1
|
Tamayo M, Agusti A, Molina-Mendoza GV, Rossini V, Frances-Cuesta C, Tolosa-Enguís V, Sanz Y. Bifidobacterium longum CECT 30763 improves depressive- and anxiety-like behavior in a social defeat mouse model through the immune and dopaminergic systems. Brain Behav Immun 2024; 125:35-57. [PMID: 39694341 DOI: 10.1016/j.bbi.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
Adolescence is a crucial period marked by profound changes in the brain. Exposure to psychological stressors such as bullying, abuse or maltreatment during this developmental period may increase the risk of developing depression, anxiety and comorbid cardiometabolic conditions. Chronic psychological stress is associated with behavioral changes and disruption of the hypothalamic-pituitary-adrenal axis, leading to corticosterone overproduction in rodents and changes in both the immune system and the gut microbiome. Here, we demonstrate the ability of Bifidobacterium longum CECT 30763 (B. longum) to ameliorate adolescent depressive and anxiety-like behaviors in a chronic social defeat (CSD) mouse model. The mechanisms underlying this beneficial effect are related to the ability of B. longum to attenuate the inflammation and immune cell changes induced by CSD after the initial stress exposure through the induction of T regulatory cells with enduring effects that may prevent and mitigate the adverse consequences of repeated stress exposure on mental and cardiometabolic health. B. longum administration also normalized dopamine release, metabolism and signaling at the end of the intervention, which may secondarily contribute to the reversal of behavioral changes. The anti-inflammatory effects of B. longum could also explain its cardioprotective effects, which were reflected in an amelioration of the oxidative stress-induced damage in the heart and improved lipid metabolism in the liver. Overall, our findings suggest that B. longum regulates the links between the immune and dopaminergic systems from the gut to the brain, potentially underpinning its beneficial psychobiotic and physiological effects in CSD.
Collapse
Affiliation(s)
- M Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; Department of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - A Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain.
| | - G V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - V Rossini
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - C Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - V Tolosa-Enguís
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Y Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
2
|
Chimera B, Hoobler R, Deschasaux-Tanguy M, Van Merris E, Roels O, Playdon M, Michels N, Huybrechts I. The gut microbiome and eating behavior outcomes: A systematic review. Obes Rev 2024:e13880. [PMID: 39667924 DOI: 10.1111/obr.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Dysfunctional eating behaviors, and their modulators, are an important component in the prevalence of malnutrition. The gut microbiome, acting through the microbiota-gut-brain axis, is implicated as a modifiable factor in eating behavior. ObjectivesThis systematic review investigated the influence of the gut microbiome on human eating behavior and their modulators (appetite, satiety, energy/food intake, weight loss/gain). METHODS Literature was retrieved from PubMed, Embase, and Web of Science until July 2022. In total, 37 studies were included, with interventions including pre/post/syn-biotics. The primary outcome was eating behaviors, and their modulators. RESULTS The gut microbiome was associated with eating behaviors, and their modulators, in 28 studies, particularly affecting appetite/appetite hormones, energy/food intake, and weight gain. Intake of probiotics and synbiotics were inconsistently related to appetite and appetite hormone levels, (n = 6 and n = 2 respectively). Prebiotic supplementation showed a consistent trend in the reduction of appetite (n = 4), regulation of appetite hormone levels (n = 10), and increase in self-reported satiety (n = 4). Conversely, energy intake (n = 18) and weight gain/loss (n = 7) were inconsistently associated with probiotic interventions across studies, populations, and interventions. In terms of quality of evidence, most publications had a high risk or some concerns of risk of bias, with fewer than 25% falling into the low-risk category. CONCLUSION This review provides an overview of the links between the gut microbiome and human eating behavior across human phenotypes. While explicit associations between specific microbiome taxa and eating behavior are identified, further evidence is needed to substantiate causal relationships. Future research with standardized methods and prospective designs is needed.
Collapse
Affiliation(s)
- Bernadette Chimera
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Rachel Hoobler
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Mélanie Deschasaux-Tanguy
- INSERM, INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Center for Research in Epidemiology and Statistics (CRESS), Université Sorbonne Paris Nord and Université Paris Cité, Bobigny, France
| | - Eugenie Van Merris
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Ophelia Roels
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Mary Playdon
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Nathalie Michels
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
3
|
Badrfam R, Zandifar A, Hajialigol A, Rashidian M, Schmidt NB, Morabito D, Qorbani M, Shahrestanaki E, Mehrabani Natanzi M. Efficacy of probiotic supplements in improving the symptoms of psychosis, anxiety, insomnia, and anorexia due to amphetamine and methamphetamine use: a randomized clinical trial. Psychopharmacology (Berl) 2024; 241:1463-1476. [PMID: 38512593 DOI: 10.1007/s00213-024-06577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
RATIONALE Changes in the density and diversity of gut microbiota in chronic use of methamphetamine have been mentioned as contributors to psychotic and anxiety symptoms, sleep problems, and loss of appetite. OBJECTIVE In this placebo-controlled clinical trial, we investigated the effect of the probiotic Lactobacillus Acidophilus in improving psychiatric symptoms among hospitalized patients with chronic methamphetamine use along with psychotic symptoms. METHODS 60 inpatients with a history of more than 3 years of methamphetamine use, were randomly assigned to one of two groups receiving either a probiotic capsule or placebo along with risperidone for 8 weeks based on a simple randomization method. In weeks 0, 4, and 8, patients were evaluated using the Brief Psychiatric Rating Scale (BPRS), Beck Anxiety Inventory (BAI), Pittsburgh Sleep Quality Index (PSQI), Simple Appetite Nutritional Questionnaire (SANQ), and Body Mass Index (BMI). RESULTS Compared to the control group, patients receiving probiotics had better sleep quality, greater appetite, and higher body mass index (there were significant interaction effects of group and time at Week 8 in these variables (t = -3.32, B = -1.83, p = .001, d = 0.89), (t = 10.50, B = 2.65, p <.001, d = 1.25) and (t = 3.40, B = 0.76, p <.001, d = 0.30), respectively. In terms of the improvement of psychotic and anxiety symptoms, there was no statistically significant difference between the two groups. CONCLUSIONS The use of probiotics was associated with improved sleep quality, increased appetite, and increased body mass index in patients with chronic methamphetamine use. Conducting more definitive clinical trials with larger sample sizes and longer-term follow-up of cases is recommended.
