1
|
Mao Z, Zhao J, Cui F, Li Z, Cao J, Zhou J, Hou M, Qian Z. STUB1 increases adiponectin expression by inducing ubiquitination and degradation of NR2F2, thereby reducing hepatic stellate cell activation and alleviating non-alcoholic fatty liver disease. Tissue Cell 2024; 88:102345. [PMID: 38471267 DOI: 10.1016/j.tice.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Adiponectin (APN) has exhibited ameliorating effects on non-alcoholic fatty liver disease (NAFLD). This study investigates the roles of APN and its regulatory molecules in hepatic stellate cell (HSC) activation and the progression of NAFLD. METHODS Mice were subjected to a high-fat diet (HFD) to establish NAFLD models. Liver tissue was examined for lipid metabolism, fibrosis, and inflammation. Mouse 3T3-L1 adipocytes were exposed to palmitic acid (PA) to mimic a high-fat environment. The conditioned medium (CM) from adipocytes was collected for the culture of isolated mouse HSCs. Gain- or loss-of-function studies of APN, nuclear receptor subfamily 2 group F member 2 (NR2F2), and STIP1 homology and U-box containing protein 1 (STUB1) were performed to analyze their roles in NAFLD and HSC activation in vivo and in vitro. RESULTS APN expression was poorly expressed in HFD-fed mice and PA-treated 3T3-L1 adipocytes, which was attributed to the transcription inhibition mediated by NR2F2. Silencing of NR2F2 restored the APN expression, ameliorating liver steatosis, fibrosis, and inflammatory cytokine infiltration in mouse livers and reducing HSC activation. Similarly, the NR2F2 silencing condition reduced HSC activation in vitro. However, these effects were counteracted by artificial APN silencing. STUB1 facilitated the ubiquitination and protein degradation of NR2F2, and its upregulation mitigated NAFLD-like symptoms in mice and HSC activation, effects reversed by the NR2F2 overexpression. CONCLUSION This study highlights the role of STUB1 in reducing HSC activation and alleviating NAFLD by attenuating NR2F2-mediated transcriptional repression of APN.
Collapse
Affiliation(s)
- Zheng Mao
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Jindong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, PR China
| | - Fan Cui
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Zhen Li
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Jinjin Cao
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Jingjing Zhou
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Mingliang Hou
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Zengkun Qian
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China.
| |
Collapse
|
2
|
Pydyn N, Ferenc A, Trzos K, Pospiech E, Wilamowski M, Mucha O, Major P, Kadluczka J, Rodrigues PM, Banales JM, Herranz JM, Avila MA, Hutsch T, Malczak P, Radkowiak D, Budzynski A, Jura J, Kotlinowski J. MCPIP1 Inhibits Hepatic Stellate Cell Activation in Autocrine and Paracrine Manners, Preventing Liver Fibrosis. Cell Mol Gastroenterol Hepatol 2024; 17:887-906. [PMID: 38311169 PMCID: PMC11026697 DOI: 10.1016/j.jcmgh.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND & AIMS Hepatic fibrosis is characterized by enhanced deposition of extracellular matrix (ECM), which results from the wound healing response to chronic, repeated injury of any etiology. Upon injury, hepatic stellate cells (HSCs) activate and secrete ECM proteins, forming scar tissue, which leads to liver dysfunction. Monocyte-chemoattractant protein-induced protein 1 (MCPIP1) possesses anti-inflammatory activity, and its overexpression reduces liver injury in septic mice. In addition, mice with liver-specific deletion of Zc3h12a develop features of primary biliary cholangitis. In this study, we investigated the role of MCPIP1 in liver fibrosis and HSC activation. METHODS We analyzed MCPIP1 levels in patients' fibrotic livers and hepatic cells isolated from fibrotic murine livers. In vitro experiments were conducted on primary HSCs, cholangiocytes, hepatocytes, and LX-2 cells with MCPIP1 overexpression or silencing. RESULTS MCPIP1 levels are induced in patients' fibrotic livers compared with their nonfibrotic counterparts. Murine models of fibrosis revealed that its level is increased in HSCs and hepatocytes. Moreover, hepatocytes with Mcpip1 deletion trigger HSC activation via the release of connective tissue growth factor. Overexpression of MCPIP1 in LX-2 cells inhibits their activation through the regulation of TGFB1 expression, and this phenotype is reversed upon MCPIP1 silencing. CONCLUSIONS We demonstrated that MCPIP1 is induced in human fibrotic livers and regulates the activation of HSCs in both autocrine and paracrine manners. Our results indicate that MCPIP1 could have a potential role in the development of liver fibrosis.
