1
|
Xu MR, Lin CH, Wang CH, Wang SY. Investigate the metabolic changes in intestinal diseases by employing a 1H-NMR-based metabolomics approach on Caco-2 cells treated with cedrol. Biofactors 2025; 51:e2132. [PMID: 39415440 DOI: 10.1002/biof.2132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Mitochondrial dysfunction may precipitate intestinal dysfunction, while inflammatory bowel disease manifests as a chronic inflammatory ailment affecting the gastrointestinal tract. This condition disrupts the barrier function of the intestinal epithelium and alters metabolic products. Increasing mitochondrial adenosine triphosphate (ATP) synthesis in intestinal epithelial cells presents a promising avenue for colitis treatments. Nevertheless, the impact of cedrol on ATP and the intestinal barrier remains unexplored. Hence, this study is dedicated to examining the cedrol's protective effect on an inflammatory cocktail (IC)-induced intestinal epithelial barrier dysfunction in Caco-2 cells. The finding reveals that cedrol enhances ATP content and the transepithelial electrical resistance value in the intestinal epithelial barrier. Moreover, cedrol mitigates the IC-induced decrease in the messenger ribonucleic acid (mRNA) expression of tight junction proteins (ZO-1, Occludin, and Claudin-1), thereby ameliorating intestinal epithelial barrier dysfunction. Furthermore, nuclear magnetic resonance (NMR)-based metabolomic analysis indicated that IC-exposed Caco-2 cells are restored by cedrol treatments. Notably, cedrol elevates metabolites such as amino acids, thereby enhancing the intestinal barrier. In conclusion, cedrol alleviates IC-induced intestinal epithelial barrier dysfunction by promoting ATP-dependent proliferation of Caco-2 cells and bolstering amino acid levels to sustain tight junction messenger ribonucleic acid expression.
Collapse
Affiliation(s)
- Mo-Rong Xu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Hsin Lin
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Chung Hsuan Wang
- Special Crop and Metabolome Discipline Cluster, Academy Circle Economy, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy Circle Economy, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Wang Z, Yang L, Feng Y, Duan B, Zhang H, Tang Y, Zhang C, Yang J. Isoorientin Alleviates DSS-Treated Acute Colitis in Mice by Regulating Intestinal Epithelial P-Glycoprotein (P-gp) Expression. DNA Cell Biol 2024; 43:520-536. [PMID: 39180442 DOI: 10.1089/dna.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024] Open
Abstract
Isoorientin (ISO) is a naturally occurring flavonoid with diverse functional properties that mitigate the risk of diseases stemming from oxidation, inflammation, and cancer cell proliferation. P-glycoprotein (P-gp) is a vital component of the intestinal epithelium and may play a role in the onset of intestinal inflammatory conditions, such as inflammatory bowel disease (IBD). Recent studies have suggested that short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) produced by the gut microbiota stimulate the increase of P-gp expression, alleviating excessive inflammation and thereby preservation of intestinal homeostasis. ISO has been shown to improve colon health and modulate the gut microbiota. In this study, we aimed to explore whether ISO can modulate the microbes and their metabolites to influence P-gp expression to alleviate IBD. First, the impact of ISO on dextran sulfate sodium (DSS)-treated colitis in mice was investigated. Second, 16S rRNA gene sequencing was conducted. The present study indicated that ISO mitigated the symptoms and pathological damage associated with DSS-treated colitis in mice. Western blot analysis revealed ISO upregulated P-gp in colon tissues, suggesting the critical role of P-gp protein in intestinal epithelial cells. 16S microbial diversity sequencing revealed ISO restored the richness and variety of intestinal microorganisms in colitis-bearing mice and enriched SCFA-producing bacteria, such as Lachnospiraceae_NK4A136_group. The experiments also revealed that the ISO fecal microbiota transplantation (FMT) inoculation of DSS-treated mice had similarly beneficial results. FMT mice showed a reduction in colitis symptoms, which was more pronounced in ISO-FMT than in CON-FMT mice. Meanwhile, ISO-FMT expanded the abundance of beneficial microorganisms, increased the expression of metabolites, such as SCFAs and total SBAs, and significantly upregulated the expression of P-gp protein. In addition, Spearman's correlation analysis demonstrated a positive correlation between the production of SCFAs and SBAs and the expression of P-gp. The present study identified that ISO increases the expression of P-gp in the intestinal epithelium by regulating intestinal microorganisms and their metabolites, which maintains colonic homeostasis, improves the integrity of the colonic epithelium, and alleviates colitis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lanzhu Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yun Feng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bensong Duan
- Department of Gastroenterology Shanghai East Hospital, School of Medicine, Endoscopy Center, Tongji University, Shanghai, China
| | - Haibin Zhang
- Department of Gastroenterology Shanghai East Hospital, School of Medicine, Endoscopy Center, Tongji University, Shanghai, China
| | - Yanru Tang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Caihang Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingya Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| |
Collapse
|
3
|
Xiang B, Hu J, Zhang M, Zhi M. The involvement of oral bacteria in inflammatory bowel disease. Gastroenterol Rep (Oxf) 2024; 12:goae076. [PMID: 39188957 PMCID: PMC11346772 DOI: 10.1093/gastro/goae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 08/28/2024] Open
Abstract
Microorganisms play an important role in the pathogenesis of inflammatory bowel disease (IBD). The oral cavity, the second-largest microbial niche, is connected to the gastro-intestinal tract. Ectopic gut colonization by oral microbes is a signature of IBD. Current studies suggest that patients with IBD often report more oral manifestations and these oral issues are closely linked with disease activity. Murine studies have indicated that several oral microbes exacerbate intestinal inflammation. Moreover, intestinal inflammation can promote oral microbial dysbiosis and the migration of oral microbes to the gastro-intestinal tract. The reciprocal consequences of oral microbial dysbiosis and IBD, specifically through metabolic alterations, have not yet been elucidated. In this review, we summarize the relationship between oral bacteria and IBD from multiple perspectives, including clinical manifestations, microbial dysbiosis, and metabolic alterations, and find that oral pathogens increase anti-inflammatory metabolites and decrease inflammation-related metabolites.
