1
|
Dynamics of heat shock proteins and heat shock factor expression during heat stress in daughter workers in pre-heat-treated (rapid heat hardening) Apis mellifera mother queens. J Therm Biol 2022; 104:103194. [DOI: 10.1016/j.jtherbio.2022.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 11/24/2022]
|
2
|
Manjunatha HB. Comprehensive analysis of differentially expressed proteins in the male and female Bombyx mori larval instars exposed to thermal stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21719. [PMID: 32515115 DOI: 10.1002/arch.21719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Gender sensitivity to ambient heat, despite well known in insect species, how it manifests during young and late larval instars of Bombyx mori is still unclear. To uncover this cryptic feature, different instars male and female larvae were subjected to varied thermal stress separately and sex-stage specific expression of proteins was investigated. Interestingly, heat shock proteins (HSPs) 90 and 70 were expressed differently in all the instars and also between male and female larvae as confirmed by immunoblot assay. Besides up- and downregulation of few HSPs and other normal proteins, discreet expression of protein was noticed in the two-dimensional gel electrophoresis of male than female larvae which were identified as HSP70 by mass spectrometry. Furthermore, quantitative polymerase chain reaction results show 3.98- and 4.86-fold higher levels of Bmhsp70 and Bmhsp90 transcripts in male and female larvae, respectively, as a response to 40°C heat shock (HS) treatment. Conversely, in spite of the massive production of HSPs due to HS at 45°C, all the larvae were found dead, which is a strong proof of concept for autophagy. Comparatively, female larvae HS at 40°C succeed to spin cocoons with increased weight and silk contents than non-HS larvae. Comprehensively, in the present study, we have noticed a strong correlation for the first time that Bmhsp90 and Bmhsp70 genes expressions due to thermal stress are not only sex specific but also explicit preferential and coordinated action on survivability and biosynthetic potential of the silkworm, B. mori larvae during different instars.
Collapse
Affiliation(s)
- H B Manjunatha
- Proteomics and Genomics Laboratory, Department of Studies in Sericulture, University of Mysore, Mysore, India
| |
Collapse
|
3
|
Bittner A, van Buer J, Baier M. Cold priming uncouples light- and cold-regulation of gene expression in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:281. [PMID: 32552683 PMCID: PMC7301481 DOI: 10.1186/s12870-020-02487-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/10/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND The majority of stress-sensitive genes responds to cold and high light in the same direction, if plants face the stresses for the first time. As shown recently for a small selection of genes of the core environmental stress response cluster, pre-treatment of Arabidopsis thaliana with a 24 h long 4 °C cold stimulus modifies cold regulation of gene expression for up to a week at 20 °C, although the primary cold effects are reverted within the first 24 h. Such memory-based regulation is called priming. Here, we analyse the effect of 24 h cold priming on cold regulation of gene expression on a transcriptome-wide scale and investigate if and how cold priming affects light regulation of gene expression. RESULTS Cold-priming affected cold and excess light regulation of a small subset of genes. In contrast to the strong gene co-regulation observed upon cold and light stress in non-primed plants, most priming-sensitive genes were regulated in a stressor-specific manner in cold-primed plant. Furthermore, almost as much genes were inversely regulated as co-regulated by a 24 h long 4 °C cold treatment and exposure to heat-filtered high light (800 μmol quanta m- 2 s- 1). Gene ontology enrichment analysis revealed that cold priming preferentially supports expression of genes involved in the defence against plant pathogens upon cold triggering. The regulation took place on the cost of the expression of genes involved in growth regulation and transport. On the contrary, cold priming resulted in stronger expression of genes regulating metabolism and development and weaker expression of defence genes in response to high light triggering. qPCR with independently cultivated and treated replicates confirmed the trends observed in the RNASeq guide experiment. CONCLUSION A 24 h long priming cold stimulus activates a several days lasting stress memory that controls cold and light regulation of gene expression and adjusts growth and defence regulation in a stressor-specific manner.
Collapse
Affiliation(s)
- Andras Bittner
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Jörn van Buer
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| |
Collapse
|
4
|
Wu E, Wang Y, Yahuza L, He M, Sun D, Huang Y, Liu Y, Yang L, Zhu W, Zhan J. Rapid adaptation of the Irish potato famine pathogen Phytophthora infestans to changing temperature. Evol Appl 2020; 13:768-780. [PMID: 32211066 PMCID: PMC7086108 DOI: 10.1111/eva.12899] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/19/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
Temperature plays a multidimensional role in host-pathogen interactions. As an important element of climate change, elevated world temperature resulting from global warming presents new challenges to sustainable disease management. Knowledge of pathogen adaptation to global warming is needed to predict future disease epidemiology and formulate mitigating strategies. In this study, 21 Phytophthora infestans isolates originating from seven thermal environments were acclimated for 200 days under stepwise increase or decrease of experimental temperatures and evolutionary responses of the isolates to the thermal changes were evaluated. We found temperature acclimation significantly increased the fitness and genetic adaptation of P. infestans isolates at both low and high temperatures. Low-temperature acclimation enforced the countergradient adaptation of the pathogen to its past selection and enhanced the positive association between the pathogen's intrinsic growth rate and aggressiveness. At high temperatures, we found that pathogen growth collapsed near the maximum temperature for growth, suggesting a thermal niche boundary may exist in the evolutionary adaptation of P. infestans. These results indicate that pathogens can quickly adapt to temperature shifts in global warming. If this is associated with environmental conditions favoring pathogen spread, it will threaten future food security and human health and require the establishment of mitigating actions.
