1
|
Guo Q, Liu B, Guo X, Yan P, Cao B, Liu R, Liu X. Characterization and application of LysSGF2 and HolSGF2 as potential biocontrol agents against planktonic and biofilm cells of common pathogenic bacteria. Int J Food Microbiol 2024; 425:110848. [PMID: 39208563 DOI: 10.1016/j.ijfoodmicro.2024.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial resistance represents a global health emergency, necessitating the introduction of novel antimicrobial agents. In the present study, lysozyme and holin from Shigella flexneri 1.1868 phage SGF2, named LysSGF2 and HolSGF2, respectively, were cloned, expressed, and characterized. LysSGF2 and HolSGF2 showed lytic activities against S. flexneri 1.1868 cells at 4-55 °C and pH 3.1-10.3. LysSGF2 exhibited antimicrobial activity against five gram-negative and two gram-positive bacteria. HolSGF2 showed antimicrobial activity against four gram-negative and one gram-positive species. The antibacterial activities of LysSGF2 and HolSGF2 were determined in liquid beverages, including bottled water and milk. The relative lytic activity of LysSGF2 combined with HolSGF2 against the tested bacteria was approximately 46-77 % in water. Furthermore, the combination markedly decreased the viable counts of tested bacteria by approximately 3-5 log CFU/mL. LysSGF2 and HolSGF2 could efficiently remove biofilms on polystyrene, glass, and stainless-steel. The efficacy of the LysSGF2 and HolSGF2 combination against the tested bacteria on polystyrene was 58-71 %. Combination treatment effectively killed biofilm cells formed on stainless-steel and glass by 1-4 log CFU/mL. ese results indicate that LysSGF2 and HolSGF2 can successfully control both the planktonic and biofilm cells of common pathogenic bacteria, suggesting that the combined or single use of LysSGF2 and HolSGF2 may be of great value in food processing.
Collapse
Affiliation(s)
- Qiucui Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaoxiao Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Peihan Yan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bing Cao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
2
|
Azari R, Yousefi MH, Fallah AA, Alimohammadi A, Nikjoo N, Wagemans J, Berizi E, Hosseinzadeh S, Ghasemi M, Mousavi Khaneghah A. Controlling of foodborne pathogen biofilms on stainless steel by bacteriophages: A systematic review and meta-analysis. Biofilm 2024; 7:100170. [PMID: 38234712 PMCID: PMC10793095 DOI: 10.1016/j.bioflm.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024] Open
Abstract
This study investigates the potential of using bacteriophages to control foodborne pathogen biofilms on stainless steel surfaces in the food industry. Biofilm-forming bacteria can attach to stainless steel surfaces, rendering them difficult to eradicate even after a thorough cleaning and sanitizing procedures. Bacteriophages have been proposed as a possible solution, as they can penetrate biofilms and destroy bacterial cells within, reducing the number of viable bacteria and preventing the growth and spread of biofilms. This systematic review and meta-analysis evaluates the potential of bacteriophages against different biofilm-forming foodborne bacteria, including Cronobacter sakazakii, Escherichia coli, Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa and Listeria monocytogenes. Bacteriophage treatment generally causes a significant average reduction of 38 % in biofilm formation of foodborne pathogens on stainless steel. Subgroup analyses revealed that phages are more efficient in long-duration treatment. Also, applying a cocktail of phages is 1.26-fold more effective than applying individual phages. Phages at concentrations exceeding 107 PFU/ml are significantly more efficacious in eradicating bacteria within a biofilm. The antibacterial phage activity decreases substantially by 3.54-fold when applied at 4 °C compared to temperatures above 25 °C. This analysis suggests that bacteriophages can be a promising solution for controlling biofilms in the food industry.
Collapse
Affiliation(s)
- Rahim Azari
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946-84471, Iran
| | - Aziz A. Fallah
- Department of Food Hygiene and Quality Control, School of Veterinary Medicine, Shahrekord University, Shahrekord, 34141, Iran
| | - Arezoo Alimohammadi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Nikjoo
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Enayat Berizi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946-84471, Iran
| | - Mohammad Ghasemi
- Department of Pharmacology, School of Veterinary Medicine, Shahrekord University, P. O. Box 115, Shahrekord, Iran
| | - Amin Mousavi Khaneghah
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
3
|
Qiao J, Hu A, Zhou H, Lu Z, Meng F, Shi C, Bie X. Drug-loaded lipid nanoparticles improve the removal rates of the Staphylococcus aureus biofilm. Biotechnol J 2024; 19:e2300159. [PMID: 38403400 DOI: 10.1002/biot.202300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Biofilms of the foodborne pathogen Staphylococcus aureus show improved resistance to antibiotics and are difficult to eliminate. To enhance antibacteria and biofilm dispersion via extracellular matrix diffusion, a new lipid nanoparticle was prepared, which employed a mixture of phospholipids and a 0.8% surfactin shell. In the lipid nanoparticle, 31.56 μg mL-1 of erythromycin was encapsulated. The lipid nanoparticle size was approximately 52 nm and the zeta-potential was -67 mV, which was measured using a Marvin laser particle size analyzer. In addition, lipid nanoparticles significantly dispersed the biofilms of S. aureus W1, CICC22942, and CICC 10788 on the surface of stainless steel, reducing the total viable count of bacteria in the biofilms by 103 CFU mL-1 . In addition, the lipid nanoparticle can remove polysaccharides and protein components from the biofilm matrix. The results of laser confocal microscopy showed that the lipid nanoparticles effectively killed residual bacteria in the biofilms. Thus, to thoroughly eliminate biofilms on material surfaces in food factories to avoid repeated contamination, drug-lipid nanoparticles present a suitable method to achieve this.
Collapse
Affiliation(s)
- Jiaju Qiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- College of Life Science, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Antuo Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haibo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Changzheng Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
5
|
Gieroń M, Żarnowiec P, Zegadło K, Gmiter D, Czerwonka G, Kaca W, Kręcisz B. Loop-Mediated Isothermal Amplification of DNA (LAMP) as an Alternative Method for Determining Bacteria in Wound Infections. Int J Mol Sci 2023; 25:411. [PMID: 38203582 PMCID: PMC10778741 DOI: 10.3390/ijms25010411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The increasing number of patients with chronic wounds requires the development of quick and accurate diagnostics methods. One of the key and challenging aspects of treating ulcers is to control wound infection. Early detection of infection is essential for the application of suitable treatment methods, such as systemic antibiotics or other antimicrobial agents. Clinically, the most frequently used method for detecting microorganisms in wounds is through a swab and culture on appropriate media. This test has major limitations, such as the long bacterial growth time and the selectivity of bacterial growth. This article presents an overview of molecular methods for detecting bacteria in wounds, including real-time polymerase chain reaction (rtPCR), quantitative polymerase chain reaction (qPCR), genotyping, next-generation sequencing (NGS), and loop-mediated isothermal amplification (LAMP). We focus on the LAMP method, which has not yet been widely used to detect bacteria in wounds, but it is an interesting alternative to conventional detection methods. LAMP does not require additional complicated equipment and provides the fastest detection time for microorganisms (approx. 30 min reaction). It also allows the use of many pairs of primers in one reaction and determination of up to 15 organisms in one sample. Isothermal amplification of DNA is currently the easiest and most economical method for microbial detection in wound infection. Direct visualization of the reaction with dyes, along with omitting DNA isolation, has increased the potential use of this method.
Collapse
Affiliation(s)
- Monika Gieroń
- Faculty of Medicine, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland; (M.G.); (B.K.)
- Dermatology Department, Provincial General Hospital, 25-317 Kielce, Poland
| | - Paulina Żarnowiec
- Department of Microbiology, Institute of Biology, Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; (P.Ż.); (K.Z.); (D.G.); (W.K.)
| | - Katarzyna Zegadło
- Department of Microbiology, Institute of Biology, Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; (P.Ż.); (K.Z.); (D.G.); (W.K.)
| | - Dawid Gmiter
- Department of Microbiology, Institute of Biology, Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; (P.Ż.); (K.Z.); (D.G.); (W.K.)
| | - Grzegorz Czerwonka
- Department of Microbiology, Institute of Biology, Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; (P.Ż.); (K.Z.); (D.G.); (W.K.)
| | - Wiesław Kaca
- Department of Microbiology, Institute of Biology, Jan Kochanowski University in Kielce, 25-406 Kielce, Poland; (P.Ż.); (K.Z.); (D.G.); (W.K.)
| | - Beata Kręcisz
- Faculty of Medicine, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland; (M.G.); (B.K.)