Collapse
Affiliation(s)
- Rahim Badrfam
- Department of Psychiatry, Imam Hossein Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Atefeh Zandifar
- Department of Psychiatry, Imam Hossein Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran.
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Amirhossein Hajialigol
- Alborz Office of Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Rashidian
- Alborz Office of Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Norman Brad Schmidt
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Danielle Morabito
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ehsan Shahrestanaki
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahboobeh Mehrabani Natanzi
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
4
|
Binda S, Tremblay A, Iqbal UH, Kassem O, Le Barz M, Thomas V, Bronner S, Perrot T, Ismail N, Parker J. Psychobiotics and the Microbiota-Gut-Brain Axis: Where Do We Go from Here? Microorganisms 2024; 12:634. [PMID: 38674579 PMCID: PMC11052108 DOI: 10.3390/microorganisms12040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The bidirectional relationship between the gut microbiota and the nervous system is known as the microbiota-gut-brain axis (MGBA). The MGBA controls the complex interactions between the brain, the enteric nervous system, the gut-associated immune system, and the enteric neuroendocrine systems, regulating key physiological functions such as the immune response, sleep, emotions and mood, food intake, and intestinal functions. Psychobiotics are considered tools with the potential to modulate the MGBA through preventive, adjunctive, or curative approaches, but their specific mechanisms of action on many aspects of health are yet to be characterized. This narrative review and perspectives article highlights the key paradigms needing attention as the scope of potential probiotics applications in human health increases, with a growing body of evidence supporting their systemic beneficial effects. However, there are many limitations to overcome before establishing the extent to which we can incorporate probiotics in the management of neuropsychiatric disorders. Although this article uses the term probiotics in a general manner, it remains important to study probiotics at the strain level in most cases.
Collapse
Affiliation(s)
- Sylvie Binda
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Annie Tremblay
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Umar Haris Iqbal
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Ola Kassem
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Mélanie Le Barz
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
| | - Vincent Thomas
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
| | - Stéphane Bronner
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Tara Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Nafissa Ismail
- Department of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - J.Alex Parker
- Département de Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| |
Collapse
|
5
|
Saadati S, Naseri K, Asbaghi O, Yousefi M, Golalipour E, de Courten B. Beneficial effects of the probiotics and synbiotics supplementation on anthropometric indices and body composition in adults: A systematic review and meta-analysis. Obes Rev 2024; 25:e13667. [PMID: 38030409 DOI: 10.1111/obr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Studies have suggested that probiotics and synbiotics can improve body weight and composition. However, randomized controlled trials (RCTs) demonstrated mixed results. Hence, we performed a systematic review and meta-analysis to evaluate the effectiveness of probiotics and synbiotics on body weight and composition in adults. We searched PubMed/Medline, Ovid/Medline, Scopus, ISI Web of Science, and Cochrane library up to April 2023 using related keywords. We included all RCTs investigating the effectiveness of probiotics and/or synbiotics supplementation on anthropometric indices and body composition among adults. Random-effects models were applied for performing meta-analyses. In addition, we conducted subgroup analyses and meta-regression to explore the non-linear and linear relationship between the length of follow-up and the changes in each outcome. We included a total of 200 trials with 12,603 participants in the present meta-analysis. Probiotics or synbiotics intake led to a significant decrease in body weight (weighted mean difference [WMD]: -0.91 kg; 95% CI: -1.08, -0.75; p < 0.001), body mass index (BMI) (WMD: -0.28 kg/m2 ; 95% CI: -0.36, -0.21; p < 0.001), waist circumference (WC) (WMD: -1.14 cm; 95% CI: -1.42, -0.87; p < 0.001), waist-to-hip ratio (WHR) (WMD: -0.01; 95% CI: -0.01, -0.00; p < 0.001), fat mass (FM) (WMD: -0.92 kg; 95% CI: -1.05, -0.79; p < 0.001), and percentage of body fat (%BF) (WMD: -0.68%; 95% CI: -0.94, -0.42; p < 0.001) compared to controls. There was no difference in fat-free mass (FFM) and lean body mass (LBM). Subgroup analyses indicated that probiotics or synbiotics administered as food or supplement resulted in significant changes in anthropometric indices and body composition. However, compared to controls, FM and %BF values were only reduced after probiotic consumption. Our results showed that probiotics or synbiotics have beneficial effects on body weight, central obesity, and body composition in adults and could be useful as an add on to weight loss products and medications.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Golalipour
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| |
Collapse
|
6
|
Khazaei Y, Basi A, Fernandez ML, Foudazi H, Bagherzadeh R, Shidfar F. The effects of synbiotics supplementation on reducing chemotherapy-induced side effects in women with breast cancer: a randomized placebo-controlled double-blind clinical trial. BMC Complement Med Ther 2023; 23:339. [PMID: 37752516 PMCID: PMC10521476 DOI: 10.1186/s12906-023-04165-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The prevalence of breast cancer and its mortality rate are increasing rapidly among women worldwide. On other hand, the courses of chemotherapy as the main treatment for these patients are too much exhaustive and annoying. This study was designed to evaluate the use of synbiotics (probiotics + prebiotics) supplementation as a safe and inexpensive adjuvant treatment in reducing common chemotherapy side effects in women with breast cancer. METHODS The current study was conducted on 67 women with definitive diagnosis of breast cancer who were hospitalized to receive one-day chemotherapy sessions, and met the inclusion criteria. The patients were randomly allocated to the intervention or control group to receive synbiotics or placebo, respectively. They received oral consumption of synbiotics supplements twice a day for 8 weeks. The primary outcome was the changes in severity or experience of chemotherapy complication, analyzed by intention to treat (ITT). The instruments included 7 validated questionnaires which were used to assess chemotherapy complications in the initiation, 4 weeks and 8 weeks after intervention. Dietary intake was measured by 24-h dietary recall at the beginning, week 4 and week 8. Data were analyzed by SPSS software version 24. P-value < 0.05 was considered as statistically significant. RESULTS 67 breast cancer patients participated in the study. 8 weeks after intervention and adjusting the confounders, the severity of chemotherapy complications including unnormal defecation (P = 0.005) and fatigue (P < 0/001) decreased significantly in the synbiotics group compared to the placebo group. Furthermore, nausea/vomiting (P = 0.015), and anorexia (P < 0.001) were decreased at the end of the study compared to the first visit, but it was not statistically significant compared to the placebo group. CONCLUSIONS Synbiotics supplementation during chemotherapy can potentially reduce the severity of fatigue and abnormal defecation. It can help reduce anorexia and nausea/vomiting. TRIAL REGISTRATION This study was registered in the Iranian Registry of Clinical Trials (IRCT) (registered code: IRCT20091114002709N56) (date of registration: 5/5/2021). Direct link to the trial page: https://www.irct.ir/trial/54559 .
