1
|
Sato N, Kusano T, Nagata K, Okamoto K. A non-purine inhibitor of xanthine oxidoreductase mitigates adenosine triphosphate degradation under hypoxic conditions in mouse brain. Brain Res 2025; 1849:149444. [PMID: 39755194 DOI: 10.1016/j.brainres.2025.149444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
The brain is an organ that consumes a substantial amount of oxygen, and a reduction in oxygen concentration can rapidly lead to significant and irreversible brain injury. The progression of brain injury during hypoxia involves the depletion of intracellular adenosine triphosphate (ATP) due to decreased oxidative phosphorylation in the inner mitochondrial membrane. Allopurinol is a purine analog inhibitor of xanthine oxidoreductase that protects against hypoxic/ischemic brain injury; however, its underlying mechanism of action remains unclear. In addition, febuxostat is a non-purine xanthine oxidoreductase inhibitor with a different inhibitory mechanism from allopurinol. The impact of febuxostat on brain injury has not been well investigated. Therefore, this study aimed to examine brain ATP and its catabolite levels in the presence or absence of allopurinol and febuxostat under hypoxic conditions by inactivating brain metabolism using focal microwave irradiation. The hypoxic treatment caused a decrease in the adenylate energy charge and ATP levels and an increase in its catabolic products in mouse brains. The febuxostat group showed higher energy charge and ATP levels and lower ATP catabolites than the control group. Notably, despite the comparable suppression of uric acid production in both inhibitor groups, allopurinol treatment was less effective than febuxostat. These results suggest that febuxostat effectively prevents hypoxia-induced ATP degradation in the brain and that its effect is more potent than allopurinol. This study will contribute to developing therapies for improving hypoxia-induced brain dysfunction.
Collapse
Affiliation(s)
- Nana Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Teruo Kusano
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Besch D, Seeger DR, Schofield B, Golovko SA, Parmer M, Golovko MY. A simplified method for preventing postmortem alterations of brain prostanoids for true in situ level quantification. J Lipid Res 2024; 65:100583. [PMID: 38909689 PMCID: PMC11301166 DOI: 10.1016/j.jlr.2024.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
Dramatic postmortem prostanoid (PG) enzymatic synthesis in the brain causes a significant artifact during PG analysis. Thus, enzyme deactivation is required for an accurate in situ endogenous PG quantification. To date, the only method for preventing postmortem brain PG increase with tissue structure preservation is fixation by head-focused microwave irradiation (MW), which is considered the gold standard method, allowing for rapid in situ heat-denaturation of enzymes. However, MW requires costly equipment that suffers in reproducibility, causing tissue loss and metabolite degradation if overheated. Our recent study indicates that PGs are not synthesized in the ischemic brain unless metabolically active tissue is exposed to atmospheric O2. Based on this finding, we proposed a simple and reproducible alternative method to prevent postmortem PG increase by slow enzyme denaturation before craniotomy. To test this approach, mice were decapitated directly into boiling saline. Brain temperature reached 100°C after ∼140 s during boiling, though 3 min boiling was required to completely prevent postmortem PG synthesis, but not free arachidonic acid release. To validate this fixation method, brain basal and lipopolysaccharide (LPS)-induced PG were analyzed in unfixed, MW, and boiled tissues. Basal and LPS-induced PG levels were not different between MW and boiled brains. However, unfixed tissue showed a significant postmortem increase in PG at basal conditions, with lesser differences upon LPS treatment compared to fixed tissue. These data indicate for the first time that boiling effectively prevents postmortem PG alterations, allowing for a reproducible, inexpensive, and conventionally accessible tissue fixation method for PG analysis.
