1
|
Verma A, Goyal A. Beyond insulin: The Intriguing role of GLP-1 in Parkinson's disease. Eur J Pharmacol 2024; 982:176936. [PMID: 39182542 DOI: 10.1016/j.ejphar.2024.176936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
GLP-1 (Glucagon-like peptide 1) serves as both a peptide hormone and a growth factor, is released upon nutrient intake and contributes to insulin secretion stimulated by glucose levels. Also, GLP-1 is synthesized within several brain areas and plays a vital function in providing neuroprotection and reducing inflammation through the activation of the GLP-1 receptor. Parkinson's Disease (PD) is a neurodegenerative illness that worsens with time and is defined by considerable morbidity. Presently, there are few pharmaceutical choices available, and none of the existing therapies are capable of modifying the course of the disease. There is a suggestion that type 2 diabetes mellitus (T2DM) could increase the risk of PD, and the presence of both conditions concurrently might exacerbate PD symptoms and hasten neurodegeneration. GLP-1 receptor (GLP-1R) agonists exhibit numerous implications like enhancement of glucose-dependent insulin release and biosynthesis, suppression of glucagon secretion and gastric emptying. Also, some GLP-1R agonists have received clinical approval for the management of T2DM. Moreover, the use of GLP-1R agonists has demonstrated counter-inflammatory, neurotrophic, and neuroprotective actions in various preclinical models of neurodegenerative disorders. Considering the significant amount of evidence backing the potential of GLP-1R agonists to protect the nervous system across different research settings, this article delves into examining the hopeful prospect of GLP-1R agonists as a treatment option for PD. This review sheds light on combined neuroprotective benefits of GLP-1R agonists and the possible mechanisms driving the protective effects on the PD brain, through the collection of data from various preclinical and clinical investigations.
Collapse
Affiliation(s)
- Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
2
|
Goyal A, Sikarwar O, Verma A, Solanki K, Mishra MK. Therapeutic overview of sudachitin. J Biochem Mol Toxicol 2024; 38:e70003. [PMID: 39392135 DOI: 10.1002/jbt.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Citrus fruits are extensively cultivated and eaten both raw and in refined forms. Citrus fruit peels are highly concentrated in polyphenolic substances. This makes them useful resources. Polymethoxyflavones (PMFs), found in citrus peels, belong to a specific subclass of flavonoids where most or all hydroxyl groups are methylated. PMFs have been documented to possess chemopreventive actions, anticancer, anti-inflammatory, and anti-atherosclerosis properties, as well as neuroprotective effects. Sudachitin, a PMF, is primarily found in Citrus sudachi. Japan's Tokushima prefecture is home to this famous fruit. In recent years, there has been a growing interest among researchers in exploring the potential health benefits of sudachitin, spurred by its presence in traditional diets and its association with various positive health outcomes. Studies conducted over the past decade have revealed promising effects of sudachitin in multiple health conditions, including cancer, skin disorders, inflammatory conditions, diabetes, obesity, and neurodegenerative disorders. Although these promising results exist, there is still a need for thorough preclinical and clinical research to confirm sudachitin's effectiveness in treating chronic conditions. This review seeks to summarize animal and cell studies exploring sudachitin's pharmacological properties and the potential molecular pathways underlying its therapeutic effects. Through this, we aim to clarify the clinical potential of sudachitin across various disorders, paving the way for future research and the development of sudachitin-based therapies.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Om Sikarwar
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kunal Solanki
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | |
Collapse
|
3
|
Lu J, Chen J, Li SY, Pan GJ, Ou Y, Yuan LF, Jiang JP, Zeng LH, Zhao J. Naringin and Naringenin: Potential Multi-Target Agents for Alzheimer's Disease. Curr Med Sci 2024; 44:867-882. [PMID: 39347923 DOI: 10.1007/s11596-024-2921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/15/2024] [Indexed: 10/01/2024]
Abstract
Alzheimer's disease (AD) is one of the most common forms of neurodegenerative dementia. The etiology of AD is multifactorial, and its complex pathophysiology involves tau and amyloid-β deposition, increased oxidative stress, neuroinflammation, metabolic disorders, and massive neuronal loss. Due to its complex pathology, no effective cure for AD has been found to date. Therefore, there is an unmet clinical need for the development of new drugs against AD. Natural products are known to be good sources of compounds with pharmacological activity and have potential for the development of new therapeutic agents. Naringin, a naturally occurring flavanone glycoside, is predominantly found in citrus fruits and Chinese medicinal herbs. Mounting evidence shows that naringin and its aglycone, naringenin, have direct neuroprotective effects on AD, such as anti-amyloidogenic, antioxidant, anti-acetylcholinesterase, and anti-neuroinflammatory effects, as well as metal chelation. Furthermore, they are known to improve disordered glucose/lipid metabolism, which is a high risk factor for AD. In this review, we summarize the latest data on the impact of naringin and naringenin on the molecular mechanisms involved in AD pathophysiology. Additionally, we provide an overview of the current clinical applications of naringin and naringenin. The novel delivery systems for naringin and naringenin, which can address their widespread pharmacokinetic limitations, are also discussed. The literature indicates that naringin and naringenin could be multilevel, multitargeted, and multifaceted for preventing and treating AD.
Collapse
Affiliation(s)
- Jing Lu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310015, China
| | - Jie Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310015, China
| | - Shu-Yue Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Guang-Jie Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Yi Ou
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Li-Fu Yuan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Jian-Ping Jiang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Affiliated Hospital, Hangzhou City University School of Medicine, Hangzhou, 310015, China.
