1
|
Yu XQ, Mao JZ, Yang SY, Wang L, Yang CZ, Huang L, Qian QH, Zhu TT. Autocrine IL-8 Contributes to Propionibacterium Acnes-induced Proliferation and Differentiation of HaCaT Cells via AKT/FOXO1/ Autophagy. Curr Med Sci 2024; 44:1058-1065. [PMID: 39196519 DOI: 10.1007/s11596-024-2894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/08/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Proprionibacterium acnes (P. acnes)-induced inflammatory responses, proliferation and differentiation of keratinocytes contribute to the progression of acne vulgaris (AV). P. acnes was found to enhance the production of interleukin-8 (IL-8) by keratinocytes. This study aimed to investigate the role of IL-8 in P. acnes-induced proliferation and differentiation of keratinocytes and the underlying mechanism. METHODS The P. acnes-stimulated HaCaT cell (a human keratinocyte cell line) model was established. Western blotting and immunofluorescence were performed to detect the expression of the IL-8 receptors C-X-C motif chemokine receptor 1 (CXCR1) and C-X-C motif chemokine receptor 2 (CXCR2) on HaCaT cells. Cell counting kit-8 (CCK-8) assay, 5-ethynyl-20-deoxyuridine (EdU) assay and Western blotting were performed to examine the effects of IL-8/CXCR2 axis on the proliferation and differentiation of HaCaT cells treated with P. acnes, the IL-8 neutralizing antibody, the CXCR2 antagonist (SB225002), or the CXCR1/CXCR2 antagonist (G31P). Western blotting, nuclear and cytoplasmic separation, CCK-8 assay, and EdU assay were employed to determine the downstream pathway of CXCR2 after P. acnes-stimulated HaCaT cells were treated with the CXCR2 antagonist, the protein kinase B (AKT) antagonist (AZD5363), or the constitutively active forkhead box O1 (FOXO1) mutant. Finally, autophagy markers were measured in HaCaT cells following the transfection of the FOXO1 mutant or treatment with the autophagy inhibitor 3-methyladenine (3-MA). RESULTS The expression levels of CXCR1 and CXCR2 were significantly increased on the membrane of HaCaT cells following P. acnes stimulation. The IL-8/CXCR2 axis predominantly promoted the proliferation and differentiation of P. acnes-induced HaCaT cells by activating AKT/FOXO1/autophagy signaling. In brief, IL-8 bound to its receptor CXCR2 on the membrane of keratinocytes to activate the AKT/FOXO1 axis. Subsequently, phosphorylated FOXO1 facilitated autophagy to promote the proliferation and differentiation of P. acnes-induced keratinocytes. CONCLUSION This study demonstrated the novel autocrine effect of IL-8 on the proliferation and differentiation of P. acnes-induced keratinocytes, suggesting a potential therapeutic target for AV.
Collapse
Affiliation(s)
- Xiu-Qin Yu
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jin-Zhu Mao
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Shu-Yun Yang
- Department of Dermatology, Baoshan People's Hospital of Yunnan Province, Baoshan, 678000, China
| | - Lu Wang
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chang-Zhi Yang
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lei Huang
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qi-Hong Qian
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Ting-Ting Zhu
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
2
|
Ramsis T, Refat M Selim HM, Elseedy H, Fayed EA. The role of current synthetic and possible plant and marine phytochemical compounds in the treatment of acne. RSC Adv 2024; 14:24287-24321. [PMID: 39104563 PMCID: PMC11298783 DOI: 10.1039/d4ra03865g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Acne is a long-standing skin condition characterized by plugged hair follicles due to the accumulation of dead skin cells, sebum, and Propionibacterium acnes (P. acnes) bacteria, causing inflammation, and the formation of pimples or lesions. Acne was recognized in the ancient times by the ancient Egyptians, Greeks, and Romans. Since ancient times, folk medicine from different cultures have comprised herbal and natural products for the treatment of acne. Current acne medications include antibiotics, keratolytics, corticosteroids, in addition to hormonal therapy for women. However, these conventional drugs can cause some serious side effects. And therefore, seeking new safe treatment options from natural sources is essential. Plants can be a potential source of medicinal phytochemicals which can be pharmacologically active as antibacterial, antioxidant, anti-inflammatory, keratolytic and sebum-reducing. Organic acids, obtained from natural sources, are commonly used as keratolytics in dermatology and cosmetology. Most of the promising phytochemicals in acne treatment belong to terpenes, terpenoids, flavonoids, alkaloids, phenolic compounds, saponins, tannins, and essential oils. These can be extracted from leaves, bark, roots, rhizomes, seeds, and fruits of plants and may be incorporated in different dosage forms to facilitate their penetration through the skin. Additionally, medicinal compounds from marine sources can also contribute to acne treatment. This review will discuss the pathogenesis, types and consequences of acne, side effects of conventional treatment, current possible treatment options from natural sources obtained from research and folk medicine and possible applied dosage forms.
