1
|
Nham P, Halley B, Van Rompay KK, Roberts J, Yee J. Simian retrovirus transmission in rhesus macaques. J Med Primatol 2024; 53:e12726. [PMID: 39073161 PMCID: PMC11299757 DOI: 10.1111/jmp.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Historically, to generate Simian Retrovirus (SRV) positive control materials, we performed in vivo passage by inoculating uninfected rhesus macaques with whole blood from an SRV-1 infected (antibody and PCR positive) macaque. However, recent attempts using this approach have failed. This study reports observations and explores why it has become more difficult to transmit SRV via in vivo passage.
Collapse
Affiliation(s)
- Peter Nham
- California National Primate Research Center, University of California, Davis, CA USA
| | - Bryson Halley
- California National Primate Research Center, University of California, Davis, CA USA
| | - Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, CA USA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jeffrey Roberts
- California National Primate Research Center, University of California, Davis, CA USA
- Department of Medicine and Epidemiology School of Veterinary Medicine, University of California, Davis, CA, USA
| | - JoAnn Yee
- California National Primate Research Center, University of California, Davis, CA USA
| |
Collapse
|
2
|
Bissinger DW, Wittenburg LA, Garzel LM, Stockinger DE, Timmel GB. Pharmacokinetics of a Single Transdermal Dose of Mirtazapine in Rhesus Macaques ( Macaca mulatta). Comp Med 2023; 73:432-438. [PMID: 38217071 PMCID: PMC10752366 DOI: 10.30802/aalas-cm-23-000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/18/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Decreased appetite is a common clinical problem in captive rhesus macaques (Macaca mulatta). Mirtazapine, a tetracyclic antidepressant originally developed for humans, has shown promise as a safe and effective promoter of weight gain and appetite in several veterinary species including rhesus and cynomolgus macaques. Although mirtazapine is available as oral formulations, transdermal delivery in macaques with reduced appetite would allow quick, painless, topical application. Here we describe the pharmacokinetics of a single application of a widely available veterinary transdermal mirtazapine formulation in 6 rhesus macaques. A dose of 0.5 mg/kg of transdermal mirtazapine ointment that has proven to be effective in rhesus was applied to the caudal pinnae of 3 female and 3 male young adult macaques. Serum was collected at 0, 0.5, 1, 3, 6, 8, 12, 24, 36, 48, and 72 h after administration. Our data indicate transdermal mirtazapine is absorbed at a lower level in rhesus as compared with published values in domestic cats (rhesus peak serum concentration: 1.2 ± 0.3 ng/mL), while drug half-life is longer than that reported in cats (rhesus: 33 ± 7 h). Mirtazapine reaches peak plasma concentrations in rhesus at 16 ± 10 h after administration; our model indicates that up to 5 d of serial dosing may be necessary to reach steady state. Our preliminary data also suggest that sex differences may contribute to efficacy and/or indicate sex-based differences, as male macaques reached Tmax more quickly than females (19 ± 2 h in females and 8 ± 3 h in males) and showed higher variation in half-life (33 ± 4 h in females and 34 ± 11 h in males). While previous work indicates clinical efficacy of the 0.5-mg/kg dosage in macaques, further investigation is warranted to determine if rhesus may benefit from higher recommended doses than companion animal species.
Collapse
Affiliation(s)
- David W Bissinger
- Primate Medicine Department, California National Primate Research Center, and
| | - Luke A Wittenburg
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis; Davis, California
| | - Laura M Garzel
- Primate Medicine Department, California National Primate Research Center, and
| | - Diane E Stockinger
- Primate Medicine Department, California National Primate Research Center, and
| | - Gregory B Timmel
- Primate Medicine Department, California National Primate Research Center, and
| |
Collapse
|
3
|
Xu L, Yang Y, Li Y, Lu Y, Gao C, Bian X, Liu Z, Sun Q. Characterizing the Pathogenicity and Immunogenicity of Simian Retrovirus Subtype 8 (SRV-8) Using SRV-8-Infected Cynomolgus Monkeys. Viruses 2023; 15:1538. [PMID: 37515223 PMCID: PMC10384433 DOI: 10.3390/v15071538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Simian retrovirus subtype 8 (SRV-8) infections have been reported in cynomolgus monkeys (Macaca fascicularis) in China and America, but its pathogenicity and immunogenicity are rarely reported. In this work, the SRV-8-infected monkeys were identified from the monkeys with anemia, weight loss, and diarrhea. To clarify the impact of SRV-8 infection on cynomolgus monkeys, infected monkeys were divided into five groups according to disease progression. Hematoxylin (HE) staining and viral loads analysis showed that SRV-8 mainly persisted in the intestine and spleen, causing tissue damage. Additionally, the dynamic variations of blood routine indexes, innate and adaptive immunity, and the transcriptomic changes in peripheral blood cells were analyzed during SRV-8 infection. Compared to uninfected animals, red blood cells, hemoglobin, and white blood cells were reduced in SRV-8-infected monkeys. The percentage of immune cell populations was changed after SRV-8 infection. Furthermore, the number of hematopoietic stem cells decreased significantly during the early stages of SRV-8 infection, and returned to normal levels after antibody-mediated viral clearance. Finally, global transcriptomic analysis in PBMCs from SRV-8-infected monkeys revealed distinct gene expression profiles across different disease stages. In summary, SRV-8 infection can cause severe pathogenicity and immune disturbance in cynomolgus monkeys, and it might be responsible for fatal virus-associated immunosuppressive syndrome.
Collapse
Affiliation(s)
- Libing Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunpeng Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yandong Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Lu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changshan Gao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyan Bian
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zongping Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qiang Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
4
|
Ohta E. Pathologic characteristics of infectious diseases in macaque monkeys used in biomedical and toxicologic studies. J Toxicol Pathol 2023; 36:95-122. [PMID: 37101957 PMCID: PMC10123295 DOI: 10.1293/tox.2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/16/2023] [Indexed: 04/28/2023] Open
Abstract
Nonhuman primates (NHPs), which have many advantages in scientific research and are often the only relevant animals to use in assessing the safety profiles and biological or pharmacological effects of drug candidates, including biologics. In scientific or developmental experiments, the immune systems of animals can be spontaneously compromised possibly due to background infection, experimental procedure-associated stress, poor physical condition, or intended or unintended mechanisms of action of test articles. Under these circumstances, background, incidental, or opportunistic infections can seriously can significantly complicate the interpretation of research results and findings and consequently affect experimental conclusions. Pathologists and toxicologists must understand the clinical manifestations and pathologic features of infectious diseases and the effects of these diseases on animal physiology and experimental results in addition to the spectrum of infectious diseases in healthy NHP colonies. This review provides an overview of the clinical and pathologic characteristics of common viral, bacterial, fungal, and parasitic infectious diseases in NHPs, especially macaque monkeys, as well as methods for definitive diagnosis of these diseases. Opportunistic infections that can occur in the laboratory setting have also been addressed in this review with examples of cases of infection disease manifestation that was observed or influenced during safety assessment studies or under experimental conditions.