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Jie Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
4
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
5
|
Ansari S, Zia MK, Ahsan H, Hashmi MA, Khan FH. Binding characteristics and conformational changes in alpha-2-macroglobulin by the dietary flavanone naringenin: biophysical and computational approach. J Biomol Struct Dyn 2024; 42:7485-7500. [PMID: 37498152 DOI: 10.1080/07391102.2023.2240420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
In the present study, we investigated the interaction of alpha-2-macroglobulin (α2M) with naringenin using multi-spectroscopic, molecular docking, and molecular simulation approaches to identify the functional changes and structural variations in the α2M structure. Our study suggests that naringenin compromised α2M anti-proteinase activity. The results of absorption spectroscopy and fluorescence measurement showed that naringenin-α2M formed a complex with a binding constant of (kb)∼104, indicative of moderate binding. The value of ΔG° in the binding indicates the process to be spontaneous and the major force responsible to be hydrophobic interaction. The findings of FRET reveal the binding distance between naringenin and the amino acids of α2M was 2.82 nm. The secondary structural analysis of α2M with naringenin using multi-spectroscopic methods like synchronous fluorescence, red-edge excitation shift (REES), FTIR, and CD spectra further confirmed the significant conformational alterations in the protein. Molecular docking approach reveals the interactions between naringenin and α2M to be hydrogen bonds, van der Waals forces, and pi interactions, which considerably favour and stabilise the binding. Molecular dynamics modelling simulations also supported the steady binding with the least RMSD deviations. Our study suggests that naringenin interacts with α2M to alter its confirmation and compromise its activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sana Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Fahim H Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Singh A, Sinha S, Singh NK. Dietary Natural Flavonoids: Intervention for MAO-B Against Parkinson's Disease. Chem Biol Drug Des 2024; 104:e14619. [PMID: 39223743 DOI: 10.1111/cbdd.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/27/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) stands as the second most common neurological disorder after Alzheimer's disease, primarily affecting the elderly population and significantly compromising their quality of life. The precise etiology of PD remains elusive, but recent research has shed light on potential factors, including the formation of α-synuclein aggregates, oxidative stress, neurotransmitter imbalances, and dopaminergic neurodegeneration in the substantia nigra pars compacta (SNpc) region of the brain, culminating in motor symptoms such as bradykinesia, akinesia, tremors, and rigidity. Monoamine oxidase (MAO) is an essential enzyme, comprising two isoforms, MAO-A and MAO-B, responsible for the oxidation of monoamines such as dopamine. Increased MAO-B activity is responsible for decreased dopamine levels in the SNpc region of mid brain which is remarkably associated with the pathogenesis of PD-like manifestations. Inhibitors of MAO-B enhance striatal neuronal responses to dopamine, making them valuable in treating PD, which involves dopamine deficiency. Clinically approved MAO-B inhibitors such as selegiline, L-deprenyl, pargyline, and rasagiline are employed in the management of neurodegenerative conditions associated with PD. Current therapeutic interventions including MAO-B inhibitors for PD predominantly aim to alleviate these motor symptoms but often come with a host of side effects that can be particularly challenging for the patients. While effective, they have limitations, prompting a search for alternative treatments, there is a growing interest in exploring natural products notably flavonoids as potential sources of novel MAO-B inhibitors. In line with that, the present review focuses on natural flavonoids of plant origin that hold promise as potential candidates for the development of novel MAO-B inhibitors. The discussion encompasses both in vitro and in vivo studies, shedding light on their potential therapeutic applications. Furthermore, this review underscores the significance of exploring natural products as valuable reservoirs of MAO-B inhibitors, offering new avenues for drug development and addressing the pressing need for improved treatments in PD-like pathological conditions. The authors of this review majorly explore the neuroprotective potential of natural flavonoids exhibiting notable MAO-B inhibitory activity and additionally multi-targeted approaches in the treatment of PD with clinical evidence and challenges faced in current therapeutic approaches.
Collapse
Affiliation(s)
- Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suman Sinha
- Division of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
7
|
Amiri B, Yazdani Tabrizi M, Naziri M, Moradi F, Arzaghi M, Archin I, Behaein F, Bagheri Pour A, Ghannadikhosh P, Imanparvar S, Akhtari Kohneshahri A, Sanaye Abbasi A, Zerangian N, Alijanzadeh D, Ghayyem H, Azizinezhad A, Ahmadpour Youshanlui M, Poudineh M. Neuroprotective effects of flavonoids: endoplasmic reticulum as the target. Front Neurosci 2024; 18:1348151. [PMID: 38957188 PMCID: PMC11218733 DOI: 10.3389/fnins.2024.1348151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/28/2024] [Indexed: 07/04/2024] Open
Abstract
The incidence of neurological disorders, particularly age-related neurodegenerative pathologies, exhibits an alarming upward trend, while current pharmacological interventions seldom achieve curative outcomes. Despite their diverse clinical presentations, neurological diseases often share a common pathological thread: the aberrant accumulation of misfolded proteins within the endoplasmic reticulum (ER). This phenomenon, known as ER stress, arises when the cell's intrinsic quality control mechanisms fail to cope with the protein-folding burden. Consequently, misfolded proteins accumulate in the ER lumen, triggering a cascade of cellular stress responses. Recognizing this challenge, researchers have intensified their efforts over the past two decades to explore natural compounds that could potentially slow or even reverse these devastating pathologies. Flavonoids constitute a vast and heterogeneous class of plant polyphenols, with over 10,000 identified from diverse natural sources such as wines, vegetables, medicinal plants, and organic products. Flavonoids are generally divided into six different subclasses: anthocyanidins, flavanones, flavones, flavonols, isoflavones, and flavonols. The diverse family of flavonoids, featuring a common phenolic ring backbone adorned with varying hydroxyl groups and additional modifications, exerts its antioxidant activity by inhibiting the formation of ROS, as evidenced by research. Also, studies suggest that polyphenols such as flavonoids can regulate ER stress through apoptosis and autophagy. By understanding these mechanisms, we can unlock the potential of flavonoids as novel therapeutic agents for neurodegenerative disorders. Therefore, this review critically examines the literature exploring the modulatory effects of flavonoids on various steps of the ER stress in neurological disorders.
Collapse
Affiliation(s)
- Bita Amiri
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Yazdani Tabrizi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdyieh Naziri
- Student Research Committee, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moradi
- Student Research Committee, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Arzaghi
- Department of Physical Education and Sports Science-Nutrition, Branch Islamic Azad University, Tehran, Iran
| | - Iman Archin
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Parna Ghannadikhosh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Imanparvar
- School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ata Akhtari Kohneshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Ali Sanaye Abbasi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasibeh Zerangian
- PhD Student in Health Education and Health Promotion, Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Alijanzadeh
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hani Ghayyem
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Azizinezhad
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | | | - Mohadeseh Poudineh
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Goyal A, Sikarwar O, Verma A, Solanki K, Agrawal N, Dubey N, Yadav HN. Unveiling myricetin's pharmacological potency: A comprehensive exploration of the molecular pathways with special focus on PI3K/AKT and Nrf2 signaling. J Biochem Mol Toxicol 2024; 38:e23739. [PMID: 38769721 DOI: 10.1002/jbt.23739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Myricetin can be found in the traditional Chinese medicinal plant, Myrica rubra. Myricetin is a flavonoid that is present in many vegetables, fruits, and plants and is considered to have strong antioxidant properties as well as a wide range of therapeutic applications. Growing interest has been piqued by its classification as a polyphenolic molecule because of its potential therapeutic benefits in both the prevention and management of numerous medical conditions. To clarify myricetin's traditional medical uses, modern research has investigated various pharmacological effects such as antioxidant, anticancer, anti-inflammation, antiviral, antidiabetic, immunomodulation, and antineurodegenerative effects. Myricetin shows promise as a nutritional flavonol that could be beneficial in the prevention and mitigation of prevalent health conditions like diabetes, cognitive decline, and various types of cancer in humans. The findings included in this study indicate that myricetin has a great deal of promise for application in the formulation of medicinal products and nutritional supplements since it affects several enzyme activities and alters inflammatory markers. However, comprehensive preclinical studies and research studies are necessary to lay the groundwork for assessing myricetin's possible effectiveness in treating these long-term ailments. This review summarizes both in vivo and in vitro studies investigating myricetin's possible interactions through the nuclear factor-E2-related factor 2 (Nrf2) as well as PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) signaling pathways in an attempt to clarify the compound's possible clinical applicability across a range of disorders.