Collapse
Affiliation(s)
- Bingjie Xiang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jun Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Min Zhang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Min Zhi
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
4
|
Yang YH, Yan F, Shi PS, Yang LC, Cui DJ. HIF-1α Pathway Orchestration by LCN2: A Key Player in Hypoxia-Mediated Colitis Exacerbation. Inflammation 2024; 47:1491-1519. [PMID: 38819583 DOI: 10.1007/s10753-024-01990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 06/01/2024]
Abstract
In this study, we investigated the role of hypoxia in the development of chronic inflammatory bowel disease (IBD), focusing on its impact on the HIF-1α signaling pathway through the upregulation of lipocalin 2 (LCN2). Using a murine model of colitis induced by sodium dextran sulfate (DSS) under hypoxic conditions, transcriptome sequencing revealed LCN2 as a key gene involved in hypoxia-mediated exacerbation of colitis. Bioinformatics analysis highlighted the involvement of crucial pathways, including HIF-1α and glycolysis, in the inflammatory process. Immune infiltration analysis demonstrated the polarization of M1 macrophages in response to hypoxic stimulation. In vitro studies using RAW264.7 cells further elucidated the exacerbation of inflammation and its impact on M1 macrophage polarization under hypoxic conditions. LCN2 knockout cells reversed hypoxia-induced inflammatory responses, and the HIF-1α pathway activator dimethyloxaloylglycine (DMOG) confirmed LCN2's role in mediating inflammation via the HIF-1α-induced glycolysis pathway. In a DSS-induced colitis mouse model, oral administration of LCN2-silencing lentivirus and DMOG under hypoxic conditions validated the exacerbation of colitis. Evaluation of colonic tissues revealed altered macrophage polarization, increased levels of inflammatory factors, and activation of the HIF-1α and glycolysis pathways. In conclusion, our findings suggest that hypoxia exacerbates colitis by modulating the HIF-1α pathway through LCN2, influencing M1 macrophage polarization in glycolysis. This study contributes to a better understanding of the mechanisms underlying IBD, providing potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Yun-Han Yang
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Fang Yan
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Peng-Shuang Shi
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Liu-Chan Yang
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - De-Jun Cui
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China.
| |
Collapse
|
5
|
Mestrovic A, Perkovic N, Bozic D, Kumric M, Vilovic M, Bozic J. Precision Medicine in Inflammatory Bowel Disease: A Spotlight on Emerging Molecular Biomarkers. Biomedicines 2024; 12:1520. [PMID: 39062093 PMCID: PMC11274502 DOI: 10.3390/biomedicines12071520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) remain challenging in terms of understanding their causes and in terms of diagnosing, treating, and monitoring patients. Modern diagnosis combines biomarkers, imaging, and endoscopic methods. Common biomarkers like CRP and fecal calprotectin, while invaluable tools, have limitations and are not entirely specific to IBD. The limitations of existing markers and the invasiveness of endoscopic procedures highlight the need to discover and implement new markers. With an ideal biomarker, we could predict the risk of disease development, as well as the possibility of response to a particular therapy, which would be significant in elucidating the pathogenesis of the disease. Recent research in the fields of machine learning, proteomics, epigenetics, and gut microbiota provides further insight into the pathogenesis of the disease and is also revealing new biomarkers. New markers, such as BAFF, PGE-MUM, oncostatin M, microRNA panels, αvβ6 antibody, and S100A12 from stool, are increasingly being identified, with αvβ6 antibody and oncostatin M being potentially close to being presented into clinical practice. However, the specificity of certain markers still remains problematic. Furthermore, the use of expensive and less accessible technology for detecting new markers, such as microRNAs, represents a limitation for widespread use in clinical practice. Nevertheless, the need for non-invasive, comprehensive markers is becoming increasingly important regarding the complexity of treatment and overall management of IBD.
