1
|
Abdel-Rahim MM, Elhetawy AIG, Shawky WA, El-Zaeem SY, El-Dahhar AA. Enhancing Florida red tilapia aquaculture: biofloc optimization improves water quality, pathogen bacterial control, fish health, immune response, and organ histopathology across varied groundwater salinities. Vet Res Commun 2024; 48:2989-3006. [PMID: 38958815 PMCID: PMC11457711 DOI: 10.1007/s11259-024-10433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Freshwater scarcity poses challenges to aquaculture worldwide, including countries like Egypt. In this study, we investigate the feasibility of integrating underground saline water (USW) with varying salinities into a Biofloc (BFT) system for desert mariculture of Florida red tilapia (FRT) and its impacts on water quality, fish performance and health. Four BFT treatments (C/N ratio = 15) were examined in triplicate using four salinity levels 0 ppt, 12 ppt, 24 ppt and 36 ppt, expressed as S0, S12, S24 and S36, respectively. For 75 days, a total of 12 fiberglass tanks (each 250 L-1 water) were used to store FRT fry (average weight of 1.73 ± 0.01 g/fish). The fish were fed an experimental diet (protein/fat = 30/5) and an additional carbon source of rice bran. The results revealed that group S12 showed better growth indicators, higher survival rate, lower FCR, and lower ammonia levels, while group S0 exhibited lower growth indicators (final weight, weight gain, and specific growth rate) than all groups. The serum kidney, liver, and antioxidant indices performed better in the S12 group. At 12 ppt, the immune-related parameter (IgM) increased by 22.5%, while the stress parameter (cortisol) decreased by 40.8% compared to the S0 group. The liver and intestinal histopathological results revealed that the S12 and S24 groups performed better. Pathogenic bacterial load counts favored the S24 group, which had the lowest number among the groups studied. The recommended salinity for FRT cultivation in USW and BFT is 19.94-20 ppt, determined by polynomial regression of FW and FCR.
Collapse
Affiliation(s)
- Mohamed M Abdel-Rahim
- Aquaculture Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Ashraf I G Elhetawy
- Aquaculture Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| | - Wael A Shawky
- Aquaculture Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Samy Y El-Zaeem
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Saba-basha, Egypt
| | - Alaa A El-Dahhar
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Saba-basha, Egypt
| |
Collapse
|
2
|
Yang R, Liu X, Liu Y, Tian Q, Wang Z, Zhu D, Qian Z, Yi Y, Hu J, Li Y, Liang XF, Liu L, Su J. Dissolved oxygen and ammonia affect ammonia production via GDH/AMPK signaling pathway and alter flesh quality in Chinese perch (Siniperca chuatsi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1237-1249. [PMID: 38517575 DOI: 10.1007/s10695-024-01333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
The dissolved oxygen (DO) and ammonia are crucial to the growth of Chinese perch (Siniperca chuatsi). Information on the effects of DO and total ammonia nitrogen (TAN) in regulating ammonia nitrogen excretion and flesh quality in Chinese perch is scanty. This study aimed to evaluate the effects of dissolved DO at oxygen levels of 3 mg/L and 9 mg/L, as well as the TAN concentrations of 0.3 mg/L and 0.9 mg/L on ammonia excretion and flesh quality. Results showed that the ammonia contents in plasma, muscle, and liver of the 9 mg/L DO group were significantly higher than those of the 3 mg/L DO group (P < 0.05). However, the expression of AMPK-related signaling pathway genes (gdh, lkb1, and ampd) and flesh quality indicators (gumminess, chewiness, hardness) in the 9 mg/L DO group were significantly lower than those in the 3 mg/L DO group. Under long-term exposure to 0.9 mg/L TAN, the ammonia contents in plasma and gill filaments, as well as muscle flesh quality (resilience, gumminess, chewiness, cohesiveness), were significantly lower than those in the 0.3 mg/L TAN group (P < 0.05). However, the activities of GDH and AMPD enzymes in the 0.9 mg/L TAN group were significantly higher than those in the 0.3 mg/L TAN group. In summary, when fish are exposed to 3 mg/L DO and 0.9 mg/L TAN in the environment for a long time, their amino acids are used for transamination and deamination, resulting in insufficient energy supply for Chinese perch, whereas 9 mg/L DO and 0.9 mg/L TAN caused deterioration of the flesh quality.
Collapse
Affiliation(s)
- Ru Yang
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Xuange Liu
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Yong Liu
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Qingda Tian
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Ziwei Wang
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Dejie Zhu
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Zhisong Qian
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Yi Yi
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Jiacheng Hu
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Yan Li
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Liwei Liu
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
| | - Jianmei Su
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Friendship Avenue 368, Wuhan, 430062, Hubei, China.
| |
Collapse
|
3
|
Wang MM, Huang YY, Liu WB, Xiao K, Wang X, Guo HX, Zhang YL, Fan JW, Li XF, Jiang GZ. Interactive effects of dietary leucine and isoleucine affect amino acid profile and metabolism through AKT/TOR signaling pathways in blunt snout bream (Megalobrama amblycephala). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:385-401. [PMID: 36525145 DOI: 10.1007/s10695-022-01161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The purpose of this research is to explore the interaction between dietary leucine and isoleucine levels on whole-body composition, plasma and liver biochemical indexes, amino acids deposition in the liver, and amino acid metabolism of blunt snout bream (Megalobrama amblycephala). The test fish (average weight: 56.00 ± 0.55 g) were fed one of six diets at random containing two leucine levels (1.70% and 2.50%) and three isoleucine levels (1.00%, 1.20%, and 1.40%) for 8 weeks. The results showed that the final weight and weight gain rate were the highest in the fish fed low-level leucine and high-level isoleucine diets (P > 0.05). Furthermore, the crude lipid content was significantly adjusted by diets with diverse levels of leucine and isoleucine (P < 0.05). In addition, interactive effects of these two branched-chain amino acids (BCAAs) were found on plasma total protein, blood ammonia, and blood urea nitrogen of test fish (P < 0.05). Additionally, the liver amino acid profiles were significantly influenced by the interactive effects of the two BCAAs (P < 0.05). Moreover, interactive effects of dietary leucine and isoleucine were significantly observed in the expressions of amino acid metabolism-related genes (P < 0.05). These findings suggested that dietary leucine and isoleucine had interaction. Meanwhile, the interaction between them was more conducive to the growth and quality improvement of blunt snout bream when the dietary leucine level was 1.70% and isoleucine level was 1.40%.
Collapse
Affiliation(s)
- Mang-Mang Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yang-Yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yi-Lin Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Jing-Wei Fan
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
4
|
Méndez-Narváez J, Warkentin KM. Early onset of urea synthesis and ammonia detoxification pathways in three terrestrially developing frogs. J Comp Physiol B 2023; 193:523-543. [PMID: 37639061 DOI: 10.1007/s00360-023-01506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Frogs evolved terrestrial development multiple times, necessitating mechanisms to avoid ammonia toxicity at early stages. Urea synthesis from ammonia is a key adaptation that reduces water dependence after metamorphosis. We tested for early expression and plasticity of enzymatic mechanisms of ammonia detoxification in three terrestrial-breeding frogs: foam-nest-dwelling larvae of Leptodactylus fragilis (Lf) and arboreal embryos of Hyalinobatrachium fleischmanni (Hf) and Agalychnis callidryas (Ac). Activity of two ornithine-urea cycle (OUC) enzymes, arginase and CPSase, and levels of their products urea and CP in tissues were high in Lf regardless of nest hydration, but reduced in experimental low- vs. high-ammonia environments. High OUC activity in wet and dry nests, comparable to that under experimental high ammonia, suggests terrestrial Lf larvae maintain high capacity for urea excretion regardless of their immediate risk of ammonia toxicity. This may aid survival through unpredictably long waiting periods before rain enables their transition to water. Moderate levels of urea and CP were present in Hf and Ac tissues and enzymatic activities were lower than in Lf. In both species, embryos in drying clutches can hatch and enter the water early, behaviorally avoiding ammonia toxicity. Moreover, glutamine synthetase was active in early stages of all three species, condensing ammonia and glutamate to glutamine as another mechanism of detoxification. Enzyme activity appeared highest in Lf, although substrate and product levels were higher in Ac and Lf. Our results reveal that multiple biochemical mechanisms of ammonia detoxification occur in early life stages of anuran lineages that evolved terrestrial development.
Collapse
Affiliation(s)
- Javier Méndez-Narváez
- Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali, Colombia.
- Department of Biology, Boston University, Boston, MA, USA.
| | - Karen M Warkentin
- Department of Biology, Boston University, Boston, MA, USA
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama
| |
Collapse
|
5
|
Jiang C, Storey KB, Yang H, Sun L. Aestivation in Nature: Physiological Strategies and Evolutionary Adaptations in Hypometabolic States. Int J Mol Sci 2023; 24:14093. [PMID: 37762394 PMCID: PMC10531719 DOI: 10.3390/ijms241814093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Aestivation is considered to be one of the "purest" hypometabolic states in nature, as it involves aerobic dormancy that can be induced and sustained without complex factors. Animals that undergo aestivation to protect themselves from environmental stressors such as high temperatures, droughts, and food shortages. However, this shift in body metabolism presents new challenges for survival, including oxidative stress upon awakening from aestivation, accumulation of toxic metabolites, changes in energy sources, adjustments to immune status, muscle atrophy due to prolonged immobility, and degeneration of internal organs due to prolonged food deprivation. In this review, we summarize the physiological and metabolic strategies, key regulatory factors, and networks utilized by aestivating animals to address the aforementioned components of aestivation. Furthermore, we present a comprehensive overview of the advancements made in aestivation research across major species, including amphibians, fish, reptiles, annelids, mollusks, and echinoderms, categorized according to their respective evolutionary positions. This approach offers a distinct perspective for comparative analysis, facilitating an understanding of the shared traits and unique features of aestivation across different groups of organisms.
Collapse
Affiliation(s)
- Chunxi Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Sun SX, Hu CT, Qiao F, Chen LQ, Zhang ML, Du ZY. High dissolved oxygen exacerbates ammonia toxicity with sex-dependent manner in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109549. [PMID: 36690240 DOI: 10.1016/j.cbpc.2023.109549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
Ammonia nitrogen is one of the important environmental factors, and causes negative effects for fish health in ecosystem and aquaculture. The toxic effects and mechanisms of ammonia in fish deserve further investigation. In the present study, we exposed female and male zebrafish (Danio rerio) to ammonia (50 mg/L NH4Cl) with oxygenated (7.5-7.8 mg/L) or non‑oxygenated (3.8-4.5 mg/L) water, to identify the combined effects of dissolved oxygen and ammonia on fish with gender difference. The results showed that oxygenated ammonia exposure increased fish mortality, gill secondary lamellas damage and gill tissue spaces, gene expressions of proinflammatory interleukin 1 beta (il-1β) and apoptotic caspase8 as compared with non‑oxygenated ammonia. Besides, oxygenated ammonia elevated plasma ammonia contents, and decreased the discharge of body ammonia through gills by depressing the enzyme activity of Na+/K+-ATPase. Notably, when zebrafish were subjected to ammonia stress, more severe mortality, gill damage and tissue inflammatory response were observed in males than females. This is the first study to clarify the gender-dependent impacts of ammonia toxicity, and the adverse effects of oxygenation on ammonia resistance in zebrafish.