Collapse
Affiliation(s)
- Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Om Sikarwar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kunal Solanki
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Neetu Agrawal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
9
|
Madhubala D, Patra A, Khan MR, Mukherjee AK. Phytomedicine for neurodegenerative diseases: The road ahead. Phytother Res 2024; 38:2993-3019. [PMID: 38600725 DOI: 10.1002/ptr.8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders (NDs) are among the most common causes of death across the globe. NDs are characterized by progressive damage to CNS neurons, leading to defects in specific brain functions such as memory, cognition, and movement. The most common NDs are Parkinson's, Alzheimer's, Huntington's, and amyotrophic lateral sclerosis (ALS). Despite extensive research, no therapeutics or medications against NDs have been proven to be effective. The current treatment of NDs involving symptom-based targeting of the disease pathogenesis has certain limitations, such as drug resistance, adverse side effects, poor blood-brain barrier permeability, and poor bioavailability of drugs. Some studies have shown that plant-derived natural compounds hold tremendous promise for treating and preventing NDs. Therefore, the primary objective of this review article is to critically analyze the properties and potency of some of the most studied phytomedicines, such as quercetin, curcumin, epigallocatechin gallate (EGCG), apigenin, and cannabinoids, and highlight their advantages and limitations for developing next-generation alternative treatments against NDs. Further extensive research on pre-clinical and clinical studies for developing plant-based drugs against NDs from bench to bedside is warranted.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Aparup Patra
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
10
|
Azeredo PDS, Fan D, Murphy EA, Carver WE. Potential of Plant-Derived Compounds in Preventing and Reversing Organ Fibrosis and the Underlying Mechanisms. Cells 2024; 13:421. [PMID: 38474385 PMCID: PMC10930795 DOI: 10.3390/cells13050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Increased production of extracellular matrix is a necessary response to tissue damage and stress. In a normal healing process, the increase in extracellular matrix is transient. In some instances; however, the increase in extracellular matrix can persist as fibrosis, leading to deleterious alterations in organ structure, biomechanical properties, and function. Indeed, fibrosis is now appreciated to be an important cause of mortality and morbidity. Extensive research has illustrated that fibrosis can be slowed, arrested or even reversed; however, few drugs have been approved specifically for anti-fibrotic treatment. This is in part due to the complex pathways responsible for fibrogenesis and the undesirable side effects of drugs targeting these pathways. Natural products have been utilized for thousands of years as a major component of traditional medicine and currently account for almost one-third of drugs used clinically worldwide. A variety of plant-derived compounds have been demonstrated to have preventative or even reversal effects on fibrosis. This review will discuss the effects and the underlying mechanisms of some of the major plant-derived compounds that have been identified to impact fibrosis.
Collapse
Affiliation(s)
- Patrícia dos Santos Azeredo
- Laboratory of Atherosclerosis, Thrombosis and Cell Therapy, Institute of Biology, State University of Campinas—UNICAMP Campinas, Campinas 13083-970, Brazil;
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | - E. Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | - Wayne E. Carver
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| |
Collapse
|
11
|
Peng Y, Qu R, Xu S, Bi H, Guo D. Regulatory mechanism and therapeutic potentials of naringin against inflammatory disorders. Heliyon 2024; 10:e24619. [PMID: 38317884 PMCID: PMC10839891 DOI: 10.1016/j.heliyon.2024.e24619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Naringin is a natural flavonoid with therapeutic properties found in citrus fruits and an active natural product from herbal plants. Naringin has become a focus of attention in recent years because of its ability to actively participate in the body's immune response and maintain the integrity of the immune barrier. This review aims to elucidate the mechanism of action and therapeutic efficacy of naringin in various inflammatory diseases and to provide a valuable reference for further research in this field. The review provided the chemical structure, bioavailability, pharmacological properties, and pharmacokinetics of naringin and found that naringin has good therapeutic potential for inflammatory diseases, exerting anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-ulcerative and detoxifying effects in the disease. Moreover, we found that the great advantage of naringin treatment is that it is safe and can even alleviate the toxic side effects associated with some of the other drugs, which may become a highlight of naringin research. Naringin, an active natural product, plays a significant role in systemic diseases' anti-inflammatory and antioxidant regulation through various signaling pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
12
|
Sun S, Ma Q, Sheng Q, Huang S, Wu C, Liu J, Xu J. Amyloid-β Oligomer-Induced Electrophysiological Mechanisms and Electrical Impedance Changes in Neurons. SENSORS (BASEL, SWITZERLAND) 2024; 24:1211. [PMID: 38400369 PMCID: PMC10892449 DOI: 10.3390/s24041211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
Amyloid plays a critical role in the pathogenesis of Alzheimer's disease (AD) and can aggregate to form oligomers and fibrils in the brain. There is increasing evidence that highly toxic amyloid-β oligomers (AβOs) lead to tau protein aggregation, hyperphosphorylation, neuroinflammation, neuronal loss, synaptic loss, and dysfunction. Although the effects of AβOs on neurons have been investigated using conventional biochemical experiments, there are no established criteria for electrical evaluation. To this end, we explored electrophysiological changes in mouse hippocampal neurons (HT22) following exposure to AβOs and/or naringenin (Nar, a flavonoid compound) using electrical impedance spectroscopy (EIS). AβO-induced HT22 showed a decreased impedance amplitude and increased phase angle, and the addition of Nar reversed these changes. The characteristic frequency was markedly increased with AβO exposure, which was also reversed by Nar. The AβOs decreased intranuclear and cytoplasmic resistance and increased nucleus resistance and extracellular capacitance. Overall, the innovative construction of the eight-element CPE-equivalent circuit model further reflects that the pseudo-capacitance of the cell membrane and cell nucleus was increased in the AβO-induced group. This study conclusively revealed that AβOs induce cytotoxic effects by disrupting the resistance characteristics of unit membranes. The results further support that EIS is an effective technique for evaluating AβO-induced neuronal damage and microscopic electrical distinctions in the sub-microscopic structure of reactive cells.
Collapse
Affiliation(s)
- Shimeng Sun
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, China; (S.S.); (Q.M.); (Q.S.); (S.H.); (C.W.)
| | - Qing Ma
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, China; (S.S.); (Q.M.); (Q.S.); (S.H.); (C.W.)
| | - Qiyu Sheng
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, China; (S.S.); (Q.M.); (Q.S.); (S.H.); (C.W.)
| | - Shangwei Huang
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, China; (S.S.); (Q.M.); (Q.S.); (S.H.); (C.W.)
| | - Chenxia Wu
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, China; (S.S.); (Q.M.); (Q.S.); (S.H.); (C.W.)
| | - Junsong Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Jia Xu
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, China; (S.S.); (Q.M.); (Q.S.); (S.H.); (C.W.)