Collapse
Affiliation(s)
- Yasaman Khazaei
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ali Basi
- Department of Hematology Oncology, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hossein Foudazi
- Department of Radiation and Oncology, Shahid Fayaz-Bakhsh Hospital, Tehran, Iran
| | - Rafat Bagherzadeh
- English Department, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| |
Collapse
|
7
|
Khazaei Y, Basi A, Fernandez ML, Foudazi H, Bagherzadeh R, Shidfar F. The effects of synbiotics supplementation on reducing chemotherapy-induced side effects in women with breast cancer: a randomized placebo-controlled double-blind clinical trial. BMC Complement Med Ther 2023; 23:339. [PMID: 37752516 DOI: 10.1186/s12906-023-04165-8.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/12/2023] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The prevalence of breast cancer and its mortality rate are increasing rapidly among women worldwide. On other hand, the courses of chemotherapy as the main treatment for these patients are too much exhaustive and annoying. This study was designed to evaluate the use of synbiotics (probiotics + prebiotics) supplementation as a safe and inexpensive adjuvant treatment in reducing common chemotherapy side effects in women with breast cancer. METHODS The current study was conducted on 67 women with definitive diagnosis of breast cancer who were hospitalized to receive one-day chemotherapy sessions, and met the inclusion criteria. The patients were randomly allocated to the intervention or control group to receive synbiotics or placebo, respectively. They received oral consumption of synbiotics supplements twice a day for 8 weeks. The primary outcome was the changes in severity or experience of chemotherapy complication, analyzed by intention to treat (ITT). The instruments included 7 validated questionnaires which were used to assess chemotherapy complications in the initiation, 4 weeks and 8 weeks after intervention. Dietary intake was measured by 24-h dietary recall at the beginning, week 4 and week 8. Data were analyzed by SPSS software version 24. P-value < 0.05 was considered as statistically significant. RESULTS 67 breast cancer patients participated in the study. 8 weeks after intervention and adjusting the confounders, the severity of chemotherapy complications including unnormal defecation (P = 0.005) and fatigue (P < 0/001) decreased significantly in the synbiotics group compared to the placebo group. Furthermore, nausea/vomiting (P = 0.015), and anorexia (P < 0.001) were decreased at the end of the study compared to the first visit, but it was not statistically significant compared to the placebo group. CONCLUSIONS Synbiotics supplementation during chemotherapy can potentially reduce the severity of fatigue and abnormal defecation. It can help reduce anorexia and nausea/vomiting. TRIAL REGISTRATION This study was registered in the Iranian Registry of Clinical Trials (IRCT) (registered code: IRCT20091114002709N56) (date of registration: 5/5/2021). Direct link to the trial page: https://www.irct.ir/trial/54559 .
Collapse
Affiliation(s)
- Yasaman Khazaei
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ali Basi
- Department of Hematology Oncology, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hossein Foudazi
- Department of Radiation and Oncology, Shahid Fayaz-Bakhsh Hospital, Tehran, Iran
| | - Rafat Bagherzadeh
- English Department, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| |
Collapse
|
8
|
Varesi A, Campagnoli LIM, Chirumbolo S, Candiano B, Carrara A, Ricevuti G, Esposito C, Pascale A. The Brain-Gut-Microbiota Interplay in Depression: a key to design innovative therapeutic approaches. Pharmacol Res 2023; 192:106799. [PMID: 37211239 DOI: 10.1016/j.phrs.2023.106799] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Depression is the most prevalent mental disorder in the world associated with huge socio-economic consequences. While depressive-related symptoms are well known, the molecular mechanisms underlying disease pathophysiology and progression remain largely unknown. The gut microbiota (GM) is emerging as a key regulator of the central nervous system homeostasis by exerting fundamental immune and metabolic functions. In turn, the brain influences the intestinal microbial composition through neuroendocrine signals, within the so-called gut microbiota-brain axis. The balance of this bidirectional crosstalk is important to ensure neurogenesis, preserve the integrity of the blood-brain barrier and avoid neuroinflammation. Conversely, dysbiosis and gut permeability negatively affect brain development, behavior, and cognition. Furthermore, although not fully defined yet, changes in the GM composition in depressed patients are reported to influence the pharmacokinetics of common antidepressants by affecting their absorption, metabolism, and activity. Similarly, neuropsychiatric drugs may shape in turn the GM with an impact on the efficacy and toxicity of the pharmacological intervention itself. Consequently, strategies aimed at re-establishing the correct homeostatic gut balance (i.e., prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions) represent an innovative approach to improve the pharmacotherapy of depression. Among these, probiotics and the Mediterranean diet, alone or in combination with the standard of care, hold promise for clinical application. Therefore, the disclosure of the intricate network between GM and depression will give precious insights for innovative diagnostic and therapeutic approaches towards depression, with profound implications for drug development and clinical practice.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37121 Verona, Italy
| | - Beatrice Candiano
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Adelaide Carrara
- Child Neurology and Psychiatric Unit, IRCCS Mondino, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
9
|
Ghafouri-Taleghani F, Abiri B, Zamanian A, Saidpour A. Effects of probiotic supplementation with weight reducing intervention on anthropometric measures, body composition, eating behavior, and related hormone levels in patients with food addiction and weight regain after bariatric surgery: a study protocol for a randomized clinical trial. BMC Nutr 2023; 9:63. [PMID: 37072872 PMCID: PMC10114428 DOI: 10.1186/s40795-023-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND One of the unfortunate events after bariatric surgery is the weight regain, which occurs in some patients. Food addiction is an eating disorder related to the brain-intestinal axis and can be effective in weight regain after bariatric surgery. In addition, the gut microbiome plays a vital role in eating behaviors, including food addiction. So, this study will aim to evaluate the effects of probiotic supplementation with a weight-reducing diet and cognitive behavioral therapy on anthropometric measures, body composition, eating behavior, and related hormone levels, leptin, oxytocin, and serotonin, in patients with food addiction and weight regain after bariatric surgery. METHODS We will carry out a triple-blinded randomized clinical trial for 12 weeks to evaluate the effect of probiotic supplementation with a weight-reducing diet and cognitive behavioral therapy on anthropometric measures, body composition, eating behavior, and related hormone levels including leptin, oxytocin, and serotonin, in patients with food addiction and weight regain after bariatric surgery. DISCUSSION Based on the available evidence, probiotic supplementation by modifying the intestinal microbiome can improve food addiction and subsequent weight loss. TRIAL REGISTRATION Iranian Registry of Clinical Trials IRCT20220406054437N1 Registered on 2022-06-01.
