1
|
Wang X, Padawer-Curry JA, Bice AR, Kim B, Rosenthal ZP, Lee JM, Goyal MS, Macauley SL, Bauer AQ. Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain. Cell Rep 2024; 43:114723. [PMID: 39277861 PMCID: PMC11523563 DOI: 10.1016/j.celrep.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.g., resting-state functional connectivity [RSFC]) because it is unclear whether changes in NMC/NVC affect RSFC measures. We leverage wide-field optical imaging in Thy1-jRGECO1a mice to map cortical calcium activity in pyramidal neurons, flavoprotein autofluorescence (representing oxidative metabolism), and hemodynamic activity during wake and ketamine/xylazine anesthesia. Spontaneous dynamics of all contrasts exhibit patterns consistent with RSFC. NMC/NVC relative to excitatory activity varies over the cortex. Ketamine/xylazine profoundly alters NVC but not NMC. Compared to awake RSFC, ketamine/xylazine affects metabolic-based connectomes moreso than hemodynamic-based measures of RSFC. Anesthesia-related differences in NMC/NVC timing do not appreciably alter RSFC structure.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jonah A Padawer-Curry
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zachary P Rosenthal
- Department of Psychiatry, University of Pennsylvania Health System Penn Medicine, Philadelphia, PA 19104, USA
| | - Jin-Moo Lee
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Manu S Goyal
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
2
|
Gerstner JR, Flores CC, Lefton M, Rogers B, Davis CJ. FABP7: a glial integrator of sleep, circadian rhythms, plasticity, and metabolic function. Front Syst Neurosci 2023; 17:1212213. [PMID: 37404868 PMCID: PMC10315501 DOI: 10.3389/fnsys.2023.1212213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Sleep and circadian rhythms are observed broadly throughout animal phyla and influence neural plasticity and cognitive function. However, the few phylogenetically conserved cellular and molecular pathways that are implicated in these processes are largely focused on neuronal cells. Research on these topics has traditionally segregated sleep homeostatic behavior from circadian rest-activity rhythms. Here we posit an alternative perspective, whereby mechanisms underlying the integration of sleep and circadian rhythms that affect behavioral state, plasticity, and cognition reside within glial cells. The brain-type fatty acid binding protein, FABP7, is part of a larger family of lipid chaperone proteins that regulate the subcellular trafficking of fatty acids for a wide range of cellular functions, including gene expression, growth, survival, inflammation, and metabolism. FABP7 is enriched in glial cells of the central nervous system and has been shown to be a clock-controlled gene implicated in sleep/wake regulation and cognitive processing. FABP7 is known to affect gene transcription, cellular outgrowth, and its subcellular localization in the fine perisynaptic astrocytic processes (PAPs) varies based on time-of-day. Future studies determining the effects of FABP7 on behavioral state- and circadian-dependent plasticity and cognitive processes, in addition to functional consequences on cellular and molecular mechanisms related to neural-glial interactions, lipid storage, and blood brain barrier integrity will be important for our knowledge of basic sleep function. Given the comorbidity of sleep disturbance with neurological disorders, these studies will also be important for our understanding of the etiology and pathophysiology of how these diseases affect or are affected by sleep.