Collapse
Affiliation(s)
- Etsuko Ohta
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai,
Tsukuba-shi, Ibaraki 300-2635, Japan
- *Corresponding author: E Ohta (e-mail: )
| |
Collapse
|
5
|
Dogadov DI, Kyuregyan KK, Goncharenko AM, Mikhailov MI. Measles in non-human primates. J Med Primatol 2023; 52:135-143. [PMID: 36440505 DOI: 10.1111/jmp.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
It is six decades since the measles vaccine was first introduced, and yet we continue to see frequent outbreaks of this disease occurring all over the world. Many non-human primate (NHP) species, including apes, are susceptible to the measles virus. Spontaneous measles outbreaks have been described in a number of zoos and primate centers worldwide. Research into the spontaneous and experimental infection of laboratory primates with measles represents an invaluable source of information regarding the biology and pathogenesis of this virus and continues to be an irreplaceable and unique tool for testing vaccines and treatments. The purpose of this literature review is to summarize and analyze published data on the circulation of the measles virus among free-living synanthropic and captive primate populations, as well as the results of experiments that have modeled this infection in NHPs.
Collapse
Affiliation(s)
- Dmitriy I Dogadov
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia, Sochi, Russia
| | - Karen K Kyuregyan
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| | - Alexandra M Goncharenko
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia, Sochi, Russia
| | - Mikhail I Mikhailov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
6
|
Capitanio JP, Del Rosso LA, Spinner A. Variation in infant rhesus monkeys' (Macaca mulatta) neutrophil-to-lymphocyte ratio is associated with environmental conditions, emotionality, and cortisol concentrations, and predicts disease-related outcomes. Brain Behav Immun 2023; 109:105-116. [PMID: 36681357 DOI: 10.1016/j.bbi.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR) is a predictor of morbidity for a variety of medical conditions, but little is known about how variation in NLR arises. We examined variation in this measure in a sample of 4577 infant rhesus monkeys (54.8 % female), who participated in the BioBehavioral Assessment program at the California National Primate Research Center at 3-4 months of age. Lower values for NLR were seen for animals reared indoors, for animals that were raised to be free of specific pathogens, and for males. In addition lower NLR was associated with higher stress values of cortisol and with greater emotionality in response to an acute stressor. Finally, lower NLR in infancy was associated with greater risk for developing airways hyperresponsiveness (a hallmark of asthma); with display of diarrhea up to 3.97 years later; and with greater viral load when infected with the simian immunodeficiency virus at a mean of 6.1 years of age. Infant NLR was a better predictor of viral load than was a contemporaneously obtained measure of NLR. Infant and adult values of NLR were only modestly correlated; one reason may be that the infant measure was obtained during stressful conditions and the adult measure was obtained under baseline conditions. We propose that NLR is an integrated outcome measure reflecting organization and interaction of stress-response and immune systems. As such, assessment of NLR under conditions of stress may be a particularly useful marker of individual differences in morbidity, especially for conditions in which stress plays an important role, as in asthma, diarrhea/colitis, and AIDS.
Collapse
Affiliation(s)
- John P Capitanio
- Department of Psychology, University of California, Davis, CA, USA; California National Primate Research Center, University of California, Davis, CA, USA.
| | - Laura A Del Rosso
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Abigail Spinner
- California National Primate Research Center, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Yee JL, Strelow LI, White JA, Rosenthal AN, Barry PA. Horizontal transmission of endemic viruses among rhesus macaques (Macaca mulatta): Implications for human cytomegalovirus vaccine/challenge design. J Med Primatol 2023; 52:53-63. [PMID: 36151734 PMCID: PMC9825633 DOI: 10.1111/jmp.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Rhesus macaques are natural hosts to multiple viruses including rhesus cytomegalovirus (RhCMV), rhesus rhadinovirus (RRV), and Simian Foamy Virus (SFV). While viral infections are ubiquitous, viral transmissions to uninfected animals are incompletely defined. Management procedures of macaque colonies include cohorts that are Specific Pathogen Free (SPF). Greater understanding of viral transmission would augment SPF protocols. Moreover, vaccine/challenge studies of human viruses would be enhanced by leveraging transmission of macaque viruses to recapitulate expected challenges of human vaccine trials. MATERIALS AND METHODS This study characterizes viral transmissions to uninfected animals following inadvertent introduction of RhCMV/RRV/SFV-infected adults to a cohort of uninfected juveniles. Following co-housing with virus-positive adults, juveniles were serially evaluated for viral infection. RESULTS Horizontal viral transmission was rapid and absolute, reaching 100% penetrance between 19 and 78 weeks. CONCLUSIONS This study provides insights into viral natural histories with implications for colony management and modeling vaccine-mediated immune protection studies.