| |
Collapse
|
13
|
Li L, Lin Z, Yuan J, Li P, Wang Q, Cho N, Wang Y, Lin Z. The neuroprotective mechanisms of naringenin: Inhibition of apoptosis through the PI3K/AKT pathway after hypoxic-ischemic brain damage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116941. [PMID: 37480970 DOI: 10.1016/j.jep.2023.116941] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Naringenin (NGN) is a widely distributed flavonoid with potent antioxidant and neuroprotective properties. Neuroprotective agents play a crucial role in the treatment of hypoxic-ischemic encephalopathy (HIE). It has shown potential therapeutic effects for neurological disorders. However, its efficacy on HIE is yet to be investigated. AIM OF THE STUDY This study aims to investigate the potential neuroprotective effect of naringenin and its underlying molecular mechanisms in reducing oxidative stress, apoptosis, and improving brain outcomes following HIE. Additionally, the study aims to identify the potential targets, mechanisms, and functions of naringenin using network pharmacology analysis. MATERIALS AND METHODS Neonatal mice were exposed to the hypoxic-ischemic brain damage (HIBD) model to determine brain water content, and brain tissue was subjected to hematoxylin and eosin (HE), immunohistochemistry (IHC), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and Nissl staining to investigate its neuroprotective effects. Furthermore, the neonatal mouse primary neuron oxygen-glucose deprivation (OGD) model to measure reactive oxygen species (ROS) production in vitro. The protein levels were characterized by Western Blot, and mRNA levels were evaluated by a real-time quantitative PCR detecting system (qPCR). Transmission electron microscopy (TEM) and mitochondrial fluorescent staining were used to observe mitochondrial morphology. Neuronal nuclei (NeuN) and microtubule-associated protein 2 (MAP2) were detected by Immunofluorescence (IF). Finally, network pharmacology was employed to determine the common target of naringenin and HIE. The core genes were obtained via protein-protein interaction networks (PPI) analysis and molecular docking was examined, and the mechanism of action was explored through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Additionally, small interfering RNA (siRNA) was constructed for verification. RESULTS Naringenin has a neuroprotective effect in HIBD by modulating Vegfa expression and activating the PI3K/AKT pathway to inhibit apoptosis. Furthermore, molecular docking results suggest that Vegfa is a potential binding target of naringenin, and silencing Vegfa partially reverses the pharmacological effects of NGN. CONCLUSION Our findings suggest that naringenin demonstrates potential clinical application for treating HIE as a novel neuroprotective agent.
Collapse
Affiliation(s)
- Luyao Li
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Junhui Yuan
- Wenling Maternal and Child Health Care Hospital, Xiabao Road, Chengdong Street of Wenling City, Zhejiang Province, 317500, China
| | - Pingping Li
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Qi Wang
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju, South Korea.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Zhenlang Lin
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
14
|
Mittal RK, Mishra R, Sharma V, Purohit P. Bioactive Exploration in Functional Foods: Unlocking Nature's Treasures. Curr Pharm Biotechnol 2024; 25:1419-1435. [PMID: 38031768 DOI: 10.2174/0113892010282580231120041659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Functional foods offer an appealing way to improve health and prevent chronic diseases, and this subject has received much attention lately. They are effective in preventing chronic diseases like cancer, diabetes, heart disease, and obesity, according to research. OBJECTIVE This work presents an in-depth analysis of functional foods, covering key challenges from a scientific, legal, and commercial perspective. METHODS Multiple databases were searched to find studies on functional foods included in the systematic literature review. Various aspects of functional foods, from their classification, impact on human wellness, effectiveness in inhibiting chronic diseases, the regulatory environment, global market trends, and industry challenges, are all clarified in this thorough review. RESULTS This study aims to enhance understanding and establish a pathway for functional foods to be acknowledged as valid choices in the field of dietary supplements. It provides a thorough investigation of bioactive compounds present in functional foods, including but not limited to polyphenols, carotenoids, omega fatty acids, prebiotics, probiotics, and dietary fiber, along with an overview of their potential to mitigate chronic illnesses. We engage in an in-depth exploration of regulatory frameworks, shed light on groundbreaking research advancements, and meticulously examine strategies for commercialization and the variety of global challenges that accompany them. Establishing scientific consensus, navigating complex regulatory processes, dealing with skeptical consumers, and rising levels of competition are all problems that need to be solved in this field. CONCLUSION The field of functional foods can advance further, promoting better public health outcomes, by deeply comprehending and addressing these complex dimensions.
Collapse
Affiliation(s)
- Ravi K Mittal
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Raghav Mishra
- Department of Pharmacy, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Vikram Sharma
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Priyank Purohit
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
| |
Collapse
|
15
|
Varshney V, Kumar A, Parashar V, Kumar A, Goyal A, Garabadu D. Therapeutic Potential of Capsaicin in Various Neurodegenerative Diseases with Special Focus on Nrf2 Signaling. Curr Pharm Biotechnol 2024; 25:1693-1707. [PMID: 38173062 DOI: 10.2174/0113892010277933231122111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Neurodegenerative disease is mainly characterized by the accumulation of misfolded proteins, contributing to mitochondrial impairments, increased production of proinflammatory cytokines and reactive oxygen species, and neuroinflammation resulting in synaptic loss and neuronal loss. These pathophysiological factors are a serious concern in the treatment of neurodegenerative diseases. Based on the symptoms of various neurodegenerative diseases, different treatments are available, but they have serious side effects and fail in clinical trials, too. Therefore, treatments for neurodegenerative diseases are still a challenge at present. Thus, it is important to study an alternative option. Capsaicin is a naturally occurring alkaloid found in capsicum. Besides the TRPV1 receptor activator in nociception, capsaicin showed a protective effect in brain-related disorders. Capsaicin also reduces the aggregation of misfolded proteins, improves mitochondrial function, and decreases ROS generation. Its antioxidant role is due to increased expression of an nrf2-mediated signaling pathway. Nrf2 is a nuclear erythroid 2-related factor, a transcription factor, which has a crucial role in maintaining the normal function of mitochondria and the cellular defense system against oxidative stress. Intriguingly, Nrf2 mediated pathway improved the upregulation of antioxidant genes and inhibition of microglial-induced inflammation, improved mitochondrial resilience and functions, leading to decreased ROS in neurodegenerative conditions, suggesting that Nrf2 activation could be a better therapeutic approach to target pathophysiology of neurodegenerative disease. Therefore, the present review has evaluated the potential role of capsaicin as a pharmacological agent for the treatment and management of various neurodegenerative diseases via the Nrf2-mediated signaling pathway.
Collapse
Affiliation(s)
- Vibhav Varshney
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Abhishek Kumar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Vikas Parashar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Ankit Kumar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda- 151001, Punjab, India
| |
Collapse
|
16
|
Singh A, Kumar Singh N. Pre-clinical Evidence-based Neuroprotective Potential of Naringin against Alzheimer's Disease-like Pathology: A Comprehensive Review. Curr Pharm Biotechnol 2024; 25:1112-1123. [PMID: 37526460 DOI: 10.2174/1389201024666230801095526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 08/02/2023]
Abstract
Neurodegenerative disorders (NDs) are a group of progressive, chronic, and disabling disorders that are highly prevalent and the incidence is on a constant rise globally. Alzheimer's disease (AD), one of the most common neurodegenerative disorders is hallmarked by cognitive impairment, amyloid-β (Aβ) deposition, hyperphosphorylation of tau protein, cholinergic dysfunction, mitochondrial toxicity, and neurodegeneration. Available therapeutic agents only provide symptomatic relief and their use are limited due to serious side effects. Recent research has recognized flavonoids as potential multi-target biomolecules that can reduce the pathogenesis of AD. Naringin, a natural citrus flavonoid has been traditionally used to treat various NDs including AD, and has gained special attention because exhibits a neuroprotective effect by affecting numerous signaling pathways with minimum adverse effects. Naringin reduces deposition of Aβ, hyperphosphorylation of tau protein, cholinergic dysfunction, oxidative stress burden, mitochondrial toxicity, the activity of glutamate receptors, and apoptosis of the neuronal cells. Additionally, it reduces the expression of phosphorylated-P38/P38 and the NF-κB signaling pathway, showing that a wide range of molecular targets is involved in naringin's neuroprotective action. The present study describes the possible pharmacological targets, signaling pathways, and molecular mechanisms of naringin involved in neuroprotection against AD-like pathology. Based on the above pre-clinical reports it can be concluded that naringin could be an alternative therapeutic agent for the management of AD-like manifestation. Thus, there is a strong recommendation to perform more preclinical and clinical studies to develop naringin as a novel molecule that could be a multi-target drug to counteract AD.
