for 2 ecologically important traits, head length and toepad width, the latter of which has been described as a key innovation in Anolis. [Adaptive radiation; introgression; multispecies network coalescent; phenotypic evolution; phylogenetic network; reticulation; syngameon; transgressive segregation.].
Collapse
Affiliation(s)
- Guinevere O U Wogan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael L Yuan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - D Luke Mahler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Hebberecht L, Wainwright JB, Thompson C, Kershenbaum S, McMillan WO, Montgomery SH. Plasticity and genetic effects contribute to different axes of neural divergence in a community of mimetic Heliconius butterflies. J Evol Biol 2023; 36:1116-1132. [PMID: 37341138 DOI: 10.1111/jeb.14188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/12/2023] [Accepted: 04/16/2023] [Indexed: 06/22/2023]
Abstract
Changes in ecological preference, often driven by spatial and temporal variation in resource distribution, can expose populations to environments with divergent information content. This can lead to adaptive changes in the degree to which individuals invest in sensory systems and downstream processes, to optimize behavioural performance in different contexts. At the same time, environmental conditions can produce plastic responses in nervous system development and maturation, providing an alternative route to integrating neural and ecological variation. Here, we explore how these two processes play out across a community of Heliconius butterflies. Heliconius communities exhibit multiple Mullerian mimicry rings, associated with habitat partitioning across environmental gradients. These environmental differences have previously been linked to heritable divergence in brain morphology in parapatric species pairs. They also exhibit a unique dietary adaptation, known as pollen feeding, that relies heavily on learning foraging routes, or trap-lines, between resources, which implies an important environmental influence on behavioural development. By comparing brain morphology across 133 wild-caught and insectary-reared individuals from seven Heliconius species, we find strong evidence for interspecific variation in patterns of neural investment. These largely fall into two distinct patterns of variation; first, we find consistent patterns of divergence in the size of visual brain components across both wild and insectary-reared individuals, suggesting genetically encoded divergence in the visual pathway. Second, we find interspecific differences in mushroom body size, a central component of learning and memory systems, but only among wild caught individuals. The lack of this effect in common-garden individuals suggests an extensive role for developmental plasticity in interspecific variation in the wild. Finally, we illustrate the impact of relatively small-scale spatial effects on mushroom body plasticity by performing experiments altering the cage size and structure experienced by individual H. hecale. Our data provide a comprehensive survey of community level variation in brain structure, and demonstrate that genetic effects and developmental plasticity contribute to different axes of interspecific neural variation.
Collapse
Affiliation(s)
- Laura Hebberecht
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | | | | | | | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, Bristol, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
12
|
Hausmann AE, Freire M, Alfthan SA, Kuo CY, Linares M, McMillan O, Pardo-Diaz C, Salazar C, Merrill RM. Does sexual conflict contribute to the evolution of novel warning patterns? J Evol Biol 2023; 36:563-578. [PMID: 36702779 DOI: 10.1111/jeb.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 01/28/2023]
Abstract
Why warning patterns are so diverse is an enduring evolutionary puzzle. Because predators associate particular patterns with unpleasant experiences, an individual's predation risk should decrease as the local density of its warning pattern increases, promoting pattern monomorphism. Distasteful Heliconius butterflies are known for their diversity of warning patterns. Here, we explore whether interlocus sexual conflict can contribute to their diversification. Male Heliconius use warning patterns as mating cues, but mated females may suffer costs if this leads to disturbance, favouring novel patterns. Using simulations, we show that under our model conditions drift alone is unlikely to cause pattern diversification, but that sexual conflict can assist such a process. We also find that genetic architecture influences the evolution of male preferences, which track changes in warning pattern due to sexual selection. When male attraction imposes costs on females, this affects the speed at which novel pattern alleles increase. In two experiments, females laid fewer eggs with males present. However, although males in one experiment showed less interest in females with manipulated patterns, we found no evidence that female colouration mitigates sex-specific costs. Overall, male attraction to conspecific warning patterns may impose an unrecognized cost on Heliconius females, but further work is required to determine this experimentally.
Collapse
Affiliation(s)
- Alexander E Hausmann
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marília Freire
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sara A Alfthan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Chi-Yun Kuo
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität, Munich, Germany.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Mauricio Linares
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Carolina Pardo-Diaz
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Camilo Salazar
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Richard M Merrill
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität, Munich, Germany.,Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
13
|
Srygley RB, Dudley R, Hernandez EJ, Kainz F, Riveros AJ, Ellington CP. Quantifying the Aerodynamic Power Required for Flight and Testing for Adaptive Wind Drift in Passion-Vine Butterflies Heliconius sara (Lepidoptera: Nymphalidae). INSECTS 2023; 14:112. [PMID: 36835681 PMCID: PMC9959374 DOI: 10.3390/insects14020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Although theoretical work on optimal migration has been largely restricted to birds, relevant free-flight data are now becoming available for migratory insects. Here we report, for the first time in passion-vine butterflies, that Heliconius sara migrates directionally. To test optimal migration models for insects, we quantified the aerodynamic power curve for free-flying H. sara as they migrated across the Panama Canal. Using synchronized stereo-images from high-speed video cameras, we reconstructed three-dimensional flight kinematics of H. sara migrating naturally across the Panama Canal. We also reconstructed flight kinematics from a single-camera view of butterflies flying through a flight tunnel. We calculated the power requirements for flight for H. sara over a range of flight velocities. The relationship between aerodynamic power and velocity was "J"-shaped across the measured velocities with a minimum power velocity of 0.9 m/s and a maximum range velocity of 2.25 m/s. Migrating H. sara did not compensate for crosswind drift. Changes in airspeed with tailwind drift were consistent with the null hypothesis that H. sara did not compensate for tailwind drift, but they were also not significantly different from those predicted to maximize the migratory range of the insects.
Collapse
Affiliation(s)
- Robert B. Srygley
- Smithsonian Tropical Research Institute, Balboa 0843-03092, Panama
- Pest Management Research Unit, Agricultural Research Service, 1500 N. Central Ave., Sidney, MT 59270, USA
| | - Robert Dudley
- Smithsonian Tropical Research Institute, Balboa 0843-03092, Panama
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Edgar J. Hernandez
- Department of Biomedical Informatics, University of Utah, 421 Wakara Way, Salt Lake City, UT 84108, USA
| | - Franz Kainz
- Maximilian-Kolbe Straße 26, 61440 Oberursel, Germany
| | - Andre J. Riveros
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogota 111221, Colombia
| | | |
Collapse
|
14
|
Jay P, Leroy M, Le Poul Y, Whibley A, Arias M, Chouteau M, Joron M. Association mapping of colour variation in a butterfly provides evidence that a supergene locks together a cluster of adaptive loci. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210193. [PMID: 35694756 PMCID: PMC9189503 DOI: 10.1098/rstb.2021.0193] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Supergenes are genetic architectures associated with discrete and concerted variation in multiple traits. It has long been suggested that supergenes control these complex polymorphisms by suppressing recombination between sets of coadapted genes. However, because recombination suppression hinders the dissociation of the individual effects of genes within supergenes, there is still little evidence that supergenes evolve by tightening linkage between coadapted genes. Here, combining a landmark-free phenotyping algorithm with multivariate genome-wide association studies, we dissected the genetic basis of wing pattern variation in the butterfly Heliconius numata. We show that the supergene controlling the striking wing pattern polymorphism displayed by this species contains several independent loci associated with different features of wing patterns. The three chromosomal inversions of this supergene suppress recombination between these loci, supporting the hypothesis that they may have evolved because they captured beneficial combinations of alleles. Some of these loci are, however, associated with colour variations only in a subset of morphs where the phenotype is controlled by derived inversion forms, indicating that they were recruited after the formation of the inversions. Our study shows that supergenes and clusters of adaptive loci in general may form via the evolution of chromosomal rearrangements suppressing recombination between co-adapted loci but also via the subsequent recruitment of linked adaptive mutations. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Paul Jay
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier cedex 5, France
| | - Manon Leroy
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier cedex 5, France
| | - Yann Le Poul
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier cedex 5, France
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Mónica Arias
- CIRAD, UMR PHIM, F-34398 Montpellier, France.,PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, CEDEX 5, 34398 Montpellier, France
| | - Mathieu Chouteau
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier cedex 5, France.,LEEISA, USR 63456, Université de Guyane, CNRS, IFREMER, 275 route de Montabo, 797334 Cayenne, French Guiana
| | - Mathieu Joron
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier cedex 5, France
| |
Collapse
|
15
|
Cama B, Ehlers S, Szczerbowski D, Thomas-Oates J, Jiggins CD, Schulz S, McMillan WO, Dasmahapatra KK. Exploitation of an ancestral pheromone biosynthetic pathway contributes to diversification in Heliconius butterflies. Proc Biol Sci 2022; 289:20220474. [PMID: 35892212 PMCID: PMC9326301 DOI: 10.1098/rspb.2022.0474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During courtship, male butterflies of many species produce androconial secretions containing male sex pheromones (MSPs) that communicate species identity and affect female choice. MSPs are thus likely candidates as reproductive barriers, yet their role in speciation remains poorly studied. Although Heliconius butterflies are a model system in speciation, their MSPs have not been investigated from a macroevolutionary perspective. We use GC/MS to characterize male androconial secretions in 33 of the 69 species in the Heliconiini tribe. We found these blends to be species-specific, consistent with a role in reproductive isolation. We detected a burst in blend diversification rate at the most speciose genus, Heliconius; a consequence of Heliconius and Eueides species using a fatty acid (FA) metabolic pathway to unlock more complex blends than basal Heliconiini species, whose secretions are dominated by plant-like metabolites. A comparison of 10 sister species pairs demonstrates a striking positive correlation between blend dissimilarity and range overlap, consistent with character displacement or reinforcement in sympatry. These results demonstrate for the first time that MSP diversification can promote reproductive isolation across this group of butterflies, showcasing how implementation of an ancestral trait, the co-option of the FA metabolic pathway for pheromone production, can facilitate rapid speciation.