Collapse
Affiliation(s)
- JoAnn L Yee
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
| | - Lisa I Strelow
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
- Center for Immunology and Infectious Diseases, Davis, California, USA
| | - Jessica A White
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
| | - Ann N Rosenthal
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
| | - Peter A Barry
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
- Center for Immunology and Infectious Diseases, Davis, California, USA
| |
Collapse
|
8
|
Dunay E, Owens LA, Dunn CD, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in sanctuary chimpanzees across Africa. Am J Primatol 2023; 85:e23452. [PMID: 36329642 PMCID: PMC9812903 DOI: 10.1002/ajp.23452] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Infectious disease is a major concern for both wild and captive primate populations. Primate sanctuaries in Africa provide critical protection to thousands of wild-born, orphan primates confiscated from the bushmeat and pet trades. However, uncertainty about the infectious agents these individuals potentially harbor has important implications for their individual care and long-term conservation strategies. We used metagenomic next-generation sequencing to identify viruses in blood samples from chimpanzees (Pan troglodytes) in three sanctuaries in West, Central, and East Africa. Our goal was to evaluate whether viruses of human origin or other "atypical" or unknown viruses might infect these chimpanzees. We identified viruses from eight families: Anelloviridae, Flaviviridae, Genomoviridae, Hepadnaviridae, Parvoviridae, Picobirnaviridae, Picornaviridae, and Rhabdoviridae. The majority (15/26) of viruses identified were members of the family Anelloviridae and represent the genera Alphatorquevirus (torque teno viruses) and Betatorquevirus (torque teno mini viruses), which are common in chimpanzees and apathogenic. Of the remaining 11 viruses, 9 were typical constituents of the chimpanzee virome that have been identified in previous studies and are also thought to be apathogenic. One virus, a novel tibrovirus (Rhabdoviridae: Tibrovirus) is related to Bas-Congo virus, which was originally thought to be a human pathogen but is currently thought to be apathogenic, incidental, and vector-borne. The only virus associated with disease was rhinovirus C (Picornaviridae: Enterovirus) infecting one chimpanzee subsequent to an outbreak of respiratory illness at that sanctuary. Our results suggest that the blood-borne virome of African sanctuary chimpanzees does not differ appreciably from that of their wild counterparts, and that persistent infection with exogenous viruses may be less common than often assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Leah A. Owens
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee TrustEntebbeUganda
| | - Rebeca Atencia
- Jane Goodall Institute CongoPointe‐NoireRepublic of Congo
| | - Megan F. Cole
- Department of AnthropologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Averill Cantwell
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Alexandra G. Rosati
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of AnthropologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
9
|
Wu C, Hong SG, Bonifacino A, Dunbar CE. Lentiviral Transduction of Nonhuman Primate Hematopoietic Stem and Progenitor Cells. Methods Mol Biol 2023; 2567:63-84. [PMID: 36255695 DOI: 10.1007/978-1-0716-2679-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The nonhuman primate (NHP) animal model is an important predictive preclinical model for developing gene and cell therapies. It is also an experimental animal model used to study hematopoietic stem and progenitor cell (HSPC) biology, with the capability of serving as a step for the translation of the basic research concepts from small animals to humans. Lentiviral vectors are currently the standard gene delivery vehicles for transduction of HSPCs in the clinical setting. They have proven to be less genotoxic and more efficient than the previously used murine γ-retroviruses. Transplantation of lentiviral vector-transduced HSPCs into autologous macaques has been well developed over the past two decades. In this chapter, we provide detailed methodologies for lentiviral vector transduction of rhesus macaque HSPCs, including production and titration of lentiviral vector, purification of CD34+ HSPCs, and lentiviral vector transduction and assessment.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aylin Bonifacino
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Yee JL, Grant R, Haertel AJ, Allers C, Carpenter AB, Van Rompay KKA, Roberts JA. Multi-site proficiency testing for validation and standardization of assays to detect specific pathogen-free viruses, coronaviruses, and other agents in nonhuman primates. J Med Primatol 2022; 51:234-245. [PMID: 35426147 PMCID: PMC9851150 DOI: 10.1111/jmp.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 01/21/2023]
Abstract
In efforts to increase rigor and reproducibility, the USA National Primate Research Centers (NPRCs) have focused on qualification of reagents, cross-laboratory validations, and proficiency testing for methods to detect infectious agents and accompanying immune responses in nonhuman primates. The pathogen detection working group, comprised of laboratory scientists, colony managers, and leaders from the NPRCs, has championed the effort to produce testing that is reliable and consistent across laboratories. Through multi-year efforts with shared proficiency samples, testing percent agreement has increased from as low as 67.1% for SRV testing in 2010 to 92.1% in 2019. The 2019 average agreement for the four basic SPF agents improved to >96% (86.5% BV, 98.9 SIV, 92.1 SRV, and 97.0 STLV). As new pathogens such as SARS coronavirus type 2 emerge, these steps can now be quickly replicated to develop and implement new assays that ensure rigor, reproducibly, and quality for NHP pathogen detection.
Collapse
Affiliation(s)
- JoAnn L. Yee
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, CA
| | - Richard Grant
- Primate Pathogen Detection Services Laboratory, Washington National Primate Research Center, University of Washington, Seattle, WA
| | - Andrew J. Haertel
- Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
| | - Carolina Allers
- Pathogen Detection and Quantification Core, Tulane National Primate Research Center, Tulane University, Covington, LA
| | - Amanda B. Carpenter
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, CA
| | - Koen K. A. Van Rompay
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, CA,Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis , CA
| | - Jeffrey A. Roberts
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, CA,Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA
| |
Collapse
|
11
|
Yee J, Carpenter A, Nham P, Halley B, Van Rompay KKA, Roberts J. Developing and validating SARS-CoV-2 assays for nonhuman primate surveillance. J Med Primatol 2022; 51:264-269. [PMID: 35794847 PMCID: PMC9350325 DOI: 10.1111/jmp.12604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Introduction In early 2020, the California National Primate Research Center implemented surveillance to address the threat of SARS‐CoV‐2 infection in its nonhuman primate colony. Materials/Methods To detect antiviral antibodies, multi‐antigen assays were developed and validated on enzyme immunoassay and multiplex microbead immunofluorescent assay (MMIA) platforms. To detect viral RNA, RT‐PCR was also performed. Results/Conclusion Using a 4plex, antibody was identified in 16/16 experimentally infected animals; and specificity for spike, nucleocapsid, receptor binding domain, and whole virus antigens was 95.2%, 93.8%, 94.3%, and 97.1%, respectively on surveillance samples. Six laboratories compared this MMIA favorably with nine additional laboratory‐developed or commercially available assays. Using a screen and confirm algorithm, 141 of the last 2441 surveillance samples were screen‐reactive requiring confirmatory testing. Although 35 samples were reactive to either nucleocapsid or spike; none were reactive to both. Over 20 000 animals have been tested and no spontaneous infections have so far been confirmed across the NIH sponsored National Primate Research Centers.
Collapse
Affiliation(s)
- JoAnn Yee
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Amanda Carpenter
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Peter Nham
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Bryson Halley
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Koen K A Van Rompay
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California, USA.,Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Jeffrey Roberts
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California, USA.,Department Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
12
|
Capitanio JP, Sommet N, Del Rosso L. The relationship of maternal rank, 5-HTTLPR genotype, and MAOA-LPR genotype to temperament in infant rhesus monkeys (Macaca mulatta). Am J Primatol 2022; 84:e23374. [PMID: 35322905 PMCID: PMC10461592 DOI: 10.1002/ajp.23374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 11/11/2022]
Abstract
Temperament is a construct whose manifestations are quantifiable from an early age, and whose origins have been proposed as "biological." Our goal was to determine whether maternal rank and infant genotype are associated with five measures of temperament in 3- to 4-month old rhesus monkeys (Macaca mulatta), all of whom were born and reared by their mothers in large, outdoor, half-acre cages. Maternal rank was defined as the proportion of animals outranked by each female, and the two genes of interest to us were monoamine oxidase and serotonin transporter, both of which are polymorphic in their promoter regions (MAOA-LPR and 5-HTTLPR, respectively), with one allele of each gene considered a "plasticity" allele, conferring increased sensitivity to environmental events. Our large sample size (n = 2014-3140) enabled us to examine the effects of individual genotypes rather than combining genotypes as is often done. Rank was positively associated with Confident temperament, but only for animals with the 5-repeat allele for MAOA-LPR. Rank had no other effect on temperament. In contrast, genotype had many different effects, with 5-HTTLPR associated with behavioral inhibition, and MAOA-LPR associated with ratings-based measures of temperament. We also examined the joint effect of the two genotypes and found some evidence for a dose-response: animals with the plasticity alleles for both genes were more likely to be behaviorally inhibited. Our results suggest phenotypic differences between animals possessing alleles for MAOA-LPR that show functional equivalence based on in vitro tests, and our data for 5-HTTLPR revealed differences between short/short homozygotes and long/short heterozygotes, strongly suggesting that combining genotypes for statistical analysis should be avoided if possible. Our analysis also provides evidence of sex differences in temperament, and, to our knowledge, the only evidence of differences in temperament based on specific pathogen-free status. We suggest several directions for future research.