Collapse
Affiliation(s)
- Natalia Pydyn
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland.
| | - Anna Ferenc
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland
| | - Katarzyna Trzos
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Ewelina Pospiech
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wilamowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland
| | - Olga Mucha
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland
| | - Piotr Major
- Jagiellonian University Medical College, 2nd Department of General Surgery, Krakow, Poland
| | - Justyna Kadluczka
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Jose M Herranz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Hepatology Program, Liver Unit, Instituto de Investigación de Navarra (IdisNA), Clínica Universidad de Navarra and Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Hepatology Program, Liver Unit, Instituto de Investigación de Navarra (IdisNA), Clínica Universidad de Navarra and Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Tomasz Hutsch
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland; Veterinary Diagnostic Laboratory ALAB Bioscience, Warsaw, Poland
| | - Piotr Malczak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dorota Radkowiak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Budzynski
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jolanta Jura
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland
| | - Jerzy Kotlinowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland.
| |
Collapse
|
3
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
4
|
Calamita G, Delporte C. Aquaporins in Glandular Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:225-249. [PMID: 36717498 DOI: 10.1007/978-981-19-7415-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
5
|
Čustović N, Rašić S. RELATIONSHIP OF SERUM ADIPONECTIN AND RESISTIN LEVELS WITH THE SEVERITY OF LIVER FIBROSIS IN PATIENTS WITH CHRONIC HEPATITIS B. J Med Biochem 2021; 41:176-183. [PMID: 35510200 PMCID: PMC9010048 DOI: 10.5937/jomb0-33793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/17/2021] [Indexed: 12/04/2022] Open
Abstract
Background Recent research has closely linked adipocytokines to liver inflammation and fibrosis progression in patients with non-alcoholic liver disease. This study aimed to determine the relationship of serum adiponectin and resistin levels with the severity of liver fibrosis in patients with chronic hepatitis B (CHB), depending on the duration of antiviral therapy. Methods The cross-sectional study included 75 patients with CHB divided into two groups: the T1 group (undergoing antiviral therapy for up to 2 years) and the T2 group (undergoing antiviral therapy over 2 years). The control group consisted of 40 healthy people. Serum concentrations of adiponectin and resistin were estimated with the ELISA method, while the degree of liver fibrosis was determined using FIB-4 and APRI score. Results There were no statistically significant differences in the mean serum adiponectin levels in relation to the duration of antiviral therapy. Higher values of serum resistin concentration were confirmed in patients of the T1 group compared to healthy controls (p=0.001) and to the T2 group (p=0.031). The mean level of serum resistin concentration was significantly higher in the group of patients with a higher FIB-4 score (9.12±3.39 vs 5.58±3.36 ng/mL, p=0.001) and higher APRI score (17.45±3.96 ng/mL vs 4.82±1.11 ng/mL, p=0.001). A positive correlation was found between serum resistin levels and the degree of liver fibrosis (p<0.001). There was no significant difference between mean serum adiponectin levels according to the values of FIB-4 and APRI scores. Conclusions Progression of liver fibrosis estimated by FIB4 and APRI scores as well as the length of antiviral treatment had a significant effect on serum resistin values in CHB patients on antiviral therapy.
Collapse
Affiliation(s)
- Nerma Čustović
- University of Sarajevo, Clinical Center, Clinic for Gastroenterohepatology, Sarajevo, Bosnia and Herzegovina
| | - Senija Rašić
- University of Sarajevo, Faculty of Medicine, Department of Internal Medicine, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
6
|
Tardelli M, Stulnig TM. Aquaporin regulation in metabolic organs. VITAMINS AND HORMONES 2021; 112:71-93. [PMID: 32061350 DOI: 10.1016/bs.vh.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aquaporins (AQPs) are a family of 13 small trans-membrane proteins, which facilitate shuttling of glycerol, water and urea. The peculiar role of AQPs in glycerol transport makes them attractive targets in metabolic organs since glycerol represents the backbone of triglyceride synthesis. Importantly, AQPs are known to be regulated by various nuclear receptors which in turn govern lipid and glucose metabolism as well as inflammatory cascades. Here, we review the role of AQPs regulation in metabolic organs exploring their physiological impact in health and disease.