Collapse
Affiliation(s)
- Sheng-Xiang Sun
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chun-Ting Hu
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
7
|
Liver Injury and Metabolic Dysregulation in Largemouth Bass ( Micropterus salmoides) after Ammonia Exposure. Metabolites 2023; 13:metabo13020274. [PMID: 36837893 PMCID: PMC9965865 DOI: 10.3390/metabo13020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Elevated environmental ammonia leads to respiratory disorders and metabolic dysfunction in most fish species, and the majority of research has concentrated on fish behavior and gill function. Prior studies have rarely shown the molecular mechanism of the largemouth bass hepatic response to ammonia loading. In this experiment, 120 largemouth bass were exposed to total ammonia nitrogen of 0 mg/L or 13 mg/L for 3 and 7 days, respectively. Histological study indicated that ammonia exposure severely damaged fish liver structure, accompanied by increased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activity. RT-qPCR results showed that ammonia exposure down-regulated the expression of genes involved in glycogen metabolism, tricarboxylic acid cycle, lipid metabolism, and urea cycle pathways, whereas it up-regulated the expression of genes involved in gluconeogenesis and glutamine synthesis pathways. Thus, ammonia was mainly converted to glutamine in the largemouth bass liver during ammonia stress, which was rarely further used for urea synthesis. Additionally, transcriptome results showed that ammonia exposure also led to the up-regulation of the oxidative phosphorylation pathway and down-regulation of the mitogen-activated protein kinase signaling pathway in the liver of largemouth bass. It is possible that the energy supply of oxidative phosphorylation in the largemouth bass liver was increased during ammonia exposure, which was mediated by the MAPK signaling pathway.
Collapse
|
8
|
Lv M, Zhang Y, Yang L, Cao X. Depletion of chop suppresses procedural apoptosis and enhances innate immunity in loach Misgurnus anguillicaudatus under ammonia nitrogen stress. J Anim Sci 2023; 101:skad114. [PMID: 37102217 PMCID: PMC10184690 DOI: 10.1093/jas/skad114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/26/2023] [Indexed: 04/28/2023] Open
Abstract
Ammonia nitrogen is highly toxic to fish, and it can easily cause fish poisoning or even high mortality. So far, many studies have been conducted on the damages to fish under ammonia nitrogen stress. However, there are few studies of ammonia tolerance improvement in fish. In this study, the effects of ammonia nitrogen exposure on apoptosis, endoplasmic reticulum (ER) stress, and immune cells in loach Misgurnus anguillicaudatus were investigated. Loaches (60 d post fertilization) were exposed to different concentrations of NH4Cl, and their survival rates were examined every 6 h. The results showed that high-concentration and long-time NH4Cl exposure (20 mM + 18 h; 15 mM + 36 h) induced apoptosis and gill tissue damages, finally causing a decline in survival. chop plays an important role in ER stress-induced apoptosis, and thus we constructed a model of chop-depleted loach by using CRISPR/Cas9 technology to investigate its response to ammonia nitrogen stress. The results showed that ammonia nitrogen stress down-regulated the expressions of apoptosis-related genes in chop+/- loach gills, while wildtype (WT) exhibited an opposite gene expression regulation pattern, suggesting that the depletion of chop suppressed apoptosis level. In addition, chop+/- loach showed a larger number of immunity-related cells and higher survival rate than WT under the NH4Cl exposure, indicating that the inhibition of chop function strengthened the innate immune barrier in general, thus increasing survival. Our findings provide the theoretical basis for developing high ammonia nitrogen-tolerant germplasm with aquaculture potential.
Collapse
Affiliation(s)
- Meiqi Lv
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunbang Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijuan Yang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Huang M, Shang ZH, Wu MX, Zhang LJ, Zhang YL. Regulation of Rhesus glycoprotein-related genes in large-scale loach Paramisgurnus dabryanus during ammonia loading. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114077. [PMID: 36108439 DOI: 10.1016/j.ecoenv.2022.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Waterborne ammonia is one of the crucial issues that limited production and animal health in aquaculture. Ammonia-tolerant varieties are highly desired in intensive fish farming. Screening for the key regulatory genes of ammonia tolerance is essential for variety breeding. According to the previous hypothesis, Rh glycoproteins play an important role in ammonia excretion in teleosts. However, the ammonia defensive mechanisms are not well described at present for large-scale loach (Paramisgurnus dabryanus), a typical air-breathing and commercially important fish in East Asia. Here we show that the transcription of Rh glycoprotein-related genes was significantly affected by ammonia exposure in this species. Probit analysis showed that 96 h-LC50 of NH4Cl at 23 ℃ and pH 7.2 was 92.64 mmol/L. A significant increase of Rhcg expression in gills was observed after 48 h of 60 mmol/L and 36 h of 80 mmol/L NH4Cl exposure, suggesting that Rhcg present on the apical side of the branchial epithelium facilitates NH3 excretion out of gills. A high concentration of acute ammonia exposure induced elevated Rhbg transcript in the gills of large-scale loaches, while a slight change in Rhbg expression was observed in response to lower ammonia, suggesting that transcriptions of Rhbg genes are activated by a considerably high level of ambient ammonia to eliminate excessive endogenous nitrogen. The Rhag mRNA level in gills of large-scale loaches increased markedly with the prolonging of exposure time from 0 to 36 h of ammonia loading, suggesting Rhag localized in gills may be primarily associated with ammonia handling. During 7-21 days of ammonia exposure, the expression of most Rh glycoproteins-related genes in the gills decreased, indicating that the functional role of Rh glycoproteins is not primarily associated with ammonia defense over a long period (more than 7 days). Although a significant transcript of Rhbg was found in the skin of a large-scale loach, the lack of Rhcg and down-regulation of Rhag may indicate that the skin is not an essential location of ammonia excretion, at least when submerged to high levels of ammonia in the environment. In conclusion, Rh glycoproteins localized in gills as ammonia transporters play a momentous role in ammonia detoxification in this species during acute ammonia loading. However, it does not show a positive function during long-term ammonia exposure. Furthermore, the physiological function of Rh glycoproteins localized in the skin is still unclear and deserves further study.
Collapse
Affiliation(s)
- Mei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ze-Hao Shang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Meng-Xiao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Lin-Jiang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yun-Long Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
10
|
Oliveira-Cunha P, McIntyre PB, Neres-Lima V, Caliman A, Moreira-Ferreira B, Zandonà E. Body size has primacy over stoichiometric variables in nutrient excretion by a tropical stream fish community. Sci Rep 2022; 12:14844. [PMID: 36050417 PMCID: PMC9436996 DOI: 10.1038/s41598-022-19149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Ecological Stoichiometry (ES) and the Metabolic Theory of Ecology (MTE) are the main theories used to explain consumers’ nutrient recycling. ES posits that imbalances between an animal’s body and its diet stoichiometry determine its nutrient excretion rates, whereas the MTE predicts that excretion reflects metabolic activity arising from body size and temperature. We measured nitrogen, phosphorus and N:P excretion, body N:P stoichiometry, body size, and temperature for 12 fish species from a Brazilian stream. We fitted competing models reflecting different combinations of ES (body N:P, armor classification, diet group) and MTE (body size, temperature) variables. Only body size predicted P excretion rates, while N excretion was predicted by body size and time of day. N:P excretion was not explained by any variable. There was no interspecific difference in size-scaling coefficients neither for N nor for P. Fitted size scaling coefficients were lower than the MTE prediction of 0.75 for N (0.58), and for P (0.56). We conclude that differences in nutrient excretion among species within a shared environment primarily reflect contrasts in metabolic rates arising from body size, rather than disparities between consumer and resource stoichiometry. Our findings support the MTE as the primary framework for predicting nutrient excretion rates.
Collapse
Affiliation(s)
- Priscila Oliveira-Cunha
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, CEP 20550-013, Brazil.
| | - Peter B McIntyre
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| | - Vinicius Neres-Lima
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, CEP 20550-013, Brazil
| | - Adriano Caliman
- Departamento de Ecologia, Universidade Federal do Rio Grande Do Norte, Natal, RN, Brazil
| | - Beatriz Moreira-Ferreira
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, CEP 20550-013, Brazil
| | - Eugenia Zandonà
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, CEP 20550-013, Brazil.,Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Ip YK, Leong CWQ, Boo MV, Wong WP, Lam SH, Chew SF. Evidence for the involvement of branchial Vacuolar-type H +-ATPase in the acidification of the external medium by the West African lungfish, Protopterus annectens, exposed to ammonia-loading conditions. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111297. [PMID: 35987338 DOI: 10.1016/j.cbpa.2022.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
African lungfishes are obligatory air-breathers with exceptionally high environmental ammonia tolerance. They can lower the pH of the external medium during exposure to ammonia-loading conditions. This study aimed to demonstrate the possible involvement of branchial vacuolar-type H+-ATPase (Vha) in the ammonia-induced acidification of the external medium by the West African lungfish, Protopterus annectens, and to examine whether its capacity to acidify the medium could be augmented after exposure to 100 mmol l-1 NH4Cl for six days. Two full coding cDNA sequences of Vha subunit B (atp6v1b), atp6v1b1 and atp6v1b2, were obtained from the internal gills of P. annectens. The sequence of atp6v1b1 comprised 1548 bp, encoding 515 amino acids (57.4 kDa), while that of atp6v1b2 comprised 1536 bp, encoding 511 amino acids (56.6 kDa). Using a custom-made antibody reactive to both isoforms, immunofluorescence microscopy revealed the collective localization of Atp6v1b (atp6v1b1 and atp6v1b2) at the apical or the basolateral membrane of two different types of branchial Na+/K+-ATPase-immunoreactive ionocyte. The ionocytes labelled apically with Atp6v1b presumably expressed Atp6v1b1 containing a PDZ-binding domain, indicating that the apical Vha was positioned to transport H+ to the external medium. The expression of Atp6v1b was regulated post-transcriptionally, as the protein abundance of Atp6v1b and Vha activity increased significantly in the gills of fish exposed to 100 mmol l-1 NH4Cl for six days. Correspondingly, the fish exposed to ammonia had a greater capacity to acidify the external medium, presumably to decrease the ratio of [NH3] to [NH4+] in order to reduce the influx of exogenous NH3.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| | - Charmaine W Q Leong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Siew H Lam
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| |
Collapse
|
12
|
Genome-wide identification of the NHE gene family in Coilia nasus and its response to salinity challenge and ammonia stress. BMC Genomics 2022; 23:526. [PMID: 35858854 PMCID: PMC9297642 DOI: 10.1186/s12864-022-08761-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background In aquatic environments, pH, salinity, and ammonia concentration are extremely important for aquatic animals. NHE is a two-way ion exchange carrier protein, which can transport Na+ into cells and exchange out H+, and also plays key roles in regulating intracellular pH, osmotic pressure, and ammonia concentration. Results In the present study, ten NHEs, the entire NHE gene family, were identified from Coilia nasus genome and systemically analyzed via phylogenetic, structural, and synteny analysis. Different expression patterns of C. nasus NHEs in multiple tissues indicated that expression profiles of NHE genes displayed tissue-specific. Expression patterns of C. nasus NHEs were related to ammonia excretion during multiple embryonic development stages. To explore the potential functions on salinity challenge and ammonia stress, expression levels of ten NHEs were detected in C. nasus gills under hypotonic stress, hypertonic stress, and ammonia stress. Expression levels of all NHEs were upregulated during hypotonic stress, while they were downregulated during hypertonic stress. NHE2 and NHE3 displayed higher expression levels in C. nasus larvae and juvenile gills under ammonia stress. Conclusions Our study revealed that NHE genes played distinct roles in embryonic development, salinity stress, and ammonia exposure. Syntenic analysis showed significant difference between stenohaline fish and euryhaline fishes. Our findings will provide insight into effects of C. nasus NHE gene family on ion transport and ammonia tolerance and be beneficial for healthy aquaculture of C. nasus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08761-9.