Collapse
Affiliation(s)
- John P. Capitanio
- Neuroscience and Behavior Unit, California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Department of PsychologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Nicolas Sommet
- LIVES Center, Faculty of Social and Political SciencesUniversity of LausanneLausanneSwitzerland
| | - Laura Del Rosso
- Neuroscience and Behavior Unit, California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
13
|
Capitanio JP, Del Rosso LA, Gee N, Lasley BL. Adverse biobehavioral effects in infants resulting from pregnant rhesus macaques' exposure to wildfire smoke. Nat Commun 2022; 13:1774. [PMID: 35365649 PMCID: PMC8975955 DOI: 10.1038/s41467-022-29436-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
As wildfires across the world increase in number, size, and intensity, exposure to wildfire smoke (WFS) is a growing health problem. To date, however, little is known for any species on what might be the behavioral or physiological consequences of prenatal exposure to WFS. Here we show that infant rhesus monkeys exposed to WFS in the first third of gestation (n = 52) from the Camp Fire (California, November, 2018) show greater inflammation, blunted cortisol, more passive behavior, and memory impairment compared to animals conceived after smoke had dissipated (n = 37). Parallel analyses, performed on a historical control cohort (n = 2490), did not support the alternative hypothesis that conception timing alone could explain the results. We conclude that WFS may have a teratogenic effect on the developing fetus and speculate on mechanisms by which WFS might affect neural development. Little is known about the consequences of prenatal exposure to wildfire smoke on biobehavioural outcomes. Here, the authors show that infant rhesus monkeys exposed early in gestation to wildfire smoke from the 2018 Camp Fire in California show more inflammation, blunted cortisol and altered behaviour outcomes compared to non-exposed animals.
Collapse
Affiliation(s)
- John P Capitanio
- California National Primate Research Center, University of California, Davis, CA, USA. .,Department of Psychology, University of California, Davis, CA, USA.
| | - Laura A Del Rosso
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Nancy Gee
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Bill L Lasley
- Center for Health and the Environment, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Murray KN, Clark TS, Kebus MJ, Kent ML. Specific Pathogen Free - A review of strategies in agriculture, aquaculture, and laboratory mammals and how they inform new recommendations for laboratory zebrafish. Res Vet Sci 2021; 142:78-93. [PMID: 34864461 PMCID: PMC9120263 DOI: 10.1016/j.rvsc.2021.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Specific pathogen-free (SPF) animals are bred and managed to exclude pathogens associated with significant morbidity or mortality that may secondarily pose a risk to public health, food safety and food security, and research replicability. Generating and maintaining SPF animals requires detailed biosecurity planning for control of housing, environmental, and husbandry factors and a history of regimented pathogen testing. Successful programs involve comprehensive risk analysis and exclusion protocols that are rooted in a thorough understanding of pathogen lifecycle and modes of transmission. In this manuscript we review the current state of SPF in domestic agriculture (pigs and poultry), aquaculture (salmonids and shrimp), and small laboratory mammals. As the use of laboratory fish, especially zebrafish (Danio rerio), as models of human disease is expanding exponentially, it is prudent to define standards for SPF in this field. We use the guiding principles from other SPF industries and evaluate zebrafish pathogens against criteria to be on an SPF list, to propose recommendations for establishing and maintaining SPF laboratory zebrafish.
Collapse
Affiliation(s)
- Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA.
| | - Tannia S Clark
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myron J Kebus
- Wisconsin Department of Agriculture, Trade and Consumer Protection, Madison, WI 53708, USA
| | - Michael L Kent
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA; Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
15
|
Capitanio JP. Knowledge of Biobehavioral Organization Can Facilitate Better Science: A Review of the BioBehavioral Assessment Program at the California National Primate Research Center. Animals (Basel) 2021; 11:2445. [PMID: 34438902 PMCID: PMC8388628 DOI: 10.3390/ani11082445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Animals vary on intrinsic characteristics such as temperament and stress responsiveness, and this information can be useful to experimentalists for identifying more homogeneous subsets of animals that show consistency in risk for a particular research outcome. Such information can also be useful for balancing experimental groups, ensuring animals within an experiment have similar characteristics. In this review, we describe the BioBehavioral Assessment Program at the California National Primate Research Center, which, since its inception in 2001, has been providing quantitative information on intrinsic characteristics to scientists for subject selection and balancing, and to colony management staff for management purposes. We describe the program and review studies relating to asthma, autism, behavioral inhibition, etc., where the BBA Program was used to select animals. We also review our work, showing that factors such as rearing, ketamine exposure, and prenatal experience can affect biobehavioral organization in ways that some investigators might want to control for in their studies. Attention to intrinsic characteristics of subject populations is consistent with the growing interest in precision medicine and can lead to a reduction in animal numbers, savings in time and money for investigators, and reduced distress for the animals.
Collapse
Affiliation(s)
- John P Capitanio
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
Contreras MA, Arnegard ME, Chang MC, Hild S, Grieder F, Murphy SJ. Nonhuman primate models for SARS-CoV-2 Research: Managing demand for specific-pathogen-free (SPF) animals. Lab Anim (NY) 2021; 50:200-201. [PMID: 34163043 DOI: 10.1038/s41684-021-00810-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Miguel A Contreras
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA.
| | - Matthew E Arnegard
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael C Chang
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Sheri Hild
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Franziska Grieder
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie J Murphy
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Guerriero KA, Murnane RD, Lewis TB, Brown B, Baldessari A, Jeffery DA, Malinowski CM, Fuller DH, O'Connor MA. Recrudescence of Natural Coccidioidomycosis During Combination Antiretroviral Therapy in a Pigtail Macaque Experimentally Infected with Simian Immunodeficiency Virus. AIDS Res Hum Retroviruses 2021; 37:505-509. [PMID: 33356854 DOI: 10.1089/aid.2020.0228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Coccidioidomycosis is a common fungal infection in people living with HIV-1, particularly in southwest regions of the United States where the Coccidioides sp. is endemic, but rates of infection have significantly declined in the era of potent combination antiretroviral therapy (cART). Natural coccidioidomycosis also occurs in outdoor-housed macaques residing in the southwestern states that are utilized in biomedical research. Here, we report on a recrudescent case of previously treated, naturally occurring coccidioidomycosis in a pigtail macaque that was experimentally infected with simian immunodeficiency virus (SIV) and virally suppressed on cART. Coccidioides IgG antibody titer became detectable before discontinuation of cART, but symptomatic coccidioidomycosis developed subsequent to cART withdrawal. This animal was screened and treated in accordance with the guidelines for the prevention and treatment of coccidioidomycosis, suggesting that macaques with a history of coccidioidomycosis should be excluded from enrollment in HIV studies. Continual monitoring for known endemic pathogens based on the colony of origin is also recommended for animals utilized for HIV/AIDS research.