Collapse
Affiliation(s)
- Derek Besch
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Drew R Seeger
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Brennon Schofield
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Meredith Parmer
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
3
|
Zhang YY, Li XS, Ren KD, Peng J, Luo XJ. Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Res Rev 2023; 87:101931. [PMID: 37031723 DOI: 10.1016/j.arr.2023.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China.
| |
Collapse
|
4
|
Arnould H, Baudouin V, Baudry A, Ribeiro LW, Ardila-Osorio H, Pietri M, Caradeuc C, Soultawi C, Williams D, Alvarez M, Crozet C, Djouadi F, Laforge M, Bertho G, Kellermann O, Launay JM, Schmitt-Ulms G, Schneider B. Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases. PLoS Pathog 2021; 17:e1009991. [PMID: 34610054 PMCID: PMC8519435 DOI: 10.1371/journal.ppat.1009991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.
Collapse
Affiliation(s)
- Hélène Arnould
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Vincent Baudouin
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Anne Baudry
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Luiz W. Ribeiro
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | | | - Mathéa Pietri
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Cédric Caradeuc
- CNRS, UMR 8601, Paris, France
- Université de Paris, UMR 8601, Paris, France
| | - Cynthia Soultawi
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Declan Williams
- University of Toronto, Tanz Centre for Research in Neurodegenerative Diseases, Canada
| | - Marjorie Alvarez
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Carole Crozet
- IRMB, Université de Montpellier, INSERM, CHU de Montpellier, Montpellier, France
| | - Fatima Djouadi
- INSERM, UMR-S 1138, Paris, France
- Université de Paris, UMR-S 1138, Paris, France
| | - Mireille Laforge
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Gildas Bertho
- CNRS, UMR 8601, Paris, France
- Université de Paris, UMR 8601, Paris, France
| | - Odile Kellermann
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Jean-Marie Launay
- Assistance Publique des Hôpitaux de Paris, INSERM UMR942, Hôpital Lariboisière, Paris, France
- Pharma Research Department, Hoffmann La Roche Ltd, Basel, Switzerland
| | - Gerold Schmitt-Ulms
- University of Toronto, Tanz Centre for Research in Neurodegenerative Diseases, Canada
| | - Benoit Schneider
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
- * E-mail:
| |
Collapse
|
5
|
Dienel GA. Stop the rot. Enzyme inactivation at brain harvest prevents artifacts: A guide for preservation of the in vivo concentrations of brain constituents. J Neurochem 2021; 158:1007-1031. [PMID: 33636013 DOI: 10.1111/jnc.15293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022]
Abstract
Post-mortem metabolism is widely recognized to cause rapid and prolonged changes in the concentrations of multiple classes of compounds in brain, that is, they are labile. Post-mortem changes from levels in living brain include components of pathways of metabolism of glucose and energy compounds, amino acids, lipids, signaling molecules, neuropeptides, phosphoproteins, and proteins. Methods that stop enzyme activity at brain harvest were developed almost 50 years ago and have been extensively used in studies of brain functions and diseases. Unfortunately, these methods are not commonly used to harvest brain tissue for mass spectrometry-based metabolomic studies or for imaging mass spectrometry studies (IMS, also called mass spectrometry imaging, MSI, or matrix-assisted laser desorption/ionization-MSI, MALDI-MSI). Instead these studies commonly kill animals, decapitate, dissect out brain and regions of interest if needed, then 'snap' freeze the tissue to stop enzymatic activity after harvest, with post-mortem intervals typically ranging from ~0.5 to 3 min. To increase awareness of the importance of stopping metabolism at harvest and preventing the unnecessary complications of not doing so, this commentary provides examples of labile metabolites and the magnitudes of their post-mortem changes in concentrations during brain harvest. Brain harvest methods that stop metabolism at harvest eliminate post-mortem enzymatic activities and can improve characterization of normal and diseased brain. In addition, metabolomic studies would be improved by reporting absolute units of concentration along with normalized peak areas or fold changes. Then reported values can be evaluated and compared with the extensive neurochemical literature to help prevent reporting of artifactual data.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