Collapse
Affiliation(s)
- Bruna Cama
- Department of Biology, University of York, Heslington YO10 5DD, UK
| | - Stephanie Ehlers
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Daiane Szczerbowski
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Jane Thomas-Oates
- Department of Chemistry, University of York, Heslington YO10 5DD, UK
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | | | | |
Collapse
|
16
|
Mattila ALK, Jiggins CD, Saastamoinen M. Condition dependence in biosynthesized chemical defenses of an aposematic and mimetic Heliconius butterfly. Ecol Evol 2022; 12:e9041. [PMID: 35784031 PMCID: PMC9227709 DOI: 10.1002/ece3.9041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/08/2022] Open
Abstract
Aposematic animals advertise their toxicity or unpalatability with bright warning coloration. However, acquiring and maintaining chemical defenses can be energetically costly, and consequent associations with other important traits could shape chemical defense evolution. Here, we have tested whether chemical defenses are involved in energetic trade-offs with other traits, or whether the levels of chemical defenses are condition dependent, by studying associations between biosynthesized cyanogenic toxicity and a suite of key life-history and fitness traits in a Heliconius butterfly under a controlled laboratory setting. Heliconius butterflies are well known for the diversity of their warning color patterns and widespread mimicry and can both sequester the cyanogenic glucosides of their Passiflora host plants and biosynthesize these toxins de novo. We find energetically costly life-history traits to be either unassociated or to show a general positive association with biosynthesized cyanogenic toxicity. More toxic individuals developed faster and had higher mass as adults and a tendency for increased lifespan and fecundity. These results thus indicate that toxicity level of adult butterflies may be dependent on individual condition, influenced by genetic background or earlier conditions, with maternal effects as one strong candidate mechanism. Additionally, toxicity was higher in older individuals, consistent with previous studies indicating accumulation of toxins with age. As toxicity level at death was independent of lifespan, cyanogenic glucoside compounds may have been recycled to release resources relevant for longevity in these long-living butterflies. Understanding the origins and maintenance of variation in defenses is necessary in building a more complete picture of factors shaping the evolution of aposematic and mimetic systems.
Collapse
Affiliation(s)
- Anniina L. K. Mattila
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- HiLIFE – Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Finnish Museum of Natural History (LUOMUS)University of HelsinkiHelsinkiFinland
| | | | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- HiLIFE – Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
17
|
Mouy H. Colours as aggregation signals in Lepidoptera: Are Heliconius Müllerian mimics? Evol Ecol 2022. [DOI: 10.1007/s10682-022-10183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Melo DJ, Borges EO, Szczerbowski D, Vidal DM, Schulz S, Zarbin PHG. Identification and Synthesis of a Macrolide as an Anti-aphrodisiac Pheromone from Males of Heliconius erato phyllis. Org Lett 2022; 24:3772-3775. [PMID: 35609879 DOI: 10.1021/acs.orglett.2c01160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Investigation of the contents of the scent glands of the heliconiine butterfly Heliconius erato phyllis via gas chromatography/electroantennography revealed an unprecedented active compound. The males transfer this compound to females during mating. The structure of (2R,6E,10R)-2,6-dimethyl-6-undecen-10-olide, a derivative of geranylacetone, was proposed on the basis of infrared and mass spectrometry spectra and microderivatization and confirmed by racemic and stereoselective syntheses. Bioassays with the synthetic macrolide showed the repellency of this compound, termed phyllisolide, when applied to scent glands of females, identifying it as an anti-aphrodisiac pheromone.
Collapse
Affiliation(s)
- Douglas J Melo
- Universidade Federal do Paraná, Departamento de Química, 81531-990 Curitiba, Brazil
| | - Eliane O Borges
- Universidade Federal do Paraná, Departamento de Zoologia, 81531-990 Curitiba, Brazil
| | - Daiane Szczerbowski
- Universidade Federal do Paraná, Departamento de Química, 81531-990 Curitiba, Brazil.,Technische Universität Braunschweig, Institute of Organic Chemistry, 38106 Braunschweig, Germany
| | - Diogo M Vidal
- Universidade Federal de Minas Gerais, Departamento de Química, 31270-901 Belo Horizonte, Brazil
| | - Stefan Schulz
- Technische Universität Braunschweig, Institute of Organic Chemistry, 38106 Braunschweig, Germany
| | - Paulo H G Zarbin
- Universidade Federal do Paraná, Departamento de Química, 81531-990 Curitiba, Brazil
| |
Collapse
|
19
|
Jay P, Joron M. The double game of chromosomal inversions in a neotropical butterfly. C R Biol 2022; 345:57-73. [DOI: 10.5802/crbiol.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022]
|
20
|
McCulloch KJ, Macias-Muñoz A, Mortazavi A, Briscoe AD. Multiple mechanisms of photoreceptor spectral tuning in Heliconius butterflies. Mol Biol Evol 2022; 39:6555095. [PMID: 35348742 PMCID: PMC9048915 DOI: 10.1093/molbev/msac067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara CA 93106, USA.,Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Stella D, Kleisner K. Visible beyond Violet: How Butterflies Manage Ultraviolet. INSECTS 2022; 13:insects13030242. [PMID: 35323542 PMCID: PMC8955501 DOI: 10.3390/insects13030242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022]
Abstract
Ultraviolet (UV) means ‘beyond violet’ (from Latin ‘ultra’, meaning ‘beyond’), whereby violet is the colour with the highest frequencies in the ‘visible’ light spectrum. By ‘visible’ we mean human vision, but, in comparison to many other organisms, human visual perception is rather limited in terms of the wavelengths it can perceive. Still, this is why communication in the UV spectrum is often called hidden, although it most likely plays an important role in communicating various kinds of information among a wide variety of organisms. Since Silberglied’s revolutionary Communication in the Ultraviolet, comprehensive studies on UV signals in a wide list of genera are lacking. This review investigates the significance of UV reflectance (and UV absorption)—a feature often neglected in intra- and interspecific communication studies—mainly in Lepidoptera. Although the text focuses on various butterfly families, links and connections to other animal groups, such as birds, are also discussed in the context of ecology and the evolution of species. The basic mechanisms of UV colouration and factors shaping the characteristics of UV patterns are also discussed in a broad context of lepidopteran communication.