Collapse
Affiliation(s)
- Triveena Ramsis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University - Kantara Branch Ismailia 41636 Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University P.O. Box 71666 Riyadh 11597 Saudi Arabia
- Microbiology and Immunology Department, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 35527 Egypt
| | - Howida Elseedy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo Egypt
| | - Eman A Fayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt +20 201221330523
| |
Collapse
|
3
|
Ghallab DS, Ibrahim RS, Mohyeldin MM, Shawky E. Marine algae: A treasure trove of bioactive anti-inflammatory compounds. MARINE POLLUTION BULLETIN 2024; 199:116023. [PMID: 38211540 DOI: 10.1016/j.marpolbul.2023.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
This comprehensive review examines the diverse classes of pharmacologically active compounds found in marine algae and their promising anti-inflammatory effects. The review covers various classes of anti-inflammatory compounds sourced from marine algae, including phenolic compounds, flavonoids, terpenoids, caretenoids, alkaloids, phlorotannins, bromophenols, amino acids, peptides, proteins, polysaccharides, and fatty acids. The anti-inflammatory activities of marine algae-derived compounds have been extensively investigated using in vitro and in vivo models, demonstrating their ability to inhibit pro-inflammatory mediators, such as cytokines, chemokines, and enzymes involved in inflammation. Moreover, marine algae-derived compounds have exhibited immunomodulatory properties, regulating immune cell functions and attenuating inflammatory responses. Specific examples of compounds with notable anti-inflammatory activities are highlighted. This review provides valuable insights for researchers in the field of marine anti-inflammatory pharmacology and emphasizes the need for further research to harness the pharmacological benefits of marine algae-derived compounds for the development of effective and safe therapeutic agents.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Mohamed M Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
4
|
Marasinghe CK, Jung WK, Je JY. Phloroglucinol possesses anti-inflammatory activities by regulating AMPK/Nrf2/HO-1 signaling pathway in LPS-stimulated RAW264.7 murine macrophages. Immunopharmacol Immunotoxicol 2023; 45:571-580. [PMID: 36988555 DOI: 10.1080/08923973.2023.2196602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Inflammation is closely related to the pathogenesis of chronic illnesses. Secondary metabolites of marine seaweeds are recognized as reliable sources of bioactive compounds due to their health benefits besides their nutritional value. The objective of this study was to determine the potential anti-inflammatory effect of phloroglucinol (Phl) in RAW264.7 murine macrophages after lipopolysaccharides (LPS) stimulation. METHODS MTT, nitric oxide (NO), and DCFH-DA assays were conducted to determine cell viability, NO production, and reactive oxygen species (ROS) generation respectively. Pro-inflammatory cytokines and prostaglandin E2 (PGE2) levels were measured using ELISA assay kits. Protein expression levels were determined by western blot analysis. RESULTS Phl treatment showed a promising anti-inflammatory effect by reducing NO production, secretion of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), PGE2 production, protein expression levels of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), and ROS generation in LPS-stimulated RAW264.7 murine macrophages. Phl treatment upregulated heme oxygenase-1 (HO-1) expression by inducing nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and activating AMPK. However, Zinc protoporphyrin (ZnPP), an inhibitor of HO-1, partially reversed these effects, including NO production, pro-inflammatory cytokine secretion, iNOS, COX-2 and HO-1 expression, and ROS generation. CONCLUSION Phl has potential anti-inflammatory activities by regulating AMPK/Nrf2/HO-1 pathway in LPS-stimulated RAW264.7 murine macrophages.
Collapse
Affiliation(s)
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea
- Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Lin TY, Wu YT, Chang HJ, Huang CC, Cheng KC, Hsu HY, Hsieh CW. Anti-Inflammatory and Anti-Oxidative Effects of Polysaccharides Extracted from Unripe Carica papaya L. Fruit. Antioxidants (Basel) 2023; 12:1506. [PMID: 37627501 PMCID: PMC10451988 DOI: 10.3390/antiox12081506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
This study evaluated the antioxidative and anti-inflammatory activities of polysaccharides extracted from unripe Carica papaya L. (papaya) fruit. Three papaya polysaccharide (PP) fractions, namely PP-1, PP-2, and PP-3, with molecular weights of 2252, 2448, and 3741 kDa, containing abundant xylose, galacturonic acid, and mannose constituents, respectively, were obtained using diethylaminoethyl-Sepharose™ anion exchange chromatography. The antioxidant capacity of the PPs, hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay revealed that the PP-3 fraction had the highest antioxidant activity, with an EC50 (the concentration for 50% of the maximal effect) of 0.96 mg/mL, EC50 of 0.10 mg/mL, and Abs700 nm of 1.581 for the hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay, respectively. In addition, PP-3 significantly decreased reactive oxygen species production by 45.3%, NF-κB activation by 32.0%, and tumor necrosis factor-alpha and interleukin-6 generation by 33.5% and 34.4%, respectively, in H2O2-induced human epidermal keratinocytes. PP-3 exerts potent antioxidative and anti-inflammatory effects; thus, it is a potential biofunctional ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Ting-Yun Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Yun-Ting Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Hui-Ju Chang
- Department of Taiwan Seed Improvement and Propagation Station, Council of Agriculture, Executive Yuan, Taichung City 426017, Taiwan;
| | - Chun-Chen Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| | - Hsien-Yi Hsu
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| |
Collapse
|
6
|
Liao M, Wei S, Hu X, Liu J, Wang J. Protective Effect and Mechanisms of Eckol on Chronic Ulcerative Colitis Induced by Dextran Sulfate Sodium in Mice. Mar Drugs 2023; 21:376. [PMID: 37504907 PMCID: PMC10381161 DOI: 10.3390/md21070376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
The use of functional foods and their bioactive components is receiving increasing attention as a complementary and alternative therapy for chronic ulcerative colitis (UC). This study explored the protective effect and mechanisms of Eckol, a seaweed-derived bioactive phlorotannin, on the dextran sodium sulfate (DSS)-induced chronic UC in mice. Eckol (0.5-1.0 mg/kg) reduced DSS-enhanced disease activity indexes, and alleviated the shortening of colon length and colonic tissue damage in chronic UC mice. The contents of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were significantly decreased, and the level of anti-inflammatory IL-10 was enhanced in the serum and colonic tissues collected from Eckol-treated mice compared with the DSS controls. Eckol administration significantly reduced the number of apoptotic cells and the expression of cleaved Caspase-3, and increased the B-cell lymphoma-2 (Bcl-2)/B-cell lymphoma-2- associated X (Bax) ratio in DSS-challenged colons. There were more cluster of differentiation (CD)11c+ dendritic cells and CD8+ T cells, and less CD4+ T cells infiltrated to inflamed colonic tissues in the Eckol-treated groups. Expression of colonic Toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB) p65, phosphorylated-signal transducer and activator of transcription (pSTAT)3 was significantly down-regulated by Eckol compared with the DSS-challenged group. In conclusion, our data suggest that Eckol appeared to be a potential functional food ingredient for protection against chronic UC. The anti-colitis mechanisms of Eckol might be attributed to the down-regulation of the TLR4/NF-κB/STAT3 pathway, inhibition of inflammation and apoptosis, as well as its immunoregulatory activity.