Collapse
Affiliation(s)
- Antonio Mestrovic
- Department of Gastroenterology, University Hospital of Split, Spinciceva 2, 21000 Split, Croatia; (A.M.); (N.P.); (D.B.)
| | - Nikola Perkovic
- Department of Gastroenterology, University Hospital of Split, Spinciceva 2, 21000 Split, Croatia; (A.M.); (N.P.); (D.B.)
| | - Dorotea Bozic
- Department of Gastroenterology, University Hospital of Split, Spinciceva 2, 21000 Split, Croatia; (A.M.); (N.P.); (D.B.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| |
Collapse
|
6
|
Pilger BI, Castro A, Vasconcellos FF, Moura KF, Signini ÉDF, Marqueze LFB, Fiorenza-Neto EA, Rocha MT, Pedroso GS, Cavaglieri CR, Ferreira AG, Figueiredo C, Minuzzi LG, Gatti da Silva GH, Castro GS, Lira FS, Seelaender M, Pinho RA. Obesity-dependent molecular alterations in fatal COVID-19: A retrospective postmortem study of metabolomic profile of adipose tissue. J Cell Biochem 2024; 125:e30566. [PMID: 38591648 DOI: 10.1002/jcb.30566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
We investigated the effects of obesity on metabolic, inflammatory, and oxidative stress parameters in the adipose tissue of patients with fatal COVID-19. Postmortem biopsies of subcutaneous adipose tissue were obtained from 25 unvaccinated inpatients who passed from COVID-19, stratified as nonobese (N-OB; body mass index [BMI], 26.5 ± 2.3 kg m-2) or obese (OB BMI 34.2 ± 5.1 kg m-2). Univariate and multivariate analyses revealed that body composition was responsible for most of the variations detected in the metabolome, with greater dispersion observed in the OB group. Fifteen metabolites were major segregation factors. Results from the OB group showed higher levels of creatinine, myo-inositol, O-acetylcholine, and succinate, and lower levels of sarcosine. The N-OB group showed lower levels of glutathione peroxidase activity, as well as higher content of IL-6 and adiponectin. We revealed significant changes in the metabolomic profile of the adipose tissue in fatal COVID-19 cases, with high adiposity playing a key role in these observed variations. These findings highlight the potential involvement of metabolic and inflammatory pathways, possibly dependent on hypoxia, shedding light on the impact of obesity on disease pathogenesis and suggesting avenues for further research and possible therapeutic targets.
Collapse
Affiliation(s)
- Bruna I Pilger
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Alex Castro
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Universidade Federal de São Carlos, São Carlos, Brazil
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Franciane F Vasconcellos
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Karen F Moura
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Étore De Favari Signini
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Luis Felipe B Marqueze
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Edson A Fiorenza-Neto
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Mateus T Rocha
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Giulia S Pedroso
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Claudia R Cavaglieri
- Exercise Physiology Laboratory, Faculty of Physical Education, University of Campinas, Campinas, Brazil
| | - Antonio G Ferreira
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Luciele G Minuzzi
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Guilherme H Gatti da Silva
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Gabriela S Castro
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Ricardo A Pinho
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Zhang M, Liu H, Xu L, Zhang X, Chen W, Wang C. Therapeutic Potential of Fucoidan in Alleviating Histamine-Induced Liver Injury: Insights from Mice Studies. Foods 2024; 13:1523. [PMID: 38790823 PMCID: PMC11120395 DOI: 10.3390/foods13101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Histamine, a bioactive component in certain foods such as Huangjiu has been associated with liver injury and disrupted intestinal balance. This study explored the potential therapeutic effects of fucoidan (FCD) in mitigating histamine-induced imbalances in mice. We found that FCD mitigated liver injury, reducing transaminases, oxidative stress, and inflammation. Histological improvements included decreased cell infiltration and necrosis. FCD restored tight junction proteins and suppressed inflammation-related genes. Western blot analysis revealed FCD's impact on TGF-β1, p-AKT, AKT, CYP2E1, Grp78, NLRP3, Cas-1, and GSDMD. Gut LPS levels decreased with FCD. Gut microbiota analysis showed FCD's modulation effect, reducing Firmicutes and increasing Bacteroides. FCD demonstrates potential in alleviating histamine-induced liver injury, regulating inflammation, and influencing gut microbiota. Further research exploring higher dosages and additional parameters is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (H.L.); (L.X.); (X.Z.); (W.C.)
| |
Collapse
|
8
|
Vivacqua G, Mancinelli R, Leone S, Vaccaro R, Garro L, Carotti S, Ceci L, Onori P, Pannarale L, Franchitto A, Gaudio E, Casini A. Endoplasmic reticulum stress: A possible connection between intestinal inflammation and neurodegenerative disorders. Neurogastroenterol Motil 2024; 36:e14780. [PMID: 38462652 DOI: 10.1111/nmo.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/27/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Different studies have shown the key role of endoplasmic reticulum (ER) stress in autoimmune and chronic inflammatory disorders, as well as in neurodegenerative diseases. ER stress leads to the formation of misfolded proteins which affect the secretion of different cell types that are crucial for the intestinal homeostasis. PURPOSE In this review, we discuss the role of ER stress and its involvement in the development of inflammatory bowel diseases, chronic conditions that can cause severe damage of the gastrointestinal tract, focusing on the alteration of Paneth cells and goblet cells (the principal secretory phenotypes of the intestinal epithelial cells). ER stress is also discussed in the context of neurodegenerative diseases, in which protein misfolding represents the signature mechanism. ER stress in the bowel and consequent accumulation of misfolded proteins might represent a bridge between bowel inflammation and neurodegeneration along the gut-to-brain axis, affecting intestinal epithelial homeostasis and the equilibrium of the commensal microbiota. Targeting intestinal ER stress could foster future studies for designing new biomarkers and new therapeutic approaches for neurodegenerative disorders.