Collapse
Affiliation(s)
| | - Robert D. Murnane
- Washington National Primate Research Center, Seattle, Washington, USA
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Thomas B. Lewis
- Washington National Primate Research Center, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Brieann Brown
- Washington National Primate Research Center, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Audrey Baldessari
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Dean A. Jeffery
- Washington National Primate Research Center, Seattle, Washington, USA
| | | | - Deborah H. Fuller
- Washington National Primate Research Center, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Megan A. O'Connor
- Washington National Primate Research Center, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Bochart RM, Busman-Sahay K, Bondoc S, Morrow DW, Ortiz AM, Fennessey CM, Fischer MB, Shiel O, Swanson T, Shriver-Munsch CM, Crank HB, Armantrout KM, Barber-Axthelm AM, Langner C, Moats CR, Labriola CS, MacAllister R, Axthelm MK, Brenchley JM, Keele BF, Estes JD, Hansen SG, Smedley JV. Mitigation of endemic GI-tract pathogen-mediated inflammation through development of multimodal treatment regimen and its impact on SIV acquisition in rhesus macaques. PLoS Pathog 2021; 17:e1009565. [PMID: 33970966 PMCID: PMC8148316 DOI: 10.1371/journal.ppat.1009565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/25/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Here, we assessed the efficacy of a short-course multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common macaque endemic pathogens (EPs) and evaluated its impact on gastrointestinal (GI) microbiota, mucosal integrity, and local and systemic inflammation in sixteen clinically healthy macaques. Treatment combined with expanded practices resulted in successful maintenance of rhesus macaques (RM) free of common EPs, with no evidence of overt microbiota diversity loss or dysbiosis and instead resulted in a more defined luminal microbiota across study subjects. Creation of a GI pathogen free (GPF) status resulted in improved colonic mucosal barrier function (histologically, reduced colonic MPO+, and reduced pan-bacterial 16s rRNA in the MLN), reduced local and systemic innate and adaptive inflammation with reduction of colonic Mx1 and pSTAT1, decreased intermediate (CD14+CD16+) and non-classical monocytes (CD14-CD16+), reduced populations of peripheral dendritic cells, Ki-67+ and CD38+ CD4+ T cells, Ki-67+IgG+, and Ki-67+IgD+ B cells indicating lower levels of background inflammation in the distal descending colon, draining mesenteric lymph nodes, and systemically in peripheral blood, spleen, and axillary lymph nodes. A more controlled rate of viral acquisition resulted when untreated and treated macaques were challenged by low dose intrarectal SIVmac239x, with an ~100 fold increase in dose required to infect 50% (AID50) of the animals receiving treatment compared to untreated controls. Reduction in and increased consistency of number of transmitted founder variants resulting from challenge seen in the proof of concept study directly correlated with post-treatment GPF animal's improved barrier function and reduction of key target cell populations (Ki-67+ CD4+T cells) at the site of viral acquisition in the follow up study. These data demonstrate that a therapeutic and operational strategy can successfully eliminate varying background levels of EPs and their associated aberrant immunomodulatory effects within a captive macaque cohort, leading to a more consistent, better defined and reproducible research model.
Collapse
Affiliation(s)
- Rachele M. Bochart
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Kathleen Busman-Sahay
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Stephen Bondoc
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David W. Morrow
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Alexandra M. Ortiz
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United State of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Miranda B. Fischer
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Oriene Shiel
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Tonya Swanson
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Christine M. Shriver-Munsch
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Hugh B. Crank
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Kimberly M. Armantrout
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Aaron M. Barber-Axthelm
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Charlotte Langner
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United State of America
| | - Cassandra R. Moats
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Caralyn S. Labriola
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Rhonda MacAllister
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United State of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jacob D. Estes
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
19
|
Yee JL, Van Rompay KKA, Carpenter AB, Nham PB, Halley BM, Iyer SS, Hartigan‐O'Connor DJ, Miller CJ, Roberts JA. SARS-CoV-2 surveillance for a non-human primate breeding research facility. J Med Primatol 2020; 49:322-331. [PMID: 32621339 PMCID: PMC7361642 DOI: 10.1111/jmp.12483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND The emergence of SARS-CoV-2 and the ensuing COVID-19 pandemic prompted the need for a surveillance program to determine the viral status of the California National Primate Research Center non-human primate breeding colony, both for reasons of maintaining colony health and minimizing the risk of interference in COVID-19 and other research studies. METHODS We collected biological samples from 10% of the rhesus macaque population for systematic testing to detect SARS-CoV-2 virus by RT-PCR and host antibody response by ELISA. Testing required the development and validation of new assays and an algorithm using in laboratory-developed and commercially available reagents and protocols. RESULTS AND CONCLUSIONS No SARS-CoV-2 RNA or antibody was detected in this study; therefore, we have proposed a modified testing algorithm for sentinel surveillance to monitor for any future transmissions. As additional reagents and controls become available, assay development and validation will continue, leading to the enhanced sensitivity, specificity, accuracy, and efficiency of testing.
Collapse
Affiliation(s)
- JoAnn L. Yee
- Primate Assay LaboratoryCalifornia National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Koen K. A. Van Rompay
- Primate Assay LaboratoryCalifornia National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Amanda B. Carpenter
- Primate Assay LaboratoryCalifornia National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Peter B. Nham
- Primate Assay LaboratoryCalifornia National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Bryson M. Halley
- Primate Assay LaboratoryCalifornia National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Smita S. Iyer
- Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
- Center for Immunology and Infectious DiseasesUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Christopher J. Miller
- Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
- Center for Immunology and Infectious DiseasesUniversity of CaliforniaDavisCaliforniaUSA
| | - Jeffrey A. Roberts
- Primate Assay LaboratoryCalifornia National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Medicine and EpidemiologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
20
|
Adedeji AO, Vemireddi V, Tripathi N, Durinck S, Maher JM, Vucic D, Halpern W. Atypical presentation and pathogenesis of a macaque lymphocryptoviral-associated B-cell lymphoma in a cynomolgus monkey. Vet Clin Pathol 2020; 49:130-136. [PMID: 32009251 DOI: 10.1111/vcp.12822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/18/2019] [Accepted: 05/28/2019] [Indexed: 11/29/2022]
Abstract
We report the unique pathogenesis and presentation of a rapidly progressive B-cell lymphoma in a 3-year-old female cynomolgus monkey on day 50 of a 13-week toxicity study. Clinical pathology evaluation revealed a marked leukocytosis with bicytopenia. A serum protein electrophoresis was consistent with monoclonal gammopathy. The architecture of the lymph node, spleen, and thymus were variably effaced by neoplastic cells, which also infiltrated other tissues. Immunohistochemistry of the affected tissues confirmed a predominant population of CD20+, CD79a+, CD3-, CD68-, and CD34-neoplastic cells. The full data best support a diagnosis of Stage V lymphoma. Nextgen sequencing and negative prestudy serology results suggested a recent infection by macaque lymphocryptovirus (mLCV) with a unique transcriptional profile comparable with a rarely observed direct LCV infection model. This infection model might be associated with a temporary lack of an LCV antigen-specific cytotoxic T-cell adaptive immune response. Consistent with the established mechanisms of LCV-related lymphoproliferation, MYC and BCL2L11 gene expression were increased and decreased, respectively. While there was no overt immunosuppression, immunophenotyping revealed the index animal had a relatively low NK cell count, which further decreased by >50% on day 24 of the study. In addition to the temporary lack of adaptive immunity, the low NK cell counts were suggestive of an impaired innate immunity to control the virally-transformed cells and the subsequent unchecked lymphoproliferation. To our knowledge, this is the first report of a Stage V lymphoma with a unique pathogenesis in an otherwise immunocompetent cynomolgus monkey.