Collapse
|
13
|
Impact of a Carboxymethyl Cellulose Coating Incorporated with an Ethanolic Propolis Extract on the Quality Criteria of Chicken Breast Meat. Antioxidants (Basel) 2022; 11:antiox11061191. [PMID: 35740088 PMCID: PMC9229002 DOI: 10.3390/antiox11061191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Recently, the demand for composite edible coatings has increased significantly as a new trend to confront the serious processing and storage problems that always arise regarding chicken meat. We aim to develop a carboxymethyl cellulose (CMC) coating containing various concentrations (0, 1, 2, 3, and 4%) of an ethanolic propolis extract (EPE) to maintain the quality and extend the shelf life of chicken breast meat stored at 2 °C for 16 days. The influence of the CMC and EPE coating on the physicochemical and microbiological quality parameters of chicken breast meat, e.g., pH, color, metmyoglobin (MetMb), lipid oxidation (thiobarbituric acid reactive substance, TBARS), and microbiological and sensory analyses, was studied. Significantly lower weight loss and pH (p ≤ 0.05) were noted in the coated samples compared with the uncoated samples (control) over the storage period. MetMb content was significantly reduced (p ≤ 0.05) in the coated samples compared to the control. Additionally, the addition of EPE to CMC was more effective in inhibiting microbial growth, preventing lipid oxidation, and keeping the overall acceptability of coated chicken breast meat compared to the control. This work presents CMC and EPE as alternative preservatives to produce active packaging coatings.
Collapse
|
14
|
Wu D, Zhang Y, Li J, Fan Z, Xu Q, Wang L. Assessment of chicken intestinal hydrolysates as a new protein source to replace fishmeal on the growth performance, antioxidant capacity and intestinal health of common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2022; 125:161-170. [PMID: 35561948 DOI: 10.1016/j.fsi.2022.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Promoting circular economy by transforming food residues into alternative high-value protein sources for aquaculture feed is a new way to develop alternative raw materials for fishmeal. This study systematically evaluated the effects of chicken intestinal hydrolysates (CIH) on the intestinal immune health of common carp through growth performance, antioxidant capacity, and intestinal immunity analysis in order to replace fishmeal. Five iso-nitrogenous and iso-lipidic experimental feeds were formulated to replace 0% (CIH-0), 25% (CIH-25), 50% (CIH-50), 75% (CIH-75) and 100% (CIH-100) of the fishmeal with CIH. Each experimental diet was fed to triplicate groups of 30 carp for 8 weeks. The results revealed that no significant differences in the final body weight, weight gain rate, feed coefficient radio, feed intake and protein efficiency ratio were found among the CIH-0, CIH-25, and CIH-50 groups, while the final body weight and weight gain rate in the CIH-75 and CIH-100 groups were significantly decreased and the feed coefficient radio was significantly increased. The aspartate aminotransferase of all CIH groups were significantly decrease, and the total protein, albumin did not differ among the CIH-0, CIH-25, CIH-50, and CIH-75 groups. The trypsin content was significantly increased in the CIH-75 and CIH-100 groups. No significant differences in the antioxidant index (catalase, glutathione peroxidase and malonaldehyde) were found among all CIH groups compared with the CIH-0 group. The expression levels of pro-inflammatory cytokines IL-1β and TNF-α were significantly down-regulated in the CIH-50 group and anti-inflammatory cytokines IL-10 and TGF-β2 were significantly up-regulated in the CIH-50 and CIH-75 groups. No significant differences in the expression levels of claudin-1, claudin-7 and claudin-11 were observed between the CIH-0 and CIH-50 groups, while the expression levels of ZO-1, occludin and MLCK were significantly up-regulated in the CIH-50 group compared with the CIH-0 group. The expression level of claudin-1 was down-regulated in the CIH-75 and CIH-100 groups. Hence, the study demonstrated the potential of CIH as a novel protein source for replacing fishmeal, and replacing 50% of fishmeal with CIH did not significantly influence the growth performance, immune responses, and intestinal barrier of common carp (Cyprinus carpio).
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Qiyou Xu
- School of Life Science, Huzhou University, Huzhou, 313000, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| |
Collapse
|
15
|
Lutek K, Donatelli CM, Standen EM. Patterns and processes in amphibious fish: biomechanics and neural control of fish terrestrial locomotion. J Exp Biol 2022; 225:275243. [PMID: 35502693 DOI: 10.1242/jeb.242395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphibiousness in fishes spans the actinopterygian tree from the earliest to the most recently derived species. The land environment requires locomotor force production different from that in water, and a diversity of locomotor modes have evolved across the actinopterygian tree. To compare locomotor mode between species, we mapped biomechanical traits on an established amphibious fish phylogeny. Although the diversity of fish that can move over land is large, we noted several patterns, including the rarity of morphological and locomotor specialization, correlations between body shape and locomotor mode, and an overall tendency for amphibious fish to be small. We suggest two idealized empirical metrics to consider when gauging terrestrial 'success' in fishes and discuss patterns of terrestriality in fishes considering biomechanical scaling, physical consequences of shape, and tissue plasticity. Finally, we suggest four ways in which neural control could change in response to a novel environment, highlighting the importance and challenges of deciphering when these control mechanisms are used. We aim to provide an overview of the diversity of successful amphibious locomotion strategies and suggest several frameworks that can guide the study of amphibious fish and their locomotion.
Collapse
Affiliation(s)
- K Lutek
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - E M Standen
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| |
Collapse
|
16
|
Luo Q, Zha G, Lin L, Huang Y, Zou X. Comparison of physicochemical properties of different tissues from China climbing perch Anabas testudineus and crucian carp Carassius auratus. Food Sci Nutr 2022; 10:936-944. [PMID: 35282014 PMCID: PMC8907716 DOI: 10.1002/fsn3.2727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate nutrition in climbing perch Anabas testudineus which is an important nutritious economic freshwater fish in Asia and compare with Carassius auratus (crucian carp). Three kinds of tissues, including muscle, livers, and eggs, were isolated, respectively. Physicochemical properties including moisture, ash, protein, amino acids, fat, vitamins, and calcium contents in those tissues were determined. The results showed climbing perch muscle and liver contained less moisture, but more protein, amino acids, and vitamins than crucian carp muscle and liver. While moisture, ash, protein, and total amino acids contents of climbing perch egg were lower than those of crucian carp egg. Climbing perch egg had more fat, vitamins, and calcium than crucian carp egg. The amino acid profile was also performed, and 16 amino acids were identified and quantified in muscle, liver, and egg. Among tissues, the highest and lowest concentration of total amino acid content was found in crucian carp eggs and livers, respectively. Glutamic acid (Glu) and histidine (His) were the most and least amino acids in climbing perch and crucian carp tissues, respectively. Sixteen amino acids in climbing perch egg were less than those in crucian carp egg while it is an opposite case in muscle and liver, which amino acids of climbing perch tissues were more than those of crucian carp muscle and liver. Vitamin A of climbing perch was more than crucian carp in all three tissues, but vitamin E content in climbing perch liver was lower than that of crucian carp liver. Calcium content of muscle had no difference between two species. The abovementioned comparison of physicochemical properties of different tissues from China climbing perch and crucian carp will provide a necessary supplementary of freshwater muscle nutrition research, also was helpful for application of climbing perch.
Collapse
Affiliation(s)
- Qiulan Luo
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Guangcai Zha
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Liyun Lin
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Yongping Huang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Xianghui Zou
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| |
Collapse
|
17
|
Méndez‐Narváez J, Warkentin KM. Reproductive colonization of land by frogs: Embryos and larvae excrete urea to avoid ammonia toxicity. Ecol Evol 2022; 12:e8570. [PMID: 35222954 PMCID: PMC8843769 DOI: 10.1002/ece3.8570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Vertebrate colonization of land has occurred multiple times, including over 50 origins of terrestrial eggs in frogs. Some environmental factors and phenotypic responses that facilitated these transitions are known, but responses to water constraints and risk of ammonia toxicity during early development are poorly understood. We tested if ammonia accumulation and dehydration risk induce a shift from ammonia to urea excretion during early stages of four anurans, from three origins of terrestrial development. We quantified ammonia and urea concentrations during early development on land, under well-hydrated and dry conditions. Where we found urea excretion, we tested for a plastic increase under dry conditions and with ammonia accumulation in developmental environments. We assessed the potential adaptive role of urea excretion by comparing ammonia tolerance measured in 96h-LC50 tests with ammonia levels in developmental environments. Ammonia accumulated in foam nests and perivitelline fluid, increasing over development and reaching higher concentrations under dry conditions. All four species showed high ammonia tolerance, compared to fishes and aquatic-breeding frogs. Both nest-dwelling larvae of Leptodactylus fragilis and late embryos of Hyalinobatrachium fleischmanni excreted urea, showing a plastic increase under dry conditions. These two species can develop the longest on land and urea excretion appears adaptive, preventing their exposure to potentially lethal levels of ammonia. Neither late embryos of Agalychnis callidryas nor nest-dwelling larvae of Engystomops pustulosus experienced toxic ammonia levels under dry conditions, and neither excreted urea. Our results suggest that an early onset of urea excretion, its increase under dry conditions, and elevated ammonia tolerance can all help prevent ammonia toxicity during terrestrial development. High ammonia represents a general risk for development which may be exacerbated as climate change increases dehydration risk for terrestrial-breeding frogs. It may also be a cue that elicits adaptive physiological responses during early development.
Collapse
Affiliation(s)
- Javier Méndez‐Narváez
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- CalimaFundación para la Investigación de la Biodiversidad y Conservación en el TrópicoCaliColombia
| | - Karen M. Warkentin
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- Smithsonian Tropical Research InstitutePanamaRepublic of Panama
| |
Collapse
|
18
|
Aranda-Morales SA, Peña-Marín ES, Jiménez-Martínez LD, Martínez-Burguete T, Martínez-Bautista G, Álvarez-Villagómez CS, De la Rosa-García S, Camarillo-Coop S, Martínez-García R, Guzmán-Villanueva LT, Álvarez-González CA. Expression of ion transport proteins and routine metabolism in juveniles of tropical gar (Atractosteus tropicus) exposed to ammonia. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109166. [PMID: 34411697 DOI: 10.1016/j.cbpc.2021.109166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Tropical gar (Atractosteus tropicus) thrives in aquatic habitats with high levels of total nitrogen (TAN) and unionized ammonia (NH3). However, the tolerance of TAN and NH3, the excretion mechanisms involved, and the effects of these chemicals on routine metabolism are still unknown. Therefore, our objectives were to assess the acute toxicity of TAN and NH3 in A. tropicus juveniles after a 96-h exposure (LC50-96 h) to NH4Cl and after chronic exposure to two concentrations (15% and 30% of LC50-96 h TAN) for 12 days, as well as to evaluate the transcriptional effects associated with Rhesus proteins (rhag, rhbg, rhcg) and ion transporters (NHE, NKA, NKCC, and CFTR) in gills and skin; and to determine the effects of TAN and NH3 on routine metabolism through oxygen consumption (μM g-1 h-1) and gill ventilation frequency (beats min-1). LC50-96 h values were 100.20 ± 11.21 mg/L for TAN and 3.756 ± 0.259 mg/L for NH3. The genes encoding Rhesus proteins and ion transporters in gills and skin showed a differential expression according to TAN concentrations and exposure time. Oxygen consumption on day 12 showed significant differences between treatments with 15% and 30% TAN. Gill ventilation frequency on day 12 was higher in fish exposed to 30% TAN. In conclusion, A. tropicus juveniles are highly tolerant to TAN, showing upregulation of the genes involved in TAN excretion through gills and skin, which affects routine oxygen consumption and energetic cost. These findings are relevant for understanding adaptations in the physiological response of a tropical ancestral air-breathing fish.