6
|
Metabolomic and Imaging Mass Spectrometric Assays of Labile Brain Metabolites: Critical Importance of Brain Harvest Procedures. Neurochem Res 2020; 45:2586-2606. [PMID: 32949339 DOI: 10.1007/s11064-020-03124-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Metabolomic technologies including imaging mass spectrometry (IMS; also called mass spectrometry imaging, MSI, or matrix-assisted laser desorption/ionization-mass spectrometry imaging, MALDI MSI) are important methods to evaluate levels of many compounds in brain with high spatial resolution, characterize metabolic phenotypes of brain disorders, and identify disease biomarkers. ATP is central to brain energetics, and reports of its heterogeneous distribution in brain and regional differences in ATP/ADP ratios reported in IMS studies conflict with earlier studies. These discordant data were, therefore, analyzed and compared with biochemical literature that used rigorous methods to preserve labile metabolites. Unequal, very low regional ATP levels and low ATP/ADP ratios are explained by rapid metabolism during postmortem ischemia. A critical aspect of any analysis of brain components is their stability during and after tissue harvest so measured concentrations closely approximate their physiological levels in vivo. Unfortunately, the requirement for inactivation of brain enzymes by freezing or heating is not widely recognized outside the neurochemistry discipline, and procedures that do not prevent postmortem autolysis, including decapitation, brain removal/dissection, and 'snap freezing' are commonly used. Strong emphasis is placed on use of supplementary approaches to calibrate metabolite abundance in units of concentration in IMS studies and comparison of IMS results with biochemical data obtained by different methods to help identify potential artifacts.
Collapse
|
7
|
Toffa DH, Sow AD. The enigma of headaches associated with electromagnetic hyperfrequencies: Hypotheses supporting non-psychogenic algogenic processes. Electromagn Biol Med 2020; 39:196-205. [PMID: 32401641 DOI: 10.1080/15368378.2020.1762638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although an electrohypersensitivity (EHS) is reported in numerous studies, some authors associate hyperfrequencies (HF)-related pains with a nocebo effect while others suggest a biological effect. Therefore, we aimed to suggest hypotheses about the complex mechanisms of headaches related to HF-exposure. We crossed basic features of headaches with relevant studies (from the year 2000 up to 2018) emphasizing on the HF effects that may lead to pain genesis: neuroglial dysmetabolism, neuroinflammation, changes in cerebral blood perfusion, blood-brain barrier dysfunction and electrophysiological evidences of hyperexcitability. We privileged studies implying a sham exposure (for in vivo studies) and a specific absorption rate lower than 4 W/Kg. HF-induced headaches may involve an indirect inflammatory process (neurogenic, magnetogenic or thermogenic) as well as a direct biophysical effect (thermogenic or magnetogenic). We linked inflammatory processes to meningeal dysperfusion or primary neuroglial dysfunction triggered by non-thermal irradiation or HF-induced heating at thermal powers. In the latter case, HF-induced excitoxicity and oxidative stress probably play a crucial role. Such disorders may lead to vascular-trigeminal activation in predisposed people. Interestingly, an abnormal oxidative stress predisposition had been demonstrated in overall 80% of EHS self-reporting patients. In the case of direct effects, pain pathways' activation may be directly triggered by HF-irradiation (heating and/or transcranial HF-induced ectopic action potentials). Further research on HF-related headaches is needed.