Collapse
Affiliation(s)
- Adeyemi O Adedeji
- Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | | | | | - Steffen Durinck
- Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Jonathan M Maher
- Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Domagoj Vucic
- Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Wendy Halpern
- Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| |
Collapse
|
21
|
Yee JL, Grant RF, Van Rompay KKA, Roberts JA, Kuller L, Cunningham JL, Simmons JH, Papin JF. In vitro and In vivo Susceptibility of Baboons ( Papio sp.) to Infection with and Apparent Antibody Reactivity to Simian Betaretrovirus (SRV). Comp Med 2020; 70:75-82. [PMID: 31747991 PMCID: PMC7024778 DOI: 10.30802/aalas-cm-19-000014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/04/2019] [Accepted: 04/19/2019] [Indexed: 11/05/2022]
Abstract
Despite the lack of confirmed reports of an exogenous Simian betaretrovirus (SRV) isolated from baboons (Papio sp.), reports of simian endogenous gammaretrovirus (SERV) in baboons with complete genomes suggest that such viruses may be potentially infectious. In addition, serologic tests have repeatedly demonstrated antibody reactivity to SRV in baboons from multiple colonies. These findings complicate the management and use of such animals for research. To provide further insight into this situation, we performed in vitro and in vivo studies to determine if baboons are or can be infected with SRV. In our initial experiment, we were not able to isolate SRV from 6 seropositive or sero-indeterminate baboons by coculturing their peripheral blood mononuclear cells (PBMC) with macaque PBMC or permissive cell lines. In a subsequent experiment, we found that baboon PBMC infected in vitro with high dose SRV were permissive to virus replication. To test in vivo infectibil- ity, groups of naive baboons were infused intravenously with either (i) the same SRV tissue culture virus stocks used for the in vitro studies, (ii) SRV antibody positive and PCR positive macaque blood, (iii) SRV antibody positive or indeterminate, but PCR negative baboon blood, or (iv) SRV antibody and PCR negative baboon blood. Sustained SRV infection, as defined by reproducible PCR detection and/or antibody seroconversion, was confirmed in 2 of 3 baboons receiving tissue culture virus but not in any recipients of transfused blood from seropositive macaques or baboons. In conclusion, the data indicate that even though baboon cells can be infected experimentally with high doses of tissue culture grown SRV, baboons that are repeatedly SRV antibody positive and PCR negative are unlikely to be infected with exogenous SRV and thus are unlikely to transmit a virus that would threaten the SPF status of captive baboon colonies.
Collapse
Affiliation(s)
- JoAnn L Yee
- California National Primate Research Center, University of California, Davis, California
| | - Richard F Grant
- Washington National Primate Research Center, University of Washington, Seattle, Washington
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, California
| | - Jeffrey A Roberts
- California National Primate Research Center, University of California, Davis, California
| | - LaRene Kuller
- Washington National Primate Research Center, University of Washington, Seattle, Washington
| | - Jesse L Cunningham
- California National Primate Research Center, University of California, Davis, California
| | - Joe H Simmons
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, Texas; and
| | - James F Papin
- Department of Pathology, Division of Comparative Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| |
Collapse
|
22
|
Balansard I, Cleverley L, Cutler KL, Spångberg MG, Thibault-Duprey K, Langermans JAM. Revised recommendations for health monitoring of non-human primate colonies (2018): FELASA Working Group Report. Lab Anim 2019; 53:429-446. [PMID: 31068070 PMCID: PMC6767845 DOI: 10.1177/0023677219844541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/10/2019] [Indexed: 11/30/2022]
Abstract
The genetic and biological similarity between non-human primates and humans has ensured the continued use of primates in biomedical research where other species cannot be used. Health-monitoring programmes for non-human primates provide an approach to monitor and control both endemic and incoming agents that may cause zoonotic and anthroponotic disease or interfere with research outcomes. In 1999 FELASA recommendations were published which aimed to provide a harmonized approach to health monitoring programmes for non-human primates. Scientific and technological progress, understanding of non-human primates and evolving microbiology has necessitated a review and replacement of the current recommendations. These new recommendations are aimed at users and breeders of the commonly used non-human primates; Macaca mulatta (Rhesus macaque) and Macaca fascicularis (Cynomolgus macaque). In addition, other species including Callithrix jacchus (Common marmoset) Saimiri sciureus (Squirrel monkey) and others are included. The important and challenging aspects of non-human primate health-monitoring programmes are discussed, including management protocols to maintain and improve health status, health screening strategies and procedures, health reporting and certification. In addition, information is provided on specific micro-organisms and the recommended frequency of testing.
Collapse
Affiliation(s)
- Ivan Balansard
- Centre d’Exploration Fonctionnelle et de
Formation, Campus Médecine Santé, Marseille, France
| | | | | | | | | | - Jan AM Langermans
- Animal Science Department, Biomedical
Primate Research Centre, The Netherlands
- Department of Animals in Science &
Society, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| |
Collapse
|
23
|
Hotop SK, Abd El Wahed A, Beutling U, Czerny F, Sievers C, Diederichsen U, Frank R, Stahl-Hennig C, Brönstrup M, Fritz HJ. Serological Analysis of Herpes B Virus at Individual Epitope Resolution: From Two-Dimensional Peptide Arrays to Multiplex Bead Flow Assays. Anal Chem 2019; 91:11030-11037. [PMID: 31365232 DOI: 10.1021/acs.analchem.9b01291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macacine herpesvirus or B Virus (BV) is a zoonotic agent that leads to high mortality rates in humans if transmitted and untreated. Here, BV is used as a test case to establish a two-step procedure for developing high throughput serological assays based on synthetic peptides. In step 1, peptide microarray analysis of 42 monkey sera (30 of them tested BV positive by ELISA) revealed 1148 responses against 369 different peptides. The latter could be grouped into 142 different antibody target regions (ATRs) in six different glycoproteins (gB, gC, gD, gG, gH, and gL) of BV. The high number of newly detected ATRs was made possible inter alia by a new preanalytical protocol that reduced unspecific binding of serum components to the cellulose-based matrix of the microarray. In step 2, soluble peptides corresponding to eight ATRs of particularly high antigenicity were synthesized and coupled to fluorescently labeled beads, which were subsequently employed in immunochemical bead flow assays. Their outcome mirrored the ELISA results used as reference. Hence, convenient, fast, and economical screening of arbitrarily large macaque colonies for BV infection is now possible. The study demonstrates that a technology platform switch from two-dimensional high-resolution peptide arrays used for epitope discovery to a readily available bead array platform for serology applications is feasible.