Collapse
Affiliation(s)
- Sonia A Aranda-Morales
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Emyr S Peña-Marín
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico; Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez C.P. 03940, Mexico
| | - Luis D Jiménez-Martínez
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Carretera Nacajuca-Jalpa de Méndez R/a Rivera Alta, C.P. 86200 Jalpa de Méndez, Tabasco, Mexico
| | - Talhia Martínez-Burguete
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Gil Martínez-Bautista
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Carina S Álvarez-Villagómez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Susana De la Rosa-García
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Susana Camarillo-Coop
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Rafael Martínez-García
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Laura T Guzmán-Villanueva
- Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez C.P. 03940, Mexico; Centro de Investigaciones Biológicas del Noroeste S.C., Av. Instituto Politécnico Nacional 195. Col. Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Carlos A Álvarez-González
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico.
| |
Collapse
|
19
|
Shang ZH, Huang M, Wu MX, Mi D, You K, Zhang YL. Transcriptomic analyses of the acute aerial and ammonia stress response in the gill and liver of large-scale loach (Paramisgurnus dabryanus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109185. [PMID: 34500090 DOI: 10.1016/j.cbpc.2021.109185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022]
Abstract
The large-scale loach (Paramisgurnus dabryanus) is one of the most commercially important cultured species. Ammonia nitrogen accumulation is one of the key issue which limited production and animal health in aquaculture, but few of information is available on the molecular mechanisms of ammonia detoxification. We performed transcriptomic analyses of the gill and liver of large-scale loach subjected to 48 h of aerial and ammonia exposure. We obtained 47,473,424 to 56,791,496 clean reads from the aerial exposure, ammonia exposure and control groups, assembled and clustered a total of 92,658 unigenes with an average length of 909 bp and N50 of 1787 bp. Totals of 489/145 and 424/140 differentially expressed genes (DEGs) were detected in gill/liver of large-scale loach after aerial and ammonia exposure through comparative transcriptome analyses, respectively. In addition, totals of 43 gene ontology (GO) terms and 266 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified. After aerial and ammonia exposure, amino acid metabolism pathways in liver of large-scale loach were significantly enriched, suggesting that large-scale loach responded to high exogenous and endogenous ammonia stress by enhancing amino acid metabolism. Besides, the expression of several ammonia transporters (i.e., Rhesus glycoproteins and Aquaporins) in gill of large-scale loach were markedly changed after 48 h of aerial exposure, suggesting that large-scale loach responded to high endogenous ammonia stress by regulating the expression of Rh glycoproteins and Aqps related genes in gill. The results provide valuable information on the molecular mechanism of ammonia detoxification of large-scale loach to endogenous and environmental ammonia loading, will facilitate the molecular assisted breeding of ammonia resistant varieties, and will offer beneficial efforts for establishing an environmental-friendly and sustainable aquaculture industry.
Collapse
Affiliation(s)
- Ze-Hao Shang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Meng-Xiao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Di Mi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kun You
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yun-Long Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
20
|
Zhang Y, Shang Z, Wang G, You K, Mi D. High concentrations of environmental ammonia induced changes in large-scale loach ( Paramisgurnus dabryanus) immunity. Ecol Evol 2021; 11:8614-8622. [PMID: 34257919 PMCID: PMC8258188 DOI: 10.1002/ece3.7675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/25/2023] Open
Abstract
High concentrations of environmental ammonia can cause reduced immunity and death in fish, causing enormous economic losses. Air-breathing fish usually have a high ammonia tolerance and are very suitable for high-density fish farming. However, research on the effects of environmental ammonia on air-breathing fish immunity is lacking. Therefore, this study investigated the effects of environmental ammonia on the immunity of large-scale loach (Paramisgurnus dabryanus) by exposing fish to 30 mmol/L NH4Cl solution and subsequently analyzing the changes in serum and liver immune indicators, including total protein, albumin, globulin, immunoglobulin (Ig) M, lysozyme, complement component (C) 3 and C4, heat shock protein (HSP) 70, HSP90, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-12. Results revealed that ammonia exposure significantly affected the total protein, albumin, globulin, IgM, complement C3 and C4, HSP70, HSP90, and inflammatory cytokine contents in the body, indicating that ammonia exposure induced a significant immune response and lowered bodily immunity. However, most of the immune indicators significantly decreased in the later stages of the experiment, suggesting a weakened immune response, which may be due to the species-specific ammonia detoxification ability of large-scale loach that reduces ammonia toxicity in the body.
Collapse
Affiliation(s)
- Yun‐Long Zhang
- College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Ze‐Hao Shang
- College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Guang‐Yi Wang
- College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Kun You
- College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Di Mi
- College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
21
|
Kushwaha B, Pandey M, Das P, Joshi CG, Nagpure NS, Kumar R, Kumar D, Agarwal S, Srivastava S, Singh M, Sahoo L, Jayasankar P, Meher PK, Shah TM, Hinsu AT, Patel N, Koringa PG, Das SP, Patnaik S, Bit A, Iquebal MA, Jaiswal S, Jena J. The genome of walking catfish Clarias magur (Hamilton, 1822) unveils the genetic basis that may have facilitated the development of environmental and terrestrial adaptation systems in air-breathing catfishes. DNA Res 2021; 28:6070145. [PMID: 33416875 PMCID: PMC7934567 DOI: 10.1093/dnares/dsaa031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
The walking catfish Clarias magur (Hamilton, 1822) (magur) is an important catfish species inhabiting the Indian subcontinent. It is considered as a highly nutritious food fish and has the capability to walk to some distance, and survive a considerable period without water. Assembly, scaffolding and several rounds of iterations resulted in 3,484 scaffolds covering ∼94% of estimated genome with 9.88 Mb largest scaffold, and N50 1.31 Mb. The genome possessed 23,748 predicted protein encoding genes with annotation of 19,279 orthologous genes. A total of 166 orthologous groups represented by 222 genes were found to be unique for this species. The Computational Analysis of gene Family Evolution (CAFE) analysis revealed expansion of 207 gene families and 100 gene families have rapidly evolved. Genes specific to important environmental and terrestrial adaptation, viz. urea cycle, vision, locomotion, olfactory and vomeronasal receptors, immune system, anti-microbial properties, mucus, thermoregulation, osmoregulation, air-breathing, detoxification, etc. were identified and critically analysed. The analysis clearly indicated that C. magur genome possessed several unique and duplicate genes similar to that of terrestrial or amphibians’ counterparts in comparison to other teleostean species. The genome information will be useful in conservation genetics, not only for this species but will also be very helpful in such studies in other catfishes.
Collapse
Affiliation(s)
- Basdeo Kushwaha
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Manmohan Pandey
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Paramananda Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Naresh S Nagpure
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Ravindra Kumar
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Suyash Agarwal
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Shreya Srivastava
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Mahender Singh
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Pallipuram Jayasankar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Prem K Meher
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Tejas M Shah
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Ankit T Hinsu
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Namrata Patel
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Prakash G Koringa
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Sofia P Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Siddhi Patnaik
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Amrita Bit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Mir A Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Joykrushna Jena
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
22
|
Ip YK, Teng GCY, Boo MV, Poo JST, Hiong KC, Kim H, Wong WP, Chew SF. Symbiodiniaceae Dinoflagellates Express Urease in Three Subcellular Compartments and Upregulate its Expression Levels in situ in Three Organs of a Giant Clam (Tridacna squamosa) During Illumination. JOURNAL OF PHYCOLOGY 2020; 56:1696-1711. [PMID: 32725784 DOI: 10.1111/jpy.13053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Giant clams harbor three genera of symbiotic dinoflagellates (Symbiodinium, Cladocopium, and Durusdinium) as extracellular symbionts (zooxanthellae). While symbiotic dinoflagellates can synthesize amino acids to benefit the host, they are nitrogen-deficient. Hence, the host must supply them with nitrogen including urea, which can be degraded to ammonia and carbon dioxide by urease (URE). Here, we report three complete coding cDNA sequences of URE, one for each genus of dinoflagellate, obtained from the colorful outer mantle of the giant clam, Tridacna squamosa. The outer mantle had higher transcript level of Tridacna squamosa zooxanthellae URE (TSZURE) than the whitish inner mantle, foot muscle, hepatopancreas, and ctenidium. TSZURE was immunolocalized strongly and atypically in the plastid, moderately in the cytoplasm, and weakly in the cell wall and plasma membrane of symbiotic dinoflagellates. In the outer mantle, illumination upregulated the protein abundance of TSZURE, which could enhance urea degradation in photosynthesizing dinoflagellates. The urea-nitrogen released could then augment synthesis of amino acids to be shared with the host for its general needs. Illumination also enhanced gene and protein expression levels of TSZURE/TSZURE in the inner mantle and foot muscle, which contain only small quantities of symbiotic dinoflagellate, have no iridocyte, and lack direct exposure to light. With low phototrophic potential, dinoflagellates in the inner mantle and foot muscle might need to absorb carbohydrates in order to assimilate the urea-nitrogen into amino acids. Amino acids donated by dinoflagellates to the inner mantle and the foot muscle could be used especially for synthesis of organic matrix needed for light-enhanced shell formation and muscle protein, respectively.
Collapse
Affiliation(s)
- Yuen Kwong Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Germaine Ching Yun Teng
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Mel Veen Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Jeslyn Shi Ting Poo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Kum Chew Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Hyoju Kim
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Wai Peng Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Shit Fun Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616
| |
Collapse
|
23
|
Sun YC, Han SC, Yao MZ, Wang YM, Geng LW, Wang P, Lu WH, Liu HB. High-throughput metabolomics method based on liquid chromatography-mass spectrometry: Insights into the underlying mechanisms of salinity-alkalinity exposure-induced metabolites changes in Barbus capito. J Sep Sci 2020; 44:497-512. [PMID: 33164302 DOI: 10.1002/jssc.202000861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/13/2023]
Abstract
It is critical to investigate the adaptive development and the physiological mechanism of fish in external stimulation. In this study, the response of Barbus capito to salinity-alkalinity exposure was explored by high-throughput nontargeted and liquid chromatography-mass spectrometry-based metabolomics to investigate metabolic biomarker and pathway changes. Meanwhile, the biochemical indexes of Barbus capito were measured to discover the chronic impairment response to salinity-alkalinity exposures. A total of 29 tissue metabolites were determined to deciphering the endogenous metabolic changes of fishes during the different concentration salinity-alkalinity exposures environment, which were mainly involved in the key metabolism including the phenylalanine, tyrosine, and tryptophan biosynthesis, arachidonic acid metabolism, pyruvate metabolism, citrate cycle, and glycerophospholipid metabolism. Finally, we found the amino acid metabolism as key target was associated with the endogenous metabolites and metabolic pathways of Barbus capito to salinity-alkalinity exposures. In conclusion, metabolomics is a potentially powerful tool to reveal the mechanism information of fish in various exposure environments.
Collapse
Affiliation(s)
- Yan-Chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Shi-Cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Ming-Zhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China.,Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P. R. China
| | - Yu-Mei Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Long-Wu Geng
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Wei-Hong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Hong-Bai Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| |
Collapse
|
24
|
Badamasi I, Odong R, Masembe C. Gonadal development and intersex condition of marbled lungfish, Protopterus aethiopicus (Heckel, 1851), in contaminated sites in Lake Victoria, Uganda. AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2020.1811152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Inuwa Badamasi
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
| | - Robinson Odong
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
| | - Charles Masembe
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
25
|
Introducing the Amphibious Mudskipper Goby as a Unique Model to Evaluate Neuro/Endocrine Regulation of Behaviors Mediated by Buccal Sensation and Corticosteroids. Int J Mol Sci 2020; 21:ijms21186748. [PMID: 32938015 PMCID: PMC7555618 DOI: 10.3390/ijms21186748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022] Open
Abstract
Some fish have acquired the ability to breathe air, but these fish can no longer flush their gills effectively when out of water. Hence, they have developed characteristic means for defense against external stressors, including thirst (osmolarity/ions) and toxicity. Amphibious fish, extant air-breathing fish emerged from water, may serve as models to examine physiological responses to these stressors. Some of these fish, including mudskipper gobies such as Periophthalmodon schlosseri, Boleophthalmus boddarti and our Periophthalmus modestus, display distinct adaptational behaviors to these factors compared with fully aquatic fish. In this review, we introduce the mudskipper goby as a unique model to study the behaviors and the neuro/endocrine mechanisms of behavioral responses to the stressors. Our studies have shown that a local sensation of thirst in the buccal cavity—this being induced by dipsogenic hormones—motivates these fish to move to water through a forebrain response. The corticosteroid system, which is responsive to various stressors, also stimulates migration, possibly via the receptors in the brain. We suggest that such fish are an important model to deepen insights into the stress-related neuro/endocrine-behavioral effects.