- Dermatology Department, Provincial General Hospital, 25-317 Kielce, Poland
| |
Collapse
|
6
|
Menezes KV, Pimentel BMF, Da Costa JAC, Ferreira NS, Ignacchiti MDC, Resende JA. Virulence factors and antimicrobial resistance of Escherichia coli isolated from commercialized fresh cheese in the south of Espírito Santo. Braz J Microbiol 2023; 54:2063-2071. [PMID: 37261621 PMCID: PMC10484838 DOI: 10.1007/s42770-023-01013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Cheeses are dairy products that can potentially contain a diverse range of harmful bacteria that could be consumed by humans, including the enteric pathogen Escherichia coli. This study aimed to characterize the presence of total coliforms, assess the antimicrobial susceptibility profiles of the main commercial antimicrobial classes and biocides, and evaluate the ability of 50 E. coli isolates obtained from fresh cheese sold in the southern region of Espírito Santo, Brazil, to produce biofilms. The counts of total coliforms + E. coli obtained averages of (A) 7.22 × 106 CFU/g, (B) 9.35 × 107 CFU/g, and (C) 1.16 × 106 CFU/g for different brands. All isolates were capable of forming biofilms, with 8%, 76%, and 16% of these isolates presenting high, moderate, and low adherence in biofilm formation, respectively. Most strains showed inhibition halos for the biocides chlorhexidine digluconate 2% (16 mm ± 4.34), iodopovidone 10% (7.14 mm ± 0.36), and sodium hypochlorite 2% (7.12 mm ± 0.33). Out of the 50 strains, 21 (42%) were resistant to at least one of the antimicrobials. Regarding the multiple resistance index, 3 (6%) strains were resistant to 3 or more antimicrobial classes. Furthermore, 2 (4%) were extended-spectrum beta-lactamases producers. Resistance to ampicillin and amoxicillin was observed in 20% and 40% of the strains, respectively. In contrast, gentamicin was the most effective antimicrobial, with a sensitivity rate of 100%. The findings indicate that E. coli present in fresh cheese may possess unique physiological characteristics that could be associated with their persistence, virulence, and multidrug resistance. These results raise significant public health concerns since contaminated food can pose risks to consumers' health, emphasizing the importance of reinforcing hygienic-sanitary controls at all stages of production.
Collapse
Affiliation(s)
- Kássia Vidal Menezes
- Graduate Program in Veterinary Sciences, Federal University of Espírito Santo (UFES), Alegre, ES, Brazil
| | - Bruna Maria Fia Pimentel
- Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), Alto Universitário; S/N, Alegre, ES, 29500-000, Brazil
| | - Joyce Aparecida Corrêa Da Costa
- Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), Alto Universitário; S/N, Alegre, ES, 29500-000, Brazil
| | - Nicolly Soares Ferreira
- Graduate Program in Veterinary Sciences, Federal University of Espírito Santo (UFES), Alegre, ES, Brazil
| | - Mariana Drummond Costa Ignacchiti
- Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), Alto Universitário; S/N, Alegre, ES, 29500-000, Brazil
| | - Juliana Alves Resende
- Graduate Program in Veterinary Sciences, Federal University of Espírito Santo (UFES), Alegre, ES, Brazil.
- Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), Alto Universitário; S/N, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
7
|
Elius M, Boyle K, Chang WS, Moisander PH, Ling H. Comparison of three-dimensional motion of bacteria with and without wall accumulation. Phys Rev E 2023; 108:014409. [PMID: 37583224 DOI: 10.1103/physreve.108.014409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/01/2023] [Indexed: 08/17/2023]
Abstract
A comparison of the movement characteristics between bacteria with and without wall accumulation could potentially elucidate the mechanisms of biofilm formation. However, authors of previous studies have mostly focused on the motion of bacteria that exhibit wall accumulation. Here, we applied digital holographic microscopy to compare the three-dimensional (3D) motions of two bacterial strains (Shewanella japonica UMDC19 and Shewanella sp. UMDC1): one exhibiting higher concentrations near the solid surfaces, and the other showing similar concentrations in near-wall and bulk regions. We found that the movement characteristics of the two strains are similar in the near-wall region but are distinct in the bulk region. Near the wall, both strains have small velocities and mostly perform subdiffusive motions. In the bulk, however, the bacteria exhibiting wall accumulation have significantly higher motility (including faster swimming speeds and longer movement trajectories) than the one showing no wall accumulation. Furthermore, we found that bacteria exhibiting wall accumulation slowly migrate from the bulk region to the near-wall region, and the hydrodynamic effect alone is insufficient to generate this migration speed. Future studies are required to test if the current findings apply to other bacterial species and strains.
Collapse
Affiliation(s)
- Md Elius
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Kenneth Boyle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Wei-Shun Chang
- Department of Chemistry & Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Pia H Moisander
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Hangjian Ling
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| |
Collapse
|
8
|
Liang J, Huang TY, Mao Y, Li X. Biofilm formation of two genetically diverse Staphylococcus aureus isolates under beta-lactam antibiotics. Front Microbiol 2023; 14:1139753. [PMID: 36950159 PMCID: PMC10025342 DOI: 10.3389/fmicb.2023.1139753] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
PURPOSE Our aim was to evaluate the biofilm formation of 2 genetically diverse Staphylococcus aureus isolates, 10379 and 121940, under different concentrations of beta-lactam antibiotics on biomass content and biofilm viability. METHODS Biofilm formation and methicillin resistance genes were tested using PCR and multiplex PCR. PCR was combined with bioinformatics analysis to detect multilocal sequence typing (MLST) and SCCmec types, to study the genetical correlation between the tested strains. Then, the crystal violet (CV) test and XTT were used to detect biomass content and biofilm activity. Antibiotic susceptibility was tested using a broth dilution method. According to their specific MIC, different concentrations of beta-lactam antibiotics were used to study its effect on biomass content and biofilm viability. RESULTS Strain 10379 carried the icaD, icaBC, and MRSA genes, not the icaA, atl, app, and agr genes, and MLST and SCCmec typing was ST45 and IV, respectively. Strain 121940 carried the icaA, icaD, icaBC, atl, and agr genes, not the aap gene, and MLST and SCCmec typed as ST546 and IV, respectively. This suggested that strains 10379 and 121940 were genotypically very different. Two S. aureus isolates, 10379 and 121940, showed resistance to beta-lactam antibiotics, penicillin, ampicillin, meropenem, streptomycin and kanamycin, some of which promoted the formation of biofilm and biofilm viability at low concentrations. CONCLUSION Despite the large differences in the genetic background of S. aureus 10379 and 121940, some sub-inhibitory concentrations of beta-lactam antibiotics are able to promote biomass and biofilm viability of both two isolates.
Collapse
Affiliation(s)
- Jinglong Liang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Teng Yi Huang,
| | - Yuzhu Mao
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
| | - Xuejie Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
- *Correspondence: Xuejie Li,
| |
Collapse
|
9
|
Šilha D, Syrová P, Syrová L, Janečková J. Smoothie Drinks: Possible Source of Resistant and Biofilm-Forming Microorganisms. Foods 2022; 11:foods11244039. [PMID: 36553778 PMCID: PMC9778333 DOI: 10.3390/foods11244039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Smoothie drinks are currently very popular drinks sold especially in fast food establishments. However, smoothies are a significant source of microorganisms. The aim of this study was to evaluate the microbiological quality of smoothies purchased in Eastern Bohemia. A higher prevalence of mesophilic aerobic bacteria (5.4-7.2 log CFU/mL), yeast (4.4-5.9 log CFU/mL) and coliform bacteria (3.1-6.0 log CFU/mL) was observed in vegetable smoothies, in which even the occurrence of enterococci (1.6-3.3 log CFU/mL) was observed. However, the occurrence of S. aureus, Salmonella spp. and Listeria spp. was not observed in any samples. Nevertheless, antimicrobial resistance was observed in 71.8% of the isolated strains. The highest level of resistance was found in isolates from smoothie drinks with predominantly vegetable contents (green smoothie drinks). Considerable resistance was observed in Gram-negative rods, especially to amoxicillin (82.2%) and amoxicillin with clavulanic acid (55.6%). Among enterococci, only one vancomycin-resistant strain was detected. The vast majority of isolated strains were able to form biofilms at a significant level, which increases the clinical importance of these microorganisms. The highest biofilm production was found in Pseudomonas aeruginosa, Kocuria kristinae and Klebsiella pneumoniae. Overall, significant biofilm production was also noted among isolates of Candida spp.