Collapse
Affiliation(s)
- David Stella
- Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Karel Kleisner
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| |
Collapse
|
22
|
Lindstedt C, Bagley R, Calhim S, Jones M, Linnen C. The impact of life stage and pigment source on the evolution of novel warning signal traits. Evolution 2022; 76:554-572. [PMID: 35103303 PMCID: PMC9304160 DOI: 10.1111/evo.14443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Our understanding of how novel warning color traits evolve in natural populations is largely based on studies of reproductive stages and organisms with endogenously produced pigmentation. In these systems, genetic drift is often required for novel alleles to overcome strong purifying selection stemming from frequency‐dependent predation and positive assortative mating. Here, we integrate data from field surveys, predation experiments, population genomics, and phenotypic correlations to explain the origin and maintenance of geographic variation in a diet‐based larval pigmentation trait in the redheaded pine sawfly (Neodiprion lecontei), a pine‐feeding hymenopteran. Although our experiments confirm that N. lecontei larvae are indeed aposematic—and therefore likely to experience frequency‐dependent predation—our genomic data do not support a historical demographic scenario that would have facilitated the spread of an initially deleterious allele via drift. Additionally, significantly elevated differentiation at a known color locus suggests that geographic variation in larval color is currently maintained by selection. Together, these data suggest that the novel white morph likely spread via selection. However, white body color does not enhance aposematic displays, nor is it correlated with enhanced chemical defense or immune function. Instead, the derived white‐bodied morph is disproportionately abundant on a pine species with a reduced carotenoid content relative to other pine hosts, suggesting that bottom‐up selection via host plants may have driven divergence among populations. Overall, our results suggest that life stage and pigment source can have a substantial impact on the evolution of novel warning signals, highlighting the need to investigate diverse aposematic taxa to develop a comprehensive understanding of color variation in nature.
Collapse
Affiliation(s)
- Carita Lindstedt
- Department of Biological and Environmental Sciences, University of Jyväskylä, Finland
| | - Robin Bagley
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA.,Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Lima, Lima, OH, 45804, USA
| | - Sara Calhim
- Department of Biological and Environmental Sciences, University of Jyväskylä, Finland
| | - Mackenzie Jones
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA
| | - Catherine Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA
| |
Collapse
|
23
|
The Build-Up of Population Genetic Divergence along the Speciation Continuum during a Recent Adaptive Radiation of Rhagoletis Flies. Genes (Basel) 2022; 13:genes13020275. [PMID: 35205320 PMCID: PMC8872456 DOI: 10.3390/genes13020275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
New species form through the evolution of genetic barriers to gene flow between previously interbreeding populations. The understanding of how speciation proceeds is hampered by our inability to follow cases of incipient speciation through time. Comparative approaches examining different diverging taxa may offer limited inferences, unless they fulfill criteria that make the comparisons relevant. Here, we test for those criteria in a recent adaptive radiation of the Rhagoletis pomonella species group (RPSG) hypothesized to have diverged in sympatry via adaptation to different host fruits. We use a large-scale population genetic survey of 1568 flies across 33 populations to: (1) detect on-going hybridization, (2) determine whether the RPSG is derived from the same proximate ancestor, and (3) examine patterns of clustering and differentiation among sympatric populations. We find that divergence of each in-group RPSG taxon is occurring under current gene flow, that the derived members are nested within the large pool of genetic variation present in hawthorn-infesting populations of R. pomonella, and that sympatric population pairs differ markedly in their degree of genotypic clustering and differentiation across loci. We conclude that the RPSG provides a particularly robust opportunity to make direct comparisons to test hypotheses about how ecological speciation proceeds despite on-going gene flow.
Collapse
|
24
|
Rather PA, Herzog AE, Ernst DA, Westerman EL. Effect of experience on mating behaviour in male Heliconius melpomene butterflies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Abstract
Butterflies use structurally highly diverse volatile compounds for communication, in addition to visual signals. These compounds originate from plants or a formed de novo especially by male butterflies that possess specific scent organs.
Collapse
Affiliation(s)
- Stephanie Ehlers
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
26
|
Yeager J, Barnett JB. The influence of ultraviolet reflectance differs between conspicuous aposematic signals in neotropical butterflies and poison frogs. Ecol Evol 2021; 11:13633-13640. [PMID: 34707805 PMCID: PMC8525173 DOI: 10.1002/ece3.7942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/07/2022] Open
Abstract
Warning signals are often characterized by highly contrasting, distinctive, and memorable colors. Greater chromatic (hue) and achromatic (brightness) contrast have both been found to contribute to greater signal efficacy, making longwave colored signals (e.g., red and yellow), that are perceived by both chromatic and achromatic visual pathways, particularly common. Conversely, shortwave colors (e.g., blue and ultraviolet) do not contribute to luminance perception yet are also commonly found in warning signals. Our understanding of the role of UV in aposematic signals is currently incomplete as UV perception is not universal, and evidence for its utility is at best mixed. We used visual modeling to quantify how UV affects signal contrast in aposematic heliconiian butterflies and poison frogs both of which reflect UV wavelengths, occupy similar habitats, and share similar classes of predators. Previous work on butterflies has found that UV reflectance does not affect predation risk but is involved in mate choice. As the butterflies, but not the frogs, have UV-sensitive vision, the function of UV reflectance in poison frogs is currently unknown. We found that despite showing up strongly in UV photographs, UV reflectance only appreciably affected visual contrast in the butterflies. As such, these results support the notion that although UV reflectance is associated with intraspecific communication in butterflies, it appears to be nonfunctional in frogs. Consequently, our data highlight that we should be careful when assigning a selection-based benefit to the presence of UV reflectance.
Collapse
Affiliation(s)
- Justin Yeager
- Biodiversidad Medio Ambiente y SaludUniversidad de Las AméricasQuitoEcuador
| | - James B. Barnett
- Psychology, Neuroscience & BehaviourMcMaster UniversityHamiltonONCanada
| |
Collapse
|
27
|
Van Belleghem SM, Lewis JJ, Rivera ES, Papa R. Heliconius butterflies: a window into the evolution and development of diversity. Curr Opin Genet Dev 2021; 69:72-81. [PMID: 33714874 PMCID: PMC8364860 DOI: 10.1016/j.gde.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 10/21/2022]
Abstract
Butterflies have become prominent models for studying the evolution and development of phenotypic variation. In Heliconius, extraordinary within species divergence and between species convergence in wing color patterns has driven decades of comparative genetic studies. However, connecting genetic patterns of diversification to the molecular mechanisms of adaptation has remained elusive. Recent studies are bridging this gap between genome and function and have driven substantial advances in deciphering the genetic architecture of diversification in Heliconius. While only a handful of large-effect genes were initially identified in the diversification of Heliconius color patterns, recent experiments have begun to unravel the underlying gene regulatory networks and how these have evolved. These results reveal an evolutionary story of many interacting loci and partly independent genetic architectures that underlie convergent evolution.
Collapse
Affiliation(s)
| | - James J Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Edgardo S Rivera
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico; Chairs of Biomaterials, University of Bayreuth, Bayreuth, Bayern, Germany
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico; Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico.
| |
Collapse
|
28
|
Zhang Y, Teng D, Lu W, Liu M, Zeng H, Cao L, Southcott L, Potdar S, Westerman E, Zhu AJ, Zhang W. A widely diverged locus involved in locomotor adaptation in Heliconius butterflies. SCIENCE ADVANCES 2021; 7:eabh2340. [PMID: 34348900 PMCID: PMC8336958 DOI: 10.1126/sciadv.abh2340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2023]
Abstract
Heliconius butterflies have undergone adaptive radiation and therefore serve as an excellent system for exploring the continuum of speciation and adaptive evolution. However, there is a long-lasting paradox between their convergent mimetic wing patterns and rapid divergence in speciation. Here, we characterize a locus that consistently displays high divergence among Heliconius butterflies and acts as an introgression hotspot. We further show that this locus contains multiple genes related to locomotion and conserved in Lepidoptera. In light of these findings, we consider that locomotion traits may be under selection, and if these are heritable traits that are selected for, then they might act as species barriers.
Collapse
Affiliation(s)
- Yubo Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Dequn Teng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hua Zeng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lei Cao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Laura Southcott
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Sushant Potdar
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Erica Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Neural divergence and hybrid disruption between ecologically isolated Heliconius butterflies. Proc Natl Acad Sci U S A 2021; 118:2015102118. [PMID: 33547240 DOI: 10.1073/pnas.2015102118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The importance of behavioral evolution during speciation is well established, but we know little about how this is manifest in sensory and neural systems. A handful of studies have linked specific neural changes to divergence in host or mate preferences associated with speciation. However, the degree to which brains are adapted to local environmental conditions, and whether this contributes to reproductive isolation between close relatives that have diverged in ecology, remains unknown. Here, we examine divergence in brain morphology and neural gene expression between closely related, but ecologically distinct, Heliconius butterflies. Despite ongoing gene flow, sympatric species pairs within the melpomene-cydno complex are consistently separated across a gradient of open to closed forest and decreasing light intensity. By generating quantitative neuroanatomical data for 107 butterflies, we show that Heliconius melpomene and Heliconius cydno clades have substantial shifts in brain morphology across their geographic range, with divergent structures clustered in the visual system. These neuroanatomical differences are mirrored by extensive divergence in neural gene expression. Differences in both neural morphology and gene expression are heritable, exceed expected rates of neutral divergence, and result in intermediate traits in first-generation hybrid offspring. Strong evidence of divergent selection implies local adaptation to distinct selective optima in each parental microhabitat, suggesting the intermediate traits of hybrids are poorly matched to either condition. Neural traits may therefore contribute to coincident barriers to gene flow, thereby helping to facilitate speciation.