Collapse
Affiliation(s)
- Matteo Tardelli
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, United States; Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas M Stulnig
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Calamita G, Delporte C. Involvement of aquaglyceroporins in energy metabolism in health and disease. Biochimie 2021; 188:20-34. [PMID: 33689852 DOI: 10.1016/j.biochi.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/27/2022]
Abstract
Aquaglyceroporins are a group of the aquaporin (AQP) family of transmembrane water channels. While AQPs facilitate the passage of water, small solutes, and gases across biological membranes, aquaglyceroporins allow passage of water, glycerol, urea and some other solutes. Thanks to their glycerol permeability, aquaglyceroporins are involved in energy homeostasis. This review provides an overview of what is currently known concerning the functional implication and control of aquaglyceroporins in tissues involved in energy metabolism, i.e. liver, adipose tissue and endocrine pancreas. The expression, role and (dys)regulation of aquaglyceroporins in disorders affecting energy metabolism, and the potential relevance of aquaglyceroporins as drug targets to treat the alterations of the energy balance is also addressed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
8
|
Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis. Pharmacol Ther 2020; 222:107791. [PMID: 33321113 DOI: 10.1016/j.pharmthera.2020.107791] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a dynamic wound-healing process associated with the deposition of extracellular matrix produced by myofibroblasts. HSCs activation, inflammation, oxidative stress, steatosis and aging play critical roles in the progression of liver fibrosis, which is correlated with the regulation of the peroxisome proliferator-activated receptor (PPAR) pathway. As nuclear receptors, PPARs reduce inflammatory response, regulate lipid metabolism, and inhibit fibrogenesis in the liver associated with aging. Thus, PPAR ligands have been investigated as possible therapeutic agents. Mounting evidence indicated that some PPAR agonists could reverse steatohepatitis and liver fibrosis. Consequently, targeting PPARs might be a promising and novel therapeutic option against liver fibrosis. This review summarizes recent studies on the role of PPARs on the pathogenesis and treatment of liver fibrosis.
Collapse
|
9
|
Tardelli M, Bruschi FV, Fuchs CD, Claudel T, Auer N, Kunczer V, Baumgartner M, A.H.O. Ronda O, Verkade HJ, Stojakovic T, Scharnagl H, Habib A, Zimmermann R, Lotersztajn S, Trauner M. Monoacylglycerol Lipase Inhibition Protects From Liver Injury in Mouse Models of Sclerosing Cholangitis. Hepatology 2020; 71:1750-1765. [PMID: 31505038 PMCID: PMC7317927 DOI: 10.1002/hep.30929] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Monoacylglycerol lipase (MGL) is the last enzymatic step in triglyceride degradation, hydrolyzing monoglycerides into glycerol and fatty acids (FAs) and converting 2-arachidonoylglycerol into arachidonic acid, thus providing ligands for nuclear receptors as key regulators of hepatic bile acid (BA)/lipid metabolism and inflammation. We aimed to explore the role of MGL in the development of cholestatic liver and bile duct injury in mouse models of sclerosing cholangitis, a disease so far lacking effective pharmacological therapy. APPROACH AND RESULTS To this aim we analyzed the effects of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding to induce sclerosing cholangitis in wild-type (WT) and knockout (MGL-/- ) mice and tested pharmacological inhibition with JZL184 in the multidrug resistance protein 2 knockout (Mdr2-/- ) mouse model of sclerosing cholangitis. Cholestatic liver injury and fibrosis were assessed by serum biochemistry, liver histology, gene expression, and western blot characterization of BA and FA synthesis/transport. Moreover, intestinal FAs and fecal microbiome were analyzed. Transfection and silencing were performed in Caco2 cells. MGL-/- mice were protected from DDC-induced biliary fibrosis and inflammation with reduced serum liver enzymes and increased FA/BA metabolism and β-oxidation. Notably, pharmacological (JZL184) inhibition of MGL ameliorated cholestatic injury in DDC-fed WT mice and protected Mdr2-/- mice from spontaneous liver injury, with improved liver enzymes, inflammation, and biliary fibrosis. In vitro experiments confirmed that silencing of MGL decreases prostaglandin E2 accumulation in the intestine and up-regulates peroxisome proliferator-activated receptors alpha and gamma activity, thus reducing inflammation. CONCLUSIONS Collectively, our study unravels MGL as a metabolic target, demonstrating that MGL inhibition may be considered as potential therapy for sclerosing cholangitis.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Francesca V. Bruschi
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Claudia D. Fuchs
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Nicole Auer
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Victoria Kunczer
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Maximilian Baumgartner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Onne A.H.O. Ronda
- Center for Liver, Digestive and Metabolic DiseasesDepartments of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Henk Jan Verkade
- Center for Liver, Digestive and Metabolic DiseasesDepartments of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsUniversity Hospital GrazGrazAustria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Aida Habib
- Université de ParisCentre de Recherche sur l'InflammationINSERMUMR1149CNRSERL 8252ParisFrance
- Department of Biochemistry and Molecular GeneticsAmerican University of BeirutBeirutLebanon
| | | | - Sophie Lotersztajn
- Université de ParisCentre de Recherche sur l'InflammationINSERMUMR1149CNRSERL 8252ParisFrance
| | - Michael Trauner
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
10
|
Khomich O, Ivanov AV, Bartosch B. Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells 2019; 9:E24. [PMID: 31861818 PMCID: PMC7016711 DOI: 10.3390/cells9010024] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is a regenerative process that occurs after injury. It is characterized by the deposition of connective tissue by specialized fibroblasts and concomitant proliferative responses. Chronic damage that stimulates fibrogenic processes in the long-term may result in the deposition of excess matrix tissue and impairment of liver functions. End-stage fibrosis is referred to as cirrhosis and predisposes strongly to the loss of liver functions (decompensation) and hepatocellular carcinoma. Liver fibrosis is a pathology common to a number of different chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, and viral hepatitis. The predominant cell type responsible for fibrogenesis is hepatic stellate cells (HSCs). In response to inflammatory stimuli or hepatocyte death, HSCs undergo trans-differentiation to myofibroblast-like cells. Recent evidence shows that metabolic alterations in HSCs are important for the trans-differentiation process and thus offer new possibilities for therapeutic interventions. The aim of this review is to summarize current knowledge of the metabolic changes that occur during HSC activation with a particular focus on the retinol and lipid metabolism, the central carbon metabolism, and associated redox or stress-related signaling pathways.