Collapse
Affiliation(s)
- David Šilha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532-10 Pardubice, Czech Republic
- Correspondence:
| | - Petra Syrová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532-10 Pardubice, Czech Republic
| | - Lenka Syrová
- Department of Infectious Diagnostics, Hospital of the Pardubice Region, Jana Evangelisty Purkyně 652, 570-14 Litomysl, Czech Republic
| | - Jana Janečková
- Department of Infectious Diagnostics, Hospital of the Pardubice Region, Jana Evangelisty Purkyně 652, 570-14 Litomysl, Czech Republic
| |
Collapse
|
10
|
Avila-Novoa MG, Solis-Velazquez OA, Guerrero-Medina PJ, González-Gómez JP, González-Torres B, Velázquez-Suárez NY, Martínez-Chávez L, Martínez-Gonzáles NE, De la Cruz-Color L, Ibarra-Velázquez LM, Cardona-López MA, Robles-García MÁ, Gutiérrez-Lomelí M. Genetic and compositional analysis of biofilm formed by Staphylococcus aureus isolated from food contact surfaces. Front Microbiol 2022; 13:1001700. [PMID: 36532477 PMCID: PMC9755592 DOI: 10.3389/fmicb.2022.1001700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/10/2022] [Indexed: 05/24/2024] Open
Abstract
INTRODUCTION Staphylococcus aureus is an important pathogen that can form biofilms on food contact surfaces (FCS) in the dairy industry, posing a serious food safety, and quality concern. Biofilm is a complex system, influenced by nutritional-related factors that regulate the synthesis of the components of the biofilm matrix. This study determines the prevalence of biofilm-associated genes and evaluates the development under different growth conditions and compositions of biofilms produced by S. aureus. METHODS Biofilms were developed in TSB, TSBG, TSBNaCl, and TSBGNaCl on stainless-steel (SS), with enumeration at 24 and 192 h visualized by epifluorescence and scanning electron microscopy (SEM). The composition of biofilms was determined using enzymatic and chemical treatments and confocal laser scanning microscopy (CLSM). RESULTS AND DISCUSSION A total of 84 S. aureus (SA1-SA84) strains were collected from 293 dairy industry FCS (FCS-stainless steel [n = 183] and FCS-polypropylene [n = 110]) for this study. The isolates harbored the genes sigB (66%), sar (53%), agrD (52%), clfB/clfA (38%), fnbA/fnbB (20%), and bap (9.5%). 99. In particular, the biofilm formed by bap-positive S. aureus onto SS showed a high cell density in all culture media at 192 h in comparison with the biofilms formed at 24 h (p < 0.05). Epifluorescence microscopy and SEM revealed the metabolically active cells and the different stages of biofilm formation. CLSM analysis detected extracellular polymeric of S. aureus biofilms on SS, such as eDNA, proteins, and polysaccharides. Finally, the level of detachment on being treated with DNase I (44.7%) and NaIO 4(42.4%) was greater in the biofilms developed in TSB compared to culture medium supplemented with NaCl at 24 h; however, there was no significant difference when the culture medium was supplemented with glucose. In addition, after treatment with proteinase K, there was a lower level of biomass detachment (17.7%) of the biofilm developed in TSBNaCl (p < 0.05 at 24 h) compared to that in TSB, TSBG, and TSBGNaCl (33.6, 36.9, and 37.8%, respectively). These results represent a deep insight into the composition of S. aureus biofilms present in the dairy industry, which promotes the development of more efficient composition-specific disinfection strategies.
Collapse
Affiliation(s)
- María Guadalupe Avila-Novoa
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Oscar Alberto Solis-Velazquez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Pedro Javier Guerrero-Medina
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Jean-Pierre González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, Mexico
| | - Berenice González-Torres
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, Mexico
| | - Noemí Yolanda Velázquez-Suárez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Liliana Martínez-Chávez
- Laboratorio de Microbiología e Inocuidad de Alimentos, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nanci Edid Martínez-Gonzáles
- Laboratorio de Microbiología e Inocuidad de Alimentos, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lucia De la Cruz-Color
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Luz María Ibarra-Velázquez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Marco Antonio Cardona-López
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Miguel Ángel Robles-García
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Melesio Gutiérrez-Lomelí
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| |
Collapse
|
11
|
Rao S, Linke L, Magnuson R, Jaunch L, Hyatt DR. Antimicrobial resistance and genetic diversity of Staphylococcus aureus collected from livestock, poultry and humans. One Health 2022; 15:100407. [PMID: 36277090 PMCID: PMC9582408 DOI: 10.1016/j.onehlt.2022.100407] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/13/2022] [Accepted: 06/05/2022] [Indexed: 10/30/2022] Open
Abstract
Staphylococcus aureus is one of the most prominent nosocomial, community and farm acquired bacterial infections among animals and human populations. The main purpose of our study was to identify and characterize antimicrobial resistance (AMR) among Staphylococcus aureus isolated from livestock, poultry and humans and to further identify the associated genes. Staphylococcus aureus isolates from human, bovine, swine and poultry were collected from different laboratories across the United States collected between 2003 and 2016. Antimicrobial susceptibility testing for 13 antimicrobials was performed and conventional PCR was used to detect the presence of the nuc gene, mec gene, and to detect int1 gene. Associations between the presence of mec and intl and specific AMR profiles were determined. Antimicrobial resistance was detected in all four host categories, with the highest overall rates found in swine, 100% resistant to tetracycline, 88% to penicillin and 64% clindamycin. The next highest was found among humans with 81.6% of isolates resistant to penicillin followed by 44% to clindamycin and 43% to erythromycin. Among beef cattle isolates, 63.2% were resistant to penicillin, 15.8% resistant to clindamycin and 15.8% to erythromycin. No isolates from any of the hosts were resistant to linezolid. Among poultry isolates, the highest AMR was found to clindamycin, followed by erythromycin and penicillin. Among dairy cattle, highest resistance was found to penicillin, followed by chloramphenicol and gentamicin. Dairy cattle were the only host category with isolates that are resistant to trimethoprim-sulfamethoxazole. Of the 220 isolates detected by latex agglutination, 217 were confirmed to be S. aureus via PCR of the nuc gene, 21.4% were positive for the mecA gene. Swine had the highest prevalence of the mecA gene, followed by humans, poultry and beef cattle. This study has demonstrated a high occurrence of penicillin resistance among all S. aureus isolates. There were differences observed between host species with tetracycline resistance being the highest among swine isolates and clindamycin being highest in poultry isolates. No detection of oxacillin resistance was found in isolates from dairy cattle but was found in isolates from all of the other host species, 94% of which contained the mecA gene. High occurrence of penicillin resistance in Staphylococcus aureus isolates collected from livestock, poultry and humans. Tetracycline resistance was the highest among swine isolates and clindamycin was the highest in poultry isolates. Oxacillin resistance was not detected among dairy cattle isolates but was found in isolates from other host species. Ninety four percent of the S. aureus isolates were resistant to oxacillin contained the mecA gene.
Collapse
|
12
|
Interference in the production of bacterial virulence factors by olive oil processing waste. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Li Y, Wang H, Zheng X, Li Z, Wang M, Luo K, Zhang C, Xia X, Wang Y, Shi C. Didecyldimethylammonium bromide: Application to control biofilms of Staphylococcus aureus and Pseudomonas aeruginosa alone and in combination with slightly acidic electrolyzed water. Food Res Int 2022; 157:111236. [DOI: 10.1016/j.foodres.2022.111236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/15/2022]
|
14
|
Silva V, Correia E, Pereira JE, González-Machado C, Capita R, Alonso-Calleja C, Igrejas G, Poeta P. Biofilm Formation of Staphylococcus aureus from Pets, Livestock, and Wild Animals: Relationship with Clonal Lineages and Antimicrobial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060772. [PMID: 35740178 PMCID: PMC9219840 DOI: 10.3390/antibiotics11060772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to compare the biofilm formation ability of Staphylococcus aureus isolated from a wide range of animals and study the association between biofilm formation and antimicrobial resistance and genetic lineages. A total of 214 S. aureus strains isolated from pets, livestock, and wild animals were evaluated regarding their ability to form biofilms by the microtiter biofilm assay and their structure via confocal scanning laser microscopy. Statistical analysis was used to find an association between biofilm formation and antimicrobial resistance, multidrug resistance, sequence types (STs), spa and agr-types of the isolates. The antimicrobial susceptibility of 24 h-old biofilms was assessed against minimum inhibitory concentrations (MIC) and 10× MIC of amikacin and tetracycline, and the biomass reduction was measured. The metabolic activity of biofilms after antimicrobial treatment was evaluated by the XTT assay. All isolates were had the ability to form biofilms. Yet, significant differences in biofilm biomass production were detected among animal species. Multidrug resistance had a positive association with biofilm formation as well as methicillin-resistance. Significant differences were also detected among the clonal lineages of the isolates. Both tetracycline and amikacin were able to significantly reduce the biofilm mass. However, none of the antimicrobials were able to eradicate the biofilm at the maximum concentration used. Our results provide important information on the biofilm-forming capacity of animal-adapted S. aureus isolates, which may have potential implications for the development of new biofilm-targeted therapeutics.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Elisete Correia
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal;
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Camino González-Machado
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.G.-M.); (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.G.-M.); (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.G.-M.); (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
15
|
Inés Molina RD, Campos-Silva R, Díaz MA, Macedo AJ, Blázquez MA, Alberto MR, Arena ME. Inhibition of bacterial virulence factors of foodborne pathogens by paprika (Capsicum annuum L.) extracts. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Formation and development of biofilm- an alarming concern in food safety perspectives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
18
|
Bai X, Nakatsu CH, Bhunia AK. Bacterial Biofilms and Their Implications in Pathogenesis and Food Safety. Foods 2021; 10:2117. [PMID: 34574227 PMCID: PMC8472614 DOI: 10.3390/foods10092117] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Biofilm formation is an integral part of the microbial life cycle in nature. In food processing environments, bacterial transmissions occur primarily through raw or undercooked foods and by cross-contamination during unsanitary food preparation practices. Foodborne pathogens form biofilms as a survival strategy in various unfavorable environments, which also become a frequent source of recurrent contamination and outbreaks of foodborne illness. Instead of focusing on bacterial biofilm formation and their pathogenicity individually, this review discusses on a molecular level how these two physiological processes are connected in several common foodborne pathogens such as Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli. In addition, biofilm formation by Pseudomonas aeruginosa is discussed because it aids the persistence of many foodborne pathogens forming polymicrobial biofilms on food contact surfaces, thus significantly elevating food safety and public health concerns. Furthermore, in-depth analyses of several bacterial molecules with dual functions in biofilm formation and pathogenicity are highlighted.