Collapse
Affiliation(s)
- D H Toffa
- Division of Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université de Montréal , Montreal, Canada
| | - A D Sow
- Division of Neurology, CHUN Fann, Université Cheikh Anta Diop , Dakar, Senegal
| |
Collapse
|
8
|
Hao YH, Zhang J, Wang H, Wang HY, Dong J, Xu XP, Yao BW, Wang LF, Zhou HM, Zhao L, Peng RY. HIF-1α regulates COXIV subunits, a potential mechanism of self-protective response to microwave induced mitochondrial damages in neurons. Sci Rep 2018; 8:10403. [PMID: 29991768 PMCID: PMC6039499 DOI: 10.1038/s41598-018-28427-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
Anxiety and speculation about potential health hazards of microwaves exposure are spreading in the past decades. Hypoxia-inducible factor-1α (HIF-1α), which can be activated by reactive oxygen species (ROS), played pivotal roles in protective responses against microwave in neuron-like cells. In this study, we established 30 mW/cm2 microwave exposed animal model, which could result in revisable injuries of neuronal mitochondria, including ultrastructure and functions, such as ROS generation and cytochrome c oxidase (COX) activity. We found that the ratio of COXIV-1/COXIV-2, two isoforms of COXIV, decreased at 1 d and increased from 3 d to 14 d. Similar expression changes of HIF-1α suggested that COXIV-1 and COXIV-2 might be regulated by HIF-1α. In neuron-like cells, 30 mW/cm2 microwave down-regulated COX activity from 30 min to 6 h, and then started to recover. And, both HIF-1α transcriptional activity and COXIV-1/COXIV-2 ratio were up-regulated at 6 h and 9 h after exposure. Moreover, HIF-1α inhibition down-regulated COXIV-1 expression, promoted ROS generation, impaired mitochondrial membrane potentials (MMP), as well as abolished microwave induced ATP production. In conclusion, microwave induced mitochondrial ROS production activated HIF-1α and regulated COXIV-1 expression to restore mitochondria functions. Therefore, HIF-1α might be a potential target to impair microwave induced injuries.
Collapse
Affiliation(s)
- Yan-Hui Hao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Jing Zhang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Hao-Yu Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Ji Dong
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Xin-Ping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Bin-Wei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Li-Feng Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Hong-Mei Zhou
- Department of Radiation Protection and Health Physics, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China.
| | - Rui-Yun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China.
| |
Collapse
|
9
|
Pawlosky RJ, Kemper MF, Kashiwaya Y, King MT, Mattson MP, Veech RL. Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer's disease. J Neurochem 2017; 141:195-207. [PMID: 28099989 DOI: 10.1111/jnc.13958] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/28/2022]
Abstract
In patients with Alzheimer's disease (AD) and in a triple transgenic (3xTgAD) mouse model of AD low glucose metabolism in the brain precedes loss of memory and cognitive decline. The metabolism of ketones in the brain by-passes glycolysis and therefore may correct several deficiencies that are associated with glucose hypometabolism. A dietary supplement composed of an ester of D-β-hydroxybutyrate and R-1,3 butane diol referred to as ketone ester (KE) was incorporated into a rodent diet and fed to 3xTgAD mice for 8 months. At 16.5 months of age animals were killed and brains dissected. Analyses were carried out on the hippocampus and frontal cortex for glycolytic and TCA (Tricarboxylic Acid) cycle intermediates, amino acids, oxidized lipids and proteins, and enzymes. There were higher concentrations of d-β-hydroxybutyrate in the hippocampus of KE-fed mice where there were also higher concentrations of TCA cycle and glycolytic intermediates and the energy-linked biomarker, N-acetyl aspartate compared to controls. In the hippocampi of control-fed animals the free mitochondrial [NAD+ ]/[NADH] ratio were highly oxidized, whereas, in KE-fed animals the mitochondria were reduced. Also, the levels of oxidized protein and lipids were lower and the energy of ATP hydrolysis was greater compared to controls. 3xTgAD mice maintained on a KE-supplemented diet had higher concentrations of glycolytic and TCA cycle metabolites, a more reduced mitochondrial redox potential, and lower amounts of oxidized lipids and proteins in their hippocampi compared to controls. The KE offers a potential therapy to counter fundamental metabolic deficits common to patients and transgenic models. Read the Editorial Highlight for this article on page 162.
Collapse
Affiliation(s)
- Robert J Pawlosky
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Martin F Kemper
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoshihero Kashiwaya
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Todd King
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Ageing Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard L Veech
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Sato S, Jung H, Nakagawa T, Pawlosky R, Takeshima T, Lee WR, Sakiyama H, Laxman S, Wynn RM, Tu BP, MacMillan JB, De Brabander JK, Veech RL, Uyeda K. Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP): ROLE OF AMP AS AN ALLOSTERIC INHIBITOR. J Biol Chem 2016; 291:10515-27. [PMID: 26984404 PMCID: PMC4865902 DOI: 10.1074/jbc.m115.708982] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis.