Collapse
Affiliation(s)
- Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Micah Lefton
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Brooke Rogers
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
3
|
Kuebler IRK, Jolton JA, Hermreck C, Hubbard NA, Wakabayashi KT. Contrasting dose-dependent effects of acute intravenous methamphetamine on lateral hypothalamic extracellular glucose dynamics in male and female rats. J Neurophysiol 2022; 128:819-836. [PMID: 36043803 PMCID: PMC9529272 DOI: 10.1152/jn.00257.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Glucose is the brain's primary energetic resource. The brain's use of glucose is dynamic, balancing delivery from the neurovasculature with local metabolism. Although glucose metabolism is known to differ in humans with and without methamphetamine use disorder (MUD), it is unknown how central glucose regulation changes with acute methamphetamine experience. Here, we determined how intravenous methamphetamine regulates extracellular glucose levels in a brain region implicated in MUD-like behavior, the lateral hypothalamus (LH). We measured extracellular LH glucose in awake adult male and female drug-naive Wistar rats using enzyme-linked amperometric glucose biosensors. Changes in LH glucose were monitored during a single session after: 1) natural nondrug stimuli (novel object presentation and a tail-touch), 2) increasing cumulative doses of intravenous methamphetamine (0.025, 0.05, 0.1, and 0.2 mg/kg), and 3) an injection of 60 mg of glucose. We found second-scale fluctuations in LH glucose in response to natural stimuli that differed by both stimulus type and sex. Although rapid, second-scale changes in LH glucose during methamphetamine injections were variable, slow, minute-scale changes following most injections were robust and resulted in a reduction in LH glucose levels. Dose and sex differences at this timescale indicated that female rats may be more sensitive to the impact of methamphetamine on central glucose regulation. These findings suggest that the effects of MUD on healthy brain function may be linked to how methamphetamine alters extracellular glucose regulation in the LH and point to possible mechanisms by which methamphetamine influences central glucose metabolism more broadly.NEW & NOTEWORTHY Enzyme-linked glucose biosensors were used to monitor lateral hypothalamic (LH) extracellular fluctuations during nondrug stimuli and intravenous methamphetamine injections in drug-naive awake male and female rats. Second-scale glucose changes occurred after nondrug stimuli, differing by modality and sex. Robust minute-scale decreases followed most methamphetamine injections. Sex differences at the minute-scale indicate female central glucose regulation is more sensitive to methamphetamine effects. We discuss likely mechanisms underlying these fluctuations, and their implications in methamphetamine use disorder.
Collapse
Affiliation(s)
- Isabel R K Kuebler
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Joshua A Jolton
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Chase Hermreck
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Nicholas A Hubbard
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Ken T Wakabayashi
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
4
|
Design optimisation and characterisation of an amperometric glutamate oxidase-based composite biosensor for neurotransmitter l-glutamic acid. Anal Chim Acta 2022; 1224:340205. [DOI: 10.1016/j.aca.2022.340205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022]
|
5
|
Sun YY, Wang Z, Zhou HY, Huang HC. Sleep-Wake Disorders in Alzheimer's Disease: A Review. ACS Chem Neurosci 2022; 13:1467-1478. [PMID: 35507669 DOI: 10.1021/acschemneuro.2c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disease, and it has become a serious health problem in the world. Senile plaques (SPs) and neurofibrillary tangles (NFTs) are two main pathological characters of AD. SP mainly consists of aggregated β-amyloid (Aβ), and NFT is formed by hyperphosphorylated tau protein. Sleep-wake disorders are prevalent in AD patients; however, the links and mechanisms of sleep-wake disorders on the AD pathogenesis remain to be investigated. Here, we referred to the sleep-wake disorders and reviewed some evidence to demonstrate the relationship between sleep-wake disorders and the pathogenesis of AD. On one hand, the sleep-wake disorders may lead to the increase of Aβ production and the decrease of Aβ clearance, the spreading of tau pathology, as well as oxidative stress and inflammation. On the other hand, the ApoE4 allele, a risk gene for AD, was reported to participate in sleep-wake disorders. Furthermore, some neurotransmitters, such as acetylcholine, glutamate, serotonin, melatonin, and orexins, and their receptors were suggested to be involved in AD development and sleep-wake disorders. We discussed and suggested some possible therapeutic strategies for AD treatment based on the view of sleep regulation. In general, this review explored different views to find novel targets of diagnosis and therapy for AD.