Collapse
|
30
|
Mattila ALK, Jiggins CD, Opedal ØH, Montejo-Kovacevich G, Pinheiro de Castro ÉC, McMillan WO, Bacquet C, Saastamoinen M. Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconius butterfly. PeerJ 2021; 9:e11523. [PMID: 34178447 PMCID: PMC8216171 DOI: 10.7717/peerj.11523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Chemical defences against predators underlie the evolution of aposematic coloration and mimicry, which are classic examples of adaptive evolution. Surprisingly little is known about the roles of ecological and evolutionary processes maintaining defence variation, and how they may feedback to shape the evolutionary dynamics of species. Cyanogenic Heliconius butterflies exhibit diverse warning color patterns and mimicry, thus providing a useful framework for investigating these questions. We studied intraspecific variation in de novo biosynthesized cyanogenic toxicity and its potential ecological and evolutionary sources in wild populations of Heliconius erato along environmental gradients, in common-garden broods and with feeding treatments. Our results demonstrate substantial intraspecific variation, including detectable variation among broods reared in a common garden. The latter estimate suggests considerable evolutionary potential in this trait, although predicting the response to selection is likely complicated due to the observed skewed distribution of toxicity values and the signatures of maternal contributions to the inheritance of toxicity. Larval diet contributed little to toxicity variation. Furthermore, toxicity profiles were similar along steep rainfall and altitudinal gradients, providing little evidence for these factors explaining variation in biosynthesized toxicity in natural populations. In contrast, there were striking differences in the chemical profiles of H. erato from geographically distant populations, implying potential local adaptation in the acquisition mechanisms and levels of defensive compounds. The results highlight the extensive variation and potential for adaptive evolution in defense traits for aposematic and mimetic species, which may contribute to the high diversity often found in these systems.
Collapse
Affiliation(s)
- Anniina L K Mattila
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Helsinki Life Science Institute, University of Helsinki, Helsinki, Finland.,Current affiliation: Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Helsinki Life Science Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Davison A, Neiman M. Mobilizing molluscan models and genomes in biology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200163. [PMID: 33813892 PMCID: PMC8059959 DOI: 10.1098/rstb.2020.0163] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Molluscs are among the most ancient, diverse, and important of all animal taxa. Even so, no individual mollusc species has emerged as a broadly applied model system in biology. We here make the case that both perceptual and methodological barriers have played a role in the relative neglect of molluscs as research organisms. We then summarize the current application and potential of molluscs and their genomes to address important questions in animal biology, and the state of the field when it comes to the availability of resources such as genome assemblies, cell lines, and other key elements necessary to mobilising the development of molluscan model systems. We conclude by contending that a cohesive research community that works together to elevate multiple molluscan systems to 'model' status will create new opportunities in addressing basic and applied biological problems, including general features of animal evolution. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Department of Gender, Women's, and Sexuality Studies, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
32
|
Darragh K, Orteu A, Black D, Byers KJRP, Szczerbowski D, Warren IA, Rastas P, Pinharanda A, Davey JW, Fernanda Garza S, Abondano Almeida D, Merrill RM, McMillan WO, Schulz S, Jiggins CD. A novel terpene synthase controls differences in anti-aphrodisiac pheromone production between closely related Heliconius butterflies. PLoS Biol 2021; 19:e3001022. [PMID: 33465061 PMCID: PMC7815096 DOI: 10.1371/journal.pbio.3001022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Plants and insects often use the same compounds for chemical communication, but not much is known about the genetics of convergent evolution of chemical signals. The terpene (E)-β-ocimene is a common component of floral scent and is also used by the butterfly Heliconius melpomene as an anti-aphrodisiac pheromone. While the biosynthesis of terpenes has been described in plants and microorganisms, few terpene synthases (TPSs) have been identified in insects. Here, we study the recent divergence of 2 species, H. melpomene and Heliconius cydno, which differ in the presence of (E)-β-ocimene; combining linkage mapping, gene expression, and functional analyses, we identify 2 novel TPSs. Furthermore, we demonstrate that one, HmelOS, is able to synthesise (E)-β-ocimene in vitro. We find no evidence for TPS activity in HcydOS (HmelOS ortholog of H. cydno), suggesting that the loss of (E)-β-ocimene in this species is the result of coding, not regulatory, differences. The TPS enzymes we discovered are unrelated to previously described plant and insect TPSs, demonstrating that chemical convergence has independent evolutionary origins. Plants and insects often use the same compounds for chemical communication, but little is known about the convergent evolution of such chemical signals. This study identifies a novel terpene synthase involved in production of an anti-aphrodisiac pheromone by the butterfly Heliconius melpomene. This enzyme is unrelated to other insect terpene synthases, providing evidence that the ability to synthesise terpenes has arisen multiple times independently within the insects.
Collapse
Affiliation(s)
- Kathy Darragh
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institute, Panamá, Panamá
- * E-mail:
| | - Anna Orteu
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Daniella Black
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Kelsey J. R. P. Byers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institute, Panamá, Panamá
| | - Daiane Szczerbowski
- Institute of Organic Chemistry, Department of Life Sciences, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ian A. Warren
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ana Pinharanda
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - John W. Davey
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Richard M. Merrill
- Smithsonian Tropical Research Institute, Panamá, Panamá
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Stefan Schulz
- Institute of Organic Chemistry, Department of Life Sciences, Technische Universität Braunschweig, Braunschweig, Germany
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institute, Panamá, Panamá
| |
Collapse
|
33
|
Byers KJRP, Darragh K, Fernanda Garza S, Abondano Almeida D, Warren IA, Rastas PMA, Merrill RM, Schulz S, McMillan WO, Jiggins CD. Clustering of loci controlling species differences in male chemical bouquets of sympatric Heliconius butterflies. Ecol Evol 2021; 11:89-107. [PMID: 33437416 PMCID: PMC7790645 DOI: 10.1002/ece3.6947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
The degree to which loci promoting reproductive isolation cluster in the genome-that is, the genetic architecture of reproductive isolation-can influence the tempo and mode of speciation. Tight linkage between these loci can facilitate speciation in the face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera species, and the role of endogenously produced compounds as secondary metabolites decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius butterflies use male sex pheromones to both court females (aphrodisiac wing pheromones) and ward off male courtship (male-transferred antiaphrodisiac genital pheromones), and it is likely that these compounds play a role in reproductive isolation between Heliconius species. Using a set of backcross hybrids between H. melpomene and H. cydno, we investigated the genetic architecture of putative male pheromone compound production. We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential pheromone compounds. QTL clustered significantly on two chromosomes, chromosome 8 for genital compounds and chromosome 20 for wing compounds, and chromosome 20 was enriched for potential pheromone biosynthesis genes. There was minimal overlap between pheromone QTL and known QTL for mate choice and color pattern. Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, a color pattern locus known to play a role in reproductive isolation in these species. This tight clustering of putative pheromone loci might contribute to coincident reproductive isolating barriers, facilitating speciation despite ongoing gene flow.