Collapse
Affiliation(s)
- Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Cindy H. Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Guo N, Bai X, Shen Y, Zhang T. Target-based screening for natural products against Staphylococcus aureus biofilms. Crit Rev Food Sci Nutr 2021; 63:2216-2230. [PMID: 34491124 DOI: 10.1080/10408398.2021.1972280] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a notorious food-borne pathogen, Staphylococcus aureus can readily cause diseases in humans via contaminated food. Biofilm formation on various surfaces can increase the capacity of viable S. aureus cells for self-protection due to the stubborn structure of the biofilm matrix. Increased disease risk and economic losses caused by biofilm contamination in the food industry necessitate the urgent development of effective strategies for the inhibition and removal of S. aureus biofilms. Natural products have been extensively used as important sources of "eco-friendly" antibiofilm agents to avoid the side effects of conventional strategies on human health and the environment. This review discusses biofilm formation of S. aureus in food industries and focuses on providing an overview of potential promising target-oriented natural products and their mechanisms of S. aureus biofilm inhibition or removal. Hoping to provide valuable information of attractive research targets or potential undeveloped targets to screen potent natural anti-biofilm agents in food industries.
Collapse
Affiliation(s)
- Na Guo
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xue Bai
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yong Shen
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
20
|
Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains isolated from dairy products: Relationship of ica-dependent/independent and components of biofilms produced in vitro. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Qiao J, Zheng L, Lu Z, Meng F, Bie X. Research on the Biofilm Formation of Staphylococcus aureus after Cold Stress. Microorganisms 2021; 9:1534. [PMID: 34361968 PMCID: PMC8305040 DOI: 10.3390/microorganisms9071534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is a common food pathogen and has a strong tolerance to environmental stress. Here, the biofilm formation of S. aureus strains after cold stress for 24 weeks were investigated. It was found that the biofilm formation of S. aureus CICC 21600, CICC 22942, W1, W3, and C1 cells was enhanced after cold stress for 20 weeks. What is more, the mRNA levels of the clfA, icaA, icaB, icaC or icaD genes in these strains were increased for >2-fold. The increased gene transcription levels were consistent with the increase in the polysaccharide content in the biofilm matrix of these S. aureus strains after cold stress. Meanwhile, hydrophobicity and the adhesion proteins also played a role in the formation of biofilms. The biofilm of S. aureus cells can be effectively degraded by snailase and proteinase K (125 µg/mL + 20 µg/mL) mixture. In summary, S. aureus frozen at -20 °C for 12 to 20 weeks is still a potential hazard. Food factory equipment should be cleaned in a timely manner to avoid outbreaks of foodborne pathogenic bacteria due to contamination.
Collapse
Affiliation(s)
| | | | | | | | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Q.); (L.Z.); (Z.L.); (F.M.)
| |
Collapse
|
22
|
Molecular Characterization and Biofilm Formation Study of Contaminant Bacteria Isolated from Domiaty and Hungarian Cheeses in Jeddah City. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim was to study the microbiological quality of Domiaty and Hungarian cheeses, molecular identification and biofilm formation of some selected contaminant bacteria. Samples were collected from two M and P big markets in Jeddah City through the period from February to October 2018, nine visits for two types of natural cheese. Results showed that the total bacterial counts (CFU/ml) from Domiaty cheese from two markets (M and P) were 0.1 x 105, 8 x 105 and 1 x 10 5 CFU/ml respectively (3 visits of M market) and 4 x 106, 0.4 x 106, 6.5 x 103, 1 x 103, 0.1 x 103 and 0.1 x 103 CFU/ml respectively (six samples from 6 visits from P market). Results showed that the total bacterial counts (CFU/ml) from Hungarian cheese were 1.5 x 10 5, 1x 10 4, 11 x 10 4 and 4 x10 6 CFU/ml respectively from (4 visits of M market) and 0.18 x 104, 3 x 106, 22 x 106, 6 x 106 and 5 x 104 CFU/ml respectively (5 visits from P market).Different bacterial isolates from cheese were identified by morphology and biochemical test. Bacterial isolates from cheeses were identified by VITEK MS as follow: Serratia liquefaciens (D6-1, D6-2, D14-1, D13-1 and D13-2), and Pseudomonas fluorescens (D14-2) were isolated from Domiaty cheese while Enterococcus faecium (H11-2), Serratia liquefaciens (H15-1) and Streptococcus thermophilus (H14-1) were isolated from Hungarian cheese. Some selected bacterial isolates were identified by 16S rRNA. Isolates were belong to MK757978 (Raoultilla terrigena (D15-1)), MK757979 (Bacillus cereus (D16-1)), MK757980 (Enterococcus faecalis (H10-2)), MK757982 (Enterococcus fiscalism (H11-1)), MK757981 (Serratia liquefactions (H13-1)), MK757984 (Anoxybacillus flavithermus (H17-1). All bacterial isolates have been tested for the formation of biofilm using a Tissue Culture Plate (TCP). Results revealed 12.5% and 46.15% of high biofilm formation respectively for bacterial isolates of Domiaty and Hungarian cheeses.
Collapse
|
23
|
Lu N, Chen Z, Zhang W, Yang G, Liu Q, Böttger R, Zhou S, Liu Y. Effect of silver ion implantation on antibacterial ability of polyethylene food packing films. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Zhong H, Deng H, Li M, Zhong H. Bioprocessing and integration of a high flux screening systematic platform based on isothermal amplification for the detection on 8 common pathogens. Bioprocess Biosyst Eng 2021; 44:977-984. [PMID: 32862325 PMCID: PMC8096746 DOI: 10.1007/s00449-020-02423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/05/2020] [Indexed: 11/23/2022]
Abstract
During a large variety of common pathogens, E. coli, P. aeruginosa, MRSA, MRCNS, V. parahaemolyticus, L. monocytogenes and Salmonella are the leading pathogens responsible for large number of human infections and diseases. In this study, a high flux screening based on nucleic acid isothermal amplification technique has been developed. For the 8 common pathogens, species-specific targets had been selected and analyzed for their unique specificity. After optimization, separate LAMP reaction assays had been bioprocessed and integrated into one systematic detection platform, including 8 strips (PCR tubes) and 96-well plates. Eight standard strains verified for the accuracy. Application of the established high flux screening platform was used for detection for 48 samples in 4 different 96-well plates, with 2 groups of 2 operators using double-blind procedure. The accuracy of 100% was obtained, with the total time consumption as 66-75 min (for 12 samples detection on 8 different pathogens). As concluded, through the bioprocess of the systematic platform based on LAMP technique, it's been demonstrated to be capable of simultaneous detection of 8 pathogens, with high sensitivity, specificity, rapidity and convenience.
Collapse
Affiliation(s)
- Huamin Zhong
- Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Hongwei Deng
- Shenzhen Key Laboratory of Ophthalmology, Ocular Trauma Treatment and Stem Cell Differentiation Public Service Platform of Shenzhen, Shenzhen Eye Hospital, Shenzhen, 518040, China
| | - Ming Li
- Shenzhen Key Laboratory of Ophthalmology, Ocular Trauma Treatment and Stem Cell Differentiation Public Service Platform of Shenzhen, Shenzhen Eye Hospital, Shenzhen, 518040, China
| | - Huahong Zhong
- Shenzhen Key Laboratory of Ophthalmology, Ocular Trauma Treatment and Stem Cell Differentiation Public Service Platform of Shenzhen, Shenzhen Eye Hospital, Shenzhen, 518040, China.
| |
Collapse
|
25
|
Li Y, Qiu Y, Ye C, Chen L, Liang Y, Huang TY, Zhang L, Liu J. "One-step" characterization platform for pathogenic genetics of Staphylococcus aureus. Bioprocess Biosyst Eng 2021; 44:985-994. [PMID: 33112989 DOI: 10.1007/s00449-020-02449-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Staphylococcus aureus (S. aureus) is an important human pathogen causing a variety of life-threatening diseases. In recent years, the health problem caused by S. aureus contaminated food has become a global health problem. S. aureus can express various pathogenic factors, mainly used for adhesion, colonization, invasion and infection of the host. Therefore, rapid and accurate detection of virulence genes in S. aureus is necessary to prevent outbreaks caused by this pathogen. PCR is a useful tool for rapid detection of foodborne pathogens. The objective of this study was to detect the presence of major toxin genes in S. aureus, including sea, seb, sec, see, pvl and tsst, by using a PCR plate. Of the 13 strains tested, 12 (92.3%) were found to be positive for one or more toxin genes. This study realized the one-step detection of main toxin factors in S. aureus.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yisen Qiu
- Department of Spine Surgery, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, 525427, Guangdong, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Li Zhang
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
26
|
Detecting Bacterial Biofilms Using Fluorescence Hyperspectral Imaging and Various Discriminant Analyses. SENSORS 2021; 21:s21062213. [PMID: 33809942 PMCID: PMC8004291 DOI: 10.3390/s21062213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 01/16/2023]
Abstract
Biofilms formed on the surface of agro-food processing facilities can cause food poisoning by providing an environment in which bacteria can be cultured. Therefore, hygiene management through initial detection is important. This study aimed to assess the feasibility of detecting Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) on the surface of food processing facilities by using fluorescence hyperspectral imaging. E. coli and S. typhimurium were cultured on high-density polyethylene and stainless steel coupons, which are the main materials used in food processing facilities. We obtained fluorescence hyperspectral images for the range of 420–730 nm by emitting UV light from a 365 nm UV light source. The images were used to perform discriminant analyses (linear discriminant analysis, k-nearest neighbor analysis, and partial-least squares discriminant analysis) to identify and classify coupons on which bacteria could be cultured. The discriminant performances of specificity and sensitivity for E. coli (1–4 log CFU·cm−2) and S. typhimurium (1–6 log CFU·cm−2) were over 90% for most machine learning models used, and the highest performances were generally obtained from the k-nearest neighbor (k-NN) model. The application of the learning model to the hyperspectral image confirmed that the biofilm detection was well performed. This result indicates the possibility of rapidly inspecting biofilms using fluorescence hyperspectral images.
