1
|
Rostamabadi H, Yildirim-Yalcin M, Demirkesen I, Toker OS, Colussi R, do Nascimento LÁ, Şahin S, Falsafi SR. Improving physicochemical and nutritional attributes of rice starch through green modification techniques. Food Chem 2024; 458:140212. [PMID: 38943947 DOI: 10.1016/j.foodchem.2024.140212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Rice, has long been an inseparable part of the human diet all over the world. As one of the most rapidly growing crops, rice has played a key role in securing the food chain of low-income food-deficit countries. Starch is the main component in rice granules which other than its nutritional essence, plays a key role in defining the physicochemical attributes of rice-based products. However, rice starch suffers from weak techno-functional characteristics (e.g., retrogradability of pastes, opacity of gels, and low shear/temperature resistibility. Green modification techniques (i.e. Non-thermal methods, Novel thermal (e.g., microwave, and ohmic heating) and enzymatic approaches) were shown to be potent tools in modifying rice starch characteristics without the exertion of unfavorable chemical reagents. This study corroborated the potential of green techniques for rice starch modification and provided deep insight for their further application instead of unsafe chemical methods.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meral Yildirim-Yalcin
- Istanbul Aydin University, Engineering Faculty, Food Engineering Department, 34295, Istanbul, Turkey
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Omer Said Toker
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, 34210, Istanbul, Turkey
| | - Rosana Colussi
- Center for Pharmaceutical and Food Chemical Sciences, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Lucas Ávila do Nascimento
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Selin Şahin
- Faculty of Engineering, Chemical Engineering Department, Division of Unit Operations and Thermodynamics, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Seid Reza Falsafi
- Food Science and Technology Division, Agricultural Engineering Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, (AREEO), Dezful, Iran.
| |
Collapse
|
2
|
Farooq MA, Yu J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024; 13:2770. [PMID: 39272535 PMCID: PMC11395633 DOI: 10.3390/foods13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The physical modification of starch to produce resistant starch (RS) is a viable strategy for the glycemic index (GI) lowering of foods and functionality improvement in starchy food products. RS cannot be digested in the small intestine but can be fermented in the colon to produce short-chain fatty acids rather than being broken down by human digestive enzymes into glucose. This provides major health advantages, like better blood sugar regulation, weight control, and a lower chance of chronic illnesses. This article provides a concise review of the recent developments in physical starch modification techniques, including annealing, extrusion, high-pressure processing, radiation, and heat-moisture treatment. Specifically, the focus of this paper is on the alteration of the crystalline structure of starch caused by the heat-moisture treatment and annealing and its impact on the resistance of starch to enzymatic hydrolysis, as well as the granular structure and molecular arrangement of starch caused by extrusion and high-pressure processing, and the depolymerization and crosslinking that results from radiation. The impacts of these alterations on starch's textural qualities, stability, and shelf life are also examined. This review demonstrates how physically modified resistant starch can be used as a flexible food ingredient with both functional and health benefits. These methods are economically and ecologically sustainable since they successfully raise the RS content and improve its functional characteristics without the need for chemical reagents. The thorough analysis of these methods and how they affect the structural characteristics and health advantages of RS emphasizes the material's potential as an essential component in the creation of functional foods that satisfy contemporary dietary and health requirements.
Collapse
Affiliation(s)
- Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan 64200, Pakistan
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
3
|
Cheng H, Wang Y, Hong Y, Wu F, Shen L, Lin X. Low-viscosity hydroxypropyl methylcellulose obtained by electron beam irradiation and its performance in spray drying. Int J Biol Macromol 2024; 275:133626. [PMID: 38964691 DOI: 10.1016/j.ijbiomac.2024.133626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low-viscosity hydroxypropyl methylcellulose (HPMC) was obtained by electron beam irradiation, and its use as an excipient for improving the properties of spray dried pharmaceutical powders was investigated. The minimum molecular weight of HPMC which could maintain the capacity of encapsulation and powder modification was explored. As the irradiation dose was increased from 10 to 200 kGy, the molecular weight and viscosity of HPMC decreased linearly. However, its main structure and degrees of methoxy and hydroxypropyl substitution were not significantly affected. The irradiated HPMC could encapsulate particles during spray drying and, thus, modify powder properties. Furthermore, the water content of spray-dried powders with irradiated HPMC was lower than that with parent HPMC. After the spray-dried powder with irradiated HPMC was prepared into granules, their dissolution rate was also faster. However, in order to achieve high encapsulation, the molecular weight of HPMC should be ensured to be above 7.5 kDa. The designated low-viscosity HPMC obtained by electron beam irradiation is a suitable powder-modification material for use in spray drying, and it shows promise as a superior excipient in medicine, food, paint industries, among others.