Collapse
Affiliation(s)
- Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Pharmaceutical Innovation, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Songyi Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Pharmaceutical Innovation, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Pharmaceutical Innovation, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Pharmaceutical Innovation, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Pharmaceutical Innovation, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
7
|
Farghali M, Mohamed IMA, Osman AI, Rooney DW. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:97-152. [PMID: 36245550 PMCID: PMC9547092 DOI: 10.1007/s10311-022-01520-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 05/02/2023]
Abstract
The development and recycling of biomass production can partly solve issues of energy, climate change, population growth, food and feed shortages, and environmental pollution. For instance, the use of seaweeds as feedstocks can reduce our reliance on fossil fuel resources, ensure the synthesis of cost-effective and eco-friendly products and biofuels, and develop sustainable biorefinery processes. Nonetheless, seaweeds use in several biorefineries is still in the infancy stage compared to terrestrial plants-based lignocellulosic biomass. Therefore, here we review seaweed biorefineries with focus on seaweed production, economical benefits, and seaweed use as feedstock for anaerobic digestion, biochar, bioplastics, crop health, food, livestock feed, pharmaceuticals and cosmetics. Globally, seaweeds could sequester between 61 and 268 megatonnes of carbon per year, with an average of 173 megatonnes. Nearly 90% of carbon is sequestered by exporting biomass to deep water, while the remaining 10% is buried in coastal sediments. 500 gigatonnes of seaweeds could replace nearly 40% of the current soy protein production. Seaweeds contain valuable bioactive molecules that could be applied as antimicrobial, antioxidant, antiviral, antifungal, anticancer, contraceptive, anti-inflammatory, anti-coagulants, and in other cosmetics and skincare products.
Collapse
Affiliation(s)
- Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Israa M. A. Mohamed
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555 Japan
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| |
Collapse
|
8
|
Rocha DHA, Pinto DCGA, Silva AMS. Macroalgae Specialized Metabolites: Evidence for Their Anti-Inflammatory Health Benefits. Mar Drugs 2022; 20:md20120789. [PMID: 36547936 PMCID: PMC9783307 DOI: 10.3390/md20120789] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammation is an organism's response to chemical or physical injury. It is split into acute and chronic inflammation and is the last, most significant cause of death worldwide. Nowadays, according to the World Health Organization (WHO), the greatest threat to human health is chronic disease. Worldwide, three out of five people die from chronic inflammatory diseases such as stroke, chronic respiratory diseases, heart disorders, and cancer. Nowadays, anti-inflammatory drugs (steroidal and non-steroidal, enzyme inhibitors that are essential in the inflammatory process, and receptor antagonists, among others) have been considered as promising treatments to be explored. However, there remains a significant proportion of patients who show poor or incomplete responses to these treatments or experience associated severe side effects. Seaweeds represent a valuable resource of bioactive compounds associated with anti-inflammatory effects and offer great potential for the development of new anti-inflammatory drugs. This review presents an overview of specialized metabolites isolated from seaweeds with in situ and in vivo anti-inflammatory properties. Phlorotannins, carotenoids, sterols, alkaloids, and polyunsaturated fatty acids present significant anti-inflammatory effects given that some of them are involved directly or indirectly in several inflammatory pathways. The majority of the isolated compounds inhibit the pro-inflammatory mediators/cytokines. Studies have suggested an excellent selectivity of chromene nucleus towards inducible pro-inflammatory COX-2 than its constitutive isoform COX-1. Additional research is needed to understand the mechanisms of action of seaweed's compounds in inflammation, given the production of sustainable and healthier anti-inflammatory agents.