Collapse
Affiliation(s)
- Fateme Ghafouri-Taleghani
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zamanian
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atoosa Saidpour
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Collins SM, Gibson GR, Stainton GN, Bertocco A, Kennedy OB, Walton GE, Commane DM. Chronic consumption of a blend of inulin and arabinoxylan reduces energy intake in an ad libitum meal but does not influence perceptions of appetite and satiety: a randomised control-controlled crossover trial. Eur J Nutr 2023:10.1007/s00394-023-03136-6. [PMID: 37046122 DOI: 10.1007/s00394-023-03136-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE Prebiotic foods can be used to increase production of short-chain fatty acids (SCFA) in the gut. Of the SCFA, propionate is credited with the strongest anorectic activity. In previous work, a 50/50 blend of inulin and arabinoxylan was produced (I + AX) that significantly increased propionate production in an in vitro gut model. This study sought to establish whether chronic consumption of a prebiotic blend of I + AX decreases appetite and energy intake and increases intestinal propionate production in human participants. METHODS MIXSAT (clinicaltrials.gov id: NCT02846454, August 2016) was a double-blind randomised acute-within-chronic crossover feeding trial in healthy adult men (n = 20). Treatments were 8 g per day I + AX for 21 days or weight-matched maltodextrin control. The primary outcome measure was perceived satiety and appetite during an acute study visit. Secondary outcomes were energy intake in an ad libitum meal, faecal SCFA concentration, and faecal microbiota composition. RESULTS Perceived satiety and appetite were not affected by the intervention. I + AX was associated with a reduction in energy intake in an ad libitum meal, increased faecal SCFA concentration, and an increase in cell counts of Bifidobacteria, Lactobacilli, and other microbial genera associated with health. IMPLICATIONS Chronic consumption of this blend of prebiotics decreased energy intake in a single sitting. Further studies are needed to confirm mechanism of action and to determine whether this might be useful in weight control.
Collapse
Affiliation(s)
- Sineaid M Collins
- Food and Nutritional Sciences, University of Reading, Berkshire, UK.
| | - Glenn R Gibson
- Food and Nutritional Sciences, University of Reading, Berkshire, UK
| | - Gavin N Stainton
- Herbalife Nutrition, The Atrium, 1 Harefield Road, Uxbridge, Middlesex, UK
| | - Andrea Bertocco
- Herbalife Nutrition, The Atrium, 1 Harefield Road, Uxbridge, Middlesex, UK
| | - Orla B Kennedy
- Herbalife Nutrition, The Atrium, 1 Harefield Road, Uxbridge, Middlesex, UK
| | - Gemma E Walton
- Herbalife Nutrition, The Atrium, 1 Harefield Road, Uxbridge, Middlesex, UK
| | - Daniel M Commane
- Applied and Health Sciences, Northumbria University, Tyne and Wear, UK
| |
Collapse
|
11
|
Mills S, Yang B, Smith GJ, Stanton C, Ross RP. Efficacy of Bifidobacterium longum alone or in multi-strain probiotic formulations during early life and beyond. Gut Microbes 2023; 15:2186098. [PMID: 36896934 PMCID: PMC10012958 DOI: 10.1080/19490976.2023.2186098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
The significance of Bifidobacterium to human health can be appreciated from its early colonization of the neonatal gut, where Bifidobacterium longum represents the most abundant species. While its relative abundance declines with age, it is further reduced in several diseases. Research into the beneficial properties of B. longum has unveiled a range of mechanisms, including the production of bioactive molecules, such as short-chain fatty acids, polysaccharides, and serine protease inhibitors. From its intestinal niche, B. longum can have far-reaching effects in the body influencing immune responses in the lungs and even skin, as well as influencing brain activity. In this review, we present the biological and clinical impacts of this species on a range of human conditions beginning in neonatal life and beyond. The available scientific evidence reveals a strong rationale for continued research and further clinical trials that investigate the ability of B. longum to treat or prevent a range of diseases across the human lifespan.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Co Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Noormohammadi M, Ghorbani Z, Löber U, Mahdavi-Roshan M, Bartolomaeus TUP, Kazemi A, Shoaibinobarian N, Forslund SK. The effect of probiotic and synbiotic supplementation on appetite-regulating hormones and desire to eat: A systematic review and meta-analysis of clinical trials. Pharmacol Res 2023; 187:106614. [PMID: 36538981 DOI: 10.1016/j.phrs.2022.106614] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Recent studies have demonstrated the effect of probiotics, prebiotics, and synbiotics on adiponectin and leptin levels; however, those findings remain contested. The present study aimed to explore the impact of probiotics/synbiotics on appetite-regulating hormones and the desire to eat. METHODS A systematic review was conducted by searching the Medline (PubMed) and Scopus databases from inception to December 2021, using relevant keywords and MeSH terms, and appropriate randomized controlled trials (RCTs) were extracted. The standardized mean differences (SMD) and 95% confidence intervals (95%CIs) were calculated as part of the meta-analysis using a random-effect model to determine the mean effect sizes. Analysis of Galbraith plots and the Cochrane Chi-squared test were conducted to examine heterogeneity. RESULTS Meta-analysis of data from a total of 26 RCTs (n = 1536) showed a significant decrease in serum/plasma leptin concentration following probiotic/synbiotic supplementation (SMD: -0.38, 95%CI= -0.638, -0.124); P-value= 0.004; I2= 69.4%; P heterogeneity < 0.001). The leptin level decrease from probiotic/synbiotic supplementation was higher in patients with NAFLD than those with overweight/obesity or type 2 diabetes mellitus/ metabolic syndrome/ prediabetes. Probiotic/synbiotic supplementation was associated with a trending increase in adiponectin levels, stronger in patients with type 2 diabetes mellitus, metabolic syndrome, and prediabetes (SMD: 0.25, 95%CI= 0.04, 0.46) µg/mL; P-value= 0.021; I2 = 16.8%; P heterogeneity= 0.30). Additionally, supplementation with probiotic/synbiotic was linked to a slight increase in desire to eat (SMD: 0.34, 95%CI= 0.03, 0.66) P-value = 0.030; I2 = 39.4%; P heterogeneity= 0.16). CONCLUSION Our meta-analysis indicates a favorable impact of probiotic/synbiotic supplementation on regulating leptin and adiponectin secretion.