Collapse
Affiliation(s)
- Sven-Kevin Hotop
- Department of Chemical Biology , Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , 38124 Braunschweig , Germany
| | - Ahmed Abd El Wahed
- Division of Microbiology and Animal Hygiene , Georg-August-University , 37077 Göttingen , Germany
| | - Ulrike Beutling
- Department of Chemical Biology , Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , 38124 Braunschweig , Germany
| | - Florian Czerny
- Institute of Organic and Biomolecular Chemistry , Georg-August-University , 37077 Göttingen , Germany
| | - Claudia Sievers
- Department for Epidemiology , Helmholtz Centre for Infection Research , 38124 Braunschweig , Germany
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry , Georg-August-University , 37077 Göttingen , Germany
| | - Ronald Frank
- AIMS Scientific Products GmbH , 13187 Berlin , Germany
| | | | - Mark Brönstrup
- Department of Chemical Biology , Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , 38124 Braunschweig , Germany
| | - Hans-Joachim Fritz
- Akademie der Wissenschaften zu Göttingen , Theaterstr. 7 , 37073 Göttingen , Germany
| |
Collapse
|
24
|
Kaul A, Schönmann U, Pöhlmann S. Seroprevalence of viral infections in captive rhesus and cynomolgus macaques. Primate Biol 2019; 6:1-6. [PMID: 32110713 PMCID: PMC7041514 DOI: 10.5194/pb-6-1-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/16/2019] [Indexed: 11/11/2022] Open
Abstract
Macaques serve as important animal models for biomedical research. Viral infection of macaques can compromise animal health as well as the results of biomedical research, and infected animals constitute an occupational health risk. Therefore, monitoring macaque colonies for viral infection is an important task. We used a commercial chip-based assay to analyze sera of 231 macaques for the presence of antibody responses against nine animal and human viruses. We report high seroprevalence of cytomegalovirus (CMV), lymphocryptovirus (LCV), rhesus rhadinovirus (RRV) and simian foamy virus (SFV) antibodies in all age groups. In contrast, antibodies against simian retrovirus type D (SRV/D) and simian T cell leukemia virus (STLV) were detected only in 5 % and 10 % of animals, respectively, and were only found in adult or aged animals. Moreover, none of the animals had antibodies against herpes B virus (BV), in keeping with the results of in-house tests previously used for screening. Finally, an increased seroprevalence of measles virus antibodies in animals with extensive exposure to multiple humans for extended periods of time was observed. However, most of these animals were obtained from external sources, and a lack of information on the measles antibody status of the animals at the time of arrival precluded drawing reliable conclusions from the data. In sum, we show, that in the colony studied, CMV, LCV, RRV and SFV infection was ubiquitous and likely acquired early in life while SRV/D and STLV infection was rare and likely acquired during adulthood.
Collapse
Affiliation(s)
- Artur Kaul
- Infection Biology Unit, German Primate Center – Leibniz Institute for
Primate Research, 37077 Göttingen, Germany
| | - Uwe Schönmann
- Laboratory Animal Sciences Unit, German Primate Center, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for
Primate Research, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
25
|
Subclinical Cytomegalovirus Infection Is Associated with Altered Host Immunity, Gut Microbiota, and Vaccine Responses. J Virol 2018; 92:JVI.00167-18. [PMID: 29669841 DOI: 10.1128/jvi.00167-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/14/2018] [Indexed: 12/15/2022] Open
Abstract
Subclinical viral infections (SVI), including cytomegalovirus (CMV), are highly prevalent in humans, resulting in lifelong persistence. However, the impact of SVI on the interplay between the host immunity and gut microbiota in the context of environmental exposures is not well defined. We utilized the preclinical nonhuman primate (NHP) model consisting of SVI-free (specific-pathogen-free [SPF]) rhesus macaques and compared them to the animals with SVI (non-SPF) acquired through natural exposure and investigated the impact of SVI on immune cell distribution and function, as well as on gut microbiota. These changes were examined in animals housed in the outdoor environment compared to the controlled indoor environment. We report that SVI are associated with altered immune cell subsets and gut microbiota composition in animals housed in the outdoor environment. Non-SPF animals harbored a higher proportion of potential butyrate-producing Firmicutes and higher numbers of lymphocytes, effector T cells, and cytokine-producing T cells. Surprisingly, these differences diminished following their transfer to the controlled indoor environment, suggesting that non-SPFs had increased responsiveness to environmental exposures. An experimental infection of indoor SPF animals with CMV resulted in an increased abundance of butyrate-producing bacteria, validating that CMV enhanced colonization of butyrate-producing commensals. Finally, non-SPF animals displayed lower antibody responses to influenza vaccination compared to SPF animals. Our data show that subclinical CMV infection heightens host immunity and gut microbiota changes in response to environmental exposures. This may contribute to the heterogeneity in host immune response to vaccines and environmental stimuli at the population level.IMPORTANCE Humans harbor several latent viruses that modulate host immunity and commensal microbiota, thus introducing heterogeneity in their responses to pathogens, vaccines, and environmental exposures. Most of our understanding of the effect of CMV on the immune system is based on studies of children acquiring CMV or of immunocompromised humans with acute or reactivated CMV infection or in ageing individuals. The experimental mouse models are genetically inbred and are completely adapted to the indoor laboratory environment. In contrast, nonhuman primates are genetically outbred and are raised in the outdoor environment. Our study is the first to report the impact of long-term subclinical CMV infection on host immunity and gut microbiota, which is evident only in the outdoor environment but not in the indoor environment. The significance of this study is in highlighting the impact of SVI on enhancing host immune susceptibility to environmental exposures and immune heterogeneity.
Collapse
|
26
|
Yee JL, Grant R, Van Rompay KK, Kuller L, Carpenter A, Watanabe R, Huebner R, Agricola B, Smedley J, Roberts JA. Emerging diagnostic challenges and characteristics of simian betaretrovirus infections in captive macaque colonies. J Med Primatol 2018; 46:149-153. [PMID: 28748661 DOI: 10.1111/jmp.12295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 11/27/2022]
Abstract
To better understand Simian betaretrovirus (SRV) seropositivity in virus-negative macaques, we transfused blood from SRV-infected or suspect donors into immunosuppressed naive recipients. Our results do not support typical SRV1-5 infection as the cause, but provide evidence for several possibilities including serological artifact, new/different SRV, or an endogenous virus.