Collapse
|
9
|
Silva A, Cassani L, Grosso C, Garcia-Oliveira P, Morais SL, Echave J, Carpena M, Xiao J, Barroso MF, Simal-Gandara J, Prieto MA. Recent advances in biological properties of brown algae-derived compounds for nutraceutical applications. Crit Rev Food Sci Nutr 2022; 64:1283-1311. [PMID: 36037006 DOI: 10.1080/10408398.2022.2115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increasing demand for nutraceuticals in the circular economy era has driven the research toward studying bioactive compounds from renewable underexploited resources. In this regard, the exploration of brown algae has shown significant growth and maintains a great promise for the future. One possible explanation could be that brown algae are rich sources of nutritional compounds (polyunsaturated fatty acids, fiber, proteins, minerals, and vitamins) and unique metabolic compounds (phlorotannins, fucoxanthin, fucoidan) with promising biological activities that make them good candidates for nutraceutical applications with increased value-added. In this review, a deep description of bioactive compounds from brown algae is presented. In addition, recent advances in biological activities ascribed to these compounds through in vitro and in vivo assays are pointed out. Delivery strategies to overcome some drawbacks related to the direct application of algae-derived compounds (low solubility, thermal instability, bioavailability, unpleasant organoleptic properties) are also reviewed. Finally, current commercial and legal statuses of ingredients from brown algae are presented, considering future therapeutical and market perspectives as nutraceuticals.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Stephanie L Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Javier Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - M Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
10
|
Chen B, Chen H, Qu H, Qiao K, Xu M, Wu J, Su Y, Shi Y, Liu Z, Wang Q. Photoprotective effects of Sargassum thunbergii on ultraviolet B-induced mouse L929 fibroblasts and zebrafish. BMC Complement Med Ther 2022; 22:144. [PMID: 35597942 PMCID: PMC9123674 DOI: 10.1186/s12906-022-03609-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Chronic exposure to ultraviolet B (UVB) causes a series of adverse skin reactions, such as erythema, sunburn, photoaging, and cancer, by altering signaling pathways related to inflammation, oxidative stress, and DNA damage. Marine algae have abundant amounts and varieties of bioactive compounds that possess antioxidant and anti-inflammatory properties. Thus, the objective of this study was to investigate the photoprotective effects of an ethanol extract of Sargassum thunbergii. METHODS Sargassum thunbergii phenolic-rich extract (STPE) was prepared, and its activity against UVB damage was evaluated using L929 fibroblast cells and zebrafish. STPE was extracted and purified by 40% ethanol and macroporous resin XDA-7. Reactive oxygen species (ROS) and antioxidant markers, such as superoxide dismutase (SOD), catalase (CAT) activities, and malondialdehyde (MDA) content were analyzed. The effect of STPE on UVB-induced inflammation was determined by inflammatory cytokine gene and protein expression. The expression of signaling molecules in the Nuclear Factor KappaB (NF-κB) pathway was determined by western blotting. DNA condensation was analyzed and visualized by Hoechst 33342 staining. In vivo evaluation was performed by tail fin area and ROS measurement using the zebrafish model. RESULTS The total polyphenol content of STPE was 72%. STPE reduced ROS content in L929 cells, improved SOD and CAT activities, and significantly reduced MDA content, thereby effectively alleviating UVB radiation-induced oxidative damage. STPE inhibited the mRNA and protein expression of TNF-α, IL-6, and IL-1α. STPE reversed DNA condensation at concentrations of 20 and 40 μg/mL compared with the UVB control. Moreover, STPE inhibited NF-κB signaling pathway activation and alleviated DNA agglutination in L929 cells after UVB irradiation. Additionally, 1.67 μg/mL STPE significantly increased the tail fin area in zebrafish, and 0.8-1.6 μg/mL STPE effectively eliminated excessive ROS after UVB radiation. CONCLUSIONS STPE inhibited UVB-induced oxidative stress, inflammatory cytokine expression, and DNA condensation via the downregulation of the NF-κB signaling pathway, suggesting that it prevents UVB-induced photodamage, and has potential for clinical development for skin disease treatment.
Collapse
Affiliation(s)
- Bei Chen
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Honghong Chen
- School of Life Sciences, Xiamen University, South Xiangan Road, Xiang’an District, Xiamen, 361102 Fujian China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Haidong Qu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102 Fujian China
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Min Xu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Jingna Wu
- Xiamen Medical College, Xiamen, 361023 Fujian China
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Yan Shi
- School of Life Sciences, Xiamen University, South Xiangan Road, Xiang’an District, Xiamen, 361102 Fujian China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Qin Wang
- School of Life Sciences, Xiamen University, South Xiangan Road, Xiang’an District, Xiamen, 361102 Fujian China
| |
Collapse
|
11
|
Fernando IPS, Lee W, Ahn G. Marine algal flavonoids and phlorotannins; an intriguing frontier of biofunctional secondary metabolites. Crit Rev Biotechnol 2022; 42:23-45. [PMID: 34016003 DOI: 10.1080/07388551.2021.1922351] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Algae are the oldest representatives of the plant world with reserves exceeding hundreds of millions of tons in the world's oceans. Currently, a growing interest is placed toward the use of algae as feedstocks for obtaining numerous natural products. Algae are a rich source of polyphenols that possess intriguing structural diversity. Among the algal polyphenols, phlorotannins, which are unique to brown seaweeds, and have immense value as potent modulators of biochemical processes linked to chronic diseases. In algae, flavonoids remain under-explored compared to other categories of polyphenols. Both phlorotannins and flavonoids are inclusive of compounds indicating a wide structural diversity. The present paper reviews the literature on the ecological significance, biosynthesis, structural diversity, and bioactivity of seaweed phlorotannins and flavonoids. The potential implementation of these chemical entities in functional foods, cosmeceuticals, medicaments, and as templates in drug design are described in detail, and perspectives are provided to tackle what are perceived to be the most momentous challenges related to the utilization of phlorotannins and flavonoids. Moving beyond: industrial biotechnology applications, metabolic engineering, total synthesis, biomimetic synthesis, and chemical derivatization of phlorotannins and flavonoids could broaden the research perspectives contributing to the health and economic up-gradation.