Collapse
|
26
|
Chew SF, Tan SZL, Ip SCY, Pang CZ, Hiong KC, Ip YK. The Non-ureogenic Stinging Catfish, Heteropneustes fossilis, Actively Excretes Ammonia With the Help of Na +/K +-ATPase When Exposed to Environmental Ammonia. Front Physiol 2020; 10:1615. [PMID: 32038295 PMCID: PMC6987325 DOI: 10.3389/fphys.2019.01615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/23/2019] [Indexed: 11/25/2022] Open
Abstract
The stinging catfish, Heteropneustes fossilis, can tolerate high concentrations of environmental ammonia. Previously, it was regarded as ureogenic, having a functional ornithine-urea cycle (OUC) that could be up-regulated during ammonia-loading. However, contradictory results indicated that increased urea synthesis and switching to ureotelism could not explain its high ammonia tolerance. Hence, we re-examined the effects of exposure to 30 mmol l–1 NH4Cl on its ammonia and urea excretion rates, and its tissue ammonia and urea concentrations. Our results confirmed that H. fossilis did not increase urea excretion or accumulation during 6 days of ammonia exposure, and lacked detectable carbamoyl phosphate synthetase I or III activity in its liver. However, we discovered that it could actively excrete ammonia during exposure to 8 mmol l–1 NH4Cl. As active ammonia excretion is known to involve Na+/K+-ATPase (Nka) indirectly in several ammonia-tolerant fishes, we also cloned various nkaα-subunit isoforms from the gills of H. fossilis, and determined the effects of ammonia exposure on their branchial transcripts levels and protein abundances. Results obtained revealed the presence of five nkaα-subunit isoforms, with nkaα1b having the highest transcript level. Exposure to 30 mmol l–1 NH4Cl led to significant increases in the transcript levels of nkaα1b (on day 6) and nkaα1c1 (on day 1 and 3) as compared with the control. In addition, the protein abundances of Nkaα1c1, Nkaα1c2, and total NKAα increased significantly on day 6. Therefore, the high environmental ammonia tolerance of H. fossilis is attributable partly to its ability to actively excrete ammonia with the aid of Nka.
Collapse
Affiliation(s)
- Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Stephanie Z L Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sabrina C Y Ip
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Caryn Z Pang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Sun YC, Han SC, Yao MZ, Liu HB, Wang YM. Exploring the metabolic biomarkers and pathway changes in crucian under carbonate alkalinity exposure using high-throughput metabolomics analysis based on UPLC-ESI-QTOF-MS. RSC Adv 2020; 10:1552-1571. [PMID: 35494719 PMCID: PMC9047290 DOI: 10.1039/c9ra08090b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
The aims of this study is to explore the metabolomic biomarker and pathway changes in crucian under carbonate alkalinity exposures using high-throughput metabolomics analysis based on ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (UPLC-ESI-QTOF-MS) for carrying out adaptive evolution of fish in environmental exposures and understanding molecular physiological mechanisms of saline–alkali tolerance in fishes. Under 60 day exposure management, the UPLC-ESI-QTOF-MS technology, coupled with a pattern recognition approach and metabolic pathway analysis, was utilized to give insight into the metabolic biomarker and pathway changes. In addition, biochemical parameters in response to carbonate alkalinity in fish were detected for chronic impairment evaluation. A total of twenty-seven endogenous metabolites were identified to distinguish the biochemical changes in fish in clean water under exposure to different concentrations of carbonate alkalinity (CA); these mainly involved amino acid synthesis and metabolism, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism, pyruvate metabolism and the citrate cycle (TCA cycle). Compared with the control group, CA exposure increased the level of blood ammonia; TP; ALB; Gln in the liver and gills; GS; urea in blood, the liver and gills; CREA; CPS; Glu and LDH; and decreased the level of weight gain rate, oxygen consumption, discharge rate of ammonia, SOD, CAT, ALT, AST and Na+/K+-ATPase. At low concentrations, CA can change the normal metabolism of fish in terms of changing the osmotic pressure regulation capacity, antioxidant capacity, ammonia metabolism and liver and kidney function to adapt to the CA exposure environment. As the concentration of CA increases, various metabolic processes in crucian are inhibited, causing chronic damage to the body. The results show that the metabolomic strategy is a potentially powerful tool for identifying the mechanisms in response to different environmental exposomes and offers precious information about the chronic response of fish to CA. We explore the metabolic biomarker and pathway changes accompanying the adaptive evolution of crucian subjected to carbonate alkalinity exposure, using UPLC-ESI-QTOF-MS, in order to understand the molecular physiological mechanisms of saline–alkali tolerance.![]()
Collapse
Affiliation(s)
- Yan-chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Shi-cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Ming-zhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Hong-bai Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Yu-mei Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| |
Collapse
|
28
|
Zhang W, Xie HQ, Zou X, Li J, Xu L, Li Y, Zhou Z, Jin T, Ma D, Zhao B. The toxic effects of in situ exposure of a native fish species (Anabas testudineus) to electronic waste pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1170-1177. [PMID: 31470480 DOI: 10.1016/j.scitotenv.2019.06.479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
In recent decades, crude recycling of electronic waste (e-waste) has caused serious pollution and threatened wild organisms in certain regions. It is therefore valuable to investigate the pollution-induced toxic effects in situ using native fish species. Unlike the death or decline observed in other species, Anabas testudineus can better adapt to severe e-waste pollution. Using it as a model, the true status of this wild organism was revealed. We collected A. testudineus from two polluted sites (st1 and st2) and conducted transcriptome analyses of the liver, gill, and kidney. Clear whole-transcriptome differences were found between polluted and clean sites and between differentially polluted sites (st1 and st2). Pathway analysis revealed that long-term e-waste pollution would cause significant hypoxia, oxidative stress, and potentially apoptosis. Accordingly, several defensive responses were elicited including 'oxidation-reduction' and the 'unfolded protein response'. Certain biological processes, including 'DNA repair' and 'endoplasmic reticulum stress response', were altered in a tissue- or burden-specific pattern suggesting transcriptome plasticity in response to distinct burdens. This study revealed the toxic impacts of e-waste pollution on wild organisms using a native fish species. Additionally, due to its highly adaptive nature, A. testudineus could be a suitable test species for such severe conditions in the wild or otherwise.
Collapse
Affiliation(s)
- Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianghui Zou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Jiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Tao Jin
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China; BGI-Qingdao, Qingdao 266510, China
| | - Dan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Zhang W, Xie HQ, Li Y, Zou X, Xu L, Ma D, Li J, Ma Y, Jin T, Hahn ME, Zhao B. Characterization of the Aryl Hydrocarbon Receptor (AhR) Pathway in Anabas testudineus and Mechanistic Exploration of the Reduced Sensitivity of AhR2a. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12803-12811. [PMID: 31566365 PMCID: PMC6832778 DOI: 10.1021/acs.est.9b04181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Field investigations have revealed the ability of the climbing perch Anabas testudineus to survive in highly contaminated water bodies. The aryl hydrocarbon receptor (AhR) pathway is vital in mediating the toxicity of aromatic hydrocarbon contaminants, and genotypic variation in the AhR can confer resistance to these contaminants. Thus, we characterized the AhR pathway in A. testudineus in order to understand the mechanism(s) underlying the resistance of this species to contaminants and to broaden current knowledge on teleost AhR. In A. testudineus, four AhRs, two AhR nuclear translocators (ARNTs), and one AhR repressor (AhRR) were found. Transient transfection assays revealed that AhR1a, AhR1b, and AhR2b were functional, whereas AhR2a was poorly activated by the potent agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Two ARNTs (partner of AhR) and one AhRR (repressor of AhR) all were functional with each of the active AhR. As a major form, the insensitivity of AhR2a might serve as a potential mechanism for A. testudineus' reduced sensitivity to severe contamination. We explored the key residues that may account for AhR2a's insensitivity in silico and then functionally validated them in vitro. Two sites (VCS322-324, M370) in its ligand-binding domain (LBD) were proved critical for its sensitivity to TCDD. This systematic exploration of the AhR pathway showed that most members have maintained their traditional functions as expected, whereas a nonfunctionalization event has occurred for AhR2a.
Collapse
Affiliation(s)
- Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianghui Zou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongchao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jin
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- BGI-Qingdao, Qingdao 266510, China
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA
- Boston University Superfund Research Program, Boston University, Boston, MA 02118, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Zhang W, Xie HQ, Li Y, Jin T, Li J, Xu L, Zhou Z, Zhang S, Ma D, Hahn ME, Zhao B. Transcriptomic analysis of Anabas testudineus and its defensive mechanisms in response to persistent organic pollutants exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:621-630. [PMID: 30893621 PMCID: PMC6581032 DOI: 10.1016/j.scitotenv.2019.02.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 06/02/2023]
Abstract
The freshwater climbing perch (Anabas testudineus) can tolerate water environments contaminated with persistent organic pollutants (POPs). The mechanisms underlying this tolerance are unknown. We used de novo transcriptomic analysis to investigate the defensive mechanisms of A. testudineus against POPs based on its genetic features and biological responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. Our results revealed a specific expansion of cytochrome P450 (CYP) 3A subfamily, which may be involved in the elimination of certain POPs. In xenobiotic responses, the aryl-hydrocarbon receptor (AhR) pathway represents a critical signaling mechanism, and we characterized four AhR and two AhR nuclear translocator homologs and one AhR repressor (AhRR) gene in A. testudineus. TCDD-induced AhRR and CYP1A mRNA upregulation suggests that negative-feedback regulation of AhR signaling through AhRR helps avoid excessive xenobiotic responses. Furthermore, liver and gill transcriptomic profiles were markedly altered after TCDD exposure, with some of the altered genes being related to common defensive responses reported in other species. Based on the newly identified TCDD-altered genes, several A. testudineus-specific responses are proposed, such as enhanced fatty acid β-oxidation. The genetic features of CYP3A subfamily and AhR pathway and the TCDD-induced defensive biological processes elucidated here enhance our understanding of A. testudineus defensive responses against POPs.