Collapse
Affiliation(s)
- Shogo Sato
- From the Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Hunmin Jung
- From the Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Tsutomu Nakagawa
- From the Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Robert Pawlosky
- the National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-8115, and
| | - Tomomi Takeshima
- From the Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Wan-Ru Lee
- From the Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Haruhiko Sakiyama
- From the Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Sunil Laxman
- From the Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - R Max Wynn
- From the Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Benjamin P Tu
- From the Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - John B MacMillan
- From the Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Jef K De Brabander
- From the Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Richard L Veech
- the National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-8115, and
| | - Kosaku Uyeda
- From the Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, the Dallas Veterans Affairs Medical Center, Dallas, Texas 75216
| |
Collapse
|
11
|
Kemper MF, Srivastava S, Todd King M, Clarke K, Veech RL, Pawlosky RJ. An Ester of β-Hydroxybutyrate Regulates Cholesterol Biosynthesis in Rats and a Cholesterol Biomarker in Humans. Lipids 2015; 50:1185-93. [PMID: 26498829 DOI: 10.1007/s11745-015-4085-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/06/2015] [Indexed: 11/30/2022]
Abstract
In response to carbohydrate deprivation or prolonged fasting the ketone bodies, β-hydroxybutyrate (βHB) and acetoacetate (AcAc), are produced from the incomplete β-oxidation of fatty acids in the liver. Neither βHB nor AcAc are well utilized for synthesis of sterols or fatty acids in human or rat liver. To study the effects of ketones on cholesterol homeostasis a novel βHB ester (KE) ((R)-3-hydroxybutyl (R)-3-hydroxybutyrate) was synthesized and given orally to rats and humans as a partial dietary carbohydrate replacement. Rats maintained on a diet containing 30-energy % as KE with a concomitant reduction in carbohydrate had lower plasma cholesterol and mevalonate (-40 and -27 %, respectively) and in the liver had lower levels of the mevalonate precursors acetoacetyl-CoA and HMG-CoA (-33 and -54 %) compared to controls. Whole liver and membrane LDL-R as well as SREBP-2 protein levels were higher (+24, +67, and +91 %, respectively). When formulated into a beverage for human consumption subjects consuming a KE drink (30-energy %) had elevated plasma βHB which correlated with decreased mevalonate, a liver cholesterol synthesis biomarker. Partial replacement of dietary carbohydrate with KE induced ketosis and altered cholesterol homeostasis in rats. In healthy individuals an elevated plasma βHB correlated with lower plasma mevalonate.
Collapse
Affiliation(s)
- Martin F Kemper
- Laboratory of Metabolic Control, National Institute of Alcohol Abuse and Alcoholism, 5625 Fishers Ln 1S22, Rockville, MD, 20852, USA
| | - Shireesh Srivastava
- DBT-ICGEB Center for Advanced Bioenergy Research, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - M Todd King
- Laboratory of Metabolic Control, National Institute of Alcohol Abuse and Alcoholism, 5625 Fishers Ln 1S22, Rockville, MD, 20852, USA
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Richard L Veech
- Laboratory of Metabolic Control, National Institute of Alcohol Abuse and Alcoholism, 5625 Fishers Ln 1S22, Rockville, MD, 20852, USA
| | - Robert J Pawlosky
- Laboratory of Metabolic Control, National Institute of Alcohol Abuse and Alcoholism, 5625 Fishers Ln 1S22, Rockville, MD, 20852, USA.
| |
Collapse
|
12
|
Pani AK, Jiao Y, Sample KJ, Smeyne RJ. Neurochemical measurement of adenosine in discrete brain regions of five strains of inbred mice. PLoS One 2014; 9:e92422. [PMID: 24642754 PMCID: PMC3958516 DOI: 10.1371/journal.pone.0092422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models.