Collapse
Affiliation(s)
| | - WonWoo Lee
- Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si, Jeollanam-do, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
12
|
Sugiura Y, Katsuzaki H, Imai K, Amano H. The Anti-Allergic and Anti-Inflammatory Effects of Phlorotannins from the Edible Brown Algae, Ecklonia sp. and Eisenia sp. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211060924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Because the number of people suffering from allergies has significantly increased, improved ways of treating these conditions by medical, pharmaceutical, and dietary means are required. Large numbers of studies on allergy have been conducted, and many anti-allergic compounds have been found. Phenolic compounds from terrestrial plants, including catechins and flavonoids, possess anti-allergic properties. Although polyphenols are present in some brown algae, their anti-allergic activities were not studied in detail before the 1990s. The focus was on the algal polyphenols, collectively called phlorotannins (eg., eckol, 6,6′-bieckol, 8,8′-bieckol, dieckol, and phlorofucofuroeckol-A), and research was conducted to clarify their anti-allergic activities. This review summarizes the anti-allergic effects of phlorotannins isolated from the brown alga, Eisenia nipponica, and related reports by other research groups.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hideomi Amano
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
13
|
Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar Drugs 2021; 19:md19100552. [PMID: 34677451 PMCID: PMC8539943 DOI: 10.3390/md19100552] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
The interest in seaweeds for cosmetic, cosmeceutics, and nutricosmetics is increasing based on the demand for natural ingredients. Seaweeds offer advantages in relation to their renewable character, wide distribution, and the richness and versatility of their valuable bioactive compounds, which can be used as ingredients, as additives, and as active agents in the formulation of skin care products. Bioactive compounds, such as polyphenols, polysaccharides, proteins, peptides, amino acids, lipids, vitamins, and minerals, are responsible for the biological properties associated with seaweeds. Seaweed fractions can also offer technical features, such as thickening, gelling, emulsifying, texturizing, or moistening to develop cohesive matrices. Furthermore, the possibility of valorizing industrial waste streams and algal blooms makes them an attractive, low cost, raw and renewable material. This review presents an updated summary of the activities of different seaweed compounds and fractions based on scientific and patent literature.
Collapse
|
14
|
Espinoza-Monje M, Campos J, Alvarez Villamil E, Jerez A, Dentice Maidana S, Elean M, Salva S, Kitazawa H, Villena J, García-Cancino A. Characterization of Weissella viridescens UCO-SMC3 as a Potential Probiotic for the Skin: Its Beneficial Role in the Pathogenesis of Acne Vulgaris. Microorganisms 2021; 9:1486. [PMID: 34361921 PMCID: PMC8307422 DOI: 10.3390/microorganisms9071486] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022] Open
Abstract
Previously, we isolated lactic acid bacteria from the slime of the garden snail Helix aspersa Müller and selected Weissella viridescens UCO-SMC3 because of its ability to inhibit in vitro the growth of the skin-associated pathogen Cutibacterium acnes. The present study aimed to characterize the antimicrobial and immunomodulatory properties of W. viridescens UCO-SMC3 and to demonstrate its beneficial effect in the treatment of acne vulgaris. Our in vitro studies showed that the UCO-SMC3 strain resists adverse gastrointestinal conditions, inhibits the growth of clinical isolates of C. acnes, and reduces the adhesion of the pathogen to keratinocytes. Furthermore, in vivo studies in a mice model of C. acnes infection demonstrated that W. viridescens UCO-SMC3 beneficially modulates the immune response against the skin pathogen. Both the oral and topical administration of the UCO-SCM3 strain was capable of reducing the replication of C. acnes in skin lesions and beneficially modulating the inflammatory response. Of note, orally administered W. viridescens UCO-SMC3 induced more remarkable changes in the immune response to C. acnes than the topical treatment. However, the topical administration of W. viridescens UCO-SMC3 was more efficient than the oral treatment to reduce pathogen bacterial loads in the skin, and effects probably related to its ability to inhibit and antagonize the adhesion of C. acnes. Furthermore, a pilot study in acne volunteers demonstrated the capacity of a facial cream containing the UCO-SMC3 strain to reduce acne lesions. The results presented here encourage further mechanistic and clinical investigations to characterize W. viridescens UCO-SMC3 as a probiotic for acne vulgaris treatment.
Collapse
Affiliation(s)
- Marcela Espinoza-Monje
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Jorge Campos
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Eduardo Alvarez Villamil
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Alonso Jerez
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| |
Collapse
|
15
|
Eckol protects against acute experimental colitis in mice: Possible involvement of Reg3g. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
16
|
Zhang T, Sun B, Guo J, Wang M, Cui H, Mao H, Wang B, Yan F. Active pharmaceutical ingredient poly(ionic liquid)-based microneedles for the treatment of skin acne infection. Acta Biomater 2020; 115:136-147. [PMID: 32853804 DOI: 10.1016/j.actbio.2020.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
As an inflammatory skin disease of pilosebaceous follicles, Propionibacterium acnes (P. acnes) can aggravate local inflammatory responses and forms acne lesions. However, due to the skin barrier, various transdermal measures other than antibiotic creams are necessary. Microneedle (MN) patches are emerging platforms for the transdermal delivery of various therapeutics since it can effectively create transport pathways in the epidermis. Herein, we develop an active pharmaceutical ingredient poly(ionic liquid) (API PIL)-based MN patches containing salicylic acid (SA). The PIL-based MNs are simply prepared through photo-crosslinking of an imidazolium-type ionic liquid (IL) monomer in MN micro-molds, and following by anion exchange with salicylic acid anions (SA-). The fabricated SA-loaded PIL-MNs exhibited therapeutic efficiency in the topical treatment of P. acnes infection in vitro and in vivo. These active pharmaceutical ingredient PIL-based MNs can improve acne treatment, demonstrating potential applications for skin diseases. STATEMENT OF SIGNIFICANCE: Microneedle (MN) patches can be used as platforms for transdermal delivery of various therapeutics to treat bacterial infection. Here, a facile strategy was developed to synthesize active pharmaceutical ingredient poly(ionic liquid)-based microneedle patches by anion-exchange with salicylic acid anion (SA-). The fabricated SA-loaded PIL-MNs are active on not only anti-bacteria but also anti-inflammation in P. acnes treated mice, and may have potential applications for skin acne infection.