Collapse
Affiliation(s)
- Morvarid Noormohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghorbani
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Ulrike Löber
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Marjan Mahdavi-Roshan
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Theda U P Bartolomaeus
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nargeskhatoon Shoaibinobarian
- Department of Nutrition, School of Medical Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sofia K Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
13
|
Koning E, Vorstman J, McIntyre RS, Brietzke E. Characterizing eating behavioral phenotypes in mood disorders: a narrative review. Psychol Med 2022; 52:2885-2898. [PMID: 36004528 PMCID: PMC9693712 DOI: 10.1017/s0033291722002446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/05/2023]
Abstract
Mood disorders, including depressive and bipolar disorders, represent a multidimensional and prevalent group of psychiatric illnesses characterized by disturbances in emotion, cognition and metabolism. Maladaptive eating behaviors in mood disorders are diverse and warrant characterization in order to increase the precision of diagnostic criteria, identify subtypes and improve treatment strategies. The current narrative review synthesizes evidence for Eating Behavioral Phenotypes (EBP) in mood disorders as well as advancements in pathophysiological conceptual frameworks relevant to each phenotype. Phenotypes include maladaptive eating behaviors related to appetite, emotion, reward, impulsivity, diet style and circadian rhythm disruption. Potential treatment strategies for each phenotype are also discussed, including psychotherapeutic, pharmacological and nutritional interventions. Maladaptive eating behaviors related to mood disorders are relevant from both clinical and research perspectives, yet have been somewhat overlooked thus far. A better understanding of this aspect of mood disorders holds promise to improve clinical care in this patient group and contribute to the subtyping of these currently subjectively diagnosed and treated disorders.
Collapse
Affiliation(s)
- Elena Koning
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Jacob Vorstman
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S. McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Elisa Brietzke
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
14
|
Probiotics in the Management of Mental and Gastrointestinal Post-COVID Symptomes. J Clin Med 2022; 11:jcm11175155. [PMID: 36079082 PMCID: PMC9457065 DOI: 10.3390/jcm11175155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023] Open
Abstract
Patients with “post-COVID” syndrome manifest with a variety of signs and symptoms that continue/develop after acute COVID-19. Among the most common are gastrointestinal (GI) and mental symptoms. The reason for symptom occurrence lies in the SARS-CoV-2 capability of binding to exact receptors, among other angiotensin converting enzyme 2 (ACE2) receptors in gastrointestinal lining and neuropilin-1 (NRP-1) in the nervous system, which leads to loss of gastrointestinal and blood-brain barriers integrity and function. The data are mounting that SARS-CoV-2 can trigger systemic inflammation and lead to disruption of gut-brain axis (GBA) and the development of disorders of gut brain interaction (DGBIs). Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are the most common DGBIs syndromes. On the other hand, emotional disorders have also been demonstrated as DGBIs. Currently, there are no official recommendations or recommended procedures for the use of probiotics in patients with COVID-19. However, it can be assumed that many doctors, pharmacists, and patients will want to use a probiotic in the treatment of this disease. In such cases, strains with documented activity should be used. There is a constant need to plan and conduct new trials on the role of probiotics and verify their clinical efficacy for counteracting the negative consequences of COVID-19 pandemic. Quality control is another important but often neglected aspect in trials utilizing probiotics in various clinical entities. It determines the safety and efficacy of probiotics, which is of utmost importance in patients with post-acute COVID-19 syndrome.
Collapse
|
15
|
Ben Fradj S, Nédélec E, Salvi J, Fouesnard M, Huillet M, Pallot G, Cansell C, Sanchez C, Philippe C, Gigot V, Lemoine A, Trompier D, Henry T, Petrilli V, Py BF, Guillou H, Loiseau N, Ellero-Simatos S, Nahon JL, Rovère C, Grober J, Boudry G, Douard V, Benani A. Evidence for Constitutive Microbiota-Dependent Short-Term Control of Food Intake in Mice: Is There a Link with Inflammation, Oxidative Stress, Endotoxemia, and GLP-1? Antioxid Redox Signal 2022; 37:349-369. [PMID: 35166124 DOI: 10.1089/ars.2021.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Although prebiotics, probiotics, and fecal transplantation can alter the sensation of hunger and/or feeding behavior, the role of the constitutive gut microbiota in the short-term regulation of food intake during normal physiology is still unclear. Results: An antibiotic-induced microbiota depletion study was designed to compare feeding behavior in conventional and microbiota-depleted mice. Tissues were sampled to characterize the time profile of microbiota-derived signals in mice during consumption of either standard or high-fat food for 1 h. Pharmacological and genetic tools were used to evaluate the contribution of postprandial endotoxemia and inflammatory responses in the short-term regulation of food intake. We observed constitutive microbial and macronutrient-dependent control of food intake at the time scale of a meal; that is, within 1 h of food introduction. Specifically, microbiota depletion increased food intake, and the microbiota-derived anorectic effect became significant during the consumption of high-fat but not standard food. This anorectic effect correlated with a specific postprandial microbial metabolic signature, and did not require postprandial endotoxemia or an NOD-, LRR-, and Pyrin domain-containing protein 3-inflammasome-mediated inflammatory response. Innovation and Conclusion: These findings show that the gut microbiota controls host appetite at the time scale of a meal under normal physiology. Interestingly, a microbiota-derived anorectic effect develops specifically with a high-fat meal, indicating that gut microbiota activity is involved in the satietogenic properties of foods. Antioxid. Redox Signal. 37, 349-369.