Collapse
Affiliation(s)
- Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| |
Collapse
|
17
|
Verma A, Chaudhary S, Solanki K, Goyal A, Yadav HN. Exendin-4: A potential therapeutic strategy for Alzheimer's disease and Parkinson's disease. Chem Biol Drug Des 2024; 103:e14426. [PMID: 38230775 DOI: 10.1111/cbdd.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Neurodegenerative disorders, which affect millions worldwide, are marked by a steady decline of neurons that are selectively susceptible. Due to the complex pathological processes underlying neurodegeneration, at present, there is no viable therapy available for neurodegenerative disorders. Consequently, the establishment of a novel therapeutic approach for such conditions is a clinical void that remains. The potential significance of various peptides as neuroprotective interventions for neurodegenerative disorders is gaining increasing attention. In the past few years, there has been growing scientific interest in glucagon-like peptide-1 receptor agonists due to their claimed neuroprotective effects. Exendin-4 is a glucagon-like peptide-1 receptor agonist that is known to possess anti-diabetic effects and does not degrade for hours, making it a superior candidate for such disorders. Moreover, exendin-4's neuroprotective effects have been reported in several preclinical studies. Exendin-4's diverse therapeutic targets suggest its potential therapeutic uses in neurodegenerative ailments like Alzheimer's disease and Parkinson's disease and have garnered an increasing amount of attention. Given the substantial body of evidence supporting the neuroprotective potential of exendin-4 in various research models, this article is dedicated to exploring the promising role of exendin-4 as a therapeutic agent for the treatment and management of Alzheimer's disease and Parkinson's disease. This review draws insights from the findings of numerous preclinical and clinical studies to highlight the collective neuroprotective advantages of exendin-4 and the potential mechanisms that underlie its neuroprotective effects.
Collapse
Affiliation(s)
- Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shobhit Chaudhary
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kunal Solanki
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | |
Collapse
|
18
|
Goyal A, Agrawal A, Dubey N, Verma A. High Mobility Group Box 1 Protein: A Plausible Therapeutic Molecular Target in Parkinson's Disease. Curr Pharm Biotechnol 2024; 25:937-943. [PMID: 37670710 DOI: 10.2174/1389201025666230905092218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder that exerts a broad variety of detrimental effects on people's health. Accumulating evidence suggests that mitochondrial dysfunction, neuroinflammation, α-synuclein aggregation and autophagy dysfunction may all play a role in the development of PD. However, the molecular mechanisms behind these pathophysiological processes remain unknown. Currently, research in PD has focussed on high mobility group box 1 (HMGB1), and different laboratory approaches have shown promising outcomes to some level for blocking HMGB1. Given that HMGB1 regulates mitochondrial dysfunction, participates in neuroinflammation, and modulates autophagy and apoptosis, it is hypothesised that HMGB1 has significance in the onset of PD. In the current review, research targeting multiple roles of HMGB1 in PD pathology was integrated, and the issues that need future attention for targeted therapeutic approaches are mentioned.
Collapse
Affiliation(s)
- Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
19
|
Goyal A, Solanki K, Verma A. Luteolin: Nature's promising warrior against Alzheimer's and Parkinson's disease. J Biochem Mol Toxicol 2024; 38:e23619. [PMID: 38091364 DOI: 10.1002/jbt.23619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Neurodegenerative disorders (NDs) are defined as the slow loss of a group of neurons that are particularly sensitive. Due to the intricate pathophysiological processes underlying neurodegeneration, no cure exists for these conditions despite the extensive research and advances in our knowledge of the onset and course of NDs. Hence, there is a medical need for the creation of a novel therapeutic approach for NDs. By focusing on numerous signaling pathways, some natural substances derived from medicinal herbs and foods have demonstrated potent activity in treating various NDs. In this context, flavonoids have recently attracted increased popularity and research attention because of their alleged beneficial effects on health. By acting as antioxidant substances, nutritional supplements made up of flavonoids have been found to lessen the extent of NDs like Alzheimer's disease (AD) and Parkinson's disease (PD). Luteolin is a flavone that possesses potent antioxidant and anti-inflammatory properties. As a consequence, luteolin has emerged as an option for treatment with therapeutic effects on many brain disorders. More research has focused on luteolin's diverse biological targets as well as diverse signaling pathways, implying its potential medicinal properties in several NDs. This review emphasizes the possible use of luteolin as a drug of choice for the treatment as well as the management of AD and PD. In addition, this review recommends that further research should be carried out on luteolin as a potential treatment for AD and PD alongside a focus on mechanisms and clinical studies.