Collapse
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| | - Kathy Darragh
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Evolution and EcologyUniversity of California DavisDavisCAUSA
| | - Sylvia Fernanda Garza
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Diana Abondano Almeida
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Institute for Ecology, Evolution and DiversityGoethe UniversitätFrankfurtGermany
| | - Ian A. Warren
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Richard M. Merrill
- Smithsonian Tropical Research InstitutePanamaPanama
- Division of Evolutionary BiologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Stefan Schulz
- Institute of Organic ChemistryDepartment of Life SciencesTechnische Universität BraunschweigBraunschweigGermany
| | | | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
| |
Collapse
|
34
|
Hinojosa JC, Koubínová D, Dincă V, Hernández-Roldán J, Munguira ML, García-Barros E, Vila M, Alvarez N, Mutanen M, Vila R. Rapid colour shift by reproductive character displacement in Cupido butterflies. Mol Ecol 2020; 29:4942-4955. [PMID: 33051915 DOI: 10.1111/mec.15682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
Reproductive character displacement occurs when competition for successful breeding imposes a divergent selection on the interacting species, causing a divergence of reproductive traits. Here, we show that a disputed butterfly taxon is actually a case of male wing colour shift, apparently produced by reproductive character displacement. Using double digest restriction-site associated DNA sequencing and mitochondrial DNA sequencing we studied four butterfly taxa of the subgenus Cupido (Lepidoptera: Lycaenidae): Cupido minimus and the taxon carswelli, both characterized by brown males and females, plus C. lorquinii and C. osiris, both with blue males and brown females. Unexpectedly, taxa carswelli and C. lorquinii were close to indistinguishable based on our genomic and mitochondrial data, despite displaying strikingly different male coloration. In addition, we report and analysed a brown male within the C. lorquinii range, which demonstrates that the brown morph occurs at very low frequency in C. lorquinii. Such evidence strongly suggests that carswelli is conspecific with C. lorquinii and represents populations with a fixed male brown colour morph. Considering that these brown populations occur in sympatry with or very close to the blue C. osiris, and that the blue C. lorquinii populations never do, we propose that the taxon carswelli could have lost the blue colour due to reproductive character displacement with C. osiris. Since male colour is important for conspecific recognition during courtship, we hypothesize that the observed colour shift may eventually trigger incipient speciation between blue and brown populations. Male colour seems to be an evolutionarily labile character in the Polyommatinae, and the mechanism described here might be at work in the wide diversification of this subfamily of butterflies.
Collapse
Affiliation(s)
| | | | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Juan Hernández-Roldán
- Departamento de Biología - Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel L Munguira
- Departamento de Biología - Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique García-Barros
- Departamento de Biología - Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Vila
- GIBE Research Group, Universidade da Coruña, A Coruña, Spain
| | | | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| |
Collapse
|
35
|
Morris J, Hanly JJ, Martin SH, Van Belleghem SM, Salazar C, Jiggins CD, Dasmahapatra KK. Deep Convergence, Shared Ancestry, and Evolutionary Novelty in the Genetic Architecture of Heliconius Mimicry. Genetics 2020; 216:765-780. [PMID: 32883703 PMCID: PMC7648585 DOI: 10.1534/genetics.120.303611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/25/2020] [Indexed: 01/31/2023] Open
Abstract
Convergent evolution can occur through different genetic mechanisms in different species. It is now clear that convergence at the genetic level is also widespread, and can be caused by either (i) parallel genetic evolution, where independently evolved convergent mutations arise in different populations or species, or (ii) collateral evolution in which shared ancestry results from either ancestral polymorphism or introgression among taxa. The adaptive radiation of Heliconius butterflies shows color pattern variation within species, as well as mimetic convergence between species. Using comparisons from across multiple hybrid zones, we use signals of shared ancestry to identify and refine multiple putative regulatory elements in Heliconius melpomene and its comimics, Heliconius elevatus and Heliconius besckei, around three known major color patterning genes: optix, WntA, and cortex While we find that convergence between H. melpomene and H. elevatus is caused by a complex history of collateral evolution via introgression in the Amazon, convergence between these species in the Guianas appears to have evolved independently. Thus, we find adaptive convergent genetic evolution to be a key driver of regulatory changes that lead to rapid phenotypic changes. Furthermore, we uncover evidence of parallel genetic evolution at some loci around optix and WntA in H. melpomene and its distant comimic Heliconius erato Ultimately, we show that all three of convergence, conservation, and novelty underlie the modular architecture of Heliconius color pattern mimicry.
Collapse
Affiliation(s)
- Jake Morris
- Department of Biology, University of York, Heslington YO10 5DD, United Kingdom
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Simon H Martin
- Institute of Evolutionary Biology, The University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, United Kingdom
| | - Steven M Van Belleghem
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | | |
Collapse
|
36
|
Morris J, Darolti I, van der Bijl W, Mank JE. High-resolution characterization of male ornamentation and re-evaluation of sex linkage in guppies. Proc Biol Sci 2020; 287:20201677. [PMID: 33081622 PMCID: PMC7661287 DOI: 10.1098/rspb.2020.1677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Coloration plays a key role in the ecology of many species, influencing how an organism interacts with its environment, other species and conspecifics. Guppies are sexually dimorphic, with males displaying sexually selected coloration resulting from female preference. Previous work has suggested that much of guppy colour pattern variation is Y-linked. However, it remains unclear how many individual colour patterns are Y-linked in natural populations as much of the previous work has focused on phenotypes either not found in the wild, or aggregate measures such as total colour area. Moreover, ornaments have traditionally been identified and delineated by hand, and computational methods now make it possible to extract pixels and identify ornaments with automated methods, reducing the potential for human bias. Here we developed a pipeline for semi-automated ornament identification and high-resolution image analysis of male guppy colour patterns and applied it to a multigenerational pedigree. Our results show that loci controlling the presence or the absence of individual male ornaments in our population are not predominantly Y-linked. However, we find that ornaments of similar colour are not independent of each other, and modifier loci that affect whole animal coloration appear to be at least partially Y-linked. Considering these results, Y-linkage of individual ornaments may not be important in driving colour changes in natural populations of guppies, or in expansions of the non-recombining Y region, while Y-linked modifier loci that affect aggregate traits may well play an important role.
Collapse
Affiliation(s)
- Jake Morris
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Rönkä K, Valkonen JK, Nokelainen O, Rojas B, Gordon S, Burdfield‐Steel E, Mappes J. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol Lett 2020; 23:1654-1663. [DOI: 10.1111/ele.13597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/16/2020] [Accepted: 07/28/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Katja Rönkä
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
- Helsinki Institute of Life SciencesUniversity of Helsinki Helsinki Finland
- Organismal and Evolutionary Biology Research Programme Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Janne K. Valkonen
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Ossi Nokelainen
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Bibiana Rojas
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Swanne Gordon
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
- Department of Biology Washington University in St. Louis St. Louis MO USA
| | - Emily Burdfield‐Steel
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Johanna Mappes
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
- Organismal and Evolutionary Biology Research Programme Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| |
Collapse
|
38
|
Rosser N, Queste LM, Cama B, Edelman NB, Mann F, Mori Pezo R, Morris J, Segami C, Velado P, Schulz S, Mallet JLB, Dasmahapatra KK. Geographic contrasts between pre- and postzygotic barriers are consistent with reinforcement in Heliconius butterflies. Evolution 2020; 73:1821-1838. [PMID: 31334832 PMCID: PMC6771877 DOI: 10.1111/evo.13804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022]
Abstract
Identifying the traits causing reproductive isolation and the order in which they evolve is fundamental to understanding speciation. Here, we quantify prezygotic and intrinsic postzygotic isolation among allopatric, parapatric, and sympatric populations of the butterflies Heliconius elevatus and Heliconius pardalinus. Sympatric populations from the Amazon (H. elevatus and H. p. butleri) exhibit strong prezygotic isolation and rarely mate in captivity; however, hybrids are fertile. Allopatric populations from the Amazon (H. p. butleri) and Andes (H. p. sergestus) mate freely when brought together in captivity, but the female F1 hybrids are sterile. Parapatric populations (H. elevatus and H. p. sergestus) exhibit both assortative mating and sterility of female F1s. Assortative mating in sympatric populations is consistent with reinforcement in the face of gene flow, where the driving force, selection against hybrids, is due to disruption of mimicry and other ecological traits rather than hybrid sterility. In contrast, the lack of assortative mating and hybrid sterility observed in allopatric populations suggests that geographic isolation enables the evolution of intrinsic postzygotic reproductive isolation. Our results show how the types of reproductive barriers that evolve between species may depend on geography.