Collapse
|
27
|
Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. Microbial Biofilms in the Food Industry-A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042014. [PMID: 33669645 PMCID: PMC7922197 DOI: 10.3390/ijerph18042014] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022]
Abstract
Biofilms, present as microorganisms and surviving on surfaces, can increase food cross-contamination, leading to changes in the food industry’s cleaning and disinfection dynamics. Biofilm is an association of microorganisms that is irreversibly linked with a surface, contained in an extracellular polymeric substance matrix, which poses a formidable challenge for food industries. To avoid biofilms from forming, and to eliminate them from reversible attachment and irreversible stages, where attached microorganisms improve surface adhesion, a strong disinfectant is required to eliminate bacterial attachments. This review paper tackles biofilm problems from all perspectives, including biofilm-forming pathogens in the food industry, disinfectant resistance of biofilm, and identification methods. As biofilms are largely responsible for food spoilage and outbreaks, they are also considered responsible for damage to food processing equipment. Hence the need to gain good knowledge about all of the factors favouring their development or growth, such as the attachment surface, food matrix components, environmental conditions, the bacterial cells involved, and electrostatic charging of surfaces. Overall, this review study shows the real threat of biofilms in the food industry due to the resistance of disinfectants and the mechanisms developed for their survival, including the intercellular signalling system, the cyclic nucleotide second messenger, and biofilm-associated proteins.
Collapse
Affiliation(s)
- Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
- Correspondence: (C.C.); (A.R.)
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland;
| | - Fernando Ramos
- Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, 55142 Apartado, Portugal
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Correspondence: (C.C.); (A.R.)
| |
Collapse
|
28
|
Jiang H, Wang K, Yan M, Ye Q, Lin X, Chen L, Ye Y, Zhang L, Liu J, Huang T. Pathogenic and Virulence Factor Detection on Viable but Non-culturable Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2021; 12:630053. [PMID: 33841357 PMCID: PMC8027501 DOI: 10.3389/fmicb.2021.630053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023] Open
Abstract
Food safety and foodborne infections and diseases have been a leading hotspot in public health, and methicillin-resistant Staphylococcus aureus (MRSA) has been recently documented to be an important foodborne pathogen, in addition to its recognition to be a leading clinical pathogen for some decades. Standard identification for MRSA has been commonly performed in both clinical settings and food routine detection; however, most of such so-called "standards," "guidelines," or "gold standards" are incapable of detecting viable but non-culturable (VBNC) cells. In this study, two major types of staphylococcal food poisoning (SFP), staphylococcal enterotoxins A (sea) and staphylococcal enterotoxins B (seb), as well as the panton-valentine leucocidin (pvl) genes, were selected to develop a cross-priming amplification (CPA) method. Limit of detection (LOD) of CPA for sea, seb, and pvl was 75, 107.5, and 85 ng/μl, indicating that the analytical sensitivity of CPA is significantly higher than that of conventional PCR. In addition, a rapid VBNC cells detection method, designated as PMA-CPA, was developed and further applied. PMA-CPA showed significant advantages when compared with PCR assays, in terms of rapidity, sensitivity, specificity, and accuracy. Compared with conventional VBNC confirmation methods, the PMA-CPA showed 100% accordance, which had demonstrated that the PMA-CPA assays were capable of detecting different toxins in MRSA in VBNC state. In conclusion, three CPA assays were developed on three important toxins for MRSA, and in combination with PMA, the PMA-CPA assay was capable of detecting virulent gene expression in MRSA in the VBNC state. Also, the above assays were further applied to real samples. As concluded, the PMA-CPA assay developed in this study was capable of detecting MRSA toxins in the VBNC state, representing first time the detection of toxins in the VBNC state.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muxia Yan
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Ye
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Lin
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Li Zhang
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, College Park, MD, United States
- *Correspondence: Junyan Liu,
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Tengyi Huang,
| |
Collapse
|
29
|
Guan Y, Wang K, Zeng Y, Ye Y, Chen L, Huang T. Development of a Direct and Rapid Detection Method for Viable but Non-culturable State of Pediococcus acidilactici. Front Microbiol 2021; 12:687691. [PMID: 34276618 PMCID: PMC8283312 DOI: 10.3389/fmicb.2021.687691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Pediococcus acidilactici may significantly reduce the pH-value, and thus has different influence, including serving as a probiotic in human microbiota but a spoilage in human food as it could change the flavor. Pediococcus acidilactici is also capable of entering into the viable but non-culturable (VBNC) state causing false negative results of standard culture-based detection method. Thus, development of detection method for VBNC state P. acidilactici is of great significance. In this study, propidium monoazide (PMA) combined with cross priming amplification (CPA) was developed to detect the VBNC cells of P. acidilactici and applied on the detection in different systems. With detection limit of 104 cells/ml, high sensitivity, and 100% specificity, PMA-CPA can successfully detect VBNC cells of P. acidilactici and be applied in with high robustness.
Collapse
Affiliation(s)
- Yu Guan
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yu Guan
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yang Zeng
- Shantou University Medical College, Shantou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Tengyi Huang
| |
Collapse
|
30
|
Ou A, Wang K, Ye Y, Chen L, Gong X, Qian L, Liu J. Direct Detection of Viable but Non-culturable (VBNC) Salmonella in Real Food System by a Rapid and Accurate PMA-CPA Technique. Front Microbiol 2021; 12:634555. [PMID: 33679667 PMCID: PMC7930388 DOI: 10.3389/fmicb.2021.634555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/19/2021] [Indexed: 02/05/2023] Open
Abstract
Salmonella enterica is a typical foodborne pathogen with multiple toxic effects, including invasiveness, endotoxins, and enterotoxins. Viable but nonculturable (VBNC) is a type of dormant form preserving the vitality of microorganisms, but it cannot be cultured by traditional laboratory techniques. The aim of this study is to develop a propidium monoazide-crossing priming amplification (PMA-CPA) method that can successfully detect S. enterica rapidly with high sensitivity and can identify VBNC cells in food samples. Five primers (4s, 5a, 2a/1s, 2a, and 3a) were specially designed for recognizing the specific invA gene. The specificity of the CPA assay was tested by 20 different bacterial strains, including 2 standard S. enterica and 18 non-S. enterica bacteria strains covering Gram-negative and Gram-positive isolates. Except for the two standard S. enterica ATCC14028 and ATCC29629, all strains showed negative results. Moreover, PMA-CPA can detect the VBNC cells both in pure culture and three types of food samples with significant color change. In conclusion, the PMA-CPA assay was successfully applied on detecting S. enterica in VBNC state from food samples.
Collapse
Affiliation(s)
- Aifen Ou
- Department of Food, Guangzhou City Polytechnic, Guangzhou, China
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Xiangjun Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Lu Qian,
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, College Park, MD, United States
- *Correspondence: Junyan Liu,
| |
Collapse
|
31
|
Laurel extracts inhibit Quorum sensing, virulence factors and biofilm of foodborne pathogens. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Li Y, Huang TY, Mao Y, Chen Y, Shi F, Peng R, Chen J, Yuan L, Bai C, Chen L, Wang K, Liu J. Study on the Viable but Non-culturable (VBNC) State Formation of Staphylococcus aureus and Its Control in Food System. Front Microbiol 2020; 11:599739. [PMID: 33324380 PMCID: PMC7726111 DOI: 10.3389/fmicb.2020.599739] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023] Open
Abstract
A Viable but non-culturable (VBNC) state is a bacterial survival strategy under reverse conditions. It poses a significant challenge for public health and food safety. In this study, the effect of external environmental conditions including acid, nutrition, and salt concentrations on the formation of S. aureus VBNC states at low temperatures were investigated. Different acidity and nutritional conditions were then applied to food products to control the VBNC state formation. Four different concentration levels of each factor (acid, nutrition, and salt) were selected in a total of 16 experimental groups. Nutrition showed the highest influence on the VBNC state formation S. aureus, followed by acid and salt. The addition of 1% acetic acid could directly kill S. aureus cells and inhibit the formation of the VBNC state with a nutrition concentration of 25, 50, and 100%. A propidium monoazide-polymerase chain reaction (PMA-PCR) assay was applied and considered as a rapid and sensitive method to detect S. aureus in VBNC state with the detection limit of 104 CFU/mL.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuzhu Mao
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yanni Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Fan Shi
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ruixin Peng
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jinxuan Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
33
|
Cheng JH, Lv X, Pan Y, Sun DW. Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Cacciatore FA, Brandelli A, Malheiros PDS. Combining natural antimicrobials and nanotechnology for disinfecting food surfaces and control microbial biofilm formation. Crit Rev Food Sci Nutr 2020; 61:3771-3782. [PMID: 32811167 DOI: 10.1080/10408398.2020.1806782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The elimination of microbial surface contaminants is one of the most important steps in Good Manufacturing Practices in order to maintain food safety. This is usually achieved by detergents and chemical sanitizers, although an increased demand exists for the use of natural products for disinfection purposes. Several natural substances present antibacterial activity against the main foodborne pathogens, demonstrating great potential for use in the food industry. Some difficulties such as high volatility, residual taste and/or degradation by exposure to harsh processing conditions have been reported. Nanoparticle encapsulation appears as a strategy to protect bioactive compounds, maintaining their antimicrobial activity and providing controlled release as well. This article presents the potential of natural antimicrobials and their combination with nanotechnological strategies as an alternative for food surface disinfection and prevent microbial biofilm formation.