Collapse
Affiliation(s)
- Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kunal Solanki
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
20
|
Singh S, Ahuja A, Pathak S. Potential Role of Oxidative Stress in the Pathophysiology of Neurodegenerative Disorders. Comb Chem High Throughput Screen 2024; 27:2043-2061. [PMID: 38243956 DOI: 10.2174/0113862073280680240101065732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Neurodegeneration causes premature death in the peripheral and central nervous system. Neurodegeneration leads to the accumulation of oxidative stress, inflammatory responses, and the generation of free radicals responsible for nervous disorders like amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders. Therefore, focus must be diverted towards treating and managing these disorders, as it is very challenging. Furthermore, effective therapies are also lacking, so the growing interest of the global market must be inclined towards developing newer therapeutic approaches that can intercept the progression of neurodegeneration. Emerging evidences of research findings suggest that antioxidant therapy has significant potential in modulating disease phenotypes. This makes them promising candidates for further investigation. This review focuses on the role of oxidative stress and reactive oxygen species in the pathological mechanisms of various neurodegenerative diseases, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders and their neuroprotection. Additionally, it highlights the potential of antioxidant-based therapeutics in mitigating disease severity in humans and improving patient compliance. Ongoing extensive global research further sheds light on exploring new therapeutic targets for a deeper understanding of disease mechanisms in the field of medicine and biology targeting neurogenerative disorders.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| |
Collapse
|
21
|
Singh NK, Singh A, Mayank. Nuclear Factor Kappa B: A Nobel Therapeutic Target of FlavonoidsAgainst Parkinson's Disease. Comb Chem High Throughput Screen 2024; 27:2062-2077. [PMID: 38243959 DOI: 10.2174/0113862073295568240105025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024]
Abstract
Parkinson's disease (PD), the most common brain-related neurodegenerative disorder, is comprised of several pathophysiological mechanisms, such as mitochondrial dysfunction, neuroinflammation, aggregation of misfolded alpha-synuclein, and synaptic loss in the substantia nigra pars compacta region of the midbrain. Misfolded alpha-synuclein, originating from damaged neurons, triggers a series of signaling pathways in both glial and neuronal cells. Activation of such events results in the production and expression of several proinflammatory cytokines via the activation of the nuclear factor κB (NF-κB) signaling pathway. Consequently, this cascade of events worsens the neurodegenerative processes, particularly in conditions, such as PD and synucleinopathies. Microglia, astrocytes, and neurons are just a few of the many cells and tissues that express the NF-κB family of inducible types of transcription factors. The dual role of NF-κB activation can be crucial for neuronal survival, although the classical NF-κB pathway is important for controlling the generation of inflammatory mediators during neuroinflammation. Modulating NF-κB-associated pathways through the selective action of several agents holds promise for mitigating dopaminergic neuronal degeneration and PD. Several naturally occurring compounds in medicinal plants can be an effective treatment option in attenuating PD-associated dopaminergic neuronal loss via selectively modifying the NF-κB-mediated signaling pathways. Recently, flavonoids have gained notable attention from researchers because of their remarkable anti-neuroinflammatory activity and significant antioxidant properties in numerous neurodegenerative disorders, including PD. Several subclasses of flavonoids, including flavones, flavonols, isoflavones, and anthocyanins, have been evaluated for neuroprotective effects against in vitro and in vivo models of PD. In this aspect, the present review highlights the pathological role of NF-κB in the progression of PD and investigates the therapeutic potential of natural flavonoids targeting the NF-κB signaling pathway for the prevention and management of PD-like manifestations with a comprehensive list for further reference. Available facts strongly support that bioactive flavonoids could be considered in food and/or as lead pharmacophores for the treatment of neuroinflammation-mediated PD. Furthermore, natural flavonoids having potent pharmacological properties could be helpful in enhancing the economy of countries that cultivate medicinal plants yielding bioactive flavonoids on a large scale.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Mayank
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| |
Collapse
|
22
|
Açar Y, Ağagündüz D, De Cicco P, Capasso R. Flavonoids: Their putative neurologic roles, epigenetic changes, and gut microbiota alterations in Parkinson's disease. Biomed Pharmacother 2023; 168:115788. [PMID: 37913731 DOI: 10.1016/j.biopha.2023.115788] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Parkinson's Disease (PD), a neurodegenerative disorder, is characterized by the degeneration of progressive dopaminergic (DA) neurons in the substantia nigra region of the human midbrain. Although just what causes PD remains a mystery, it is known that oxidative stress (OS) as well as mitochondrial dysfunction, neuro-inflammation, and insufficient neurotrophic support play a role in the disease's pathophysiology. Phytochemicals are a diverse small molecule group derived from plants that can be classified into numerous classes on the basis of their biological activities and chemical structure. Of these groups of phytochemicals, the most abundant, which has well-established anti-Parkinson's effects, are polyphenols. Flavonoids, including naringin and naringenin, genistein, kaempferol, anthocyanins, epigallocatechin-3-gallate, and baicalein are plant-based biologically active polyphenols, which have been shown to exhibit therapeutic potential when used as treatment for a variety of pathological illnesses, such as neurodegenerative diseases (NDs) and PD. Recently, it was reported that flavonoids have beneficial effects on PD, such as the protection of DA neurons, improvement of motor and cognitive abilities, regulation of signaling pathways, and modulation of OS and neuro-inflammation. In addition, by changing the composition of bacteria in gut microbiota, flavonoids reduce pathogenic strains and promote the growth of beneficial strains. In this context, the current paper will provide a literature review on the neurological roles that flavonoids play, as one of the most abundant phytochemical families, in PD.
Collapse
Affiliation(s)
- Yasemin Açar
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey.
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | - Paola De Cicco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy.
| |
Collapse
|
23
|
Liu Z, Sun M, Jin C, Sun X, Feng F, Niu X, Wang B, Zhang Y, Wang J. Naringenin confers protection against experimental autoimmune encephalomyelitis through modulating the gut-brain axis: A multiomics analysis. J Nutr Biochem 2023; 122:109448. [PMID: 37741298 DOI: 10.1016/j.jnutbio.2023.109448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system that involves the immune system attacking the protective covering of nerve fibers. This disease can be influenced by both environmental and genetic factors. Evidence has highlighted the critical role of the intestinal microbiota in MS and its animal model, experimental autoimmune encephalomyelitis (EAE). The composition of gut microflora is mainly determined by dietary components, which, in turn, modulate host homeostasis. A diet rich in naringenin at 0.5% can effectively mitigate the severity of EAE in mice. However, there is little direct data on the impact of naringenin at optimal doses on EAE development, as well as its intestinal microbiota and metabolites. Our study revealed that 2.0% naringenin resulted in the lowest clinical score and pathological changes in EAE mice, and altered the gene expression profiles associated with inflammation and immunity in spinal cord tissue. We then used untargeted metabolomics and 16S rRNA gene sequences to identify metabolites and intestinal microbiota, respectively. Naringenin supplementation enriched gut microbiota in EAE mice, including increasing the abundance of Paraprevotellaceae and Comamonadaceae, while decreasing the abundance of Deltaproteobacteria, RF39, and Desulfovibrionaceae. Furthermore, the changes in gut microbiota affected the production of metabolites in the feces and brain, suggesting a role in regulating the gut-brain axis. Finally, we conducted a fecal transplantation experiment to validate that gut microbiota partly mediates the effect of naringenin on EAE alleviation. In conclusion, naringenin has potential immunomodulatory effects that are influenced to some extent by the gut microbiome.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Mengyang Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaoying Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Fangyu Feng
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xinli Niu
- School of Life Science, Henan University, Kaifeng, China
| | - Bin Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China.
| |
Collapse
|
24
|
Yang R, Wei L, Wang J, Huang S, Mo P, Chen Q, Zheng P, Chen J, Zhang S, Chen J. Chemical characterization and metabolic profiling of Xiao-Er-An-Shen Decoction by UPLC-QTOF/MS. Front Pharmacol 2023; 14:1219866. [PMID: 38027020 PMCID: PMC10652787 DOI: 10.3389/fphar.2023.1219866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Xiao-Er-An-Shen decoction (XEASD), a TCM formula composed of sixteen Chinese medicinal herbs, has been used to alleviate tic disorders (TD) in clinical practice for many years. However, the chemical basis underlying the therapeutic effects of XEASD in the treatment of TD remains unknown. Purpose: The present study aimed to determine the major chemical components of XEASD and its prototype compounds and metabolites in mice biological samples. Methods: The chemical constituents in XEASD were identified using ultra-high Performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Following this, XEASD was orally administered to mice, and samples of plasma, urine, feces, bile, and tissue were collected in order to identify effective compounds for the prevention or treatment of TD. Result: Of the total 184 compounds identified to be discriminated in the XEASD, comprising 44 flavonoids, 26 phenylpropanoids, 16 coumarins, 16 triterpenoids, 14 amino acids, 13 organic acids, 13 alkaloids, 13 ketones, 10 cyclic enol ether terpenes, 7 citrullines, 3 steroids, and 5 anthraquinones, and others. Furthermore, we summarized 54 prototype components and 78 metabolic products of XEASD, measured with biological samples, by estimating metabolic principal components, with four prototype compounds detected in plasma, 58 prototypes discriminated in urine, and 40 prototypes identified in feces. These results indicate that the Oroxylin A glucuronide from Citri reticulatae pericarpium (CRP) is a major compound with potential therapeutic effects identified in brain, while operating positive effect in inhibiting oxidative stress in vitro. Conclusion: In summary, our work delineates the chemical basis underlying the complexity of XEASD, providing insights into the therapeutic and metabolic pathways for TD. Various types of chemicals were explored in XEASD, including flavonoids, phenylpropanoids, coumarins, organic acids, triterpenoid saponins, and so on. This study can promote the further pharmacokinetic and pharmacological evaluation of XEASD.