Collapse
Affiliation(s)
- Neil Rosser
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, United Kingdom.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Lucie M Queste
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, United Kingdom
| | - Bruna Cama
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, United Kingdom
| | - Nathaniel B Edelman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Florian Mann
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Ronald Mori Pezo
- URKU Estudios Amazónicos, Jr. Saposoa 181, Tarapoto, San Martín, Perú
| | - Jake Morris
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, United Kingdom
| | - Carolina Segami
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18d, 75236, Uppsala, Sweden
| | - Patricia Velado
- Department for Quality Assurance Analytics, Bavarian State Research Center for Agriculture, Lange Point 6, 85354, Freising, Germany
| | - Stefan Schulz
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - James L B Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Kanchon K Dasmahapatra
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, United Kingdom
| |
Collapse
|
39
|
Massardo D, VanKuren NW, Nallu S, Ramos RR, Ribeiro PG, Silva-Brandão KL, Brandão MM, Lion MB, Freitas AVL, Cardoso MZ, Kronforst MR. The roles of hybridization and habitat fragmentation in the evolution of Brazil's enigmatic longwing butterflies, Heliconius nattereri and H. hermathena. BMC Biol 2020; 18:84. [PMID: 32620168 PMCID: PMC7334841 DOI: 10.1186/s12915-020-00797-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heliconius butterflies are widely distributed across the Neotropics and have evolved a stunning array of wing color patterns that mediate Müllerian mimicry and mating behavior. Their rapid radiation has been strongly influenced by hybridization, which has created new species and allowed sharing of color patterning alleles between mimetic species pairs. While these processes have frequently been observed in widespread species with contiguous distributions, many Heliconius species inhabit patchy or rare habitats that may strongly influence the origin and spread of species and color patterns. Here, we assess the effects of historical population fragmentation and unique biology on the origins, genetic health, and color pattern evolution of two rare and sparsely distributed Brazilian butterflies, Heliconius hermathena and Heliconius nattereri. RESULTS We assembled genomes and re-sequenced whole genomes of eight H. nattereri and 71 H. hermathena individuals. These species harbor little genetic diversity, skewed site frequency spectra, and high deleterious mutation loads consistent with recent population bottlenecks. Heliconius hermathena consists of discrete, strongly isolated populations that likely arose from a single population that dispersed after the last glacial maximum. Despite having a unique color pattern combination that suggested a hybrid origin, we found no genome-wide evidence that H. hermathena is a hybrid species. However, H. hermathena mimicry evolved via introgression, from co-mimetic Heliconius erato, of a small genomic region upstream of the color patterning gene cortex. CONCLUSIONS Heliconius hermathena and H. nattereri population fragmentation, potentially driven by historical climate change and recent deforestation, has significantly reduced the genetic health of these rare species. Our results contribute to a growing body of evidence that introgression of color patterning alleles between co-mimetic species appears to be a general feature of Heliconius evolution.
Collapse
Affiliation(s)
- Darli Massardo
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL, USA
| | - Nicholas W VanKuren
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL, USA.
| | - Sumitha Nallu
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL, USA
| | - Renato R Ramos
- Departamento de Biologia Animal e Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Pedro G Ribeiro
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Karina L Silva-Brandão
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Marcelo M Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marília B Lion
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - André V L Freitas
- Departamento de Biologia Animal e Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Márcio Z Cardoso
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Marcus R Kronforst
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
40
|
Darragh K, Montejo‐Kovacevich G, Kozak KM, Morrison CR, Figueiredo CME, Ready JS, Salazar C, Linares M, Byers KJRP, Merrill RM, McMillan WO, Schulz S, Jiggins CD. Species specificity and intraspecific variation in the chemical profiles of Heliconius butterflies across a large geographic range. Ecol Evol 2020; 10:3895-3918. [PMID: 32489619 PMCID: PMC7244815 DOI: 10.1002/ece3.6079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/01/2023] Open
Abstract
In many animals, mate choice is important for the maintenance of reproductive isolation between species. Traits important for mate choice and behavioral isolation are predicted to be under strong stabilizing selection within species; however, such traits can also exhibit variation at the population level driven by neutral and adaptive evolutionary processes. Here, we describe patterns of divergence among androconial and genital chemical profiles at inter- and intraspecific levels in mimetic Heliconius butterflies. Most variation in chemical bouquets was found between species, but there were also quantitative differences at the population level. We found a strong correlation between interspecific chemical and genetic divergence, but this correlation varied in intraspecific comparisons. We identified "indicator" compounds characteristic of particular species that included compounds already known to elicit a behavioral response, suggesting an approach for identification of candidate compounds for future behavioral studies in novel systems. Overall, the strong signal of species identity suggests a role for these compounds in species recognition, but with additional potentially neutral variation at the population level.
Collapse
Affiliation(s)
- Kathy Darragh
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanama CityPanama
| | | | | | - Colin R. Morrison
- Smithsonian Tropical Research InstitutePanama CityPanama
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
| | | | - Jonathan S. Ready
- Institute for Biological SciencesUniversidade Federal do ParáBelémBrazil
| | - Camilo Salazar
- Biology ProgramFaculty of Natural Sciences and MathematicsUniversidad del RosarioBogotaColombia
| | - Mauricio Linares
- Biology ProgramFaculty of Natural Sciences and MathematicsUniversidad del RosarioBogotaColombia
| | - Kelsey J. R. P. Byers
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Richard M. Merrill
- Smithsonian Tropical Research InstitutePanama CityPanama
- Division of Evolutionary BiologyFaculty of BiologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | | | - Stefan Schulz
- Institute of Organic ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanama CityPanama
| |
Collapse
|
41
|
Sculfort O, de Castro ECP, Kozak KM, Bak S, Elias M, Nay B, Llaurens V. Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecol Evol 2020; 10:2677-2694. [PMID: 32185010 PMCID: PMC7069300 DOI: 10.1002/ece3.6044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
Evolutionary convergence of color pattern in mimetic species is tightly linked with the evolution of chemical defenses. Yet, the evolutionary forces involved in natural variations of chemical defenses in aposematic species are still understudied. Herein, we focus on the evolution of chemical defenses in the butterfly tribe Heliconiini. These neotropical butterflies contain large concentrations of cyanogenic glucosides, cyanide-releasing compounds acting as predator deterrent. These compounds are either de novo synthesized or sequestered from their Passiflora host plant, so that their concentrations may depend on host plant specialization and host plant availability. We sampled 375 wild Heliconiini butterflies across Central and South America, covering 43% species of this clade, and quantify individual variations in the different CGs using liquid chromatography coupled with tandem mass spectrometry. We detected new compounds and important variations in chemical defenses both within and among species. Based on the most recent and well-studied phylogeny of Heliconiini, we show that ecological factors such as mimetic interactions and host plant specialization have a significant association with chemical profiles, but these effects are largely explained by phylogenetic relationships. Our results therefore suggest that shared ancestries largely contribute to chemical defense variation, pointing out at the interaction between historical and ecological factors in the evolution of Müllerian mimicry.
Collapse
Affiliation(s)
- Ombeline Sculfort
- Institut de Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSorbonne‐UniversitéEPHEUniversité des AntillesParisFrance
- Unité Molécules de Communication et Adaptations des Micro‐organismes (MCAM)Muséum National d'Histoire NaturelleCNRSParisFrance
| | | | | | - Søren Bak
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSorbonne‐UniversitéEPHEUniversité des AntillesParisFrance
| | - Bastien Nay
- Unité Molécules de Communication et Adaptations des Micro‐organismes (MCAM)Muséum National d'Histoire NaturelleCNRSParisFrance
- Laboratoire de Synthèse OrganiqueEcole PolytechniqueCNRSENSTAInstitut Polytechnique de ParisPalaiseau CedexFrance
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSorbonne‐UniversitéEPHEUniversité des AntillesParisFrance
| |
Collapse
|
42
|
Huff R, Inhoque Pereira R, Pissetti C, Mellender de Araújo A, Alves d’Azevedo P, Frazzon J, GuedesFrazzon AP. Antimicrobial resistance and genetic relationships of enterococci from siblings and non-siblings Heliconius erato phyllis caterpillars. PeerJ 2020; 8:e8647. [PMID: 32149028 PMCID: PMC7049460 DOI: 10.7717/peerj.8647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/27/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Studies evaluating bacteria in insects can provide information about host-microorganism-environment interactions. The gut microbial community has a profound effect on different physiological functions of insects. Enterococcus spp. are part of the gut community in humans and other animals, as well as in insects. The presence and antimicrobial resistance profile of enterococci are well studied in different animals; however, data for Heliconius erato phyllis (Lepidoptera: Nymphalidae) do not yet exist. Therefore, the aims of this study were to evaluate the distribution of enterococcal species, their antimicrobial resistance profile and virulence genes, and the genetic relationships between enterococci isolated from fecal samples from sibling and non-sibling H. erato phyllis caterpillars collected from different sites in South Brazil. METHODS Three H. erato phyllis females were captured (two from a forest fragment and one from an urban area), and kept individually in open-air insectaries. Eggs were collected and caterpillars (siblings and non-siblings) were fed daily with Passiflora suberosa leaves. Fecal samples (n = 12) were collected from fifth-instar caterpillars, inoculated in selective medium, and 15 bacterial colonies were randomly selected from each sample. Enterococci were identified by PCR and MALDI-TOF, analyzed by disk diffusion antimicrobial susceptibility tests, and screened for resistance and virulence genes by PCR. The genetic relationships between the strains were determined using pulsed-field gel electrophoresis (PFGE). RESULTS A total of 178 enterococci strains were identified: E. casseliflavus (74.15%; n = 132), E. mundtii (21.34%; n = 38), E. faecalis (1.12%; n = 2) and Enterococcus sp. (3.37%; n = 6). High rates of resistance to rifampicin (56%) and erythromycin (31%) were observed; 120 (67.41%) of the isolates showed resistance to at least one antibiotic and six (3.37%) were multidrug-resistant.None of the erythromycin-resistant strains was positive for the erm(B) and msrC genes. The virulence genes esp, ace, and gelE were observed in 35%, 7%, and 1% of the strains, respectively. PFGE separated the enterococci into 22 patterns, four being composed of strains from sibling caterpillars. CONCLUSION Enterococcus casseliflavus was the dominant species in fecal samples of fifth-instar caterpillars. Resistant enterococci strains may be related to environmental pollution or the resistome. The PFGE analysis showed genetic relationships between some strains, suggesting that the enterococci isolated from fecal samples of the sibling caterpillars might have come from common sources, e.g., via diet (herbivory) and/or vertical transmission (through the egg surface). Further studies will be conducted to better understand the role of Enterococcus in the microbial community of the gastrointestinal tract of these insects, and the mechanisms involved in acquisition and maintenance of enterococci.