Collapse
Affiliation(s)
- Fabiola Ayres Cacciatore
- Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriano Brandelli
- Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Nanociência e Nanotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
35
|
Fu J, Wang K, Ye C, Chen L, Liang Y, Mao Y, Chen J, Peng R, Chen Y, Shi F, Huang TY, Liu J. Study on the virulome and resistome of a vancomycin intermediate-resistance Staphylococcus aureus. Microb Pathog 2020; 145:104187. [PMID: 32275941 DOI: 10.1016/j.micpath.2020.104187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023]
Abstract
Methicillin-resistant S. aureus (MRSA) has been considered a potential "Super Bugs", responsible for various infectious diseases. Vancomycin has been the most effective antibitic to treat MRSA originated infections. In this study, we aimed at investigating the genomic features of a vancomycin intermediate-resistance S. aureus strain Guangzhou-SauVS2 isolated from a female patient suffering from chronic renal function failure, emphasizing on its antimicrobial resistance and virulence determinants. The genome has a total length of 2,605,384 bp and the G+C content of 33.21%, with 2,239 predicted genes annotated with GO terms, COG categories, and KEGG pathways. Besides the carriage of vancomycin b-type resistance protein responsible for the vancomycin intermediate-resistance, S. aureus strain Guangzhou-SauVS2 showed resistance to β-lactams, quinolones, macrolide, and tetracycline, due to the acquisition of corresponding antimicrobial resistance genes. In addition, virulence factors including adherence, antiphagocytosis, iron uptake, and toxin were determined, indicating the pathogenesis of the strain.
Collapse
Affiliation(s)
- Jie Fu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, Guangdong, 525427, China
| | - Yuzhu Mao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Jinxuan Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Ruixin Peng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yanni Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Fan Shi
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Shantou, Guangdong, China.
| | - Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
36
|
Antibacterial chitosan electrostatic/covalent coating onto biodegradable poly ( -lactic acid). Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Solis-Velazquez OA, Gutiérrez-Lomelí M, Guerreo-Medina PJ, Rosas-García MDL, Iñiguez-Moreno M, Avila-Novoa MG. Nosocomial pathogen biofilms on biomaterials: Different growth medium conditions and components of biofilms produced in vitro. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:1038-1047. [PMID: 32680693 DOI: 10.1016/j.jmii.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND/PURPOSE (S) Nosocomial pathogens can develop biofilms on hospital surfaces and medical devices; however, few studies have focused on the evaluation of mono-and dual-species biofilms developed by nosocomial pathogens under different growth conditions. METHODS This study investigated biofilm development by nosocomial pathogens (Acinetobacter baumannii, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) on biomaterials in different culture media and their components of the extracellular matrix biofilm. RESULTS The mono-species biofilms showed cell densities from 7.50 to 9.27 Log10 CFU/cm2 on natural rubber latex type I (NLTI) and from 7.58 to 8.79 Log10 CFU/cm2 on stainless steel (SS). Dual-species biofilms consisted of S. aureus + P. aeruginosa (7.87-8.27 Log10 CFU/cm2 in TSBP and TSBME onto SS; p < 0.05), E. coli + P. aeruginosa (8.32-8.86 Log10 CFU/cm2 in TSBME onto SS and TSBP onto NLTI; p < 0.05), and S. aureus + E. coli (7.82 Log10 CFU/cm2 in TSBME onto SS; p < 0.05). Furthermore, biofilm detachment after proteinase K treatment was 5.54-32.81% compared to 7.95-24.15% after DNase I treatment in the mono-dual species biofilm matrix. Epifluorescence microscopy and scanning electron microscopy (SEM) enabled visualizing the bacteria and extracellular polymeric substances of biofilms on SS and NLTI. CONCLUSION Nosocomial pathogens can develop biofilms on biomaterials. Mono-species biofilms of Gram-negative bacteria showed lower densities than dual-species biofilms in TSBME and TSBP. Additionally, dual-species biofilms showed a higher concentration of proteins and eDNA in the extracellular matrix.
Collapse
Affiliation(s)
- Oscar Alberto Solis-Velazquez
- Laboratorio de Microbiología, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Jalisco, Mexico
| | - Melesio Gutiérrez-Lomelí
- Laboratorio de Alimentos, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Jalisco, Mexico
| | - Pedro Javier Guerreo-Medina
- Laboratorio de Alimentos, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Jalisco, Mexico
| | - María de Lourdes Rosas-García
- Laboratorio de Microbiología, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Jalisco, Mexico
| | | | - María Guadalupe Avila-Novoa
- Laboratorio de Microbiología, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Jalisco, Mexico.
| |
Collapse
|
38
|
Carvalho JS, Neto AFL, Melo IM, Varjão LM, Andrade CADASN, Xavier DE, Leal NC, DE Castro Almeida RC. Occurrence of Methicillin-Resistant Staphylococcus aureus in Ready-to-Eat Raw Fish from Japanese Cuisine Restaurants in Salvador, Brazil. J Food Prot 2020; 83:991-995. [PMID: 32438396 DOI: 10.4315/0362-028x.jfp-19-375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/03/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The presence of methicillin-resistant Staphylococcus aureus (MRSA) strains in food products is a major issue for food safety. The present study was conducted to evaluate the occurrence and antimicrobial resistance profile of S. aureus, focusing on MRSA isolates, in ready-to-eat sashimi from Japanese restaurants in Salvador, Brazil. A total of 127 sashimi samples were collected directly from the take-out service in 16 restaurants. The staphylococcal isolates were identified morphologically and biochemically with standard laboratory procedures. S. aureus isolates were tested with a disk diffusion assay against seven antibiotics, and the cefoxitin and oxacillin were used to identify MRSA strains. Isolates with the MRSA phenotype were confirmed with a PCR assay. S. aureus was found in 73% of the sashimi samples, including sashimi from tuna (75.5% of samples) and salmon (72.5% of samples). Among those positive samples, 37% were contaminated with MRSA strains, found among 38.8% of salmon sashimi and 34.0% of tuna sashimi. Penicillin resistance was the most common type of antimicrobial resistance, found in 65.5% of the sashimi samples, followed by resistance to tetracycline (22.5%), erythromycin (16.0%), and ciprofloxacin (3.2%). Only two S. aureus isolates collected from different fish samples and restaurants had presumed resistance to vancomycin. The high prevalence of S. aureus and MRSA in these sashimi samples indicates a potential risk for foodborne disease, especially MRSA, spreading in the community. HIGHLIGHTS
Collapse
Affiliation(s)
- Joelza Silva Carvalho
- Pharmacy Faculty, Federal University of Bahia, Rua Barão de Geremoabo, s/n, 40170-290, Salvador, BA, Brazil
| | - Antenor Ferreira Leal Neto
- Pharmacy Faculty, Federal University of Bahia, Rua Barão de Geremoabo, s/n, 40170-290, Salvador, BA, Brazil
| | - Isabela Maciel Melo
- Nutrition School, Federal University of Bahia, Rua Basílio da Gama, s/no, 40110-160, Salvador, BA, Brazil (ORCID: https://orcid.org/0000-0002-8657-929X [R.C.C.A.])
| | - Luana Milen Varjão
- Nutrition School, Federal University of Bahia, Rua Basílio da Gama, s/no, 40110-160, Salvador, BA, Brazil (ORCID: https://orcid.org/0000-0002-8657-929X [R.C.C.A.])
| | | | - Danilo Elias Xavier
- Aggeu Magalhães Institute/FIOCRUZ, Avenida Morais Rêgo, s/n, 50740-465, Recife, PE, Brazil
| | - Nilma Cintra Leal
- Aggeu Magalhães Institute/FIOCRUZ, Avenida Morais Rêgo, s/n, 50740-465, Recife, PE, Brazil
| | - Rogeria Comastri DE Castro Almeida
- Nutrition School, Federal University of Bahia, Rua Basílio da Gama, s/no, 40110-160, Salvador, BA, Brazil (ORCID: https://orcid.org/0000-0002-8657-929X [R.C.C.A.])
| |
Collapse
|
39
|
Chen W, Chen H, Fu S, Lin X, Zheng Z, Zhang J. Microbiome characterization and re-design by biologic agents for inflammatory bowel disease insights. Bioprocess Biosyst Eng 2020; 44:929-939. [PMID: 32458051 DOI: 10.1007/s00449-020-02380-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
The therapeutic effect of inflammatory bowel disease has improved in the past decades, but most of patients cannot tolerate, do not respond to drugs, or relapse after treating with conventional therapy. Therefore, new and more effective treatment methods are still needed in treatment of IBD. In this review, we will discuss the relevant mechanisms and the latest research progress of biologics (anti-TNF treatments, interleukin inhibitors, integrin inhibitors, antisense oligonucleotide, and JAK inhibitors) for IBD, focus on the efficacy and safety of drugs for moderate-to-severe IBD, and summarize the clinical status and future development direction of biologics in IBD.