Collapse
Affiliation(s)
- Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, , Beijing 100191, China
- Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing 100023, China
| | - Zhun Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, , Beijing 100191, China
- Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing 100023, China
| | - He-Yan Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, , Beijing 100191, China
- Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing 100023, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, , Beijing 100191, China
- Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing 100023, China
| |
Collapse
|
6
|
Vallianatou T, Lin W, Bèchet NB, Correia MSP, Shanbhag NC, Lundgaard I, Globisch D. Differential regulation of oxidative stress, microbiota-derived, and energy metabolites in the mouse brain during sleep. J Cereb Blood Flow Metab 2021; 41:3324-3338. [PMID: 34293940 PMCID: PMC8669215 DOI: 10.1177/0271678x211033358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Sleep has evolved as a universal core function to allow for restorative biological processes. Detailed knowledge of metabolic changes necessary for the sleep state in the brain is missing. Herein, we have performed an in-depth metabolic analysis of four mouse brain regions and uncovered region-specific circadian variations. Metabolites linked to oxidative stress were altered during sleep including acylcarnitines, hydroxylated fatty acids, phenolic compounds, and thiol-containing metabolites. These findings provide molecular evidence of a significant metabolic shift of the brain energy metabolism. Specific alterations were observed for brain metabolites that have previously not been associated with a circadian function including the microbiome-derived metabolite ergothioneine that suggests a regulatory function. The pseudopeptide β-citryl-glutamate has been linked to brain development and we have now discovered a previously unknown regioisomer. These metabolites altered by the circadian rhythm represent the foundation for hypothesis-driven studies of the underlying metabolic processes and their function.
Collapse
Affiliation(s)
- Theodosia Vallianatou
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Weifeng Lin
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicholas B Bèchet
- Department of Experimental Medical Science, Lund University, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund University, Lund, Sweden
| | - Mario SP Correia
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund University, Lund, Sweden
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund University, Lund, Sweden
| | - Daniel Globisch
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Chen Y, Zhang J. How Energy Supports Our Brain to Yield Consciousness: Insights From Neuroimaging Based on the Neuroenergetics Hypothesis. Front Syst Neurosci 2021; 15:648860. [PMID: 34295226 PMCID: PMC8291083 DOI: 10.3389/fnsys.2021.648860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Consciousness is considered a result of specific neuronal processes and mechanisms in the brain. Various suggested neuronal mechanisms, including the information integration theory (IIT), global neuronal workspace theory (GNWS), and neuronal construction of time and space as in the context of the temporospatial theory of consciousness (TTC), have been laid forth. However, despite their focus on different neuronal mechanisms, these theories neglect the energetic-metabolic basis of the neuronal mechanisms that are supposed to yield consciousness. Based on the findings of physiology-induced (sleep), pharmacology-induced (general anesthesia), and pathology-induced [vegetative state/unresponsive wakeful syndrome (VS/UWS)] loss of consciousness in both human subjects and animals, we, in this study, suggest that the energetic-metabolic processes focusing on ATP, glucose, and γ-aminobutyrate/glutamate are indispensable for functional connectivity (FC) of normal brain networks that renders consciousness possible. Therefore, we describe the energetic-metabolic predispositions of consciousness (EPC) that complement the current theories focused on the neural correlates of consciousness (NCC).
Collapse
Affiliation(s)
- Yali Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Price BR, Johnson LA, Norris CM. Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Res Rev 2021; 68:101335. [PMID: 33812051 PMCID: PMC8168445 DOI: 10.1016/j.arr.2021.101335] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Astrocyte reactivity is a hallmark of neuroinflammation that arises with Alzheimer’s disease (AD) and nearly every other neurodegenerative condition. While astrocytes certainly contribute to classic inflammatory processes (e.g. cytokine release, waste clearance, and tissue repair), newly emerging technologies for measuring and targeting cell specific activities in the brain have uncovered essential roles for astrocytes in synapse function, brain metabolism, neurovascular coupling, and sleep/wake patterns. In this review, we use a holistic approach to incorporate, and expand upon, classic neuroinflammatory concepts to consider how astrocyte dysfunction/reactivity modulates multiple pathological and clinical hallmarks of AD. Our ever-evolving understanding of astrocyte signaling in neurodegeneration is not only revealing new drug targets and treatments for dementia but is suggesting we reimagine AD pathophysiological mechanisms.