Collapse
Affiliation(s)
- Rosana Huff
- Institute of Basic Health Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rebeca Inhoque Pereira
- Basic Health Sciences, Department of Microbiology, Health Sciences Federal University, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Pissetti
- Department of Veterinary Preventive Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Aldo Mellender de Araújo
- Institute of Biosciences, Genetic Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Alves d’Azevedo
- Basic Health Sciences, Department of Microbiology, Health Sciences Federal University, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeverson Frazzon
- Food Science Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula GuedesFrazzon
- Institute of Basic Health Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
43
|
Gillespie RG, Bennett GM, De Meester L, Feder JL, Fleischer RC, Harmon LJ, Hendry AP, Knope ML, Mallet J, Martin C, Parent CE, Patton AH, Pfennig KS, Rubinoff D, Schluter D, Seehausen O, Shaw KL, Stacy E, Stervander M, Stroud JT, Wagner C, Wogan GOU. Comparing Adaptive Radiations Across Space, Time, and Taxa. J Hered 2020; 111:1-20. [PMID: 31958131 PMCID: PMC7931853 DOI: 10.1093/jhered/esz064] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/28/2019] [Indexed: 01/02/2023] Open
Abstract
Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.
Collapse
Affiliation(s)
- Rosemary G Gillespie
- University of California, Berkeley, Essig Museum of Entomology & Department of Environmental Science, Policy, and Management, Berkeley, CA
| | - Gordon M Bennett
- University of California Merced, Life and Environmental Sciences Unit, Merced, CA
| | - Luc De Meester
- University of Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belguim
| | - Jeffrey L Feder
- University of Notre Dame, Dept. of Biological Sciences, Notre Dame, IN
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
| | - Luke J Harmon
- University of Idaho, Dept. of Biological Sciences, Moscow, ID
| | | | | | | | - Christopher Martin
- University of California Berkeley, Integrative Biology and Museum of Vertebrate Zoology, Berkeley, CA
| | | | - Austin H Patton
- Washington State University, School of Biological Sciences, Pullman, WA
| | - Karin S Pfennig
- University of North Carolina at Chapel Hill, Department of Biology, Chapel Hill, NC
| | - Daniel Rubinoff
- University of Hawaiʻi at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu, HI
| | | | - Ole Seehausen
- Institute of Ecology & Evolution, University of Bern, Bern, BE, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Eawag, Kastanienbaum, LU, Switzerland
| | - Kerry L Shaw
- Cornell University, Neurobiology and Behavior, Tower Road,, Ithaca, NY
| | - Elizabeth Stacy
- University of Nevada Las Vegas, School of Life Sciences, Las Vegas, NV
| | - Martin Stervander
- University of Oregon, Institute of Ecology and Evolution, Eugene, OR
| | - James T Stroud
- Washington University in Saint Louis, Biology, Saint Louis, MO
| | | | - Guinevere O U Wogan
- University of California Berkeley, Environmental Science Policy, and Management, Berkeley, CA
| |
Collapse
|
44
|
McLean DJ, Cassis G, Kikuchi DW, Giribet G, Herberstein ME. Insincere Flattery? Understanding the Evolution of Imperfect Deceptive Mimicry. QUARTERLY REVIEW OF BIOLOGY 2019. [DOI: 10.1086/706769] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
45
|
Montejo‐Kovacevich G, Smith JE, Meier JI, Bacquet CN, Whiltshire‐Romero E, Nadeau NJ, Jiggins CD. Altitude and life-history shape the evolution of Heliconius wings. Evolution 2019; 73:2436-2450. [PMID: 31631338 PMCID: PMC6916360 DOI: 10.1111/evo.13865] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023]
Abstract
Phenotypic divergence between closely related species has long interested biologists. Taxa that inhabit a range of environments and have diverse natural histories can help understand how selection drives phenotypic divergence. In butterflies, wing color patterns have been extensively studied but diversity in wing shape and size is less well understood. Here, we assess the relative importance of phylogenetic relatedness, natural history, and habitat on shaping wing morphology in a large dataset of over 3500 individuals, representing 13 Heliconius species from across the Neotropics. We find that both larval and adult behavioral ecology correlate with patterns of wing sexual dimorphism and adult size. Species with solitary larvae have larger adult males, in contrast to gregarious Heliconius species, and indeed most Lepidoptera, where females are larger. Species in the pupal-mating clade are smaller than those in the adult-mating clade. Interestingly, we find that high-altitude species tend to have rounder wings and, in one of the two major Heliconius clades, are also bigger than their lowland relatives. Furthermore, within two widespread species, we find that high-altitude populations also have rounder wings. Thus, we reveal novel adaptive wing morphological divergence among Heliconius species beyond that imposed by natural selection on aposematic wing coloration.
Collapse
Affiliation(s)
| | | | - Joana I. Meier
- St John's CollegeUniversity of CambridgeCambridgeCB2 1TP
| | | | | | - Nicola J. Nadeau
- Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | | |
Collapse
|
46
|
Catalán A, Briscoe AD, Höhna S. Drift and Directional Selection Are the Evolutionary Forces Driving Gene Expression Divergence in Eye and Brain Tissue of Heliconius Butterflies. Genetics 2019; 213:581-594. [PMID: 31467133 PMCID: PMC6781903 DOI: 10.1534/genetics.119.302493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/24/2019] [Indexed: 01/05/2023] Open
Abstract
Investigating gene expression evolution over micro- and macroevolutionary timescales will expand our understanding of the role of gene expression in adaptation and speciation. In this study, we characterized the evolutionary forces acting on gene expression levels in eye and brain tissue of five Heliconius butterflies with divergence times of ∼5-12 MYA. We developed and applied Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models to identify genes whose expression levels are evolving through drift, stabilizing selection, or a lineage-specific shift. We found that 81% of the genes evolve under genetic drift. When testing for branch-specific shifts in gene expression, we detected 368 (16%) shift events. Genes showing a shift toward upregulation have significantly lower gene expression variance than those genes showing a shift leading toward downregulation. We hypothesize that directional selection is acting in shifts causing upregulation, since transcription is costly. We further uncovered through simulations that parameter estimation of OU models is biased when using small phylogenies and only becomes reliable with phylogenies having ≥ 50 taxa. Therefore, we developed a new statistical test based on BM to identify highly conserved genes (i.e., evolving under strong stabilizing selection), which comprised 3% of the orthoclusters. In conclusion, we found that drift is the dominant evolutionary force driving gene expression evolution in eye and brain tissue in Heliconius Nevertheless, the higher proportion of genes evolving under directional than under stabilizing selection might reflect species-specific selective pressures on vision and the brain that are necessary to fulfill species-specific requirements.