Collapse
Affiliation(s)
- Wenshuo Chen
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Haijin Chen
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China.
| | - Shudan Fu
- Ophthalmology Department, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Xiaohua Lin
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Zheng Zheng
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Jinlong Zhang
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| |
Collapse
|
40
|
Mannosylerythritol lipids: dual inhibitory modes against Staphylococcus aureus through membrane-mediated apoptosis and biofilm disruption. Appl Microbiol Biotechnol 2020; 104:5053-5064. [PMID: 32248439 DOI: 10.1007/s00253-020-10561-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/21/2020] [Accepted: 03/20/2020] [Indexed: 12/25/2022]
Abstract
Mannosylerythritol lipids (MELs) are novel biosurfactants performing excellent physical-chemical properties as well as bioactivities. This study is aimed to explore the antibacterial and antibiofilm activity of mannosylerythritol lipids against foodborne gram-positive Staphylococcus aureus. The results of growth curve and survival rate revealed the significant inhibitory effect of MELs against S. aureus. The visualized pictures by scanning electron microscope and transmission electron microscope exposed apparent morphological and ultrastructure changes of MEL-treated cells. Furthermore, flow cytometry confirmed that MELs have promoted cell apoptosis and damaged the cell membrane. Notably, MEL-A also exhibited outstanding antibiofilm activity against S. aureus biofilm on different material surfaces including polystyrene, glass, and stainless steel, verified by confocal laser scanning microscope. These findings suggest that the antimicrobial activity of MELs is related to inhibit planktonic cells and biofilm of S. aureus, indicating that it has potential to be an alternative to antibacterial agents and preservatives applied into food processing.Key Points • MELs have strong antibacterial activity against Staphylococcus aureus.• MELs mainly damage the cell membrane of Staphylococcus aureus.• Mannosylerythritol lipids inhibit the bacterial adhesion to remove biofilm.
Collapse
|
41
|
Li Y, Qiu Y, Ye C, Chen L, Liang Y, Liu G, Liu J. High-flux simultaneous screening of common foodborne pathogens and their virulent factors. Bioprocess Biosyst Eng 2020; 43:693-700. [PMID: 31863186 DOI: 10.1007/s00449-019-02267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023]
Abstract
Rapid and sensitive detection techniques for foodborne pathogens are important to the food industry. However, traditional detection methods rely on bacterial culture in combination with biochemical tests, a process that typically takes 4-7 days to complete. In this study, we described a high-flux polymerase chain reaction (PCR) method for simultaneous detection of nine targeted genes (rfbE, stx1, stx2, invA, oprI, tlh, trh, tdh, and hlyA) with multiplex strains. The designed primers were highly specific for their respective target gene fragments. As the selected primers follow the principles of similar melting and annealing temperature, all the targeted genes could be detected for one strain with the same PCR program. Combining with 96-well PCR plate, by adding a single different gene to each well in each row, both the ATCC strains (E. coli, Salmonella spp., V. parahaemolyticus, L. monocytogenes, P. aeruginosa, S. aureus) and the clinical strains (E. coli, P. aeruginosa, S. aureus) were simultaneously detected to carry their specific and virulence genes. Therefore, using 96-well PCR plate for PCR amplification might be applied to high-flux sequencing of specific and virulence genes.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yisen Qiu
- Department of Spine Surgery, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd, Maoming, 525427, Guangdong, China
| | - Guoxing Liu
- Guangzhou KEO Biotechnology Co. LTD, Guangzhou, Guangdong, China.
| | - Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
42
|
Kim G, Gan RY, Zhang D, Farha AK, Habimana O, Mavumengwana V, Li HB, Wang XH, Corke H. Large-Scale Screening of 239 Traditional Chinese Medicinal Plant Extracts for Their Antibacterial Activities against Multidrug-Resistant Staphylococcus aureus and Cytotoxic Activities. Pathogens 2020; 9:E185. [PMID: 32143422 PMCID: PMC7157549 DOI: 10.3390/pathogens9030185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 01/10/2023] Open
Abstract
Novel alternative antibacterial compounds have been persistently explored from plants as natural sources to overcome antibiotic resistance leading to serious foodborne bacterial illnesses. In this study, the ethanolic extracts from 239 traditional Chinese medicinal plants (TCMP)' materials were screened to discover promising candidates that have strong antibacterial properties against multidrug-resistant Staphylococcus (S.) aureus and low cytotoxicity. The results revealed that 74 extracts exhibited good antibacterial activities (diameter of inhibition zone (DIZ) ≥ 15 mm). Furthermore, 18 extracts (DIZ ≥ 20 mm) were determined their minimum inhibitory concentrations (MIC) and minimum bactericide concentrations (MBC), ranging from 0.1 to 12.5 mg/mL and 0.78 to 25 mg/mL, respectively. In addition, most of the 18 extracts showed relatively low cytotoxicity (a median lethal concentration (LC50) >100 µg/mL). The 18 extracts were further determined to estimate possible correlation of their phenolic contents with antibacterial activity, and the results did not show any significant correlation. In conclusion, this study selected out some promising antibacterial TCMP extracts with low cytotoxicity, including Rhus chinensis Mill., Ilex rotunda Thunb., Leontice kiangnanensis P.L.Chiu, Oroxylum indicum Vent., Isatis tinctorial L., Terminalia chebula Retz., Acacia catechu (L.f.) Willd., Spatholobus suberectus Dunn, Rabdosia rubescens (Hemsl.) H.Hara, Salvia miltiorrhiza Bunge, Fraxinus fallax Lingelsh, Coptis chinensis Franch., Agrimonia Pilosa Ledeb., and Phellodendron chinense C.K.Schneid.
Collapse
Affiliation(s)
- Gowoon Kim
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (G.K.); (D.Z.); (A.K.F.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (G.K.); (D.Z.); (A.K.F.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Dan Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (G.K.); (D.Z.); (A.K.F.)
| | - Arakkaveettil Kabeer Farha
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (G.K.); (D.Z.); (A.K.F.)
| | - Olivier Habimana
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China;
| | - Vuyo Mavumengwana
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, US/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Xiao-Hong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (G.K.); (D.Z.); (A.K.F.)
| |
Collapse
|
43
|
Pacha PA, Munoz MA, Paredes-Osses E, Latorre AA. Short communication: Virulence profiles of Staphylococcus aureus isolated from bulk tank milk and adherences on milking equipment on Chilean dairy farms. J Dairy Sci 2020; 103:4732-4737. [PMID: 32113752 DOI: 10.3168/jds.2019-17794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/05/2020] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus is an important intramammary pathogen for dairy cows that also is remarkably important for public health. Multiple virulence factors can be involved simultaneously during the pathogenesis of a staphylococcal disease, including adhesion proteins, extracellular enzymes, and toxins. The main objective of this study was to assess virulence factors that are associated with cow intramammary infection (IMI) and of human health concern among Staph. aureus isolates obtained from bulk tank milk (BTM) and adherences on milking equipment surfaces. A total of 166 Staph. aureus isolates from 23 dairy farms were characterized according to their virulence profiles. For virulence factors of importance in IMI, the presence of the virulence markers thermonuclease (nuc) and coagulase (coa) and virulence genes such as fibronectin (fnbA) and intercellular adhesion (icaA, icaD) were assessed. For virulence factors of public health concern, presence of antimicrobial resistance (mecA and mecC) and enterotoxin (sea and seb) genes were analyzed. Among all Staph. aureus isolates, 5 virulence profiles were found; the profile nuc(+)coa(+)fnbA(+)icaA(+)icaD(+)mecA(-)mecC(-)sea(-)seb(-) was the most frequently observed (21 out of 23 dairy farms). No differences were found between the virulence profile frequencies of Staph. aureus from BTM and adherences on milking equipment surfaces. The virulence profiles most frequently observed included genes involved in the adherence and biofilm-forming ability of Staph. aureus, which could represent a potential advantage for the bacterium during the early stages of IMI colonization and for persistence on surfaces. Our results indicate a greater frequency of virulence factors of importance for IMI pathogenesis than virulence factors of public health concern, consistent with the dairy origin of isolates. The mecA, mecC, and seb genes were not observed among Staph. aureus isolates analyzed in this study. However, the sea gene was detected in 3 Staph. aureus isolated from BTM, thus posing a potential public health threat. Our results emphasize the importance of understanding the epidemiology and dynamics of Staph. aureus on dairy farms as a tool for the improvement of udder health and milk safety.