Collapse
Affiliation(s)
- Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jin
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China; BGI-Qingdao, Qingdao 266510, China
| | - Jiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Songyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mark E Hahn
- Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA; Boston University Superfund Research Program, Boston University, Boston, MA 02118, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Miyake T, Aihara N, Maeda K, Shinzato C, Koyanagi R, Kobayashi H, Yamahira K. Bloodmeal host identification with inferences to feeding habits of a fish-fed mosquito, Aedes baisasi. Sci Rep 2019; 9:4002. [PMID: 30850720 PMCID: PMC6408532 DOI: 10.1038/s41598-019-40509-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/18/2019] [Indexed: 01/20/2023] Open
Abstract
The mosquito, Aedes baisasi, which inhabits brackish mangrove swamps, is known to feed on fish. However, its host assemblage has not been investigated at the species level. We amplified and sequenced the cytochrome oxidase subunit I barcoding regions as well as some other regions from blood-fed females to identify host assemblages in the natural populations from four islands in the Ryukyu Archipelago. Hosts were identified from 230 females. We identified 15 host fish species belonging to eight families and four orders. Contrary to expectations from previous observations, mudskippers were detected from only 3% of blood-engorged females. The dominant host was a four-eyed sleeper, Bostrychus sinensis (Butidae, Gobiiformes), in Iriomote-jima Island (61%), while it was a snake eel, Pisodonophis boro (Ophichthidae, Anguilliformes), in Amami-oshima and Okinawa-jima islands (78% and 79%, respectively). Most of the identified hosts were known as air-breathing or amphibious fishes that inhabit mangroves or lagoons. Our results suggest that A. baisasi females locate the bloodmeal hosts within the mangrove forests and sometimes in the adjacent lagoons and land on the surface of available amphibious or other air-breathing fishes exposed in the air to feed on their blood.
Collapse
Affiliation(s)
- Takashi Miyake
- Faculty of Education, Gifu University, Gifu, 501-1193, Japan.
| | - Natsuki Aihara
- Faculty of Education, Gifu University, Gifu, 501-1193, Japan
| | - Ken Maeda
- Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Ryo Koyanagi
- Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, 904-0495, Japan
| | - Hirozumi Kobayashi
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
32
|
Zhang YL, Wang GY, Zhang ZH, Xie YY, Jin H, Dong ZR. Partial Amino Acid Metabolism and Glutamine Synthesis as the Ammonia Defensive Strategies During Aerial Exposure in Chinese Loach Paramisgurnus dabryanus. Front Physiol 2019; 10:14. [PMID: 30761010 PMCID: PMC6362400 DOI: 10.3389/fphys.2019.00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
The Paramisgurnus dabryanus was exposed to air to assess the changes in plasma, liver and muscle free amino acid (FAA) contents. The FAA concentrations in plasma, liver and muscle of P. dabryanus were significantly affected by aerial exposure (P < 0.05). After 12 h of aerial exposure, the plasma glutamate contents increased significantly (P < 0.05) and reached peak value at 24 h of air exposure. With increasing air exposure time, the plasma alanine contents increased significantly and more dramatically than the control values (P < 0.05). From 24 to 48 h of aerial exposure, the liver free glutamate contents increased significantly and reached the peak value at 48 h of air exposure (P < 0.05). The liver free alanine contents in air exposure group were markedly higher than these values in the control group (P < 0.05). After 72 h of air exposure, the muscle free glutamate contents increased markedly (P < 0.05) and were significantly higher than the control values (P < 0.05). The muscle free alanine contents remained at constant values during the first 12 h of aerial exposure (P > 0.05), thereafter, these concentrations increased significantly until the end of experiment (P < 0.05). Our results showed that glutamate and NH4+ could be used to synthesize glutamine via glutamine synthetase to convert internal ammonia into non-toxic glutamine in P. dabryanus during air exposure. Furthermore, the P. dabryanus could catabolize several certain amino acids, leading alanine form to reduce endogenous ammonia production. The decrease in tissue free glutamate, arginine and proline in P. dabryanus indicated that these certain amino acids should be the starting substrate to be converted to alanine and energy.
Collapse
Affiliation(s)
- Yun-Long Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Guang-Yi Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zi-Han Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yun-Yi Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hui Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhao-Ran Dong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
33
|
Abstract
During water-land transition, ancient fishes acquired the ability to breathe air, but air-breathing engendered problems in nitrogenous waste excretion. Nitrogen is a fundamental component of amino acids, proteins, and nucleic acids, and the degradation of these nitrogen-containing compounds releases ammonia. Ammonia is toxic and must be removed. Fishes in water excrete ammonia as the major nitrogenous waste through gills, but gills of air-breathing fishes are modified for air-breathing or largely replaced by air-breathing organs. Notably, fishes emerged from water can no longer excrete ammonia effectively because of a lack of water to flush the gills. Hence, ancient fishes that participated in water-land transition must have developed means to deal with ammonia toxicity. Extant air-breathing fishes, particularly amphibious ones, can serve as models to examine adaptations which might have facilitated the emergence of ancient fishes from water. Some of these fishes can actively emerge from water and display complex behaviors on land, while a few can burrow into mud and survive for years during drought. Many of them are equipped with mechanisms to ameliorate ammonia toxicity during emersion. In this review, the mechanisms adopted by air-breathing fishes to deal with ammonia toxicity during emersion were organized into seven disparate strategies. In addition, eight extant air-breathing fishes with distinctive terrestrial behaviors and peculiar natural habitats were selected to describe in detail how these seven strategies could be adopted in disparate combinations to ameliorate ammonia toxicity during emersion.
Collapse
|
34
|
You X, Chen J, Bian C, Yi Y, Ruan Z, Li J, Zhang X, Yu H, Xu J, Shi Q. Transcriptomic evidence of adaptive tolerance to high environmental ammonia in mudskippers. Genomics 2018; 110:404-413. [PMID: 30261316 DOI: 10.1016/j.ygeno.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/09/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
Abstract
Mudskippers are typical amphibious fishes and possess various strategies to ameliorate ammonia toxicity during exposure to environmental ammonia. The present study aimed to provide transcriptomic evidence through profiling the gill and liver transcriptomes of Boleophthalmus pectinirostris (BP) and Periophthalmus magnuspinnatus (PM), which were subjected to treatment with high environmental ammonia for up to 72 h. The results of gene function annotation showed that most of the differentially expressed genes were involved in metabolic pathways. After ammonia exposure, the protein and amino acid metabolism related genes in mudskippers were down-regulated, and PM had more down-regulated genes than BP. The expression levels of several representative genes involved in ammonia excretion in the gill were commonly increased. Interestingly, NH4+ transporting and H+ excreting related genes, including Na+/K+(NH4+)/2Cl- cotransporter (nkcc), Na+/K+(NH4+)-ATPase (nka), carbonic anhydrase 2 (ca2), H+-ATPase, Na+/H+ (NH4+)-exchanger (nhe), and carbonic anhydrase 15 (ca15), were up-regulated more significantly in BP than PM; however, the transcription levels of Rhesus glucoprotein b (Rhbg) and Rhesus glucoprotein c1 (Rhcg1), which constitute the NH3 transporting channels, were up-regulated more significantly in PM than BP. Furthermore, the present study provides molecular evidence for how mudskippers adopt partial amino acid catabolism to decrease the production of endogenous ammonia under high environmental ammonia loading.
Collapse
Affiliation(s)
- Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China.
| | - Jieming Chen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Yunhai Yi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Hui Yu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China; BGI Zhenjiang Institute of Hydrobiology, Zhenjiang, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China; BGI Zhenjiang Institute of Hydrobiology, Zhenjiang, China; Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
35
|
Boo MV, Hiong KC, Goh EJK, Choo CYL, Wong WP, Chew SF, Ip YK. The ctenidium of the giant clam, Tridacna squamosa, expresses an ammonium transporter 1 that displays light-suppressed gene and protein expression and may be involved in ammonia excretion. J Comp Physiol B 2018; 188:765-777. [DOI: 10.1007/s00360-018-1161-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/03/2018] [Accepted: 04/15/2018] [Indexed: 01/31/2023]
|
36
|
Chan CYL, Hiong KC, Boo MV, Choo CYL, Wong WP, Chew SF, Ip YK. Light exposure enhances urea absorption in the fluted giant clam, Tridacna squamosa, and up-regulates the protein abundance of a light-dependent urea active transporter, DUR3-like, in its ctenidium. J Exp Biol 2018; 221:jeb176313. [PMID: 29540461 DOI: 10.1242/jeb.176313] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Giant clams live in nutrient-poor reef waters of the Indo-Pacific and rely on symbiotic dinoflagellates (Symbiodinium spp., also known as zooxanthellae) for nutrients. As the symbionts are nitrogen deficient, the host clam has to absorb exogenous nitrogen and supply it to them. This study aimed to demonstrate light-enhanced urea absorption in the fluted giant clam, Tridacna squamosa, and to clone and characterize the urea active transporter DUR3-like from its ctenidium (gill). The results indicate that T. squamosa absorbs exogenous urea, and the rate of urea uptake in the light was significantly higher than that in darkness. The DUR3-like coding sequence obtained from its ctenidium comprised 2346 bp, encoding a protein of 782 amino acids and 87.0 kDa. DUR3-like was expressed strongly in the ctenidium, outer mantle and kidney. Twelve hours of exposure to light had no significant effect on the transcript level of ctenidial DUR3-like However, between 3 and 12 h of light exposure, DUR3-like protein abundance increased progressively in the ctenidium, and became significantly greater than that in the control at 12 h. DUR3-like had an apical localization in the epithelia of the ctenidial filaments and tertiary water channels. Taken together, these results indicate that DUR3-like might participate in light-enhanced urea absorption in the ctenidium of T. squamosa When made available to the symbiotic zooxanthellae that are known to possess urease, the absorbed urea can be metabolized to NH3 and CO2 to support amino acid synthesis and photosynthesis, respectively, during insolation.
Collapse
Affiliation(s)
- Christabel Y L Chan
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Celine Y L Choo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
- The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119227, Republic of Singapore
| |
Collapse
|
37
|
Chen XL, Zhang B, Chng YR, Ong JLY, Chew SF, Wong WP, Lam SH, Ip YK. Na +/H + Exchanger 3 Is Expressed in Two Distinct Types of Ionocyte, and Probably Augments Ammonia Excretion in One of Them, in the Gills of the Climbing Perch Exposed to Seawater. Front Physiol 2017; 8:880. [PMID: 29209224 PMCID: PMC5701670 DOI: 10.3389/fphys.2017.00880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/18/2017] [Indexed: 01/22/2023] Open
Abstract
The freshwater climbing perch, Anabas testudineus, is an euryhaline teleost and an obligate air-breather with the ability to actively excrete ammonia. Members of the Na+/H+ exchanger (NHE) family help maintain intracellular pH homeostasis and ionic balance through the electroneutral exchange of Na+ and H+. This study aimed to obtain, from the gills of A. testudineus, the full cDNA coding sequence of nhe3, and to determine the effects of exposure to seawater or 100 mmol l-1 of NH4Cl in fresh water on its mRNA and protein expression levels. Efforts were also made to elucidate the type of ionocyte that Nhe3 was associated with in the branchial epithelium of A. testudineus. The transcript level and protein abundance of nhe3/Nhe3 were very low in the gills of freshwater A. testudineus, but they increased significantly in the gills of fish acclimated to seawater. In the gills of fish exposed to seawater, Nhe3 was expressed in two distinct types of seawater-inducible Na+/K+-ATPase (Nka)-immunoreactive ionocytes. In Nkaα1b-immunoreactive ionocytes, Nhe3 had an apical localization. As these ionocytes also expressed apical Rhcg1 and basolateral Rhcg2, which are known to transport ammonia, they probably participated in proton-facilitated ammonia excretion in A. testudineus during seawater acclimation. In Nkaα1c-immunoreactive ionocytes, Nhe3 was atypically expressed in the basolateral membrane, and its physiological function is uncertain. For A. testudineus exposed to NH4Cl in fresh water, the transcript and protein expression levels of nhe3/Nhe3 remained low. In conclusion, the branchial Nhe3 of A. testudineus plays a greater physiological role in passive ammonia transport and acid-base balance during seawater acclimation than in active ammonia excretion during environmental ammonia exposure.