Collapse
Affiliation(s)
- Giorgio Vivacqua
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Ludovica Garro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Simone Carotti
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Rome, Italy
| | - Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Arianna Casini
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Ao T, Huang H, Zheng B, Chen Y, Xie J, Hu X, Yu Q. Ameliorative effect of bound polyphenols in mung bean coat dietary fiber on DSS-induced ulcerative colitis in mice: the intestinal barrier and intestinal flora. Food Funct 2024; 15:4154-4169. [PMID: 38482844 DOI: 10.1039/d3fo04670b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The consumption of dietary fiber is beneficial for gut health, but the role of bound polyphenols in dietary fiber has lacked systematic study. The aim of this study is to evaluate the ameliorative effect of mung bean coat dietary fiber (MDF) on DSS-induced ulcerative colitis in mice in the presence and absence of bound polyphenols. Compared to polyphenol-removed MDF (PR-MDF), MDF and formulated-MDF (F-MDF,backfilling polyphenols by the amount of extracted from MDF into PR-MDF) alleviated symptoms such as weight loss and colonic injury in mice with colitis, effectively reduced excessive inflammatory responses, and the bound polyphenols restored the integrity of the intestinal barrier by promoting the expression of tight junction proteins. Additionally, bound polyphenols restored the expression of autophagy-related proteins (mTOR, beclin-1, Atg5 and Atg7) and inhibited the excessive expression of apoptotic-related proteins (Bax, caspase-9, and caspase-3). Furthermore, bound polyphenols could ameliorate the dysregulation of the intestinal microbiota by increasing the abundance of beneficial bacteria and inhibiting the abundance of harmful bacteria. Thus, it can be concluded that the presence of bound polyphenols in MDF plays a key role in the alleviation of DSS-induced ulcerative colitis.
Collapse
Affiliation(s)
- Tianxiang Ao
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Hairong Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Bing Zheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
10
|
Hou B, Zhang H, Zhou L, Hu B, Tang W, Ye B, Wang C, Xu Y, Zou L, Hu J. In silico analysis of intestinal microbial instability and symptomatic markers in mice during the acute phase of severe burns. BMC Microbiol 2024; 24:124. [PMID: 38622529 PMCID: PMC11017597 DOI: 10.1186/s12866-024-03266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/17/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Severe burns may alter the stability of the intestinal flora and affect the patient's recovery process. Understanding the characteristics of the gut microbiota in the acute phase of burns and their association with phenotype can help to accurately assess the progression of the disease and identify potential microbiota markers. METHODS We established mouse models of partial thickness deep III degree burns and collected faecal samples for 16 S rRNA amplification and high throughput sequencing at two time points in the acute phase for independent bioinformatic analysis. RESULTS We analysed the sequencing results using alpha diversity, beta diversity and machine learning methods. At both time points, 4 and 6 h after burning, the Firmicutes phylum content decreased and the content of the Bacteroidetes phylum content increased, showing a significant decrease in the Firmicutes/Bacteroidetes ratio compared to the control group. Nine bacterial genera changed significantly during the acute phase and occupied the top six positions in the Random Forest significance ranking. Clustering results also clearly showed that there was a clear boundary between the communities of burned and control mice. Functional analyses showed that during the acute phase of burn, gut bacteria increased lipoic acid metabolism, seleno-compound metabolism, TCA cycling, and carbon fixation, while decreasing galactose metabolism and triglyceride metabolism. Based on the abundance characteristics of the six significantly different bacterial genera, both the XGboost and Random Forest models were able to discriminate between the burn and control groups with 100% accuracy, while both the Random Forest and Support Vector Machine models were able to classify samples from the 4-hour and 6-hour burn groups with 86.7% accuracy. CONCLUSIONS Our study shows an increase in gut microbiota diversity in the acute phase of deep burn injury, rather than a decrease as is commonly believed. Severe burns result in a severe imbalance of the gut flora, with a decrease in probiotics and an increase in microorganisms that trigger inflammation and cognitive deficits, and multiple pathways of metabolism and substance synthesis are affected. Simple machine learning model testing suggests several bacterial genera as potential biomarkers of severe burn phenotypes.
Collapse
Affiliation(s)
- Bochen Hou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
- School of Computer Science, Chongqing University, Chongqing, 400030, China
| | - Honglan Zhang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lina Zhou
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Biao Hu
- Chongqing University of Technology, Chongqing, 400054, China
| | - Wenyi Tang
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Bo Ye
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Cui Wang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yongmei Xu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lingyun Zou
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China.