Collapse
Affiliation(s)
- Olga Khomich
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
| |
Collapse
|
11
|
Chen X, Zhang X, Du M, Dong C, Cao L, Wei R, Liu C, Zhai W, Wang B, Xin J. In vivo preclinical PET/CT imaging of carbon-11-labeled aminoglycerol probe for the diagnosis of liver fibrosis. Ann Nucl Med 2019; 33:806-812. [PMID: 31388833 DOI: 10.1007/s12149-019-01391-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE As an important membrane protein, aquaglyceroporin involves liver glycerol metabolism, which can be used to stage liver fibrosis. In this study, we synthesized a novel molecular probe carbon-11-labeled AR ([11C]AR) with aminoglycerol (AR), and evaluated its preclinical performance for liver fibrosis diagnosis by positron emission tomography/computed tomography (PET/CT) imaging in vivo. METHODS We developed a fully automatic synthesis procedure for the preparation of [11C]AR by radiolabeling glycerol analogue precursor AR with carbon-11. The liver uptake kinetics of [11C]AR was investigated using a rat model by the PET/CT scanner. The dynamic PET/CT scans were performed between the control group (n = 5) and experimental group (n = 25), which was divided into three subgroups (S1, S2 + S3, S4) based on the stages of liver fibrosis. The regions of interest (ROIs) of 20 pixels were drawn in the liver area on the reconstructed images. One-way analysis of variance and independent sample t test were used to analyze the statistical difference of the maximum standardized uptake value (SUVmax) among the groups at series of scanning time points (20 s, 60 s, 90 s, 150 s, 5 min, 10 min, 20 min and 25 min). RESULTS The fully automatic synthesis of [11C]AR was successfully achieved with high synthesis efficiency (above 50%). The uptake of [11C]AR in progressive liver fibrosis tissues was significantly lower than that in healthy livers at all the imaging time points (P < 0.05), especially at early time points (before 10 min p.i.). A cut-off SUVmax value (1.1) at 150 s p.i. was set for discrimination progressive fibrosis from healthy liver. More experimental and healthy rats were tested with this new threshold to evaluate fibrosis situation. The sensitivity of detecting progressive fibrosis with [11C]AR was 100% in the second cohort. CONCLUSION We demonstrated a new carbon-11-radiolabeled aminoglycerol PET/CT imaging probe [11C]AR for liver fibrosis diagnosis and staging, which may allow potential assessment of liver fibrosis stages in a rapid and noninvasive method.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Xin Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ming Du
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Chengyan Dong
- GE Healthcare, Beijing, 100076, People's Republic of China
| | - Li Cao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Rucheng Wei
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Changping Liu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Wei Zhai
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Bo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Jun Xin
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
12
|
Tardelli M, Bruschi FV, Claudel T, Fuchs CD, Auer N, Kunczer V, Stojakovic T, Scharnagl H, Habib A, Grabner GF, Zimmermann R, Lotersztajn S, Trauner M. Lack of monoacylglycerol lipase prevents hepatic steatosis by favoring lipid storage in adipose tissue and intestinal malabsorption. J Lipid Res 2019; 60:1284-1292. [PMID: 31048404 DOI: 10.1194/jlr.m093369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Monoacylglycerol lipase (MGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. To examine the role of MGL in hepatic steatosis, WT and MGL KO (MGL-/-) mice were challenged with a Western diet (WD) over 12 weeks. Lipid metabolism, inflammation, and fibrosis were assessed by serum biochemistry, histology, and gene-expression profiling of liver and adipose depots. Intestinal fat absorption was measured by gas chromatography. Primary adipocyte and 3T3-L1 cells were analyzed by flow cytometry and Western blot. Human hepatocytes were treated with MGL inhibitor JZL184. The absence of MGL protected mice from hepatic steatosis by repressing key lipogenic enzymes in liver (Srebp1c, Pparγ2, and diacylglycerol O-acyltransferase 1), while promoting FA oxidation. Liver inflammation was diminished in MGL-/- mice fed a WD, as evidenced by diminished epidermal growth factor-like module-containing mucin-like hormone receptor-like 1 (F4/80) staining and C-C motif chemokine ligand 2 gene expression, whereas fibrosis remained unchanged. Absence of MGL promoted fat storage in gonadal white adipose tissue (gWAT) with increased lipogenesis and unchanged lipolysis, diminished inflammation in gWAT, and subcutaneous AT. Intestinal fat malabsorption prevented ectopic lipid accumulation in livers of MGL-/- mice fed a WD. In vitro experiments demonstrated increased adipocyte size/lipid content driven by PPARγ. In conclusion, our data uncover that MGL deletion improves some aspects of nonalcoholic fatty liver disease by promoting lipid storage in gWAT and fat malabsorption.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Francesca V Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claudia D Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Nicole Auer