Collapse
Affiliation(s)
- Selma Ben Fradj
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Emmanuelle Nédélec
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Juliette Salvi
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Mélanie Fouesnard
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Institut NuMeCan, INRAE (UMR1341), INSERM (UMR1241), Université de Rennes 1, St-Gilles, France
| | - Marine Huillet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Gaëtan Pallot
- Centre de Recherche Lipides, Nutrition, Cancer, INSERM (UMR1231), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Céline Cansell
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Clara Sanchez
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Catherine Philippe
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Gigot
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Aleth Lemoine
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Doriane Trompier
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm (U1111), CNRS (UMR5308), ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Virginie Petrilli
- Centre de Recherche en Cancérologie de Lyon, Inserm (U1052), CNRS (UMR5286), Université de Lyon 1, Lyon, France
| | - Benedicte F Py
- CIRI, Centre International de Recherche en Infectiologie, Inserm (U1111), CNRS (UMR5308), ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Jean-Louis Nahon
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Carole Rovère
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Jacques Grober
- Centre de Recherche Lipides, Nutrition, Cancer, INSERM (UMR1231), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Gaelle Boudry
- Institut NuMeCan, INRAE (UMR1341), INSERM (UMR1241), Université de Rennes 1, St-Gilles, France
| | - Véronique Douard
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
16
|
The Gut Microbiome, Mental Health, and Cognitive and Neurodevelopmental Disorders: A Scoping Review. J Nurse Pract 2022. [DOI: 10.1016/j.nurpra.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front Med (Lausanne) 2022; 9:813204. [PMID: 35433746 PMCID: PMC9009523 DOI: 10.3389/fmed.2022.813204] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota’s potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson’s disease, Alzheimer’s disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome’s role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.
Collapse
Affiliation(s)
- Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
18
|
Kamil RZ, Murdiati A, Juffrie M, Rahayu ES. Gut Microbiota Modulation of Moderate Undernutrition in Infants through Gummy Lactobacillus plantarum Dad-13 Consumption: A Randomized Double-Blind Controlled Trial. Nutrients 2022; 14:1049. [PMID: 35268024 PMCID: PMC8912314 DOI: 10.3390/nu14051049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Undernutrition is associated with gut microbiota unbalance, and probiotics are believed to restore it and improve gut integrity. A randomized double-blind controlled trial was conducted to evaluate the efficacy of gummy L. plantarum Dad-13 (108-9 CFU/3 g) to prevent the progression of severe undernutrition. Two groups of moderate undernutrition infants were involved in this study, namely the placebo (n = 15) and probiotics (n = 15) groups, and were required to consume the product for 50 days. 16S rRNA sequencing and qPCR were used for gut microbiota analysis, and gas chromatography was used to analyze Short-Chain Fatty Acid (SCFA). The daily food intake of both groups was recorded using food records. Our results revealed that the probiotic group had better improvements regarding the anthropometry and nutritional status. In addition, L. plantarum Dad-13 modulated the butyric acid-producing bacteria to increase and inhibit the growth of Enterobacteriaceae. This gut modulation was associated with the increment in SCFA, especially total SCFA, propionic, and butyric acid. The number of L. plantarum was increased after the probiotic intervention. However, L. plantarum Dad-13 was not able to change the alpha and beta diversity. Therefore, L. plantarum Dad-13 has been proven to promote the growth of beneficial bacteria.
Collapse
Affiliation(s)
- Rafli Zulfa Kamil
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (R.Z.K.); (A.M.)
- Centre for Food and Nutrition Studies, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
- Centre of Excellence for Probiotics, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
- Department of Food Technology, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Jl. Prof. Soedarto, Tembalang, Semarang 50275, Indonesia
| | - Agnes Murdiati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (R.Z.K.); (A.M.)
| | - Mohammad Juffrie
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako, Senolowo, Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Endang Sutriswati Rahayu
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (R.Z.K.); (A.M.)
- Centre for Food and Nutrition Studies, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
- Centre of Excellence for Probiotics, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
| |
Collapse
|
19
|
Yang Y, Long Y, Kang D, Liu C, Xiao J, Wu R, Zhao J. Effect of Bifidobacterium on olanzapine-induced body weight and appetite changes in patients with psychosis. Psychopharmacology (Berl) 2021; 238:2449-2457. [PMID: 34002246 DOI: 10.1007/s00213-021-05866-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/30/2021] [Indexed: 01/05/2023]
Abstract
RATIONALE Gut microbiota plays an important role in host metabolism. Antipsychotic drugs can result in metabolic abnormalities. Probiotics may ameliorate the antipsychotic drug-induced metabolic abnormalities by regulating gut microbiota. OBJECTIVE To determine whether Bifidobacterium intervention can ameliorate olanzapine-induced weight increase. METHODS Enrolled patients were assigned to either the olanzapine or olanzapine plus Bifidobacterium group. The following were assessed: body weight, body mass index (BMI), appetite, latency to increased appetite, and baseline weight increase of more than 7%. All assessments were conducted at baseline and at 4, 8, and 12 weeks of treatment. RESULTS We enrolled 70 patients with schizophrenia or schizophrenic affective disorder, and 67 completed the study. Treatment for 4 weeks led to between-group differences in weight change (2.4 vs. 1.1 kg, p < 0.05) and BMI (0.9 vs. 0.4, p < 0.05). However, this difference disappeared at 8 and 12 weeks of treatment (both p > 0.05). The two groups did not differ in appetite increase at any time point (p > 0.05). The mean time from olanzapine initiation to appetite increase was also not significantly different between the two groups (t = 1.243, p = 0.220). CONCLUSIONS Probiotics may mitigate olanzapine-induced weight gain in the early stage of treatment and delay olanzapine-induced appetite increase.
Collapse
Affiliation(s)
- Ye Yang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China
| | - Yujun Long
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China
| | - Dongyu Kang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China
| | - Chenchen Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China
| | - Jingmei Xiao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China
| | - Renrong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China.