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
11
|
Liu M, Guo S, Wang L. Systematic review of metabolomic alterations in ulcerative colitis: unveiling key metabolic signatures and pathways. Therap Adv Gastroenterol 2024; 17:17562848241239580. [PMID: 38560428 PMCID: PMC10981261 DOI: 10.1177/17562848241239580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Despite numerous metabolomic studies on ulcerative colitis (UC), the results have been highly variable, making it challenging to identify key metabolic abnormalities in UC. Objectives This study aims to uncover key metabolites and metabolic pathways in UC by analyzing existing metabolomics data. Design A systematic review. Data sources and methods We conducted a comprehensive search in databases (PubMed, Cochrane Library, Embase, and Web of Science) and relevant study references for metabolomic research on UC up to 28 December 2022. Significant metabolite differences between UC patients and controls were identified, followed by an analysis of relevant metabolic pathways. Results This review incorporated 78 studies, identifying 2868 differentially expressed metabolites between UC patients and controls. The metabolites were predominantly from 'lipids and lipid-like molecules' and 'organic acids and derivatives' superclasses. We found 101 metabolites consistently altered in multiple datasets within the same sample type and 78 metabolites common across different sample types. Of these, 62 metabolites exhibited consistent regulatory trends across various datasets or sample types. Pathway analysis revealed 22 significantly altered metabolic pathways, with 6 pathways being recurrently enriched across different sample types. Conclusion This study elucidates key metabolic characteristics in UC, offering insights into molecular mechanisms and biomarker discovery for the disease. Future research could focus on validating these findings and exploring their clinical applications.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siyi Guo
- Chongqing Medical University, Chongqing, China
| | - Liang Wang
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Blondeaux A, Valibouze C, Speca S, Rousseaux C, Dubuquoy C, Blanquart H, Zerbib P, Desreumaux P, Foligné B, Titécat M. Changes in HLA-B27 Transgenic Rat Fecal Microbiota Following Tofacitinib Treatment and Ileocecal Resection Surgery: Implications for Crohn's Disease Management. Int J Mol Sci 2024; 25:2164. [PMID: 38396840 PMCID: PMC10889215 DOI: 10.3390/ijms25042164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The therapeutic management of Crohn's disease (CD), a chronic relapsing-remitting inflammatory bowel disease (IBD), is highly challenging. Surgical resection is sometimes a necessary procedure even though it is often associated with postoperative recurrences (PORs). Tofacitinib, an orally active small molecule Janus kinase inhibitor, is an anti-inflammatory drug meant to limit PORs in CD. Whereas bidirectional interactions between the gut microbiota and the relevant IBD drug are crucial, little is known about the impact of tofacitinib on the gut microbiota. The HLA-B27 transgenic rat is a good preclinical model used in IBD research, including for PORs after ileocecal resection (ICR). In the present study, we used shotgun metagenomics to first delineate the baseline composition and determinants of the fecal microbiome of HLA-B27 rats and then to evaluate the distinct impact of either tofacitinib treatment, ileocecal resection or the cumulative effect of both interventions on the gut microbiota in these HLA-B27 rats. The results confirmed that the microbiome of the HLA-B27 rats was fairly different from their wild-type littermates. We demonstrated here that oral treatment with tofacitinib does not affect the gut microbial composition of HLA-B27 rats. Of note, we showed that ICR induced an intense loss of bacterial diversity together with dramatic changes in taxa relative abundances. However, the oral treatment with tofacitinib neither modified the alpha-diversity nor exacerbated significant modifications in bacterial taxa induced by ICR. Collectively, these preclinical data are rather favorable for the use of tofacitinib in combination with ICR to address Crohn's disease management when considering microbiota.
Collapse
Affiliation(s)
- Aurélie Blondeaux
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037 Lille, France
| | - Caroline Valibouze
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037 Lille, France
| | - Silvia Speca
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
| | - Christel Rousseaux
- Intestinal Biotech Development, 1 Avenue Oscar Lambret, 59045 Lille, France; (C.R.); (C.D.)
| | - Caroline Dubuquoy
- Intestinal Biotech Development, 1 Avenue Oscar Lambret, 59045 Lille, France; (C.R.); (C.D.)
| | | | - Philippe Zerbib
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037 Lille, France
| | - Pierre Desreumaux
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037 Lille, France
| | - Benoît Foligné
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
| | - Marie Titécat
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
| |
Collapse
|
13
|
Singh A, Midha V, Chauhan NS, Sood A. Current perspectives on fecal microbiota transplantation in inflammatory bowel disease. Indian J Gastroenterol 2024; 43:129-144. [PMID: 38334893 DOI: 10.1007/s12664-023-01516-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic modality within the domain of inflammatory bowel disease (IBD). While FMT has secured approval and demonstrated efficacy in addressing recurrent and refractory Clostridioides difficile infection, its application in IBD remains an area of active exploration and research. The current status of FMT in IBD reflects a nuanced landscape, with ongoing investigations delving into its effectiveness, safety and optimal implementation. Early-stage clinical trials and observational studies have provided insights into the potential of FMT to modulate the dysbiotic gut microbiota associated with IBD, aiming to mitigate inflammation and promote mucosal healing. However, considerable complexities persist, including variations in donor selection, treatment protocols and outcome assessments. Challenges in standardizing FMT protocols for IBD treatment are compounded by the dynamic nature of the gut microbiome and the heterogeneity of IBD itself. Despite these challenges, enthusiasm for FMT in IBD emanates from its capacity to address gut microbial dysbiosis, signifying a paradigm shift towards more comprehensive approaches in IBD management. As ongoing research progresses, an enhanced understanding of FMT's role in IBD therapy is anticipated. This article synthesizes the current status of FMT in IBD, elucidating the attendant challenges and aspiring towards the refinement of its application for improved patient outcomes.