Collapse
Affiliation(s)
- Amar K. Pani
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yun Jiao
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kenneth J. Sample
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Smeyne
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
13
|
Zhao L, Yang YF, Gao YB, Wang SM, Wang LF, Zuo HY, Dong J, Xu XP, Su ZT, Zhou HM, Zhu LL, Peng RY. Upregulation of HIF-1α via activation of ERK and PI3K pathway mediated protective response to microwave-induced mitochondrial injury in neuron-like cells. Mol Neurobiol 2014; 50:1024-34. [PMID: 24627260 DOI: 10.1007/s12035-014-8667-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/20/2014] [Indexed: 01/01/2023]
Abstract
Microwave-induced learning and memory deficits in animal models have been gaining attention in recent years, largely because of increasing public concerns on growing environmental influences. The data from our group and others have showed that the injury of mitochondria, the major source of cellular adenosine triphosphate (ATP) in primary neurons, could be detected in the neuron cells of microwave-exposed rats. In this study, we provided some insights into the cellular and molecular mechanisms behind mitochondrial injury in PC12 cell-derived neuron-like cells. PC12 cell-derived neuron-like cells were exposed to 30 mW/cm(2) microwave for 5 min, and damages of mitochondrial ultrastructure could be observed by using transmission electron microscopy. Impairments of mitochondrial function, indicated by decrease of ATP content, reduction of succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activities, decrease of mitochondrial membrane potential (MMP), and increase of reactive oxygen species (ROS) production, could be detected. We also found that hypoxia-inducible factor-1 (HIF-1α), a key regulator responsible for hypoxic response of the mammalian cells, was upregulated in microwave-exposed neuron-like cells. Furthermore, HIF-1α overexpression protected mitochondria from injury by increasing the ATP contents and MMP, while HIF-1α silence promoted microwave-induced mitochondrial damage. Finally, we demonstrated that both ERK and PI3K signaling activation are required in microwave-induced HIF-1α activation and protective response. In conclusion, we elucidated a regulatory connection between impairments of mitochondrial function and HIF-1α activation in microwave-exposed neuron-like cells. By modulating mitochondrial function and protecting neuron-like cells against microwave-induced mitochondrial injury, HIF-1α represents a promising therapeutic target for microwave radiation injury.
Collapse
Affiliation(s)
- Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Haidian District, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bhatt DP, Houdek HM, Watt JA, Rosenberger TA. Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis. Neurochem Int 2013; 62:296-305. [PMID: 23321384 DOI: 10.1016/j.neuint.2013.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 12/20/2022]
Abstract
Acetate supplementation in rats increases plasma acetate and brain acetyl-CoA levels. Although acetate is used as a marker to study glial energy metabolism, the effect that acetate supplementation has on normal brain energy stores has not been quantified. To determine the effect(s) that an increase in acetyl-CoA levels has on brain energy metabolism, we measured brain nucleotide, phosphagen and glycogen levels, and quantified cardiolipin content and mitochondrial number in rats subjected to acetate supplementation. Acetate supplementation was induced with glyceryl triacetate (GTA) by oral gavage (6 g/kg body weight). Rats used for biochemical analysis were euthanized using head-focused microwave irradiation at 2, and 4h following treatment to immediately stop metabolism. We found that acetate did not alter brain ATP, ADP, NAD, GTP levels, or the energy charge ratio [ECR, (ATP+½ ADP)/(ATP+ADP+AMP)] when compared to controls. However, after 4h of treatment brain phosphocreatine levels were significantly elevated with a concomitant reduction in AMP levels with no change in glycogen levels. In parallel studies where rats were treated with GTA for 28 days, we found that acetate did not alter brain glycogen and mitochondrial biogenesis as determined by measuring brain cardiolipin content, the fatty acid composition of cardiolipin and using quantitative ultra-structural analysis to determine mitochondrial density/unit area of cytoplasm in hippocampal CA3 neurons. Collectively, these data suggest that an increase in brain acetyl-CoA levels by acetate supplementation does increase brain energy stores however it has no effect on brain glycogen and neuronal mitochondrial biogenesis.
Collapse
Affiliation(s)
- Dhaval P Bhatt
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | | | | | | |
Collapse
|