Collapse
Affiliation(s)
- Ruipei Yang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- KMHD GeneTech Co., Ltd., Shenzhen, Guangdong, China
| | - Lifang Wei
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jie Wang
- Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Pingli Mo
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qiugu Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ping Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jihang Chen
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Shangbin Zhang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
25
|
Tresserra-Rimbau A, Thompson AS, Bondonno N, Jennings A, Kühn T, Cassidy A. Plant-Based Dietary Patterns and Parkinson's Disease: A Prospective Analysis of the UK Biobank. Mov Disord 2023; 38:1994-2004. [PMID: 37602951 DOI: 10.1002/mds.29580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Plant-based diets have been associated with a lower risk of several chronic diseases, but the relationship with PD is unknown. OBJECTIVES We examined the association of three different plant-based diets with PD incidence in the UK Biobank cohort. METHODS We conducted a prospective study among 126,283 participants from the UK Biobank cohort. Three plant-based diet indices (overall plant-based diet index, PDI; healthful plant-based diet index, hPDI; and unhealthful plant-based diet index, uPDI) were derived from 24-hour dietary recalls based on 17 food groups. Multivariable Cox regression models were used to estimate the risk of PD across quartiles of the PDIs and for each of the food groups that constituted the score. Further analyses were carried out to assess potential heterogeneity in associations between hPDI and PD across strata of some hypothesized effect modifiers. RESULTS During 11.8 years of follow-up (1,490,139 person-years), 577 cases of PD incidence were reported. After multivariable adjustment, participants in the highest hPDI and overall PDI quartile had lower risk of PD (22% and 18%, respectively), whereas a higher uPDI was associated with a 38% higher PD risk. In food-based analyses, higher intakes of vegetables, nuts, and tea were associated with a lower risk of PD (28%, 31% and 25%, respectively). Stratifying by Polygenic Risk Score (PRS), results were significant only for those with a lower PRS for PD. CONCLUSIONS Following a healthful plant-based diet and in particular the inclusion of readily achievable intakes of vegetables, nuts and tea in the habitual diet are associated with a lower risk of PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Tresserra-Rimbau
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, INSA, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Alysha S Thompson
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Nicola Bondonno
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
- Danish Cancer Society Research Centre (DCRC), Copenhagen, Denmark
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Amy Jennings
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Tilman Kühn
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany
- University of Vienna, Department of Nutritional Sciences, Vienna, Austria
- Medical University of Vienna, Centre for Public Health, Vienna, Austria
| | - Aedín Cassidy
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
26
|
Zhang T, Deng W, Deng Y, Liu Y, Xiao S, Luo Y, Xiang W, He Q. Mechanisms of ferroptosis regulating oxidative stress and energy metabolism in myocardial ischemia-reperfusion injury and a novel perspective of natural plant active ingredients for its treatment. Biomed Pharmacother 2023; 165:114706. [PMID: 37400352 DOI: 10.1016/j.biopha.2023.114706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 07/05/2023] Open
Abstract
Acute myocardial infarction remains the leading cause of death in humans. Timely restoration of blood perfusion to ischemic myocardium remains the most effective strategy in the treatment of acute myocardial infarction, which can significantly reduce morbidity and mortality. However, after restoration of blood flow and reperfusion, myocardial injury will aggravate and induce apoptosis of cardiomyocytes, a process called myocardial ischemia-reperfusion injury. Studies have shown that the loss and death of cardiomyocytes caused by oxidative stress, iron load, increased lipid peroxidation, inflammation and mitochondrial dysfunction, etc., are involved in myocardial ischemia-reperfusion injury. In recent years, with the in-depth research on the pathology of myocardial ischemia-reperfusion injury, people have gradually realized that there is a new form of cell death in the pathological process of myocardial ischemia-reperfusion injury, namely ferroptosis. A number of studies have found that in the myocardial tissue of patients with acute myocardial infarction, there are pathological changes closely related to ferroptosis, such as iron metabolism disorder, lipid peroxidation, and increased reactive oxygen species free radicals. Natural plant products such as resveratrol, baicalin, cyanidin-3-O-glucoside, naringenin, and astragaloside IV can also exert therapeutic effects by correcting the imbalance of these ferroptosis-related factors and expression levels. Combining with our previous studies, this review summarizes the regulatory mechanism of natural plant products intervening ferroptosis in myocardial ischemia-reperfusion injury in recent years, in order to provide reference information for the development of targeted ferroptosis inhibitor drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Wenxu Deng
- The Central Hospital of Hengyang, Hengyang, Hunan 421001, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Yao Liu
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medcial School, University of South China, Hunan 421001, China.
| | - Sijie Xiao
- Department of Ultrasound, The First People's Hospital of Changde City, Changde 415003, China
| | - Yanfang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Immunology and Rheumatology, The First People's Hospital of Changde City, Changde 415003, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| |
Collapse
|
27
|
Abdolmaleky HM, Zhou JR. Underlying Mechanisms of Brain Aging and Neurodegenerative Diseases as Potential Targets for Preventive or Therapeutic Strategies Using Phytochemicals. Nutrients 2023; 15:3456. [PMID: 37571393 PMCID: PMC10473240 DOI: 10.3390/nu15153456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
During aging, several tissues and biological systems undergo a progressive decline in function, leading to age-associated diseases such as neurodegenerative, inflammatory, metabolic, and cardiovascular diseases and cancer. In this review, we focus on the molecular underpinning of senescence and neurodegeneration related to age-associated brain diseases, in particular, Alzheimer's and Parkinson's diseases, along with introducing nutrients or phytochemicals that modulate age-associated molecular dysfunctions, potentially offering preventive or therapeutic benefits. Based on current knowledge, the dysregulation of microglia genes and neuroinflammation, telomere attrition, neuronal stem cell degradation, vascular system dysfunction, reactive oxygen species, loss of chromosome X inactivation in females, and gut microbiome dysbiosis have been seen to play pivotal roles in neurodegeneration in an interactive manner. There are several phytochemicals (e.g., curcumin, EGCG, fucoidan, galangin, astin C, apigenin, resveratrol, phytic acid, acacetin, daucosterol, silibinin, sulforaphane, withaferin A, and betulinic acid) that modulate the dysfunction of one or several key genes (e.g., TREM2, C3, C3aR1, TNFA, NF-kb, TGFB1&2, SIRT1&6, HMGB1, and STING) affected in the aged brain. Although phytochemicals have shown promise in slowing down the progression of age-related brain diseases, more studies to identify their efficacy, alone or in combinations, in preclinical systems can help to design novel nutritional strategies for the management of neurodegenerative diseases in humans.