Collapse
Affiliation(s)
- Arshdeep Singh
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Vandana Midha
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124 001, India
| | - Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India.
| |
Collapse
|
14
|
Xu F, Yu P, Wu H, Wang X, Liu M, Liu H, Zeng Q, Wu D. Therapeutic effect of total flavonoids of Sargentodoxa cuneata on ulcerative colitis in mice by correcting gut dysbiosis. ARAB J CHEM 2024; 17:105566. [DOI: 10.1016/j.arabjc.2023.105566] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
15
|
Kathrani A, Yen S, Hall EJ, Swann JR. The effects of a hydrolyzed protein diet on the plasma, fecal and urine metabolome in cats with chronic enteropathy. Sci Rep 2023; 13:19979. [PMID: 37968311 PMCID: PMC10652014 DOI: 10.1038/s41598-023-47334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
Hydrolyzed protein diets are extensively used to treat chronic enteropathy (CE) in cats. However, the biochemical effects of such a diet on feline CE have not been characterized. In this study an untargeted 1H nuclear magnetic resonance spectroscopy-based metabolomic approach was used to compare the urinary, plasma, and fecal metabolic phenotypes of cats with CE to control cats with no gastrointestinal signs recruited at the Royal Veterinary College (RVC). In addition, the biomolecular consequences of a hydrolyzed protein diet in cats with CE was also separately determined in cats recruited from the RVC (n = 16) and the University of Bristol (n = 24) and whether these responses differed between dietary responders and non-responders. Here, plasma metabolites related to energy and amino acid metabolism significantly varied between CE and control cats in the RVC cohort. The hydrolyzed protein diet modulated the urinary metabolome of cats with CE (p = 0.005) in both the RVC and Bristol cohort. In the RVC cohort, the urinary excretion of phenylacetylglutamine, p-cresyl-sulfate, creatinine and taurine at diagnosis was predictive of dietary response (p = 0.025) although this was not observed in the Bristol cohort. Conversely, in the Bristol cohort plasma betaine, glycerol, glutamine and alanine at diagnosis was predictive of outcome (p = 0.001), but these same results were not observed in the RVC cohort. The biochemical signature of feline CE in the RVC cohort was consistent with that identified in human and animal models of inflammatory bowel disease. The hydrolyzed protein diet had the same effect on the urinary metabolome of cats with CE at both sites. However, biomarkers that were predictive of dietary response at diagnosis differed between the 2 sites. This may be due to differences in disease severity, disease heterogeneity, factors unrelated to the disease or small sample size at both sites. As such, further studies utilizing larger number of cats are needed to corroborate these findings.
Collapse
Affiliation(s)
- Aarti Kathrani
- Royal Veterinary College, Hawkshead Lane, Hertfordshire, AL9 7TA, UK.
| | - Sandi Yen
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Edward J Hall
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 5DU, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
16
|
Ebrahimi F, Simon TG, Hagström H, Sun J, Bergman D, Forss A, Roelstraete B, Engstrand L, Ludvigsson JF. Antibiotic use and development of nonalcoholic fatty liver disease: A population-based case-control study. Liver Int 2023; 43:2186-2197. [PMID: 37387502 DOI: 10.1111/liv.15663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND AND AIMS Antibiotics affect the gut microbiome. Preclinical studies suggest a role of gut dysbiosis in the development of nonalcoholic fatty liver disease (NAFLD), but data from large cohorts with liver histology are lacking. METHODS In this nationwide case-control study, Swedish adults with histologically confirmed early-stage NAFLD (total n = 2584; simple steatosis n = 1435; steatohepatitis (NASH) n = 383; non-cirrhotic fibrosis n = 766) diagnosed January 2007-April 2017 were included and matched to ≤5 population controls (n = 12 646) for age, sex, calendar year and county of residence. Data for cumulative antibiotic dispensations and defined daily doses were accrued until 1 year before the matching date. Using conditional logistic regression, multivariable-adjusted odds ratios (aORs) were calculated. In a secondary analysis, NAFLD patients were compared with their full siblings (n = 2837). RESULTS Previous antibiotic use was seen in 1748 (68%) NAFLD patients versus 7001 (55%) controls, corresponding to 1.35-fold increased odds of NAFLD (95% CI = 1.21-1.51) in a dose-dependent manner (pfor trend < .001). Estimates were comparable for all histologic stages (p > .05). The highest risk of NAFLD was observed after treatment with fluoroquinolones (aOR 1.38; 95% CI = 1.17-1.59). Associations remained robust when patients were compared with their full siblings (aOR 1.29; 95% CI = 1.08-1.55). Antibiotic treatment was only linked to NAFLD in patients without metabolic syndrome (aOR 1.63; 95% CI = 1.35-1.91) but not in those with metabolic syndrome (aOR 1.09; 95% CI = 0.88-1.30). CONCLUSIONS Antibiotic use may be a risk factor for incident NAFLD, especially in individuals without the metabolic syndrome. The risk was highest for fluoroquinolones and remained robust in sibling comparisons with whom individuals share genetic and early environmental susceptibilities.