Collapse
Affiliation(s)
- P A Pacha
- Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, 3812120, Chile
| | - M A Munoz
- Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, 3812120, Chile
| | - E Paredes-Osses
- Instituto de Salud Pública, Department of Environmental Health, Ñuñoa, Santiago 7750000, Chile
| | - A A Latorre
- Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, 3812120, Chile.
| |
Collapse
|
44
|
Vaezi SS, Poorazizi E, Tahmourespour A, Aminsharei F. Application of artificial neural networks to describe the combined effect of pH, time, NaCl and ethanol concentrations on the biofilm formation of Staphylococcus aureus. Microb Pathog 2020; 141:103986. [PMID: 31972270 DOI: 10.1016/j.micpath.2020.103986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/05/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022]
Abstract
Biofilms are organized communities, adherent to the surface and resistant to adverse environmental and antimicrobial agents. So, its control is very important. Staphylococcus aureus is an opportunistic pathogen with the biofilm-forming ability that causes numerous problems in the medicine and food industry. Therefore, this study aimed to investigate the effect of pH, ethanol and NaCl concentrations after 24 and 48 h incubation times at 37 °C, also modeling the results with artificial neural network (ANN). For this purpose, after both incubation times, the effect of each parameter was studied, separately and also in combination at the levels in which the highest biofilm was formed. All results were modeled using multiple ANN and compared in terms of R-value and MSE. The highest biofilm formation ability was in neutral pH. Adding the ethanol and NaCl stimulated biofilm formation, but the inhibitory effect was observed at high concentrations of ethanol and NaCl and very acidic or highly alkaline pH levels. The more incubation time also led to an increase in biofilm formation. Eventually, the Feed-Forward, Back-Propagation Neural Network model with the Levenberg-Marquardt training algorithm and 4-12-1 topology was chosen (R-value = 0.995 and validation MSE = 0.011467). This ANN had high modeling ability because there was a high correlation between experimental data and modeling data. Therefore, it was concluded that pH, ethanol, NaCl, and time are effective parameters in the biofilm formation and there is a nonlinear relationship between these factors that the ANN is capable of modeling them.
Collapse
Affiliation(s)
- Sayedeh Saleheh Vaezi
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Elahe Poorazizi
- Department of Biochemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Arezoo Tahmourespour
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran; Department of Basic Medical Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Farham Aminsharei
- Department of Chemical Engineering, Health, Safety & Environment, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
45
|
Li Y, Huang TY, Mao Y, Chen Y, Shi F, Peng R, Chen J, Bai C, Chen L, Wang K, Liu J. Effect of Environmental Conditions on the Formation of the Viable but Nonculturable State of Pediococcus acidilactici BM-PA17927 and Its Control and Detection in Food System. Front Microbiol 2020; 11:586777. [PMID: 33117324 PMCID: PMC7550757 DOI: 10.3389/fmicb.2020.586777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Objective: This study aimed to investigate the effect of environmental conditions including nutrient content, acetic acid concentration, salt concentration, and temperature on the formation of viable but nonculturable (VBNC) state of Pediococcus acidilactici, as well as its control and detection in food system. Methods: Representing various environmental conditions in different food systems, 16 induction groups were designed for the formation of VBNC state of P. acidilactici. Traditional plate counting was applied to measure the culturable cell numbers, and Live/Dead Bacterial Viability Kit combined with fluorescent microscopy was used to identify viable cells numbers. The inhibition of bacterial growth and VBNC state formation by adjusting the environmental conditions were investigated, and the clearance effect of VBNC cells in crystal cake system was studied. In addition, a propidium monoazide-polymerase chain reaction (PMA-PCR) assay was applied to detect the VBNC P. acidilactici cells in crystal cake food system. Results: Among the environmental conditions included in this study, acetic acid concentration had the greatest effect on the formation of VBNC state of P. acidilactici, followed by nutritional conditions and salt concentration. Reducing nutrients in the environment and treating with 1.0% acetic acid can inhibit P. acidilactici from entering the VBNC state. In the crystal cake system, the growth of P. acidilactici and the formation of VBNC state can be inhibited by adding 1.0% acetic acid and storing at -20°C. In crystal cake system, the PMA-PCR assay can be used to detect VBNC P. acidilactici cells at a concentration higher than 104 cells/ml. Conclusion: The VBNC state of P. acidilactici can be influenced by the changing of environmental conditions, and PMA-PCR assay can be applied in food system for the detection of VBNC P. acidilactici cells.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuzhu Mao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Yanni Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Fan Shi
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Ruixin Peng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Jinxuan Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
- Kan Wang,
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
- *Correspondence: Junyan Liu,
| |
Collapse
|
46
|
Li Y, Huang T, Bai C, Fu J, Chen L, Liang Y, Wang K, Liu J, Gong X, Liu J. Reduction, Prevention, and Control of Salmonella enterica Viable but Non-culturable Cells in Flour Food. Front Microbiol 2020; 11:1859. [PMID: 32973696 PMCID: PMC7472744 DOI: 10.3389/fmicb.2020.01859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023] Open
Abstract
The processing and storage conditions of flour food inevitably pose environmental stress, which promote bacteria to enter a viable but non-culturable (VBNC) state. The existence of VBNC cells causes false-negative detection in traditional culture-based detection methods, resulting in food quality and safety issues. This study aimed at investigating the influence factors including nutrition, acid, salt, and temperature for the entry into a VBNC state of Salmonella enterica and an efficient detection method. During induction with multi-stress conditions, nutrition starvation antagonizes with low-level acidity. Besides, high-level acidity was considered as an inhibitor for VBNC induction. Four inducers including nutrition starvation, salt stress, low-level acidity, and low temperature were concluded for a VBNC state. In addition, the keynote conditions for S. enterica entering a VBNC state included (i) nutrient-rich acidic environment, (ii) oligotrophic low-acidity environment, and (iii) oligotrophic refrigerated environment. Based on the keynote conditions, the environmental conditions of high acidity (1.0% v/v acetate) with low temperature (-20°C) could successfully eliminate the formation of S. enterica VBNC cells in flour food. In addition, combining with propidium monoazide pretreatment, PCR technology was applied to detect S. enterica VBNC cells. The sensitivity of the PMA-PCR technology was 105 CFU/ml in an artificially simulated food system. The results derived from this study might aid in the detection and control of VBNC state S. enterica in flour food products.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Jie Fu
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co., Ltd., Maoming, China
| | - Kan Wang
- Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jun Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiangjun Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Xiangjun Gong,
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
- Junyan Liu,
| |
Collapse
|
47
|
Ou A, Wang K, Mao Y, Yuan L, Ye Y, Chen L, Zou Y, Huang T. First Report on the Rapid Detection and Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) in Viable but Non-culturable (VBNC) Under Food Storage Conditions. Front Microbiol 2020; 11:615875. [PMID: 33488559 PMCID: PMC7817642 DOI: 10.3389/fmicb.2020.615875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Formation of viable but non-culturable (VBNC) status in methicillin-resistant Staphylococcus aureus (MRSA) has never been reported, and it poses a significant concern for food safety. Thus, this study aimed to firstly develop a rapid, cost-effective, and efficient testing method to detect and differentiate MRSA strains in the VBNC state and further apply this in real food samples. Two targets were selected for detection of MRSA and toxin, and rapid isothermal amplification detection assays were developed based on cross-priming amplification methodology. VBNC formation was performed for MRSA strain in both pure culture and in artificially contaminated samples, then propidium monoazide (PMA) treatment was further conducted. Development, optimization, and evaluation of PMA-crossing priming amplification (CPA) were further performed on detection of MRSA in the VBNC state. Finally, application of PMA-CPA was further applied for detection on MRSA in the VBNC state in contaminated food samples. As concluded in this study, formation of the VBNC state in MRSA strains has been verified, then two PMA-CPA assays have been developed and applied to detect MRSA in the VBNC state from pure culture and food samples.
Collapse
Affiliation(s)
- Aifen Ou
- Department of Food, Guangzhou City Polytechnic, Guangzhou, China
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yanxiong Mao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Yimin Zou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yimin Zou,
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Tengyi Huang,
| |
Collapse
|
48
|
Salwan R, Sharma V. Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol Res 2020; 231:126374. [DOI: 10.1016/j.micres.2019.126374] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
|
49
|
Cha Y, Son B, Ryu S. Effective removal of staphylococcal biofilms on various food contact surfaces by Staphylococcus aureus phage endolysin LysCSA13. Food Microbiol 2019; 84:103245. [DOI: 10.1016/j.fm.2019.103245] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/14/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
|
50
|
Peng Q, Zhou X, Wang Z, Xie Q, Ma C, Zhang G, Gong X. Three-Dimensional Bacterial Motions near a Surface Investigated by Digital Holographic Microscopy: Effect of Surface Stiffness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12257-12263. [PMID: 31423792 DOI: 10.1021/acs.langmuir.9b02103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface stiffness plays a critical role in bacterial adhesion, but the mechanism is unclear since the bacterial motion before adhesion is overlooked. Herein, the three-dimensional (3D) motions of Escherichia coli and Pseudonomas sp. nov 776 onto poly(dimethylsiloxane) (PDMS) surfaces with varying stiffness before adhering were monitored by digital holographic microscopy (DHM). As Young's modulus (E) of the PDMS surface decreases from 278.1 to 3.4 MPa, the adhered E. coli and Pseudonomas sp. decrease in number by 40.4 and 34.9%, respectively. Atomic force microscopy (AFM) measurements show that the adhesion force of bacteria to the surface declines with the decreased surface stiffness. In contrast, a nontumbling mutant of adhered E. coli (HCB1414 with the adaptive function being partially deficient) decreases much less (by 18.4%). On the other hand, the tumble frequency (Ft) of E. coli HCB1 and flick frequency (Ff) of Pseudomonas sp. increase as the surface stiffness decreases, and the motion bias (Bθ) of Pseudomonas sp. also increases. These facts clearly indicate that the bacteria have adapted responses to the surface stiffness. RNA sequencing (RNA-seq) reveals that the downregulated Cph2 and CsrA as well as the upregulated GcvA of swimming E. coli HCB1 in bulk near the softer surface promote the bacterial motility.
Collapse
Affiliation(s)
- Qingmei Peng
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Xin Zhou
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Zhi Wang
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|