Collapse
Affiliation(s)
- Hong Cheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Youjie Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Yanlong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
4
|
Zarski A, Kapusniak K, Ptak S, Rudlicka M, Coseri S, Kapusniak J. Functionalization Methods of Starch and Its Derivatives: From Old Limitations to New Possibilities. Polymers (Basel) 2024; 16:597. [PMID: 38475281 DOI: 10.3390/polym16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
It has long been known that starch as a raw material is of strategic importance for meeting primarily the nutritional needs of people around the world. Year by year, the demand not only for traditional but also for functional food based on starch and its derivatives is growing. Problems with the availability of petrochemical raw materials, as well as environmental problems with the recycling of post-production waste, make non-food industries also increasingly interested in this biopolymer. Its supporters will point out countless advantages such as wide availability, renewability, and biodegradability. Opponents, in turn, will argue that they will not balance the problems with its processing and storage and poor functional properties. Hence, the race to find new methods to improve starch properties towards multifunctionality is still ongoing. For these reasons, in the presented review, referring to the structure and physicochemical properties of starch, attempts were made to highlight not only the current limitations in its processing but also new possibilities. Attention was paid to progress in the non-selective and selective functionalization of starch to obtain materials with the greatest application potential in the food (resistant starch, dextrins, and maltodextrins) and/or in the non-food industries (hydrophobic and oxidized starch).
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Kamila Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sylwia Ptak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Magdalena Rudlicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Janusz Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
5
|
Rostamabadi H, Demirkesen I, Hakgüder Taze B, Can Karaca A, Habib M, Jan K, Bashir K, Nemțanu MR, Colussi R, Reza Falsafi S. Ionizing and nonionizing radiations can change physicochemical, technofunctional, and nutritional attributes of starch. Food Chem X 2023; 19:100771. [PMID: 37780299 PMCID: PMC10534100 DOI: 10.1016/j.fochx.2023.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 10/03/2023] Open
Abstract
Challenges for the food/non-food applications of starch mostly arise from its low stability against severe processing conditions (i.e. elevated temperatures, pH variations, intense shear forces), inordinate retrogradability, as well as restricted applicability. These drawbacks have been addressed through the modification of starch. The escalating awareness of individuals toward the presumptive side effects of chemical modification approaches has engrossed the attention of scientists to the development of physical modification procedures. In this regard, starch treatment via ionizing (i.e. gamma, electron beam, and X-rays) and non-ionizing (microwave, radiofrequency, infrared, ultraviolet) radiations has been introduced as a potent physical strategy offering new outstanding attributes to the modified product. Ionizing radiations, through dose-dependent pathways, are able to provoke depolymerization or cross-linking/grafting reactions to the starch medium. While non-ionizing radiations could modify the starch attributes by changing the morphology/architecture of granules and inducing reorientation/rearrangement in the molecular order of starch amorphous/crystalline fractions.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746–73461, Iran
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Bengi Hakgüder Taze
- Usak University, Faculty of Engineering, Department of Food Engineering 1 Eylul Campus, 64000 Usak, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Mehvish Habib
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Monica R. Nemțanu
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., P.O. Box MG-36, 077125 Bucharest-Măgurele, Romania
| | - Rosana Colussi
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Campus Universitário, s/n, 96010-900, Pelotas, RS, Brazil
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Lei X, Yu J, Hu Y, Bai J, Feng S, Ren Y. Comparative investigation of the effects of electron beam and X-ray irradiation on potato starch: Structure and functional properties. Int J Biol Macromol 2023; 236:123909. [PMID: 36871691 DOI: 10.1016/j.ijbiomac.2023.123909] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Electron beam (particle radiation) and X-ray (electromagnetic radiation) without radioisotope in the application of material modification have received increasing attention in the last decade. To clarify the effect of electron beam and X-ray on the morphology, crystalline structure and functional properties of starch, potato starch was irradiated using electron beam and X-ray at 2, 5, 10, 20 and 30 kGy, respectively. Electron beam and X-ray treatment increased the amylose content of starch. The surface morphology of starch did not change at lower doses (< 5 kGy), but starch granules were aggregated with the increase of doses. All treatments decreased crystallinity, viscosity and swelling power but increased solubility and stability properties. The effects of electron beam and X-ray on the starch had a similar trend. Unlike X-ray, electron beam destructed the crystallinity of starch to a lesser extent, thereby increasing thermal stability and freeze-thaw stability. Furthermore, X-ray irradiation at higher doses (> 10 kGy) resulted in outstanding anti-retrogradation properties of starch compared with electron beam treatment. Thus, particle and electromagnetic irradiation displayed an excellent ability to modify starch with respective specific characteristics, which expands the potential application of these irradiations in the starch industry.