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Victoria Kunczer
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics University Hospital Graz, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics Medical University of Graz, Graz, Austria
| | - Aida Habib
- INSERM-UMR1149, Centre de Recherche sur l'Inflammation, Paris, France.,Department of Biochemistry and Molecular Genetics American University of Beirut, Beirut, Lebanon
| | - Gernot F Grabner
- Institute of Molecular Biosciences University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences University of Graz, Graz, Austria
| | | | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Zarzour RHA, Alshawsh MA, Asif M, Al-Mansoub MA, Mohamed Z, Ahmad M, Majid AMSA, Asmawi MZ, Kaur G, Al-Dualimi DW, Yam MF. Adipocytokine Regulation and Antiangiogenic Activity Underlie the Molecular Mechanisms of Therapeutic Effects of Phyllanthus niruri against Non-Alcoholic Fatty Liver Disease. Nutrients 2018; 10:E1057. [PMID: 30096951 PMCID: PMC6115813 DOI: 10.3390/nu10081057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
The growth of adipose tissues is considered angiogenesis-dependent during non-alcoholic fatty liver disease (NAFLD). We have recently reported that our standardized 50% methanolic extract (ME) of Phyllanthus niruri (50% ME of P. niruri) has alleviated NAFLD in Sprague⁻Dawley rats. This study aimed to assess the molecular mechanisms of action, and to further evaluate the antiangiogenic effect of this extract. NAFLD was induced by eight weeks of high-fat diet, and treatment was applied for four weeks. Antiangiogenic activity was assessed by aortic ring assay and by in vitro tests. Our findings demonstrated that the therapeutic effects of 50% ME among NAFLD rats, were associated with a significant increase in serum adiponectin, reduction in the serum levels of RBP4, vaspin, progranulin, TNF-α, IL-6, and significant downregulation of the hepatic gene expression of PPARγ, SLC10A2, and Collα1. Concomitantly, 50% ME of P. niruri has exhibited a potent antiangiogenic activity on ring assay, cell migration, vascular endothelial growth factor (VEGF), and tube formation, without any cytotoxic effect. Together, our findings revealed that the protective effects of P. niruri against NAFLD might be attributed to its antiangiogenic effect, as well as to the regulation of adipocytokines and reducing the expression of adipogenic genes.
Collapse
Affiliation(s)
- Raghdaa Hamdan Al Zarzour
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Mohammed A Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Muhammad Asif
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Majed Ahmed Al-Mansoub
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Mariam Ahmad
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Amin Malik Shah Abdul Majid
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Mohd Zaini Asmawi
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Dhamraa Waleed Al-Dualimi
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Mun Fei Yam
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| |
Collapse
|
14
|
Calamita G, Perret J, Delporte C. Aquaglyceroporins: Drug Targets for Metabolic Diseases? Front Physiol 2018; 9:851. [PMID: 30042691 PMCID: PMC6048697 DOI: 10.3389/fphys.2018.00851] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane channel proteins facilitating the transport of water, small solutes, and gasses across biological membranes. AQPs are expressed in all tissues and ensure multiple roles under normal and pathophysiological conditions. Aquaglyceroporins are a subfamily of AQPs permeable to glycerol in addition to water and participate thereby to energy metabolism. This review focalizes on the present knowledge of the expression, regulation and physiological roles of AQPs in adipose tissue, liver and endocrine pancreas, that are involved in energy metabolism. In addition, the review aims at summarizing the involvement of AQPs in metabolic disorders, such as obesity, diabetes and liver diseases. Finally, challenges and recent advances related to pharmacological modulation of AQPs expression and function to control and treat metabolic diseases are discussed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Tardelli M, Claudel T, Bruschi FV, Trauner M. Nuclear Receptor Regulation of Aquaglyceroporins in Metabolic Organs. Int J Mol Sci 2018; 19:E1777. [PMID: 29914059 PMCID: PMC6032257 DOI: 10.3390/ijms19061777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptors, such as the