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China
| |
Collapse
|
20
|
Tremblay A, Lingrand L, Maillard M, Feuz B, Tompkins TA. The effects of psychobiotics on the microbiota-gut-brain axis in early-life stress and neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110142. [PMID: 33069817 DOI: 10.1016/j.pnpbp.2020.110142] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Psychobiotics are considered among potential avenues for modulating the bidirectional communication between the gastrointestinal tract and central nervous system, defined as the microbiota-gut-brain axis (MGBA). Even though causality has not yet been established, intestinal dysbiosis has emerged as a hallmark of several diseases, including neuropsychiatric disorders (NPDs). The fact that the microbiota and central nervous system are co-developing during the first years of life has provided a paradigm suggesting a potential role of psychobiotics for earlier interventions. Studies in animal models of early-life stress (ELS) have shown that they can counteract the pervasive effects of stress during this crucial developmental period, and rescue behavioral symptoms related to anxiety and depression later in life. In humans, evidence from clinical studies on the efficacy of psychobiotics at improving mental outcomes in most NPDs remain limited, except for major depressive disorder for which more studies are available. Consequently, the beneficial effect of psychobiotics on depression-related outcomes in adults are becoming clearer. While the specific mechanisms at play remain elusive, the effect of psychobiotics are generally considered to involve the hypothalamic-pituitary-adrenal axis, intestinal permeability, and inflammation. It is anticipated that future clinical studies will explore the potential role of psychobiotics at mitigating the risk developing NPDs in vulnerable individuals or in the context of childhood adversity. However, such studies remain challenging at present in terms of design and target populations; the profound impact of stress on the proper development of the MGBA during the first year of life is becoming increasingly recognized, but the trajectories post-ELS in humans and the mechanisms by which stress affects the susceptibility to various NPDs are still ill-defined. As psychobiotics are likely to exert both shared and specific mechanisms, a better definition of target subpopulations would allow to tailor psychobiotics selection by aligning mechanistic properties with known pathophysiological mechanisms or risk factors. Here we review the available evidence from clinical and preclinical studies supporting a role for psychobiotics at ameliorating depression-related outcomes, highlighting the knowledge gaps and challenges associated with conducting longitudinal studies to address outstanding key questions in the field.
Collapse
Affiliation(s)
- Annie Tremblay
- Rosell® Institute for Microbiome and Probiotics, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Lucie Lingrand
- Lallemand Health Solutions, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - Morgane Maillard
- Lallemand Health Solutions, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - Berengere Feuz
- Lallemand Health Solutions, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - Thomas A Tompkins
- Rosell® Institute for Microbiome and Probiotics, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada.
| |
Collapse
|
21
|
Łoniewski I, Misera A, Skonieczna-Żydecka K, Kaczmarczyk M, Kaźmierczak-Siedlecka K, Misiak B, Marlicz W, Samochowiec J. Major Depressive Disorder and gut microbiota - Association not causation. A scoping review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110111. [PMID: 32976952 DOI: 10.1016/j.pnpbp.2020.110111] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022]
Abstract
One very promising hypothesis of Major Depressive Disorder (MDD) pathogenesis is the gut-brain axis (GBA) dysfunction, which can lead to subclinical inflammation, hypothalamic-pituitary (HPA) axis dysregulation, and altered neural, metabolic and endocrine pathways. One of the most important parts of GBA is gut microbiota, which was shown to regulate different functions in the central nervous system (CNS). The purpose of this scoping review was to present the current state of research on the relationship between MDD and gut microbiota and extract causal relationships. Further, we presented the relationship between the use of probiotics and antidepressants, and the microbiota changes. We evaluated the data from 27 studies aimed to investigate microbial fingerprints associated with depression phenotype. We abstracted data from 16 and 11 observational and clinical studies, respectively; the latter was divided into trials evaluating the effects of psychiatric treatment (n = 3) and probiotic intervention (n = 9) on the microbiome composition and function. In total, the data of 1187 individuals from observational studies were assessed. In clinical studies, there were 490 individuals analysed. In probiotic studies, 220 and 218 patients with MDD received the intervention and non-active study comparator, respectively. It was concluded that in MDD, the microbiota is altered. Although the mechanism of this relationship is unknown, we hypothesise that the taxonomic changes observed in patients with MDD are associated with bacterial proinflammatory activity, reduced Schort Chain Fatty Acids (SCFAs) production, impaired intestinal barrier integrity and neurotransmitter production, impaired carbohydrates, tryptophane and glutamate metabolic pathways. However, only in few publications this effect was confirmed by metagenomic, metabolomic analysis, or by assessment of immunological parameters or intestinal permeability markers. Future research requires standardisation process starting from patient selection, material collection, DNA sequencing, and bioinformatic analysis. We did not observe whether antidepressive medications influence on gut microbiota, but the use of psychobiotics in patients with MDD has great prospects; however, this procedure requires also standardisation and thorough mechanistic research. The microbiota should be treated as an environmental element, which considers the aetiopathogenesis of the disease and provides new possibilities for monitoring and treating patients with MDD.
Collapse
Affiliation(s)
- Igor Łoniewski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24 Street, 71-460 Szczecin, Poland.
| | - Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24 Street, 71-460 Szczecin, Poland.
| | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland.
| | | | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland.
| |
Collapse
|
22
|
Updated Review and Meta-Analysis of Probiotics for the Treatment of Clinical Depression: Adjunctive vs. Stand-Alone Treatment. J Clin Med 2021; 10:jcm10040647. [PMID: 33567631 PMCID: PMC7915600 DOI: 10.3390/jcm10040647] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
Recent years have seen a rapid increase in the use of gut microbiota-targeting interventions, such as probiotics, for the treatment of psychiatric disorders. The objective of this update review was to evaluate all randomised controlled clinical trial evidence on the efficacy of probiotics for clinical depression. Cochrane guidelines for updated reviews were followed. By searching PubMed and Web of Science databases, we identified 546 new records since our previous review. A total of seven studies met selection criteria, capturing 404 people with depression. A random effects meta-analysis using treatment type (stand-alone vs. adjunctive) as subgroup was performed. The results demonstrated that probiotics are effective in reducing depressive symptoms when administered in addition to antidepressants (SMD = 0.83, 95%CI 0.49-1.17), however, they do not seem to offer significant benefits when used as stand-alone treatment (SMD = -0.02, 95%CI -0.34-0.30). Potential mechanisms of action may be via increases in brain-derived neurotrophic factor (BDNF) and decreases in C-reactive protein (CRP), although limited evidence is available at present. This review offers stronger evidence to support the clinical use of probiotics in depressed populations and provides an insight into the mode of administration more likely to yield antidepressant effects.