Collapse
Affiliation(s)
- Ana Catalán
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, 75236, Sweden
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697
| | - Sebastian Höhna
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, 80333 Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| |
Collapse
|
47
|
Parnell AJ, Bradford JE, Curran EV, Washington AL, Adams G, Brien MN, Burg SL, Morochz C, Fairclough JPA, Vukusic P, Martin SJ, Doak S, Nadeau NJ. Wing scale ultrastructure underlying convergent and divergent iridescent colours in mimetic Heliconius butterflies. J R Soc Interface 2019; 15:rsif.2017.0948. [PMID: 29669892 PMCID: PMC5938584 DOI: 10.1098/rsif.2017.0948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/26/2018] [Indexed: 11/17/2022] Open
Abstract
Iridescence is an optical phenomenon whereby colour changes with the illumination and viewing angle. It can be produced by thin film interference or diffraction. Iridescent optical structures are fairly common in nature, but relatively little is known about their production or evolution. Here we describe the structures responsible for producing blue-green iridescent colour in Heliconius butterflies. Overall the wing scale structures of iridescent and non-iridescent Heliconius species are very similar, both having longitudinal ridges joined by cross-ribs. However, iridescent scales have ridges composed of layered lamellae, which act as multilayer reflectors. Differences in brightness between species can be explained by the extent of overlap of the lamellae and their curvature as well as the density of ridges on the scale. Heliconius are well known for their Müllerian mimicry. We find that iridescent structural colour is not closely matched between co-mimetic species. Differences appear less pronounced in models of Heliconius vision than models of avian vision, suggesting that they are not driven by selection to avoid heterospecific courtship by co-mimics. Ridge profiles appear to evolve relatively slowly, being similar between closely related taxa, while ridge density evolves faster and is similar between distantly related co-mimics.
Collapse
Affiliation(s)
- Andrew J Parnell
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - James E Bradford
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - Emma V Curran
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Adam L Washington
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK.,Department of Mechanical Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Gracie Adams
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Melanie N Brien
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Stephanie L Burg
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | | | | | - Pete Vukusic
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Simon J Martin
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| | - Scott Doak
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| | - Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| |
Collapse
|
48
|
Saenko SV, Chouteau M, Piron-Prunier F, Blugeon C, Joron M, Llaurens V. Unravelling the genes forming the wing pattern supergene in the polymorphic butterfly Heliconius numata. EvoDevo 2019; 10:16. [PMID: 31406559 PMCID: PMC6686539 DOI: 10.1186/s13227-019-0129-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/12/2019] [Indexed: 11/25/2022] Open
Abstract
Background Unravelling the genetic basis of polymorphic characters is central to our understanding of the origins and diversification of living organisms. Recently, supergenes have been implicated in a wide range of complex polymorphisms, from adaptive colouration in butterflies and fish to reproductive strategies in birds and plants. The concept of a supergene is now a hot topic in biology, and identification of its functional elements is needed to shed light on the evolution of highly divergent adaptive traits. Here, we apply different gene expression analyses to study the supergene P that controls polymorphism of mimetic wing colour patterns in the neotropical butterfly Heliconius numata. Results We performed de novo transcriptome assembly and differential expression analyses using high-throughput Illumina RNA sequencing on developing wing discs of different H. numata morphs. Within the P interval, 30 and 17 of the 191 transcripts were expressed differentially in prepupae and day-1 pupae, respectively. Among these is the gene cortex, known to play a role in wing pattern formation in Heliconius and other Lepidoptera. Our in situ hybridization experiments confirmed the relationship between cortex expression and adult wing patterns. Conclusions This study found the majority of genes in the P interval to be expressed in the developing wing discs during the critical stages of colour pattern formation, and detect drastic changes in expression patterns in multiple genes associated with structural variants. The patterns of expression of cortex only partially recapitulate the variation in adult phenotype, suggesting that the remaining phenotypic variation could be controlled by other genes within the P interval. Although functional studies on cortex are now needed to determine its exact developmental role, our results are in accordance with the classical supergene hypothesis, whereby several genes inherited together due to tight linkage control a major developmental switch. Electronic supplementary material The online version of this article (10.1186/s13227-019-0129-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suzanne V Saenko
- 1Institut de Systématique, Evolution et Biodiversité, UMR 7205 (CNRS, MNHN, Sorbonne Université, EPHE), Muséum National d'Histoire Naturelle CP50, 57 rue Cuvier, 75005 Paris, France
| | - Mathieu Chouteau
- 2Laboratoire Ecologie, Evolution, Interactions Des Systèmes Amazoniens (LEEISA), USR 3456, CNRS Guyane, Université De Guyane, 275 route de Montabo, 97334 Cayenne, French Guiana
| | - Florence Piron-Prunier
- 1Institut de Systématique, Evolution et Biodiversité, UMR 7205 (CNRS, MNHN, Sorbonne Université, EPHE), Muséum National d'Histoire Naturelle CP50, 57 rue Cuvier, 75005 Paris, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l'Ecole normale superieure (IBENS), École normale supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Mathieu Joron
- 4Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier, École Pratique des Hautes Études, Université Paul Valéry, 34293 Montpellier 5, France
| | - Violaine Llaurens
- 1Institut de Systématique, Evolution et Biodiversité, UMR 7205 (CNRS, MNHN, Sorbonne Université, EPHE), Muséum National d'Histoire Naturelle CP50, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
49
|
Hoyal Cuthill JF, Guttenberg N, Ledger S, Crowther R, Huertas B. Deep learning on butterfly phenotypes tests evolution's oldest mathematical model. SCIENCE ADVANCES 2019; 5:eaaw4967. [PMID: 31453326 PMCID: PMC6693915 DOI: 10.1126/sciadv.aaw4967] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/08/2019] [Indexed: 05/09/2023]
Abstract
Traditional anatomical analyses captured only a fraction of real phenomic information. Here, we apply deep learning to quantify total phenotypic similarity across 2468 butterfly photographs, covering 38 subspecies from the polymorphic mimicry complex of Heliconius erato and Heliconius melpomene. Euclidean phenotypic distances, calculated using a deep convolutional triplet network, demonstrate significant convergence between interspecies co-mimics. This quantitatively validates a key prediction of Müllerian mimicry theory, evolutionary biology's oldest mathematical model. Phenotypic neighbor-joining trees are significantly correlated with wing pattern gene phylogenies, demonstrating objective, phylogenetically informative phenome capture. Comparative analyses indicate frequency-dependent mutual convergence with coevolutionary exchange of wing pattern features. Therefore, phenotypic analysis supports reciprocal coevolution, predicted by classical mimicry theory but since disputed, and reveals mutual convergence as an intrinsic generator for the unexpected diversity of Müllerian mimicry. This demonstrates that deep learning can generate phenomic spatial embeddings, which enable quantitative tests of evolutionary hypotheses previously only testable subjectively.
Collapse
Affiliation(s)
- Jennifer F. Hoyal Cuthill
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
- Institute of Analytics and Data Science and School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Nicholas Guttenberg
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Sophie Ledger
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Robyn Crowther
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Blanca Huertas
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
50
|
Westerman EL, Antonson N, Kreutzmann S, Peterson A, Pineda S, Kronforst MR, Olson-Manning CF. Behaviour before beauty: signal weighting during mate selection in the butterfly Papilio polytes. Ethology 2019; 125:565-574. [PMID: 33688110 DOI: 10.1111/eth.12884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mating displays often contain multiple signals. Different combinations of these signals may be equally successful at attracting a mate, as environment and signal combination may influence relative signal weighting by choosy individuals. This variation in signal weighting among choosy individuals may facilitate the maintenance of polymorphic displays and signalling behaviour. One group of animals known for their polymorphic patterning are Batesian mimetic butterflies, where the interaction of sexual selection and predation pressures are hypothesized to influence the maintenance of polymorphic wing patterning and behaviour. Males in the female-limited polymorphic Batesian mimetic butterfly Papilio polytes use female wing pattern and female activity levels when determining whom to court. They court stationary females with mimetic wing patterns more often than stationary females with non-mimetic, male-like wing patterns, and active females more often than inactive females. It is unclear whether females modify their behaviour to increase (or decrease) their likelihood of receiving male courtship, or whether non-mimetic females spend more time in cryptic environments than mimetic females, to compensate for their lack of mimicry-driven predation protection (at the cost of decreased visibility to males). In addition, relative signal weighting of female wing pattern and activity to male mate selection is unknown. To address these questions, we conducted a series of observational studies of a polymorphic P. polytes population in a large butterfly enclosure. We found that males exclusively courted active females, irrespective of female wing pattern. However, males did court active non-mimetic females significantly more often than expected given their relative abundance in the population. Females exhibited similar activity levels, and selected similar resting environments, irrespective of wing pattern. Our results suggest that male preference for non-mimetic females may play an active role in the maintenance of the non-mimetic female form in natural populations, where males are likely to be in the presence of active, as well as inactive, mimetic and non-mimetic females.
Collapse
|