Collapse
Affiliation(s)
- E‐Jiao Wu
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementInstitute of PomologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yan‐Ping Wang
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lurwanu Yahuza
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Meng‐Han He
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Dan‐Li Sun
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yan‐Mei Huang
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yu‐Chan Liu
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Na Yang
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wen Zhu
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
5
|
Armstrong JJ, Takebayashi N, Wolf DE. Cold tolerance in the genus Arabidopsis. AMERICAN JOURNAL OF BOTANY 2020; 107:489-497. [PMID: 32096224 PMCID: PMC7137905 DOI: 10.1002/ajb2.1442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/02/2020] [Indexed: 05/11/2023]
Abstract
PREMISE Cold tolerance is an important factor limiting the geographic distribution and growing season for many plant species, yet few studies have examined variation in cold tolerance extensively within and among closely related species and compared that to their geographic distribution. METHODS This study examines cold tolerance within and among species in the genus Arabidopsis. We assessed cold tolerance by measuring electrolyte leakage from detached leaves in multiple populations of five Arabidopsis taxa. The temperature at which 50% of cells were lysed was considered the lethal temperature (LT50 ). RESULTS We found variability within and among taxa in cold tolerance. There was no significant within-species relationship between latitude and cold tolerance. However, the northern taxa, A. kamchatica, A. lyrata subsp. petraea, and A. lyrata subsp. lyrata, were more cold tolerant than A. thaliana and A. halleri subsp. gemmifera both before and after cold acclimation. Cold tolerance increased after cold acclimation (exposure to low, but nonfreezing temperatures) for all taxa, although the difference was not significant for A. halleri subsp. gemmifera. For all taxa except A. lyrata subsp. lyrata, the LT50 values for cold-acclimated plants were higher than the January mean daily minimum temperature (Tmin ), indicating that if plants were not insulated by snow cover, they would not likely survive winter at the northern edge of their range. CONCLUSIONS Arabidopsis lyrata and A. kamchatica were far more cold tolerant than A. thaliana. These extremely cold-tolerant taxa are excellent candidates for studying both the molecular and ecological aspects of cold tolerance.
Collapse
Affiliation(s)
- Jessica J. Armstrong
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
- University of Alaska Fairbanks, eCampus, P. O. Box 756700,
Fairbanks, AK 99775 USA
| | - Naoki Takebayashi
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
| | - Diana E. Wolf
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
- Author for correspondence
()
| |
Collapse
|
6
|
Marín‐de la Rosa N, Lin C, Kang YJ, Dhondt S, Gonzalez N, Inzé D, Falter‐Braun P. Drought resistance is mediated by divergent strategies in closely related Brassicaceae. THE NEW PHYTOLOGIST 2019; 223:783-797. [PMID: 30955214 PMCID: PMC6771540 DOI: 10.1111/nph.15841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/29/2019] [Indexed: 05/08/2023]
Abstract
Droughts cause severe crop losses worldwide and climate change is projected to increase their prevalence in the future. Similar to the situation for many crops, the reference plant Arabidopsis thaliana (Ath) is considered drought-sensitive, whereas, as we demonstrate, its close relatives Arabidopsis lyrata (Aly) and Eutrema salsugineum (Esa) are drought-resistant. To understand the molecular basis for this plasticity we conducted a deep phenotypic, biochemical and transcriptomic comparison using developmentally matched plants. We demonstrate that Aly responds most sensitively to decreasing water availability with early growth reduction, metabolic adaptations and signaling network rewiring. By contrast, Esa is in a constantly prepared mode as evidenced by high basal proline levels, ABA signaling transcripts and late growth responses. The stress-sensitive Ath responds later than Aly and earlier than Esa, although its responses tend to be more extreme. All species detect water scarcity with similar sensitivity; response differences are encoded in downstream signaling and response networks. Moreover, several signaling genes expressed at higher basal levels in both Aly and Esa have been shown to increase water-use efficiency and drought resistance when overexpressed in Ath. Our data demonstrate contrasting strategies of closely related Brassicaceae to achieve drought resistance.