Collapse
Affiliation(s)
- Fahim Ebrahimi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Tracey G Simon
- Division of Gastroenterology and Hepatology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hannes Hagström
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jiangwei Sun
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - David Bergman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anders Forss
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Bjorn Roelstraete
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York City, New York, USA
| |
Collapse
|
17
|
Padoan A, Musso G, Contran N, Basso D. Inflammation, Autoinflammation and Autoimmunity in Inflammatory Bowel Diseases. Curr Issues Mol Biol 2023; 45:5534-5557. [PMID: 37504266 PMCID: PMC10378236 DOI: 10.3390/cimb45070350] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
In this review, the role of innate and adaptive immunity in the pathogenesis of inflammatory bowel diseases (IBD) is reported. In IBD, an altered innate immunity is often found, with increased Th17 and decreased Treg cells infiltrating the intestinal mucosa. An associated increase in inflammatory cytokines, such as IL-1 and TNF-α, and a decrease in anti-inflammatory cytokines, such as IL-10, concur in favoring the persistent inflammation of the gut mucosa. Autoinflammation is highlighted with insights in the role of inflammasomes, which activation by exogenous or endogenous triggers might be favored by mutations of NOD and NLRP proteins. Autoimmunity mechanisms also take place in IBD pathogenesis and in this context of a persistent immune stimulation by bacterial antigens and antigens derived from intestinal cells degradation, the adaptive immune response takes place and results in antibodies and autoantibodies production, a frequent finding in these diseases. Inflammation, autoinflammation and autoimmunity concur in altering the mucus layer and enhancing intestinal permeability, which sustains the vicious cycle of further mucosal inflammation.
Collapse
Affiliation(s)
- Andrea Padoan
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giulia Musso
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Nicole Contran
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Daniela Basso
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
18
|
Dvornikova KA, Platonova ON, Bystrova EY. Inflammatory Bowel Disease: Crosstalk between Histamine, Immunity, and Disease. Int J Mol Sci 2023; 24:9937. [PMID: 37373085 DOI: 10.3390/ijms24129937] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is increasingly recognized as a serious, worldwide public health concern. It is generally acknowledged that a variety of factors play a role in the pathogenesis of this group of chronic inflammatory diseases. The diversity of molecular actors involved in IBD does not allow us to fully assess the causal relationships existing in such interactions. Given the high immunomodulatory activity of histamine and the complex immune-mediated nature of inflammatory bowel disease, the role of histamine and its receptors in the gut may be significant. This paper has been prepared to provide a schematic of the most important and possible molecular signaling pathways related to histamine and its receptors and to assess their relevance for the development of therapeutic approaches.
Collapse
Affiliation(s)
| | - Olga N Platonova
- I.P. Pavlov Institute of Physiology RAS, St. Petersburg 199034, Russia
| | - Elena Y Bystrova
- I.P. Pavlov Institute of Physiology RAS, St. Petersburg 199034, Russia
| |
Collapse
|
19
|
Tseng CH. Rosiglitazone Does Not Affect the Risk of Inflammatory Bowel Disease: A Retrospective Cohort Study in Taiwanese Type 2 Diabetes Patients. Pharmaceuticals (Basel) 2023; 16:ph16050679. [PMID: 37242462 DOI: 10.3390/ph16050679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Human studies on the effect of rosiglitazone on inflammatory bowel disease (IBD) are still lacking. We investigated whether rosiglitazone might affect IBD risk by using the reimbursement database of Taiwan's National Health Insurance to enroll a propensity-score-matched cohort of ever users and never users of rosiglitazone. The patients should have been newly diagnosed with diabetes mellitus between 1999 and 2006 and should have been alive on 1 January 2007. We then started to follow the patients from 1 January 2007 until 31 December 2011 for a new diagnosis of IBD. Propensity-score-weighted hazard ratios were estimated with regards to rosiglitazone exposure in terms of ever users versus never users and in terms of cumulative duration and cumulative dose of rosiglitazone therapy for dose-response analyses. The joint effects and interactions between rosiglitazone and risk factors of psoriasis/arthropathies, dorsopathies, and chronic obstructive pulmonary disease/tobacco abuse and the use of metformin were estimated by Cox regression after adjustment for all covariates. A total of 6226 ever users and 6226 never users were identified and the respective numbers of incident IBD were 95 and 111. When we compared the risk of IBD in ever users to that of the never users, the estimated hazard ratio (0.870, 95% confidence interval: 0.661-1.144) was not statistically significant. When cumulative duration and cumulative dose of rosiglitazone therapy were categorized by tertiles and hazard ratios were estimated by comparing the tertiles of rosiglitazone exposure to the never users, none of the hazard ratios reached statistical significance. In secondary analyses, rosiglitazone has a null association with Crohn's disease, but a potential benefit on ulcerative colitis (UC) could not be excluded. However, because of the low incidence of UC, we were not able to perform detailed dose-response analyses for UC. In the joint effect analyses, only the subgroup of psoriasis/arthropathies (-)/rosiglitazone (-) showed a significantly lower risk in comparison to the subgroup of psoriasis/arthropathies (+)/rosiglitazone (-). No interactions between rosiglitazone and the major risk factors or metformin use were observed. We concluded that rosiglitazone has a null effect on the risk of IBD, but the potential benefit on UC awaits further investigation.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
- National Institute of Environmental Health Sciences of the National Health Research Institutes, Zhunan 35053, Taiwan
| |
Collapse
|
20
|
Jung WH. Alteration in skin mycobiome due to atopic dermatitis and seborrheic dermatitis. BIOPHYSICS REVIEWS 2023; 4:011309. [PMID: 38505818 PMCID: PMC10903429 DOI: 10.1063/5.0136543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/22/2023] [Indexed: 03/21/2024]
Abstract
A microbiome consists of viruses, bacteria, archaea, fungi, and other microeukaryotes. It influences host immune systems and contributes to the development of various diseases, such as obesity, diabetes, asthma, and skin diseases, including atopic dermatitis and seborrheic dermatitis. The skin is the largest organ in the human body and has various microorganisms on its surface. Several studies on skin microbiomes have illustrated the effects of their composition, metabolites, and interactions with host cells on diseases. However, most studies have focused on the bacterial microbiome rather than the fungal microbiome, namely, mycobiome, although emerging evidence indicates that fungi also play a critical role in skin microbiomes through interactions with the host cells. I briefly summarize the current progress in the analysis of mycobiomes on human skin. I focused on alteration of the skin mycobiome caused by atopic and seborrheic dermatitis, with an emphasis on the Malassezia genus, which are the most dominant fungi residing here.