Collapse
Affiliation(s)
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
28
|
Shilpa VS, Shams R, Dash KK, Pandey VK, Dar AH, Ayaz Mukarram S, Harsányi E, Kovács B. Phytochemical Properties, Extraction, and Pharmacological Benefits of Naringin: A Review. Molecules 2023; 28:5623. [PMID: 37570594 PMCID: PMC10419872 DOI: 10.3390/molecules28155623] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
This review describes the various innovative approaches implemented for naringin extraction as well as the recent developments in the field. Naringin was assessed in terms of its structure, chemical composition, and potential food sources. How naringin works pharmacologically was discussed, including its potential as an anti-diabetic, anti-inflammatory, and hepatoprotective substance. Citrus flavonoids are crucial herbal additives that have a huge spectrum of organic activities. Naringin is a nutritional flavanone glycoside that has been shown to be effective in the treatment of a few chronic disorders associated with ageing. Citrus fruits contain a common flavone glycoside that has specific pharmacological and biological properties. Naringin, a flavone glycoside with a range of intriguing characteristics, is abundant in citrus fruits. Naringin has been shown to have a variety of biological, medicinal, and pharmacological effects. Naringin is hydrolyzed into rhamnose and prunin by the naringinase, which also possesses l-rhamnosidase activity. D-glucosidase subsequently catalyzes the hydrolysis of prunin into glucose and naringenin. Naringin is known for having anti-inflammatory, antioxidant, and tumor-fighting effects. Numerous test animals and cell lines have been used to correlate naringin exposure to asthma, hyperlipidemia, diabetes, cancer, hyperthyroidism, and osteoporosis. This study focused on the many documented actions of naringin in in-vitro and in-vivo experimental and preclinical investigations, as well as its prospective therapeutic advantages, utilizing the information that is presently accessible in the literature. In addition to its pharmacokinetic characteristics, naringin's structure, distribution, different extraction methods, and potential use in the cosmetic, food, pharmaceutical, and animal feed sectors were discussed.
Collapse
Affiliation(s)
- VS Shilpa
- Department of Food Technology & Nutrition, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Rafeeya Shams
- Department of Food Technology & Nutrition, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, Malda 732141, West Bengal, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow 226026, Uttar Pradesh, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur 209402, Uttar Pradesh, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Endre Harsányi
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Land Utilization, Engineering and Precision Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
29
|
Naringenin and Hesperidin as Promising Alternatives for Prevention and Co-Adjuvant Therapy for Breast Cancer. Antioxidants (Basel) 2023; 12:antiox12030586. [PMID: 36978836 PMCID: PMC10045673 DOI: 10.3390/antiox12030586] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Citrus (genus Citrus L.) fruits are essential sources of bioactive compounds with antioxidant properties, such as flavonoids. These polyphenolic compounds are divided into subclasses, in which flavanones are the most prominent. Among them, naringenin and hesperidin are emerging compounds with anticancer potential, especially for breast cancer (BC). Several mechanisms have been proposed, including the modulation of epigenetics, estrogen signaling, induction of cell death via regulation of apoptotic signaling pathways, and inhibition of tumor invasion and metastasis. However, this information is sparse in the literature and needs to be brought together to provide an overview of how naringenin and hesperidin can serve as therapeutic tools for drug development and as a successful co-adjuvant strategy against BC. This review detailed such mechanisms in this context and highlighted how naringenin and hesperidin could interfere in BC carcinogenesis and be helpful as potential alternative therapeutic sources for breast cancer treatment.
Collapse
|
30
|
Goyal A, Verma A, Agrawal A, Dubey N, Kumar A, Behl T. Therapeutic implications of crocin in Parkinson's disease: A review of preclinical research. Chem Biol Drug Des 2023; 101:1229-1240. [PMID: 36752710 DOI: 10.1111/cbdd.14210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Parkinson's disease is among the most common forms of neurodegenerative illness, with present treatment being primarily symptomatic and frequently coming with substantial adverse effects. Neuronal degeneration may arise due to a variety of pathological events, like inflammatory responses, neurotransmitter dysregulation, oxidative damage, mitochondrial malfunction, apoptosis, and genetic factors. The health issue and financial burden brought on by Parkinson's disease can worsen as the population ages. In the search for new and secure therapeutic agents for Parkinson's disease, several natural compounds have been shown to exert considerable neuroprotective benefits. Crocin, a naturally occurring carotenoid molecule, was found to have neuroprotective potential in the therapy of this disorder. Taking into account, the outcomes of various studies and the restorative actions of crocin, the present study emphasized the protective ability of crocin in this disease. Given the strong evidence supporting the neuroprotective ability of crocin, it is inferred that crocin inhibits inflammatory, apoptotic, and antioxidant processes through multiple mechanisms. Therefore, this compound is considered a safe and effective therapeutic choice for neurodegenerative illnesses like Parkinson's disease. However, more research on its efficacy as a treatment of Parkinson's disease is needed, specifically examining its mechanisms and the results obtained in clinical trials.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Abhay Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidohli, Uttarakhand, India
| |
Collapse
|
31
|
Collins AE, Saleh TM, Kalisch BE. VANL-100 Attenuates Beta-Amyloid-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2022; 24:ijms24010442. [PMID: 36613883 PMCID: PMC9820495 DOI: 10.3390/ijms24010442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Antioxidants are being explored as novel therapeutics for the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) through strategies such as chemically linking antioxidants to synthesize novel co-drugs. The main objective of this study was to assess the cytoprotective effects of the novel antioxidant compound VANL-100 in a cellular model of beta-amyloid (Aβ)-induced toxicity. The cytotoxic effects of Aβ in the presence and absence of all antioxidant compounds were measured using the 3-(4,5-dimethylthiazol-2-yl)2-5-diphenyl-2H-tetrazolium bromide (MTT) assay in SH-SY5Y cells in both pre-treatment and co-treatment experiments. In pre-treatment experiments, VANL-100, or one of its parent compounds, naringenin (NAR), alpha-lipoic acid (ALA), or naringenin + alpha-lipoic acid (NAR + ALA), was administrated 24 h prior to an additional 24-h incubation with 20 μM non-fibril or fibril Aβ25-35. Co-treatment experiments consisted of simultaneous treatment with Aβ and antioxidants. Pre-treatment and co-treatment with VANL-100 significantly attenuated Aβ-induced cell death. There were no significant differences between the protective effects of VANL-100, NAR, ALA, and NAR + ALA with either form of Aβ, or in the effect of VANL-100 between 24-h pre-treatment and co-treatment. These results demonstrate that the novel co-drug VANL-100 is capable of eliciting cytoprotective effects against Aβ-induced toxicity.
Collapse
|