farnesoid X receptor (FXR) and the peroxisome proliferator-activated receptors gamma and alpha (PPAR-γ, -α), are major metabolic regulators in adipose tissue and the liver, where they govern lipid, glucose, and bile acid homeostasis, as well as inflammatory cascades. Glycerol and free fatty acids are the end products of lipid droplet catabolism driven by PPARs. Aquaporins (AQPs), a family of 13 small transmembrane proteins, facilitate the shuttling of water, urea, and/or glycerol. The peculiar role of AQPs in glycerol transport makes them pivotal targets in lipid metabolism, especially considering their tissue-specific regulation by the nuclear receptors PPARγ and PPARα. Here, we review the role of nuclear receptors in the regulation of glycerol shuttling in liver and adipose tissue through the function and expression of AQPs.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Francesca Virginia Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
16
|
Méndez-Giménez L, Becerril S, Moncada R, Valentí V, Fernández S, Ramírez B, Catalán V, Gómez-Ambrosi J, Soveral G, Malagón MM, Diéguez C, Rodríguez A, Frühbeck G. Gastric Plication Improves Glycemia Partly by Restoring the Altered Expression of Aquaglyceroporins in Adipose Tissue and the Liver in Obese Rats. Obes Surg 2018; 27:1763-1774. [PMID: 28054299 DOI: 10.1007/s11695-016-2532-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gastric plication is a minimally invasive bariatric surgical procedure, where the greater curvature is plicated inside the gastric lumen. Our aims were to analyze the effectiveness of gastric plication on the resolution of obesity, impaired glucose tolerance, and fatty liver in an experimental model of diet-induced obesity (DIO) and to evaluate changes in glycerol metabolism, a key substrate for adiposity and gluconeogenesis, in adipose tissue and the liver. METHODS Male Wistar DIO rats (n = 58) were subjected to surgical (sham operation and gastric plication) or dietary interventions [fed a normal diet (ND) or high-fat diet (HFD) or pair-fed to the amount of food eaten by gastric-plicated animals]. The expression of aquaglyceroporins (AQPs) in epididymal (EWAT) and subcutaneous (SCWAT) fat and the liver was analyzed by real-time PCR and Western blot. RESULTS Gastric plication did not result in a significant weight loss in DIO rats, showing a modest reduction in whole-body adiposity and hepatic steatosis. However, gastric-plicated animals exhibited an improvement in basal glycemia and glucose clearance, without changes in hepatic gluconeogenic genes. DIO was associated with an increase in glycerol, higher AQP3 and AQP7 in EWAT and SCWAT, and a decrease in hepatic AQP9. Gastric plication downregulated AQP3 in both fat depots without changes in adipose AQP7 and hepatic AQP9. CONCLUSION Gastric plication results in a modest reduction in adiposity and hepatosteatosis but restores glycemia by downregulating AQP3, which entails lower efflux of glycerol from fat, lower plasma glycerol availability, and a reduced use of glycerol as a substrate for hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Anesthesia, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Surgery, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Secundino Fernández
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Otorhinolaryngology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - María M Malagón
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain
| | - Carlos Diéguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| |
Collapse
|
17
|
Iena FM, Lebeck J. Implications of Aquaglyceroporin 7 in Energy Metabolism. Int J Mol Sci 2018; 19:ijms19010154. [PMID: 29300344 PMCID: PMC5796103 DOI: 10.3390/ijms19010154] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/14/2022] Open
Abstract
The aquaglyceroporin AQP7 is a pore-forming transmembrane protein that facilitates the transport of glycerol across cell membranes. Glycerol is utilized both in carbohydrate and lipid metabolism. It is primarily stored in white adipose tissue as part of the triglyceride molecules. During states with increased lipolysis, such as fasting and diabetes, glycerol is released from adipose tissue and metabolized in other tissues. AQP7 is expressed in adipose tissue where it facilitates the efflux of glycerol, and AQP7 deficiency has been linked to increased glycerol kinase activity and triglyceride accumulation in adipose tissue, leading to obesity and secondary development of insulin resistance. However, AQP7 is also expressed in a wide range of other tissues, including kidney, muscle, pancreatic β-cells and liver, where AQP7 also holds the potential to influence whole body energy metabolism. The aim of the review is to summarize the current knowledge on AQP7 in adipose tissue, as well as AQP7 expressed in other tissues where AQP7 might play a significant role in modulating whole body energy metabolism.