Collapse
Affiliation(s)
- Xiu L. Chen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Biyan Zhang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - You R. Chng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Wright PA, Turko AJ. Amphibious fishes: evolution and phenotypic plasticity. ACTA ACUST UNITED AC 2017; 219:2245-59. [PMID: 27489213 DOI: 10.1242/jeb.126649] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/29/2016] [Indexed: 12/25/2022]
Abstract
Amphibious fishes spend part of their life in terrestrial habitats. The ability to tolerate life on land has evolved independently many times, with more than 200 extant species of amphibious fishes spanning 17 orders now reported. Many adaptations for life out of water have been described in the literature, and adaptive phenotypic plasticity may play an equally important role in promoting favourable matches between the terrestrial habitat and behavioural, physiological, biochemical and morphological characteristics. Amphibious fishes living at the interface of two very different environments must respond to issues relating to buoyancy/gravity, hydration/desiccation, low/high O2 availability, low/high CO2 accumulation and high/low NH3 solubility each time they traverse the air-water interface. Here, we review the literature for examples of plastic traits associated with the response to each of these challenges. Because there is evidence that phenotypic plasticity can facilitate the evolution of fixed traits in general, we summarize the types of investigations needed to more fully determine whether plasticity in extant amphibious fishes can provide indications of the strategies used during the evolution of terrestriality in tetrapods.
Collapse
Affiliation(s)
- Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Andy J Turko
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
39
|
Chen XL, Zhang B, Chng YR, Ong JLY, Chew SF, Wong WP, Lam SH, Nakada T, Ip YK. Ammonia exposure affects the mRNA and protein expression levels of certain Rhesus glycoproteins in the gills of climbing perch. ACTA ACUST UNITED AC 2017; 220:2916-2931. [PMID: 28576822 DOI: 10.1242/jeb.157123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
The freshwater climbing perch, Anabas testudineus, is an obligate air-breathing and euryhaline teleost capable of active ammonia excretion and tolerant of high concentrations of environmental ammonia. As Rhesus glycoproteins (RhGP/Rhgp) are known to transport ammonia, this study aimed to obtain the complete cDNA coding sequences of various rhgp isoforms from the gills of A. testudineus, and to determine their mRNA and protein expression levels during 6 days of exposure to 100 mmol l-1 NH4Cl. The subcellular localization of Rhgp isoforms in the branchial epithelium was also examined in order to elucidate the type of ionocyte involved in active ammonia excretion. Four rhgp (rhag, rhbg, rhcg1 and rhcg2) had been identified from the gills of A. testudineus They had conserved amino acid residues for NH4+ binding, NH4+ deprotonation, channel gating and lining of the vestibules. Despite inwardly directed NH3 and NH4+ gradients, there were significant increases in the mRNA expression levels of the four branchial rhgp in A. testudineus at certain time points during 6 days of ammonia exposure, with significant increases in the protein abundances of Rhag and Rhcg2 on day 6. Immunofluorescence microscopy revealed a type of ammonia-inducible Na+/K+-ATPase α1c-immunoreactive ionocyte with apical Rhag and basolateral Rhcg2 in the gills of fish exposed to ammonia for 6 days. Hence, active ammonia excretion may involve NH4+ entering the ionocyte through the basolateral Rhcg2 and being excreted through the apical Rhag, driven by a transapical membrane electrical potential generated by the apical cystic fibrosis transmembrane conductance regulator Cl- channel, as suggested previously.
Collapse
Affiliation(s)
- Xiu L Chen
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Biyan Zhang
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - You R Chng
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Jasmine L Y Ong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Siew H Lam
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.,NUS Environmental Research Institute, National University of Singapore, Kent Ridge, Singapore 117411, Republic of Singapore
| | - Tsutomu Nakada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| |
Collapse
|
40
|
Zhang YL, Zhang HL, Wang LY, Gu BY, Fan QX. Changes of ammonia, urea contents and transaminase activity in the body during aerial exposure and ammonia loading in Chinese loach Paramisgurnus dabryanus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:631-640. [PMID: 27889848 DOI: 10.1007/s10695-016-0317-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
The Paramisgurnus dabryanus was exposed to 30 mmol L-1 NH4Cl solution and air to assessing the change of body ammonia and urea contents and the activities of alanine aminotransferase (ALT) and aspartate transaminase (AST). After 48 h of ammonia exposure, ammonia concentration in the plasma, brain, liver and muscle were 3.3-fold, 5.6-fold, 3.5-fold and 4.2-fold, respectively, those of the control values. Plasma, brain, liver and muscle ammonia concentrations increased to 2.2-fold, 3.3-fold, 2.5-fold and 2.9-fold, respectively, those of control values in response to 48 h of aerial exposure. Within the given treatment (ammonia or aerial exposure), there was no change in plasma, brain and liver urea concentrations between exposure durations. The plasma ALT activity was significantly affected by exposure time during aerial exposure, while the liver ALT activity was not affected by ammonia or aerial exposure. Exposure to NH4Cl or air had no effect on either plasma or liver AST activity. Our results suggested that P. dabryanus could accumulate quite high level of internal ammonia because of the high ammonia tolerance in its cells and tissues, and NH3 volatilization would be a possible ammonia detoxification strategy in P. dabryanus. Urea synthesis was not an effective mechanism to deal with environmental or internal ammonia problem. The significant increase of ALT activity in plasma during aerial exposure, indicating that alanine synthesis through certain amino acid catabolism may be subsistent in P. dabryanus.
Collapse
Affiliation(s)
- Yun-Long Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Hai-Long Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling-Yu Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bei-Yi Gu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi-Xue Fan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
41
|
Yeam CT, Chng YR, Ong JLY, Wong WP, Chew SF, Ip YK. Molecular characterization of two Rhesus glycoproteins from the euryhaline freshwater white-rimmed stingray, Himantura signifer, and changes in their transcript levels and protein abundance in the gills, kidney, and liver during brackish water acclimation. J Comp Physiol B 2017; 187:911-929. [PMID: 28324156 DOI: 10.1007/s00360-017-1067-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/05/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
Himantura signifer is a freshwater stingray which inhabits rivers in Southeast Asia. It is ammonotelic in fresh water, but retains the capacities of urea synthesis and ureosmotic osmoregulation to survive in brackish water. This study aimed to elucidate the roles of Rhesus glycoproteins (Rhgp), which are known to transport ammonia, in conserving nitrogen (N) in H. signifer during brackish water acclimation when N became limited resulting from increased hepatic urea synthesis. The complete coding sequence of rhbg from H. signifer consisted of 1383 bp, encoding 460 amino acids with an estimated molecular mass of 50.5 kDa, while that of rhcg comprised 1395 bp, encoding for 464 amino acids with an estimated molecular mass of 50.8 kDa. The deduced amino sequences of Rhbg and Rhcg contained ammonia binding sites, which could recruit NH4+ to be deprotonated, and a hydrophobic pore with two histidine residues, which could mediate the transport of NH3. Our results indicated for the first time that brackish water acclimation resulted in significant decreases in the expression levels of rhbg/Rhbg and rhcg/Rhcg in the gills of H. signifer, which offered a mechanistic explanation of brackish water-related decreased ammonia excretion reported elsewhere. Furthermore, rhbg/Rhbg expression levels increased significantly in the liver of H. signifer during brackish water acclimation, indicating that the ammonia produced by extra-hepatic tissues and released into the blood could be channeled into the liver for increased urea synthesis. Overall, these results lend support to the proposition that H. signifer becomes N-limited upon utilizing urea as an osmolyte in brackish water.
Collapse
Affiliation(s)
- Cheng T Yeam
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543, Singapore
| | - You R Chng
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543, Singapore
| | - Jasmine L Y Ong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543, Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543, Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543, Singapore. .,The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore, 119227, Singapore.
| |
Collapse
|
42
|
Sun J, Zhang R, Qin L, Zhu H, Huang Y, Xue Y, An S, Xie X, Li A. Genotoxicity and cytotoxicity reduction of the polluted urban river after ecological restoration: a field-scale study of Jialu River in northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6715-6723. [PMID: 28091988 DOI: 10.1007/s11356-016-8352-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
To further treat the reclaimed municipal wastewater and rehabilitate the aquatic ecosystem of polluted urban rivers, an 18.5-km field-scale ecological restoration project was constructed along Jialu River, a polluted urban river which receives only reclaimed municipal wastewater from Zhengzhou City without natural upland water dilution. This study investigated the potential efficiency of water quality improvement, as well as genotoxicity and cytotoxicity reduction along the ecological restoration project of this polluted urban river. Results showed that the chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) of the reclaimed municipal effluent were reduced by more than 45 and 70%, respectively, meeting the Chinese surface water environmental quality standard level IV, while the total phosphorus and metal concentrations had no significant reduction along the restoration project, and Pb concentrations in all river water samples exceeded permissible limit in drinking water set by WHO (2006) and China (GB5749-2006). The in vitro SOS/umu assay showed 4-nitroquinoline-1-oxide equivalent (4-NQO-EQ) values of reclaimed municipal wastewater of 0.69 ± 0.05 μg/L in April and 0.68 ± 0.06 μg/L in December, respectively, indicating the presence of genotoxic compounds. The results of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and hepatic cell apoptosis in zebrafish after a chorionic long-term (21 days) in vivo exposure also demonstrated that the reclaimed municipal wastewater caused significant DNA oxidative damage and cytotoxicity. After the ecological purification of 18.5-km field-scale restoration project, the genotoxicity assessed by in vitro assay was negligible, while the DNA oxidative damage and cytotoxicity in exposed fish were still significantly elevated. The mechanisms of DNA oxidative damage and cytotoxicity caused by the reclaimed municipal wastewater need further study.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Rui Zhang
- School of Resources and Environment, University of Jinan, Jinan, Shandong, 250022, China
| | - Long Qin
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Haixiao Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Yu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Yingang Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
- Changzhou Environmental Monitoring Center, Changzhou, Jiangsu, People's Republic of China
| | - Shuqing An
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
43
|
Chng YR, Ong JLY, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Lam SH, Ip YK. Aestivation Induces Changes in the mRNA Expression Levels and Protein Abundance of Two Isoforms of Urea Transporters in the Gills of the African Lungfish, Protopterus annectens. Front Physiol 2017; 8:71. [PMID: 28261105 PMCID: PMC5311045 DOI: 10.3389/fphys.2017.00071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/26/2017] [Indexed: 11/26/2022] Open
Abstract
The African lungfish, Protopterus annectens, is ammonotelic in water despite being ureogenic. When it aestivates in mucus cocoon on land, ammonia is detoxified to urea. During the maintenance phase of aestivation, urea accumulates in the body, which is subsequently excreted upon arousal. Urea excretion involves urea transporters (UT/Ut). This study aimed to clone and sequence the ut isoforms from the gills of P. annectens, and to test the hypothesis that the mRNA and/or protein expression levels of ut/Ut isoforms could vary in the gills of P. annectens during the induction, maintenance, and arousal phases of aestivation. Two isoforms of ut, ut-a2a and ut-a2b, were obtained from the gills of P. annectens. ut-a2a consisted of 1227 bp and coded for 408 amino acids with an estimated molecular mass of 44.7 kDa, while ut-a2b consisted of 1392 bp and coded for 464 amino acids with an estimated molecular mass of 51.2 kDa. Ut-a2a and Ut-a2b of P. annectens had a closer phylogenetic relationship with Ut/UT of tetrapods than Ut of fishes. While the mRNA expression pattern of ut-a2a and ut-a2b across various tissues of P. annectens differed, the transcript levels of ut-a2a and ut-a2b in the gills were comparable, indicating that they might be equally important for branchial urea excretion during the initial arousal phase of aestivation. During the maintenance phase of aestivation, the transcript level of ut-a2a increased significantly, but the protein abundance of Ut-a2a remained unchanged in the gills of P. annectens. This could be an adaptive feature to prepare for an increase in the production of Ut-a2a upon arousal. Indeed, arousal led to a significant increase in the branchial Ut-a2a protein abundance. Although the transcript level of ut-a2b remained unchanged, there were significant increases in the protein abundance of Ut-a2b in the gills of P. annectens throughout the three phases of aestivation. The increase in the protein abundance of Ut-a2b during the maintenance phase could also be an adaptive feature to prepare for efficient urea excretion when water becomes available.