Collapse
|
17
|
Catarino MD, Silva A, Cruz MT, Mateus N, Silva AM, Cardoso SM. Phlorotannins from Fucus vesiculosus: Modulation of Inflammatory Response by Blocking NF-κB Signaling Pathway. Int J Mol Sci 2020; 21:E6897. [PMID: 32962250 PMCID: PMC7554702 DOI: 10.3390/ijms21186897] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Due to their large spectrum of bioactive properties, much attention has recently been drawn to phlorotannins-i.e., phenolic compounds characteristic from brown macroalgae. This study aimed to evaluate the antioxidant and anti-inflammatory properties of F. vesiculosus phlorotannin extracts and purified fractions. Overall, the crude extract and its ethyl acetate fraction (EtOAc) showed good radical scavenging activity, particularly towards nitric oxide (NO•). Subsequent subfractions of EtOAc (F1 to F9) with different molecular weights were then shown to inhibit lipopolysaccharide-induced NO• production in macrophages, with stronger effects being observed for fractions of lower MWs. Of the three intracellular markers analyzed, inducible NO• synthase showed the highest sensitivity to almost all the phlorotannin-rich samples, followed by interleukin 1β and cyclooxygenase 2, which was only inhibited by F2. Furthermore, this subfraction inhibited the phosphorylation and degradation of inhibitory protein κBα, thus preventing the activation of NF-κB and blocking the inflammatory cascade at the transcriptional level. This sample was characterized by the presence of a major compound with a deprotonated molecular ion at m/z 507 with a fragmentation pattern coherent with that of a phlorotannin derivative. Overall, this work unveiled some of the mechanistic aspects behind the anti-inflammatory capacity of phlorotannins from F. vesiculosus, endorsing its use as a possible natural source of anti-inflammatory compounds.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (A.M.S.S.)
| | - Ana Silva
- CNC.IBILI, Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, 3000-548 Coimbra, Portugal; (A.S.); (M.T.C.)
| | - Maria T. Cruz
- CNC.IBILI, Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, 3000-548 Coimbra, Portugal; (A.S.); (M.T.C.)
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Artur M.S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (A.M.S.S.)
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (A.M.S.S.)
| |
Collapse
|
18
|
Besednova NN, Andryukov BG, Zaporozhets TS, Kryzhanovsky SP, Kuznetsova TA, Fedyanina LN, Makarenkova ID, Zvyagintseva TN. Algae Polyphenolic Compounds and Modern Antibacterial Strategies: Current Achievements and Immediate Prospects. Biomedicines 2020; 8:E342. [PMID: 32932759 PMCID: PMC7554682 DOI: 10.3390/biomedicines8090342] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
The increasing drug resistance of pathogenic microorganisms raises concern worldwide and necessitates the search for new natural compounds with antibacterial properties. Marine algae are considered a natural and attractive biotechnological source of novel antibiotics. The high antimicrobial activity of their polyphenolic compounds is a promising basis for designing innovative pharmaceuticals. They can become both a serious alternative to traditional antimicrobial agents and an effective supplement to antibiotic therapy. The present review summarizes the results of numerous studies on polyphenols from algae and the range of biological activities that determine their biomedical significance. The main focus is put on a group of the polyphenolic metabolites referred to as phlorotannins and, particularly, on their structural diversity and mechanisms of antimicrobial effects. Brown algae are an almost inexhaustible resource with a high biotechnological potential for obtaining these polyfunctional compounds. An opinion is expressed that the effectiveness of the antibacterial activity of phlorotannins depends on the methods of their extraction aimed at preserving the phenolic structure. The use of modern analytical tools opens up a broad range of opportunities for studying the metabolic pathways of phlorotannins and identifying their structural and functional relationships. The high antimicrobial activity of phlorotannins against both Gram-positive and Gram-negative bacteria provides a promising framework for creating novel drugs to be used in the treatment and prevention of infectious diseases.
Collapse
Affiliation(s)
- Natalya N. Besednova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (I.D.M.)
| | - Boris G. Andryukov
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (I.D.M.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Tatyana S. Zaporozhets
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (I.D.M.)
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (I.D.M.)
| | - Ludmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Ilona D. Makarenkova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (I.D.M.)
| | - Tatyana N. Zvyagintseva
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| |
Collapse
|
19
|
Ha Y, Lee WH, Jeong J, Park M, Ko JY, Kwon OW, Lee J, Kim YJ. Pyropia yezoensis Extract Suppresses IFN-Gamma- and TNF-Alpha-Induced Proinflammatory Chemokine Production in HaCaT Cells via the Down-Regulation of NF-κB. Nutrients 2020; 12:nu12051238. [PMID: 32349358 PMCID: PMC7285056 DOI: 10.3390/nu12051238] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pyropia yezoensis, a red alga, is popular and harvested a lot in East Asia and is famous for its medicinal properties attributable to its bioactive compounds including amino acids (porphyra-334 and shinorine, etc.), polysaccharides, phytosterols, and pigments, but its anti-inflammatory effect and mechanism of anti-atopic dermatitis (AD) have not been elucidated. In this study, we investigate the anti-AD effect of P. yezoensis extract (PYE) on mRNA and protein levels of the pro-inflammatory chemokines, thymus, and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), in human HaCaT keratinocyte cells treated to interferon (IFN)-γ or tumor necrosis factor (TNF)-α (10 ng/mL each). The effect of the PYE on extracellular signal-regulated kinase (ERK) and other mitogen-activated protein kinases (MAPKs) was related to its suppression of TARC and MDC production by blocking NF-κB activation in HaCaT cells. Furthermore, astaxanthin and xanthophyll from P. yezoensis were identified as anti-AD candidate compounds. These results suggest that the PYE may improve AD and contained two carotenoids by regulating pro-inflammatory chemokines.