Collapse
Affiliation(s)
- JoAnn L Yee
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Richard Grant
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Koen K Van Rompay
- California National Primate Research Center, University of California, Davis, CA, USA
| | - LaRene Kuller
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Amanda Carpenter
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Robin Watanabe
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Rebeca Huebner
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Brian Agricola
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Jeremy Smedley
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Jeffrey A Roberts
- California National Primate Research Center, University of California, Davis, CA, USA
| |
Collapse
|
27
|
Muniz CP, Cavalcante LTF, Jia H, Zheng H, Tang S, Augusto AM, Pissinatti A, Fedullo LP, Santos AF, Soares MA, Switzer WM. Zoonotic infection of Brazilian primate workers with New World simian foamy virus. PLoS One 2017; 12:e0184502. [PMID: 28931021 PMCID: PMC5606925 DOI: 10.1371/journal.pone.0184502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 11/19/2022] Open
Abstract
Simian foamy viruses (SFVs) are retroviruses present in nearly all nonhuman primates (NHPs), including Old World primates (OWP) and New World primates (NWP). While all confirmed human infections with SFV are from zoonotic transmissions originating from OWP, little is known about the zoonotic transmission potential of NWP SFV. We conducted a longitudinal, prospective study of 56 workers occupationally exposed to NWP in Brazil. Plasma from these workers was tested using Western blot (WB) assays containing NWP SFV antigens. Genomic DNA from blood and buccal swabs was analyzed for the presence of proviral SFV sequences by three nested PCR tests and a new quantitative PCR assay. Exposure histories were obtained and analyzed for associations with possible SFV infection. Ten persons (18%) tested seropositive and two persons were seroindeterminate (3.6%) for NWP SFV. Six persons had seroreactivity over 2–3 years suggestive of persistent infection. All SFV NWP WB-positive workers reported at least one incident involving NWP, including six reporting NWP bites. NWP SFV viral DNA was not detected in the blood or buccal swabs from all 12 NWP SFV seroreactive workers. We also found evidence of SFV seroreversion in three workers suggestive of possible clearance of infection. Our findings suggest that NWP SFV can be transmitted to occupationally-exposed humans and can elicit specific humoral immune responses but infection remains well-controlled resulting in latent infection and may occasionally clear.
Collapse
Affiliation(s)
- Cláudia P. Muniz
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Hongwei Jia
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - HaoQiang Zheng
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shaohua Tang
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Anderson M. Augusto
- Fundação Jardim Zoológico da Cidade do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luiz P. Fedullo
- Fundação Jardim Zoológico da Cidade do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André F. Santos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - William M. Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Pöhlmann S, Suntz M, Akimkin V, Bleyer M, Kaul A. Herpes B virus replication and viral lesions in the liver of a cynomolgus macaque which died from severe disease with rapid onset. J Med Primatol 2017; 46:256-259. [PMID: 28439900 DOI: 10.1111/jmp.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2017] [Indexed: 11/26/2022]
Abstract
Herpes B virus (BV, Macacine alphaherpesvirus 1) infects macaques asymptomatically, with rare exceptions, but can cause fatal encephalitis in humans. Here, we report disseminated BV infection in a cynomolgus macaque that had died within 12 hour after the onset of unspecific symptoms. Multifocal lesions surrounded by viral antigen were detected in liver while other organs remained inconspicuous, indicating that the liver is a major target. Moreover, high copy numbers of viral DNA were found in feces, underlining the excrements are a potential source of transmission.
Collapse
Affiliation(s)
- Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Michael Suntz
- Chemical and Veterinary Investigations Office Freiburg, Freiburg, Germany
| | - Valerij Akimkin
- Chemical and Veterinary Investigations Office Stuttgart, Fellbach, Germany
| | - Martina Bleyer
- Pathology Unit, German Primate Center, Göttingen, Germany
| | - Artur Kaul
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| |
Collapse
|
29
|
Pöhlmann S, Krüger A, Hafezi W, Schneider S, Gruber J, Winkler M, Kaul A. Detection systems for antibody responses against herpes B virus. Primate Biol 2017; 4:9-16. [PMID: 32110687 PMCID: PMC7041526 DOI: 10.5194/pb-4-9-2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/12/2017] [Indexed: 11/28/2022] Open
Abstract
Herpes B virus (BV) infection is highly prevalent among adult Asian macaques
and rarely causes severe disease in infected animals. In contrast, BV
infection of humans can induce fatal encephalitis in the absence of
treatment. Therefore, the development of diagnostic tests for specific and
sensitive detection of antibodies against BV is an important task. The
cross-reactivity of antibodies against BV with related simplex viruses of
other primates may afford an opportunity to obtain sensitive detection
systems without the need to work with the highly pathogenic BV. Moreover, it
has been proposed that use of recombinant viral glycoproteins may allow for a
detection of antibody responses against BV with high specificity. However,
limited data are available for both approaches to BV diagnostic. Here, we
report that simian agent 8 (SA8; infects African green monkeys)- and
herpesvirus papio 2 (HVP-2; infects baboons)-infected cells allow for a more
sensitive detection of antibody responses against BV in macaques than lysates
of herpes simplex virus type 1 and 2 (HSV-1/2;
infect humans)-infected cells and a
commercial HSV ELISA (Enzygnost®
Anti-HSV/IgG). In addition, we show that sera from BV-infected macaques
frequently contain antibodies against the recombinant BV glycoprotein gD (BV
gD) that has been previously proposed as a diagnostic target for
discriminating BV- and HSV-induced antibodies. However, we found that
antibodies of some HSV-infected human patients also reacted with BV gD. In
contrast, only sera of HSV-1- and HSV-2-infected humans, but not sera from
BV-infected macaques, reacted with HSV-1/2 gG. Collectively, these results
suggest that both SA8 and HVP-2 allow for sensitive and comparable detection
of BV-directed antibody responses in macaques and that the combination of BV
gD and HSV-1/2 gG needs to be complemented by a least one additional viral
glycoprotein for reliable discrimination between antibody responses against
BV and HSV-1/2 in humans.
Collapse
Affiliation(s)
- Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Astrid Krüger
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Wali Hafezi
- Department of Medical Microbiology, University of Münster, 48149 Münster, Germany
| | - Stefan Schneider
- Primate Genetics Laboratory, German Primate Center, 37077 Göttingen, Germany
| | - Jens Gruber
- Primate Genetics Laboratory, German Primate Center, 37077 Göttingen, Germany
| | - Michael Winkler
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Artur Kaul
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| |
Collapse
|