Collapse
Affiliation(s)
- Nora Marín‐de la Rosa
- Institute of Network Biology (INET)Helmholtz Zentrum München (HMGU)München‐Neuherberg85764Germany
| | - Chung‐Wen Lin
- Institute of Network Biology (INET)Helmholtz Zentrum München (HMGU)München‐Neuherberg85764Germany
| | - Yang Jae Kang
- Institute of Network Biology (INET)Helmholtz Zentrum München (HMGU)München‐Neuherberg85764Germany
- Division of Life ScienceGyeongsang National UniversityJinju52828Korea
| | - Stijn Dhondt
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- VIB‐UGent Center for Plant Systems BiologyVIBGhent9052Belgium
| | - Nathalie Gonzalez
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- VIB‐UGent Center for Plant Systems BiologyVIBGhent9052Belgium
- UMR 1332Biologie du Fruit et PathologieINRAUniv. BordeauxVillenave d'Ornon Cedex33882France
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- VIB‐UGent Center for Plant Systems BiologyVIBGhent9052Belgium
| | - Pascal Falter‐Braun
- Institute of Network Biology (INET)Helmholtz Zentrum München (HMGU)München‐Neuherberg85764Germany
- Microbe–Host InteractionsLudwig‐Maximilians‐Universität (LMU) MünchenMunich80539Germany
| |
Collapse
|
7
|
Gu X, Zhao Y, Su Y, Wu J, Wang Z, Hu J, Liu L, Zhao Z, Hoffmann AA, Chen B, Li Z. A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta. Evol Appl 2019; 12:1147-1163. [PMID: 31293628 PMCID: PMC6597872 DOI: 10.1111/eva.12793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Many insects have the capacity to increase their resistance to high temperatures by undergoing heat hardening at nonlethal temperatures. Although this response is well established, its molecular underpinnings have only been investigated in a few species where it seems to relate at least partly to the expression of heat shock protein (Hsp) genes. Here, we studied the mechanism of hardening and associated transcription responses in larvae of two invasive fruit fly species in China, Bactrocera dorsalis and Bactrocera correcta. Both species showed hardening which increased resistance to 45°C, although the more widespread B. dorsalis hardened better at higher temperatures compared to B. correcta which hardened better at lower temperatures. Transcriptional analyses highlighted expression changes in a number of genes representing different biochemical pathways, but these changes and pathways were inconsistent between the two species. Overall B. dorsalis showed expression changes in more genes than B. correcta. Hsp genes tended to be upregulated at a hardening temperature of 38°C in both species, while at 35°C many Hsp genes tended to be upregulated in B. correcta but not B. dorsalis. One candidate gene (the small heat shock protein gene, Hsp23) with a particularly high level of upregulation was investigated functionally using RNA interference (RNAi). We found that RNAi may be more efficient in B. dorsalis, in which suppression of the expression of this gene removed the hardening response, whereas in B. correcta RNAi did not decrease the hardening response. The different patterns of gene expression in these two species at the two hardening temperatures highlight the diverse mechanisms underlying hardening even in closely related species. These results may provide target genes for future control efforts against such pest species.
Collapse
Affiliation(s)
- Xinyue Gu
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yan Zhao
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yun Su
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Jiajiao Wu
- Guangdong Inspection and Quarantine Technology CenterGuangzhouChina
| | - Ziya Wang
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Juntao Hu
- Redpath MuseumMcGill UniversityMontrealQuebecCanada
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Lijun Liu
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Zihua Zhao
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Ary A. Hoffmann
- School of BioSciences, Bio21 InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Present address:
College of Life SciencesHebei UniversityBaodingChina
| | - Zhihong Li
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
8
|
VanWallendael A, Soltani A, Emery NC, Peixoto MM, Olsen J, Lowry DB. A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:559-583. [PMID: 30786237 DOI: 10.1146/annurev-arplant-050718-100114] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ecological specialization in plants occurs primarily through local adaptation to different environments. Local adaptation is widely thought to result in costly fitness trade-offs that result in maladaptation to alternative environments. However, recent studies suggest that such trade-offs are not universal. Further, there is currently a limited understanding of the molecular mechanisms responsible for fitness trade-offs associated with adaptation. Here, we review the literature on stress responses in plants to identify potential mechanisms underlying local adaptation and ecological specialization. We focus on drought, high and low temperature, flooding, herbivore, and pathogen stresses. We then synthesize our findings with recent advances in the local adaptation and plant molecular biology literature. In the process, we identify mechanisms that could cause fitness trade-offs and outline scenarios where trade-offs are not a necessary consequence of adaptation. Future studies should aim to explicitly integrate molecular mechanisms into studies of local adaptation.