Collapse
Affiliation(s)
- Yuna Ha
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
| | - Won-Hwi Lee
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
| | - JaeWoo Jeong
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
| | - Mira Park
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Ju-Young Ko
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Oh Wook Kwon
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Jongsung Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 164-19, Gyunggi Do, Korea
- Correspondence: (J.L); (Y.-J.K.); Tel.: +82-32-835-8861 (Y.-J.K.)
| | - Youn-Jung Kim
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
- Correspondence: (J.L); (Y.-J.K.); Tel.: +82-32-835-8861 (Y.-J.K.)
| |
Collapse
|
20
|
Cho SH, Kim HS, Lee W, Han EJ, Kim SY, Fernando IPS, Ahn G, Kim KN. Eckol from Ecklonia cava ameliorates TNF-α/IFN-γ-induced inflammatory responses via regulating MAPKs and NF-κB signaling pathway in HaCaT cells. Int Immunopharmacol 2020; 82:106146. [PMID: 32088638 DOI: 10.1016/j.intimp.2019.106146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
We investigated the protective effect of the bioactive compound eckol on inflammatory-related skin lesions in vitro. HaCaT cells were stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mixture, and treated with various concentration of eckol (25, 50, and 100 µg/ml). The expression of pro-inflammatory cytokines and chemokines were analyzed by enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR), respectively. Mitogen-activated protein kinase (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways regulate immune and inflammation responses. Phosphorylation of MAPKs and NF-κB, indicating activation of respective signaling pathways, was examined by western blot analysis. Treatment of TNF-α and IFN-γ promoted the mRNA expression and production of pro-inflammatory cytokines and chemokines in HaCaT cells. However, eckol significantly suppressed the these mediators. Furthermore, activation of TNF-α/IFN-γ-induced MAPKs and NF-κB signaling pathway was inhibited by eckol treatment. Eckol also hampered the TNF-α/IFN-γ-mediated nuclear translocation of NF-κB p65 in HaCaT cells. Taken together, our findings demonstrate that eckol shows effective protective activity against TNF-α/IFN-γ-induced skin inflammation.
Collapse
Affiliation(s)
- Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon, Republic of Korea
| | - WonWoo Lee
- Frechwater Biosources Utilization Bureau, Bioresources Industrialization Support Division, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea
| | - Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59629, Republic of Korea
| | - Seo-Young Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea
| | - I P Shanura Fernando
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59629, Republic of Korea
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59629, Republic of Korea; Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59629, Republic of Korea.
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea.
| |
Collapse
|
21
|
Juárez-Portilla C, Olivares-Bañuelos T, Molina-Jiménez T, Sánchez-Salcedo JA, Moral DID, Meza-Menchaca T, Flores-Muñoz M, López-Franco Ó, Roldán-Roldán G, Ortega A, Zepeda RC. Seaweeds-derived compounds modulating effects on signal transduction pathways: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153016. [PMID: 31325683 DOI: 10.1016/j.phymed.2019.153016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Recently, the study of marine natural products has gained interest due to their relevant biological activities. Specially, seaweeds produce bioactive compounds that could act as modulators of cell signaling pathways involved in a plethora of diseases. Thereby, the description of the molecular mechanisms by which seaweeds elicit its biological functions will certainly pave the way to the pharmacological development of drugs. AIM This review describes the molecular mechanisms by which seaweeds act and its possible utilization in the design of new drugs. METHODS This review was conducted according to the PRISMA-P guidelines for systematic reviews. Two independent authors searched into four different databases using combinations of keywords. Two more authors selected the articles following the eligibility criteria. Information extraction was conducted by two separated authors and entered into spreadsheets. Methodological quality and risk of bias were determined applying a 12-question Risk of Bias criteria tool. RESULTS AND DISCUSSION We found 2360 articles (SCOPUS: 998; PubMed: 678; Wiley: 645 and EBSCO: 39) using the established keywords, of which 113 articles fit the inclusion criteria and were included in the review. This work comprises studies in cell lines, and animal models, any clinical trial was excluded. The articles were published from 2005 up to March 31st 2018. The biggest amount of articles was published in 2017. Furthermore, the seaweeds tested in the studies were collected in 15 countries, mainly in Eastern countries. We found that the main modulated signaling pathways by seaweeds-derivate extracts and compounds were: L-Arginine/NO, TNF-α, MAPKs, PI3K/AKT/GSK, mTOR, NF-κB, extrinsic and intrinsic apoptosis, cell cycle, MMPs and Nrf2. Finally, the articles we analyzed showed moderate risk of bias in almost all the parameters evaluated. However, the studies fail to describe the place and characteristics of sample collection, the sample size, and the blindness of the experimental design. CONCLUSION In this review we identified and summarized relevant information related to seaweed-isolated compounds and extracts having biological activity; their role in different signal pathways to better understand their potential to further development of cures for cancer, diabetes, and inflammation-related diseases.