Collapse
Affiliation(s)
- Francesco Maria Iena
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| | - Janne Lebeck
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| |
Collapse
|
18
|
AQP3 is regulated by PPARγ and JNK in hepatic stellate cells carrying PNPLA3 I148M. Sci Rep 2017; 7:14661. [PMID: 29116096 PMCID: PMC5676689 DOI: 10.1038/s41598-017-14557-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/11/2017] [Indexed: 01/30/2023] Open
Abstract
Aquaglyceroporins (AQPs) allow the movement of glycerol that is required for triglyceride formation in hepatic stellate cells (HSC), as key cellular source of fibrogenesis in the liver. The genetic polymorphism I148M of the patatin-like phospholipase domain-containing 3 (PNPLA3) is associated with hepatic steatosis and its progression to steatohepatitis (NASH), fibrosis and cancer. We aimed to explore the role of AQP3 for HSC activation and unveil its potential interactions with PNPLA3. HSC were isolated from human liver, experiments were performed in primary HSC and human HSC line LX2. AQP3 was the only aquaglyceroporin present in HSC and its expression decreased during activation. The PPARγ agonist, rosiglitazone, recovered AQP3 expression also in PNPLA3 I148M carrying HSC. When PNPLA3 was silenced, AQP3 expression increased. In liver sections from patients with NASH, the decreased amount of AQP3 was proportional to the severity of fibrosis and presence of the PNPLA3 I148M variant. In PNPLA3 I148M cells, the blockade of JNK pathway upregulated AQP3 in synergism with PPARγ. In conclusion, we demonstrated profound reduction of AQP3 in HSC carrying the PNPLA3 I148M variant in parallel to decreased PPARγ activation, which could be rescued by rosiglitazone and blockade of JNK.
Collapse
|
19
|
Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017; 121:27-42. [PMID: 28506744 DOI: 10.1016/j.addr.2017.05.007] [Citation(s) in RCA: 906] [Impact Index Per Article: 129.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Progressive liver fibrosis, induced by chronic viral and metabolic disorders, leads to more than one million deaths annually via development of cirrhosis, although no antifibrotic therapy has been approved to date. Transdifferentiation (or "activation") of hepatic stellate cells is the major cellular source of matrix protein-secreting myofibroblasts, the major driver of liver fibrogenesis. Paracrine signals from injured epithelial cells, fibrotic tissue microenvironment, immune and systemic metabolic dysregulation, enteric dysbiosis, and hepatitis viral products can directly or indirectly induce stellate cell activation. Dysregulated intracellular signaling, epigenetic changes, and cellular stress response represent candidate targets to deactivate stellate cells by inducing reversion to inactivated state, cellular senescence, apoptosis, and/or clearance by immune cells. Cell type- and target-specific pharmacological intervention to therapeutically induce the deactivation will enable more effective and less toxic precision antifibrotic therapies.
Collapse
|
20
|
Tardelli M, Claudel T, Bruschi FV, Moreno-Viedma V, Trauner M. Adiponectin regulates AQP3 via PPARα in human hepatic stellate cells. Biochem Biophys Res Commun 2017; 490:51-54. [PMID: 28595905 DOI: 10.1016/j.bbrc.2017.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/03/2017] [Indexed: 01/07/2023]
Abstract
Aquaporins (AQPs) are trans-membrane proteins which allow the movement of water and glycerol required by hepatic stellate cells (HSC) for triglyceride formation and lipid storage. Adiponectin (ADPQ) is a hormone produced by the adipose tissue, which is known to increase AQP3 expression. Since ADPQ receptor signals via the nuclear receptor PPAR we aimed to explore the role of this pathway in AQP3 regulation by ADPQ in HSC. AQP3 and CPT1α expression increased only after ADPQ but not rosiglitazone stimulation. In LX2 cells co-transfected with plasmids expressing PPARα or PPARγ coupled to a luciferase reporter gene, only PPARα increased luciferase activity after ADPQ stimulation. Collectively, our findings demonstrate that ADPQ increases AQP3 expression through PPARα-mediated signaling in HSC.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Francesca V Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Veronica Moreno-Viedma
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Austria.
| |
Collapse
|
21
|
Bruschi FV, Claudel T, Tardelli M, Caligiuri A, Stulnig TM, Marra F, Trauner M. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 2017; 65:1875-1890. [PMID: 28073161 DOI: 10.1002/hep.29041] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED The genetic polymorphism I148M of patatin-like phospholipase domain-containing 3 (PNPLA3) is robustly associated with hepatic steatosis and its progression to steatohepatitis, fibrosis, and cancer. Hepatic stellate cells (HSCs) are key players in the development of liver fibrosis, but the role of PNPLA3 and its variant I148M in this process is poorly understood. Here we analyzed the expression of PNPLA3 during human HSC activation and thereby explored how a PNPLA3 variant impacts hepatic fibrogenesis. We show that expression of PNPLA3 gene and protein increases during the early phases of activation and remains elevated in fully activated HSCs (P < 0.01). Knockdown of PNPLA3 significantly decreases the profibrogenic protein alpha-smooth muscle actin (P < 0.05). Primary human I148M HSCs displayed significantly higher expression and release of proinflammatory cytokines, such as chemokine (C-C motif) ligand 5 (P < 0.01) and granulocyte-macrophage colony-stimulating factor (P < 0.001), thus contributing to migration of immune cells (P < 0.05). Primary I148M HSCs showed reduced retinol (P < 0.001) but higher lipid droplet content (P < 0.001). In line with this, LX-2 cells stably overexpressing I148M showed augmented proliferation and migration, lower retinol, and abolished retinoid X receptor/retinoid A receptor transcriptional activities but more lipid droplets. Knockdown of I148M PNPLA3 (P < 0.001) also reduces chemokine (C-C motif) ligand 5 and collagen1α1 expression (P < 0.05). Notably, I148M cells display reduced peroxisome proliferator-activated receptor gamma transcriptional activity, and this effect was attributed to increased c-Jun N-terminal kinase, thereby inhibiting peroxisome proliferator-activated receptor gamma through serine 84 phosphorylation and promoting activator protein 1 transcription. Conversely, the c-Jun N-terminal kinase inhibitor SP600125 and the peroxisome proliferator-activated receptor gamma agonist rosiglitazone decreased activator protein 1 promoter activity. CONCLUSIONS These data indicate that PNPLA3 is required for HSC activation and that its genetic variant I148M potentiates the profibrogenic features of HSCs, providing a molecular mechanism for the higher risk of progression and severity of liver diseases conferred to patients carrying the I148M variant. (Hepatology 2017;65:1875-1890).