Collapse
|
23
|
Heidarzadeh-Rad N, Gökmen-Özel H, Kazemi A, Almasi N, Djafarian K. Effects of a Psychobiotic Supplement on Serum Brain-derived Neurotrophic Factor Levels in Depressive Patients: A Post Hoc Analysis of a Randomized Clinical Trial. J Neurogastroenterol Motil 2020; 26:486-495. [PMID: 32989186 PMCID: PMC7547201 DOI: 10.5056/jnm20079] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/15/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background/Aims Psychobiotics are probiotics or prebiotics that, upon ingestion in adequate amounts, yield positive influence on mental health via microbiota-gut-brain axis regulation to modulate the circulating cytokines, chemokines, neurotransmitters, or neurotrophins levels. We have recently shown that a psychobiotic combination (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175; CEREBIOME) significantly improved depression symptoms in patients with depression. Recent animal data suggest the influence of the gut microbiota on brain-derived neurotrophic factor (BDNF), which was shown to correlate with antidepressant response in depressive patients. Therefore, we conducted this exploratory post hoc analysis of BDNF levels to clarify the mechanism of action of this psychobiotic in our cohort. Methods Our study was a double-blind, randomized controlled trial of patients with low-to-moderate depression receiving either a probiotic combination, prebiotic or placebo. From the 110 patients randomized in the trial, 78 were included in this post hoc analysis (probiotic, n = 28; prebiotic and placebo, n = 25). We compared serum BDNF levels from participants at baseline and endpoint, and assessed the Pearson correlation between depression severity and BDNF levels for each intervention. Results We found that post-intervention BDNF levels were significantly different between groups (P < 0.001). Furthermore, BDNF levels increased significantly in the probiotic group compared to both the prebiotic (P < 0.001) and placebo groups (P = 0.021), which inversely correlated with depression severity compared to placebo (ANOVA/ANCOVA, P = 0.012; Pearson, r = -0.79, P < 0.001). In the prebiotic group, BDNF levels reduced but not significantly compared with placebo group (P > 0.05). Conclusion Eight-week supplementation with B. longum and L. helveticus in depressive patients improved depression symptoms, possibly by increasing BDNF levels.
Collapse
Affiliation(s)
- Nazanin Heidarzadeh-Rad
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Hülya Gökmen-Özel
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Asma Kazemi
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Almasi
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Jensen EA, Young JA, Mathes SC, List EO, Carroll RK, Kuhn J, Onusko M, Kopchick JJ, Murphy ER, Berryman DE. Crosstalk between the growth hormone/insulin-like growth factor-1 axis and the gut microbiome: A new frontier for microbial endocrinology. Growth Horm IGF Res 2020; 53-54:101333. [PMID: 32717585 PMCID: PMC7938704 DOI: 10.1016/j.ghir.2020.101333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022]
Abstract
Both the GH/IGF-1 axis and the gut microbiota independently play an important role in host growth, metabolism, and intestinal homeostasis. Inversely, abnormalities in GH action and microbial dysbiosis (or a lack of diversity) in the gut have been implicated in restricted growth, metabolic disorders (such as chronic undernutrition, anorexia nervosa, obesity, and diabetes), and intestinal dysfunction (such as pediatric Crohn's disease, colonic polyps, and colon cancer). Over the last decade, studies have demonstrated that the microbial impact on growth may be mediated through the GH/IGF-1 axis, pointing toward a potential relationship between GH and the gut microbiota. This review covers current research on the GH/IGF-1 axis and the gut microbiome and its influence on overall host growth, metabolism, and intestinal health, proposing a bidirectional relationship between GH and the gut microbiome.
Collapse
Affiliation(s)
- Elizabeth A Jensen
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States of America
| | - Jonathan A Young
- Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America
| | - Samuel C Mathes
- Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America
| | - Edward O List
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America; The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America
| | - Ronan K Carroll
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America
| | - Jaycie Kuhn
- Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America
| | - Maria Onusko
- The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America; Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, United States of America
| | - John J Kopchick
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America; The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America
| | - Erin R Murphy
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America; Infectious and Tropical Diseases Institute, Irvine Hall, Ohio University, Athens, OH, United States of America
| | - Darlene E Berryman
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America; The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America.
| |
Collapse
|
25
|
Chao L, Liu C, Sutthawongwadee S, Li Y, Lv W, Chen W, Yu L, Zhou J, Guo A, Li Z, Guo S. Effects of Probiotics on Depressive or Anxiety Variables in Healthy Participants Under Stress Conditions or With a Depressive or Anxiety Diagnosis: A Meta-Analysis of Randomized Controlled Trials. Front Neurol 2020; 11:421. [PMID: 32528399 PMCID: PMC7257376 DOI: 10.3389/fneur.2020.00421] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Probiotics have been associated with the treatment of depression and anxiety. However, the results reported in the literature have been inconsistent, and no meta-analysis specifically reported probiotics used on participants with varying levels of emotional state. Methods: This meta-analysis aimed to study the effectiveness of probiotics on anxious or depressive symptomatology for participants under stress conditions or with a depressive or anxiety disorder diagnosis. Medline, PubMed, EMBASE, and the Cochrane Library were searched through December 2019 for randomized controlled trials (RCTs). The primary outcomes were depression and anxiety scores. Main inclusion criteria: RCTs of probiotics for participants with a mood or emotional disorder diagnosis or under stress situations; and all participants were adults (age ≥16 years); Assessed by the modified Jadad assessment scale found seven high-quality studies and three low-quality studies. Results: Ten clinical trials (n = 685 total participants) were included based on the inclusion and exclusion criteria. All studies were assessed as low or moderate risk of bias. The meta-analysis showed that probiotics could significantly reduce the depression scale for patients with anxiety and depression, and healthy participants under stress. However, there was no significant difference between the probiotics and placebo groups in the reduction of patient anxiety scores, even if they are depressive or anxious patients or healthy participants under stress. Subgroup analysis revealed that probiotics had significant effect on depressive symptoms just in patients with depression, and no significant change in anxiety in patients, and no improvement in participant performance under stress. Conclusions: Probiotics could alleviate depressive symptoms in patients with a depression diagnosis or depression scores also in anxiety disorder diagnosis, and suggesting that probiotics may be adjunct therapies for mood or emotional disorders. Therefore, it is essential that probiotics could be more involved in the treatment of patients with depression in the future. The evidence of probiotics successfully treating depression is still insufficient, and more high-quality studies on patients with depression are still needed.
Collapse
Affiliation(s)
- Limin Chao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Cui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | - Yuefei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenqian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Linzeng Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiahao Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ao Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zengquan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|