Collapse
Affiliation(s)
- Claudia Juárez-Portilla
- Centro de Investigaciones Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Tatiana Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California. Km 103 autopista Tijuana-Ensenada, A.P. 453. Ensenada, Baja California, México
| | - Tania Molina-Jiménez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana. Circuito Gonzalo Aguirre Beltrán s/n. Zona Universitaria, C.P. 91000, Xalapa, Veracruz, México
| | - José Armando Sánchez-Salcedo
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana. Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Iztapalapa, Ciudad de México
| | - Diana I Del Moral
- Programa de Doctorado en Ciencias Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Thuluz Meza-Menchaca
- Laboratorio de Genómica Humana, Facultad de Medicina, Universidad Veracruzana. Médicos y Odontólogos s/n. Col. Unidad del Bosque, C.P. 91010, Xalapa, Veracruz, México
| | - Mónica Flores-Muñoz
- Instituto de Ciencias de la Salud, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Óscar López-Franco
- Instituto de Ciencias de la Salud, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Gabriel Roldán-Roldán
- Laboratorio de Neurobiología Conductual, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, 07300, Ciudad de México, México
| | - Rossana C Zepeda
- Centro de Investigaciones Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México.
| |
Collapse
|
22
|
A Systematic Review of Recently Reported Marine Derived Natural Product Kinase Inhibitors. Mar Drugs 2019; 17:md17090493. [PMID: 31450856 PMCID: PMC6780990 DOI: 10.3390/md17090493] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
Protein kinases are validated drug targets for a number of therapeutic areas, as kinase deregulation is known to play an essential role in many disease states. Many investigated protein kinase inhibitors are natural product small molecules or their derivatives. Many marine-derived natural products from various marine sources, such as bacteria and cyanobacteria, fungi, animals, algae, soft corals, sponges, etc. have been found to have potent kinase inhibitory activity, or desirable pharmacophores for further development. This review covers the new compounds reported from the beginning of 2014 through the middle of 2019 as having been isolated from marine organisms and having potential therapeutic applications due to kinase inhibitory and associated bioactivities. Moreover, some existing clinical drugs based on marine-derived natural product scaffolds are also discussed.
Collapse
|
23
|
Manandhar B, Paudel P, Seong SH, Jung HA, Choi JS. Characterizing Eckol as a Therapeutic Aid: A Systematic Review. Mar Drugs 2019; 17:E361. [PMID: 31216636 PMCID: PMC6627842 DOI: 10.3390/md17060361] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 12/23/2022] Open
Abstract
The marine biosphere is a treasure trove of natural bioactive secondary metabolites and the richest source of structurally diverse and unique compounds, such as phlorotannins and halo-compounds, with high therapeutic potential. Eckol is a precursor compound representing the dibenzo-1,4-dioxin class of phlorotannins abundant in the Ecklonia species, which are marine brown algae having a ubiquitous distribution. In search of compounds having biological activity from macro algae during the past three decades, this particular compound has attracted massive attention for its multiple therapeutic properties and health benefits. Although several varieties of marine algae, seaweed, and phlorotannins have already been well scrutinized, eckol deserves a place of its own because of the therapeutic properties it possesses. The relevant information about this particular compound has not yet been collected in one place; therefore, this review focuses on its biological applications, including its potential health benefits and possible applications to restrain diseases leading to good health. The facts compiled in this review could contribute to novel insights into the functions of eckol and potentially enable its use in different uninvestigated fields.
Collapse
Affiliation(s)
- Bandana Manandhar
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
24
|
Abstract
Natural marine-derived compounds show excellent biological activities. Isolation, characterization and applications of marine derived compounds show a promising way to develop novel drugs to treat various diseases. Phlorotannins are one of the main compounds which are commonly isolated from the brown seaweeds. The structural unit of phlorotannins is made-up of polyphenolic units. Due to the unique structures, phlorotannins show a variety of biological activities such as antibacterial, antioxidant, anti-inflammatory, antiproliferative, antitumor, antidiabetics, radio protective, antiadipogenic, and anti-allergic effects. In the current chapter, we have discussed general information on phlorotannins, extraction procedure and their biological activities in detail. From the scientific literature, phlorotannins can be potentially useful in the development of pharmaceuticals, nutraceuticals and cosmeceuticals.
Collapse
|
25
|
Sugiura Y, Usui M, Katsuzaki H, Imai K, Kakinuma M, Amano H, Miyata M. Orally Administered Phlorotannins from Eisenia arborea Suppress Chemical Mediator Release and Cyclooxygenase-2 Signaling to Alleviate Mouse Ear Swelling. Mar Drugs 2018; 16:E267. [PMID: 30072652 PMCID: PMC6117712 DOI: 10.3390/md16080267] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/21/2018] [Accepted: 07/28/2018] [Indexed: 01/29/2023] Open
Abstract
Phlorotannin is the collective term for polyphenols derived from brown algae belonging to the genera Ascopyllum, Ecklonia, Eisenia, Fucus and Sargassum etc. Since the incidence of allergies is currently increasing in the world, there is a focus on phlorotannins having anti-allergic and anti-inflammatory effects. In this study, six purified phlorotannins (eckol; 6,6'-bieckol; 6,8'-bieckol; 8,8'-bieckol; phlorofucofuroeckol (PFF)-A and PFF-B) from Eisenia arborea, orally administered to mice, were examined for their suppression effects on ear swelling. In considering the suppression, we also examined whether the phlorotannins suppressed release of chemical mediators (histamine, leukotriene B₄ and prostaglandin E₂), and mRNA expression and/or the activity of cyclooxygenase-2 (COX-2), using RBL-2H3 cells, a cultured mast cell model. Results showed that the phlorotnannins exhibited suppression effects in all experiments, with 6,8'-bieckol, 8,8'-bieckol and PFF-A showing the strongest of these effects. In conclusion, orally administered phlorotannins suppress mouse ear swelling, and this mechanism apparently involves suppression of chemical mediator release and COX-2 mRNA expression or activity. This is the first report of the anti-allergic effects of the orally administered purified phlorotannins in vivo. Phlorotannins show potential for use in functional foods or drugs.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki 759-6595, Japan.
| | - Masakatsu Usui
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki 759-6595, Japan.
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan.
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan.
| | - Makoto Kakinuma
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan.
| | - Hideomi Amano
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan.
| | - Masaaki Miyata
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki 759-6595, Japan.
| |
Collapse
|