Collapse
Affiliation(s)
- Francesca Virginia Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Matteo Tardelli
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Thomas M Stulnig
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Fabio Marra
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common and important chronic liver disease in the world. As the prevalence of obesity increases in adults and children, the incidence of NAFLD has increased rapidly, reaching 17% to 33%. NAFLD is clinically divided into two forms: simple fatty liver (SFL) and non-alcoholic steatohepatitis (NASH), with NASH accounting for 1/3-1/2 of all NAFLD cases. The probability of developing cirrhosis is 0.6%-3.0% in patients with SFL for 10-20 years, and as high as 15%-25% in patients with NASH for 10-15 years. Approximately 1% of cirrhosis cases develop hepatocellular carcinoma each year. The pathogenesis of NAFLD is still not completely clear. It is generally believed that age, sex, obesity, insulin resistance, cytokines, gene polymorphism, and intestinal microflora are involved in the pathogenesis of NAFLD. An in-depth understanding of the pathogenesis of NAFLD can provide a basis for treatment of this disease. In recent years, cytokines or genes have been reported as targets for NAFLD treatment with appreciated effects. Since there is currently no specific treatment for NAFLD, targeted therapy may have a profound impact on the prognosis of the disease.
Collapse
|
23
|
Tardelli M, Zeyda K, Moreno-Viedma V, Wanko B, Grün NG, Staffler G, Zeyda M, Stulnig TM. Osteopontin is a key player for local adipose tissue macrophage proliferation in obesity. Mol Metab 2016; 5:1131-1137. [PMID: 27818939 PMCID: PMC5081407 DOI: 10.1016/j.molmet.2016.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022] Open
Abstract
Objective Recent findings point towards an important role of local macrophage proliferation also in obesity-induced adipose tissue inflammation that underlies insulin resistance and type 2 diabetes. Osteopontin (OPN) is an inflammatory cytokine highly upregulated in adipose tissue (AT) of obese and has repeatedly been shown to be functionally involved in adipose-tissue inflammation and metabolic sequelae. In the present work, we aimed at unveiling both the role of OPN in human monocyte and macrophage proliferation as well as the impact of OPN deficiency on local macrophage proliferation in a mouse model for diet-induced obesity. Methods The impact of recombinant OPN on viability, apoptosis, and proliferation was analyzed in human peripheral blood monocytes and derived macrophages. Wild type (WT) and OPN knockout mice (SPP1KO) were compared with respect to in vivo adipose tissue macrophage and in vitro bone marrow-derived macrophage (BMDM) proliferation. Results OPN not only enhanced survival and decreased apoptosis of human monocytes but also induced proliferation similar to macrophage colony stimulating factor (M-CSF). Even in fully differentiated monocyte-derived macrophages, OPN induced a proliferative response. Moreover, proliferation of adipose tissue macrophages in obese mice was detectable in WT but virtually absent in SPP1KO. In BMDM, OPN also induced proliferation while OPN as well as M-CSF-induced proliferation was similar in WT and SPP1KO. Conclusions These data confirm that monocytes and macrophages not only are responsive to OPN and migrate to sites of inflammation but also they survive and proliferate more in the presence of OPN, a mechanism also strongly confirmed in vivo. Therefore, secreted OPN appears to be an essential player in AT inflammation, not only by driving monocyte chemotaxis and macrophage differentiation but also by facilitating local proliferation of macrophages. Osteopontin enhances survival and decreases apoptosis of human monocytes. Osteopontin induces proliferation of differentiated macrophages. Osteopontin facilitates local adipose tissue macrophage proliferation in obesity.
Collapse
Affiliation(s)
- Matteo Tardelli
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Karina Zeyda
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; FH Campus Wien, University of Applied Sciences, Department Health, Section Biomedical Science, Vienna, Austria
| | - Veronica Moreno-Viedma
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bettina Wanko
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Nicole G Grün
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Maximilian Zeyda
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
| | - Thomas M Stulnig
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|