Collapse
Affiliation(s)
- Xiaoqing Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi Province 712100, PR China
| | - Yayun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi Province 712100, PR China
| | - Shuo Feng
- College of Innovation and Experiment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
7
|
Braşoveanu M, Nemţanu MR. Dual Modification of Starch by Physical Methods Based on Corona Electrical Discharge and Ionizing Radiation: Synergistic Impact on Rheological Behavior. Foods 2022; 11:foods11162479. [PMID: 36010483 PMCID: PMC9407343 DOI: 10.3390/foods11162479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
The present paper focuses on evaluating the synergistic effects of dual modification with corona electric discharge (CED) and electron beam irradiation (EBI) on the rheological behavior of starch. Combined treatments were applied successively (CED/EBI and EBI/CED) and compared with single treatments. The outcomes showed that the rheological features of starch were altered by the dual modification in correlation with the irradiation dose mainly as a result of radiation-induced degradation. Decreases in apparent viscosity were described by exponential-like-models according to the order of application of the treatment sequences. The mathematical models allowed the estimation of the irradiation doses for which the viscosity decreased by e times for the dual modified starches (3.3 ± 1.3 kGy for CED/EBI and 5.6 ± 0.5 kGy for EBI/CED, respectively) and the fraction (f) of 0.47 ± 0.10 corresponding to starch granule considered to be affected by plasma. Both dual treatments yielded a synergistic effect, regardless of the order of application of the treatment sequences, being more effective in decreasing starch apparent viscosity than single EBI. However, synergism evaluation proved that the use of plasma as a pre-treatment to irradiation processing could provide benefits up to 20 kGy. These findings support the practical goals of technologists with valuable information that may facilitate or simplify the experimental design of starch dual modification with plasma and ionizing radiation.
Collapse
|
8
|
Tran MQ, Nguyen VB, Tran XA. Gamma radiation modification of cassava starch and its characterization. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Minh Quynh Tran
- Hanoi Irradiation Center Vietnam Atomic Energy Institute Hanoi Vietnam
| | - Van Binh Nguyen
- Hanoi Irradiation Center Vietnam Atomic Energy Institute Hanoi Vietnam
| | - Xuan An Tran
- Hanoi Irradiation Center Vietnam Atomic Energy Institute Hanoi Vietnam
| |
Collapse
|
9
|
Microbial Control in the Primary Packaging of Pills Using Ionizing Radiation and Its Effect on Characteristic Constituents for Quality Control in Irradiated Pills. Processes (Basel) 2022. [DOI: 10.3390/pr10020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pharmaceutical products that mix natural raw materials are subject to unavoidable contamination with microorganisms from the environment and animals. This study focused on the effect of radiation on the quality of primary packaged pills, which are crude drug products. The pills, which were sealed in a sack for primary packaging laminated with polyethylene terephthalate, polyethylene, and aluminum foil, were irradiated by gamma rays or electron beam (EB). The survival counts of bacteria were reduced to 103 CFU/g or less by 6 kGy of irradiation. The counts of the spore-forming bacteria Bacillus megaterium, B. cereus, and Brevibacillus brevis in the pills were reduced to not over 100 CFU/g after 10 kGy irradiation. Although some of the cinnamaldehyde in the pills was oxidized to cinnamic acid, the decomposition of swertiamarin, berberine, glycyrrhizin, and cinnamaldehyde in the pills after 10 kGy irradiation were within the analytical accuracy by high-performance liquid chromatography. Gamma-ray or EB treatment at the final production of crude drug preparations was within the permissible standard value for the non-aqueous preparations for oral administration, with no statistically significant change in the indicator ingredients of crude drugs.
Collapse
|