Collapse
Affiliation(s)
- You R. Chng
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Xiu L. Chen
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
- NUS Environmental Research Institute, National University of SingaporeSingapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| |
Collapse
|
44
|
Hangzo H, Banerjee B, Saha S, Saha N. Ammonia stress under high environmental ammonia induces Hsp70 and Hsp90 in the mud eel, Monopterus cuchia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:77-88. [PMID: 27492114 DOI: 10.1007/s10695-016-0269-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The obligatory air-breathing mud eel (Monopterus cuchia) is frequently being challenged with high environmental ammonia (HEA) exposure in its natural habitats. The present study investigated the possible induction of heat shock protein 70 and 90 (hsp70, hsc70, hsp90α and hsp90β) genes and more expression of Hsp70 and Hsp90 proteins under ammonia stress in different tissues of the mud eel after exposure to HEA (50 mM NH4Cl) for 14 days. HEA resulted in significant accumulation of toxic ammonia in different body tissues and plasma, which was accompanied with the stimulation of oxidative stress in the mud eel as evidenced by more accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) during exposure to HEA. Further, hyper-ammonia stress led to significant increase in the levels of mRNA transcripts for inducible hsp70 and hsp90α genes and also their translated proteins in different tissues probably as a consequence of induction of hsp70 and hsp90α genes in the mud eel. However, hyper-ammonia stress was neither associated with any significant alterations in the levels of mRNA transcripts for constitutive hsc70 and hsp90β genes nor their translated proteins in any of the tissues studied. More abundance of Hsp70 and Hsp90α proteins might be one of the strategies adopted by the mud eel to defend itself from the ammonia-induced cellular damages under ammonia stress. Further, this is the first report of ammonia-induced induction of hsp70 and hsp90α genes under hyper-ammonia stress in any freshwater air-breathing teleost.
Collapse
Affiliation(s)
- Hnunlalliani Hangzo
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Bodhisattwa Banerjee
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Shrabani Saha
- Institute of Biotechnology, Amity University, Sector 125, Noida, 201303, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
45
|
Biscotti MA, Gerdol M, Canapa A, Forconi M, Olmo E, Pallavicini A, Barucca M, Schartl M. The Lungfish Transcriptome: A Glimpse into Molecular Evolution Events at the Transition from Water to Land. Sci Rep 2016; 6:21571. [PMID: 26908371 PMCID: PMC4764851 DOI: 10.1038/srep21571] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/20/2016] [Indexed: 01/12/2023] Open
Abstract
Lungfish and coelacanths are the only living sarcopterygian fish. The phylogenetic relationship of lungfish to the last common ancestor of tetrapods and their close morphological similarity to their fossil ancestors make this species uniquely interesting. However their genome size, the largest among vertebrates, is hampering the generation of a whole genome sequence. To provide a partial solution to the problem, a high-coverage lungfish reference transcriptome was generated and assembled. The present findings indicate that lungfish, not coelacanths, are the closest relatives to land-adapted vertebrates. Whereas protein-coding genes evolve at a very slow rate, possibly reflecting a “living fossil” status, transposable elements appear to be active and show high diversity, suggesting a role for them in the remarkable expansion of the lungfish genome. Analyses of single genes and gene families documented changes connected to the water to land transition and demonstrated the value of the lungfish reference transcriptome for comparative studies of vertebrate evolution.
Collapse
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università di Trieste, Via Licio Giorgeri 5, 34127, Trieste, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Ettore Olmo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Alberto Pallavicini
- Dipartimento di Scienze della Vita, Università di Trieste, Via Licio Giorgeri 5, 34127, Trieste, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Manfred Schartl
- Department Physiological Chemistry, Biocenter, University of Würzburg, 97074 Würzburg and Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
46
|
Gao J, Li L, Hu Z, Zhu S, Zhang R, Xiong Z. Ammonia stress on the carbon metabolism of Ceratophyllum demersum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:843-849. [PMID: 25641419 DOI: 10.1002/etc.2866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/17/2014] [Accepted: 12/20/2014] [Indexed: 06/04/2023]
Abstract
In the present study, carefully controlled pH ranges (7 and 9) were used to distinguish between the effects of un-ionized NH3 and the NH4 (+) ion. The objective was to find the effect of different total ammonia nitrogen concentrations and pH values on the carbon metabolism of Ceratophyllum demersum. The authors investigated the effects of ammonia on the nonstructural carbohydrate content in shoots of C. demersum. Ammonia treatment decreased the contents of nonstructural carbohydrate, soluble sugar, sucrose, fructose, and starch in leaves. Meanwhile, increasing the pH value exacerbated the decline of the C. demersum nonstructural carbohydrate content. In addition, the activity of invertase was increased during the experiment. These results suggest that ammonia severely inhibits plant growth by disturbing nonstructural carbohydrate content. It has been suggested that ammonia has toxic effects on C. demersum and that the higher the pH in water, the more obvious the physiological responses that C. demersum exhibits. The results of the present study can provide some reference for studying the living conditions of submersed macrophytes under the stress of NH3.
Collapse
Affiliation(s)
- Jingqing Gao
- Research Institute of Environmental Sciences, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China; School of Resource and Environmental Science, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
47
|
Chew SF, Hiong KC, Lam SP, Chen XL, Ching B, Ip YK. Ammonia exposure increases the expression of Na(+):K (+):2Cl (-) cotransporter 1a in the gills of the giant mudskipper, Periophthalmodon schlosseri. J Comp Physiol B 2014; 185:57-72. [PMID: 25348644 DOI: 10.1007/s00360-014-0867-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 10/14/2014] [Indexed: 11/26/2022]
Abstract
The giant mudskipper, Periophthalmodon schlosseri, is an obligate air-breathing teleost that can actively excrete ammonia against high concentrations of environmental ammonia. This study aimed to clone and sequence the Na (+) :K (+) :2Cl (-) cotransporter 1 (nkcc1) from the gills of P. schlosseri, and to determine the effects of ammonia exposure on its mRNA expression and protein abundance after pre-acclimation to slightly brackish water (salinity 3; SBW) for 2 weeks. The complete coding cDNA sequences of nkcc1a consisted of 3453 bp, coding for 1151 amino acid with an estimated molecular mass of 125.4 kDa. Exposure to 75 mmol l(-1) NH4Cl in SBW had no effect on the mRNA expression of nkcc1a. However, western blotting revealed a significant increase in the protein abundance of multiple T4-immunoreactive bands of molecular mass 170-250 kDa in the gills of P. schlosseri exposed to ammonia. Furthermore, immunofluorescence microscopy demonstrated the colocalization of the increased T4-immunoreactive protein with Na(+)/K(+)-ATPase (Nka) α-subunit to the basolateral membrane of certain ionocytes in the gills of the ammonia-exposed fish. As Nkcc1 is known to have a basolateral localization, it can be concluded that ammonia exposure led to an increase in the expression of glycosylated Nkcc1, the molecular masses of which were reduced upon enzymatic deglycosylation, in the gills of P. schlosseri. The dependency on post-transcriptional and post-translational regulation of branchial Nkcc1 in P. schlosseri would facilitate prompt responses to changes in environmental condition. As NH4 (+) can replace K(+), NH4 (+) could probably enter ionocytes through the basolateral Nkcc1a during active ammonia excretion, but increased influx of Na(+), NH4 (+) and 2Cl(-) would alter the transmembrane Na(+) gradient. Consequently, exposure of P. schlosseri to ammonia would also result in an increase in branchial activity of Nka with decreased NH4 (+) affinity so as to maintain intracellular Na(+) and K(+) homeostasis as reported elsewhere.
Collapse
Affiliation(s)
- Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Republic of Singapore,
| | | | | | | | | | | |
Collapse
|
48
|
Urbina MA, Walsh PJ, Hill JV, Glover CN. Physiological and biochemical strategies for withstanding emersion in two galaxiid fishes. Comp Biochem Physiol A Mol Integr Physiol 2014; 176:49-58. [DOI: 10.1016/j.cbpa.2014.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/28/2022]
|
49
|
Sun H, Wang W, Li J, Yang Z. Growth, oxidative stress responses, and gene transcription of juvenile bighead carp (Hypophthalmichthys nobilis) under chronic-term exposure of ammonia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1726-1731. [PMID: 24839064 DOI: 10.1002/etc.2613] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/19/2013] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
Ammonia toxicity has become a universal problem for aquatic animals, especially fish. The purpose of the present study was to assess the chronic toxicity of ammonia to the juvenile bighead carp (Hypophthalmichthys nobilis). The authors measured the responses of growth performance (specific growth rate, condition factor, body weight, and body length), oxidative stress, and related gene transcription of juvenile bighead carp exposed to solutions with different concentrations of un-ionized ammonia (UIA; 0 mg L(-1) , 0.053 mg L(-1) , 0.106 mg L(-1) , 0.159 mg L(-1) , and 0.212 mg L(-1) ). The results showed that UIA had no effect on growth performance, glutathione content, or glutathione S-transferase gene transcription, but superoxide dismutase (SOD) activity was significantly elevated. In addition, different concentrations of UIA produced different degrees of damage to juvenile bighead carp: compared with control, lower UIA levels significantly decreased gene transcription of catalase (CAT) and increased malondialdehyde (MDA) levels; higher UIA concentration (0.212 mg L(-1) ) significantly increased gene transcription of the antioxidant enzymes CAT and SOD and reduced MDA levels. The data clearly demonstrate that chronic exposure of UIA at lower concentrations can result in some degree of impairment of antioxidative function, and chronic exposure at higher concentrations can enhance damage to juvenile bighead carp by modulating antioxidant enzyme activities and gene transcription.
Collapse
Affiliation(s)
- Hongjie Sun
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | | | | |
Collapse
|
50
|
Molecular characterization of argininosuccinate synthase and argininosuccinate lyase from the liver of the African lungfish Protopterus annectens, and their mRNA expression levels in the liver, kidney, brain and skeletal muscle during aestivation. J Comp Physiol B 2014; 184:835-53. [PMID: 25034132 DOI: 10.1007/s00360-014-0842-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 02/05/2023]
Abstract
Argininosuccinate synthase (Ass) and argininosuccinate lyase (Asl) are involved in arginine synthesis for various purposes. The complete cDNA coding sequences of ass and asl from the liver of Protopterus annectens consisted of 1,296 and 1,398 bp, respectively. Phylogenetic analyses revealed that the deduced Ass and Asl of P. annectens had close relationship with that of the cartilaginous fish Callorhinchus milii. Besides being strongly expressed in the liver, ass and asl expression were detectable in many tissues/organs. In the liver, mRNA expression levels of ass and asl increased significantly during the induction phase of aestivation, probably to increase arginine production to support increased urea synthesis. The increases in ass and asl mRNA expression levels during the prolonged maintenance phase and early arousal phase of aestivation could reflect increased demand on arginine for nitric oxide (NO) production in the liver. In the kidney, there was a significant decrease in ass mRNA expression level after 6 months of aestivation, indicating possible decreases in the synthesis and supply of arginine to other tissues/organs. In the brain, changes in ass and asl mRNA expression levels during the three phases of aestivation could be related to the supply of arginine for NO synthesis in response to conditions that resemble ischaemia and ischaemia-reperfusion during the maintenance and arousal phase of aestivation, respectively. The decrease in ass mRNA expression level, accompanied with decreases in the concentrations of arginine and NO, in the skeletal muscle of aestivating P. annectens might ameliorate the potential of disuse muscle atrophy.
Collapse
|