Collapse
Affiliation(s)
- Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| |
Collapse
|
21
|
Zhou T, Xu W, Wang Q, Jiang C, Li H, Chao Y, Sun Y, A L. The effect of the "Oral-Gut" axis on periodontitis in inflammatory bowel disease: A review of microbe and immune mechanism associations. Front Cell Infect Microbiol 2023; 13:1132420. [PMID: 36923589 PMCID: PMC10008960 DOI: 10.3389/fcimb.2023.1132420] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis and inflammatory bowel diseases (IBD) are inflammatory diseases of the gastrointestinal tract that share common features of microbial-induced ecological dysregulation and host immune inflammatory response. The close relationship between periodontitis and IBD is characterized by a higher prevalence of IBD in patients with periodontitis and a higher prevalence and severity of periodontitis in patients with IBD, indicating that periodontitis and IBD are different from the traditional independent diseases and form an "Oral-Gut" axis between the two, which affect each other and thus form a vicious circle. However, the specific mechanisms leading to the association between the two are not fully understood. In this article, we describe the interconnection between periodontitis and IBD in terms of microbial pathogenesis and immune dysregulation, including the ectopic colonization of the gut by pathogenic bacteria associated with periodontitis that promotes inflammation in the gut by activating the host immune response, and the alteration of the oral microbiota due to IBD that affects the periodontal inflammatory response. Among the microbial factors, pathogenic bacteria such as Klebsiella, Porphyromonas gingivalis and Fusobacterium nucleatum may act as the microbial bridge between periodontitis and IBD, while among the immune mechanisms, Th17 cell responses and the secreted pro-inflammatory factors IL-1β, IL-6 and TNF-α play a key role in the development of both diseases. This suggests that in future studies, we can look for targets in the "Oral-Gut" axis to control and intervene in periodontal inflammation by regulating periodontal or intestinal flora through immunological methods.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Wenzhou Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| | - Qiqi Wang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Cong Jiang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Hongyan Li
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Chao
- Department of Gastroendoscopy, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
- *Correspondence: Yue Sun, ; Lan A,
| | - Lan A
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
- *Correspondence: Yue Sun, ; Lan A,
| |
Collapse
|
22
|
Yu J. Gut microbiome and metabolome: The crucial players in inflammatory bowel disease. J Gastroenterol Hepatol 2023; 38:5-6. [PMID: 36641630 DOI: 10.1111/jgh.16098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
23
|
Talapko J, Včev A, Meštrović T, Pustijanac E, Jukić M, Škrlec I. Homeostasis and Dysbiosis of the Intestinal Microbiota: Comparing Hallmarks of a Healthy State with Changes in Inflammatory Bowel Disease. Microorganisms 2022; 10:microorganisms10122405. [PMID: 36557658 PMCID: PMC9781915 DOI: 10.3390/microorganisms10122405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota, which represent a community of different microorganisms in the human intestinal tract, are crucial to preserving human health by participating in various physiological functions and acting as a metabolic organ. In physiological conditions, microbiota-host partnership exerts homeostatic stability; however, changes in intestinal microbiota composition (dysbiosis) are an important factor in the pathogenesis of inflammatory bowel disease and its two main disease entities: ulcerative colitis and Crohn's disease. The incidence and prevalence of these inflammatory conditions have increased rapidly in the last decade, becoming a significant problem for the healthcare system and a true challenge in finding novel therapeutic solutions. The issue is that, despite numerous studies, the etiopathogenesis of inflammatory bowel disease is not completely clear. Based on current knowledge, chronic intestinal inflammation occurs due to altered intestinal microbiota and environmental factors, as well as a complex interplay between the genetic predisposition of the host and an inappropriate innate and acquired immune response. It is important to note that the development of biological and immunomodulatory therapy has led to significant progress in treating inflammatory bowel disease. Certain lifestyle changes and novel approaches-including fecal microbiota transplantation and nutritional supplementation with probiotics, prebiotics, and synbiotics-have offered solutions for dysbiosis management and paved the way towards restoring a healthy microbiome, with only minimal long-term unfavorable effects.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
- Correspondence: (T.M.); (I.Š.)
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- Correspondence: (T.M.); (I.Š.)
| |
Collapse
|