Collapse
Affiliation(s)
- Acer VanWallendael
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ali Soltani
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| | - Nathan C Emery
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Murilo M Peixoto
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jason Olsen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
9
|
Bigot S, Buges J, Gilly L, Jacques C, Le Boulch P, Berger M, Delcros P, Domergue JB, Koehl A, Ley-Ngardigal B, Tran Van Canh L, Couée I. Pivotal roles of environmental sensing and signaling mechanisms in plant responses to climate change. GLOBAL CHANGE BIOLOGY 2018; 24:5573-5589. [PMID: 30155993 DOI: 10.1111/gcb.14433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Climate change reshapes the physiology and development of organisms through phenotypic plasticity, epigenetic modifications, and genetic adaptation. Under evolutionary pressures of the sessile lifestyle, plants possess efficient systems of phenotypic plasticity and acclimation to environmental conditions. Molecular analysis, especially through omics approaches, of these primary lines of environmental adjustment in the context of climate change has revealed the underlying biochemical and physiological mechanisms, thus characterizing the links between phenotypic plasticity and climate change responses. The efficiency of adaptive plasticity under climate change indeed depends on the realization of such biochemical and physiological mechanisms, but the importance of sensing and signaling mechanisms that can integrate perception of environmental cues and transduction into physiological responses is often overlooked. Recent progress opens the possibility of considering plant phenotypic plasticity and responses to climate change through the perspective of environmental sensing and signaling. This review aims to analyze present knowledge on plant sensing and signaling mechanisms and discuss how their structural and functional characteristics lead to resilience or hypersensitivity under conditions of climate change. Plant cells are endowed with arrays of environmental and stress sensors and with internal signals that act as molecular integrators of the multiple constraints of climate change, thus giving rise to potential mechanisms of climate change sensing. Moreover, mechanisms of stress-related information propagation lead to stress memory and acquired stress tolerance that could withstand different scenarios of modifications of stress frequency and intensity. However, optimal functioning of existing sensors, optimal integration of additive constraints and signals, or memory processes can be hampered by conflicting interferences between novel combinations and novel changes in intensity and duration of climate change-related factors. Analysis of these contrasted situations emphasizes the need for future research on the diversity and robustness of plant signaling mechanisms under climate change conditions.
Collapse
Affiliation(s)
- Servane Bigot
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Julie Buges
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
- ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR 6553, Univ Rennes, CNRS, Université de Rennes 1, Rennes, France
| | - Lauriane Gilly
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Cécile Jacques
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Pauline Le Boulch
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Marie Berger
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Pauline Delcros
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Jean-Baptiste Domergue
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Astrid Koehl
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Béra Ley-Ngardigal
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Loup Tran Van Canh
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
- ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR 6553, Univ Rennes, CNRS, Université de Rennes 1, Rennes, France
| | - Ivan Couée
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
- ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR 6553, Univ Rennes, CNRS, Université de Rennes 1, Rennes, France
| |
Collapse
|
10
|
Wos G, Willi Y. Genetic differentiation in life history traits and thermal stress performance across a heterogeneous dune landscape in Arabidopsis lyrata. ANNALS OF BOTANY 2018; 122:473-484. [PMID: 29846507 PMCID: PMC6110339 DOI: 10.1093/aob/mcy090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Background and Aims Over very short spatial scales, the habitat of a species can differ in multiple abiotic and biotic factors. These factors may impose natural selection on several traits and can cause genetic differentiation within a population. We studied multivariate genetic differentiation in a plant species of a sand dune landscape by linking environmental variation with differences in genotypic trait values and gene expression levels to find traits and candidate genes of microgeographical adaptation. Methods Maternal seed families of Arabidopsis lyrata were collected in Saugatuck Dunes State Park, Michigan, USA, and environmental parameters were recorded at each collection site. Offspring plants were raised in climate chambers and exposed to one of three temperature treatments: regular occurrence of frost, heat, or constant control conditions. Several traits were assessed: plant growth, time to flowering, and frost and heat resistance. Key Results The strongest trait-environment association was between a fast switch to sexual reproduction and weaker growth under frost, and growing in the open, away from trees. The second strongest association was between the trait combination of small plant size and early flowering under control conditions combined with large size under frost, and the combination of environmental conditions of growing close to trees, at low vegetation cover, on dune bottoms. Gene expression analysis by RNA-seq revealed candidate genes involved in multivariate trait differentiation. Conclusions The results support the hypothesis that in natural populations, many environmental factors impose selection, and that they affect multiple traits, with the relative direction of trait change being complex. The results highlight that heterogeneity in the selection environment over small spatial scales is a main driver of the maintenance of adaptive genetic variation within populations.
Collapse
Affiliation(s)
- Guillaume Wos
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Botany, Charles University, Prague, Czech Republic
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|