Collapse
Affiliation(s)
- Brittani R Price
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA, 02111, USA
| | - Lance A Johnson
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Physiology, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA.
| |
Collapse
|
9
|
Karoly PJ, Rao VR, Gregg NM, Worrell GA, Bernard C, Cook MJ, Baud MO. Cycles in epilepsy. Nat Rev Neurol 2021; 17:267-284. [PMID: 33723459 DOI: 10.1038/s41582-021-00464-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Epilepsy is among the most dynamic disorders in neurology. A canonical view holds that seizures, the characteristic sign of epilepsy, occur at random, but, for centuries, humans have looked for patterns of temporal organization in seizure occurrence. Observations that seizures are cyclical date back to antiquity, but recent technological advances have, for the first time, enabled cycles of seizure occurrence to be quantitatively characterized with direct brain recordings. Chronic recordings of brain activity in humans and in animals have yielded converging evidence for the existence of cycles of epileptic brain activity that operate over diverse timescales: daily (circadian), multi-day (multidien) and yearly (circannual). Here, we review this evidence, synthesizing data from historical observational studies, modern implanted devices, electronic seizure diaries and laboratory-based animal neurophysiology. We discuss advances in our understanding of the mechanistic underpinnings of these cycles and highlight the knowledge gaps that remain. The potential clinical applications of a knowledge of cycles in epilepsy, including seizure forecasting and chronotherapy, are discussed in the context of the emerging concept of seizure risk. In essence, this Review addresses the broad question of why seizures occur when they occur.
Collapse
Affiliation(s)
- Philippa J Karoly
- Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Vikram R Rao
- Department of Neurology, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Nicholas M Gregg
- Bioelectronics, Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Gregory A Worrell
- Bioelectronics, Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Christophe Bernard
- Aix Marseille University, Inserm, Institut de Neurosciences des Systèmes, Marseille, France
| | - Mark J Cook
- Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Maxime O Baud
- Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland. .,Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Bingul D, Kalra K, Murata EM, Belser A, Dash MB. Persistent changes in extracellular lactate dynamics following synaptic potentiation. Neurobiol Learn Mem 2020; 175:107314. [PMID: 32961277 PMCID: PMC7655607 DOI: 10.1016/j.nlm.2020.107314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
A diverse array of neurometabolic coupling mechanisms exist within the brain to ensure that sufficient metabolite availability is present to meet both acute and chronic energetic demands. Excitatory synaptic activity, which produces the majority of the brain's energetic demands, triggers a rapid metabolic response including a characteristic shift towards aerobic glycolysis. Herein, astrocytically derived lactate appears to serve as an important metabolite to meet the extensive metabolic needs of activated neurons. Despite a wealth of literature characterizing lactate's role in mediating these acute metabolic needs, the extent to which lactate supports chronic energetic demands of neurons remains unclear. We hypothesized that synaptic potentiation, a ubiquitous brain phenomenon that can produce chronic alterations in synaptic activity, could necessitate persistent alterations in brain energetics. In freely-behaving rats, we induced long-term potentiation (LTP) of synapses within the dentate gyrus through high-frequency electrical stimulation (HFS) of the medial perforant pathway. Before, during, and after LTP induction, we continuously recorded extracellular lactate concentrations within the dentate gyrus to assess how changes in synaptic strength alter local glycolytic activity. Synaptic potentiation 1) altered the acute response of extracellular lactate to transient neuronal activation as evident by a larger initial dip and subsequent overshoot and 2) chronically increased local lactate availability. Although synapses were potentiated immediately following HFS, observed changes in lactate dynamics were only evident beginning ~24 h later. Once observed, however, both synaptic potentiation and altered lactate dynamics persisted for the duration of the experiment (~72 h). Persistent alterations in synaptic strength, therefore, appear to be associated with metabolic plasticity in the form of persistent augmentation of glycolytic activity.
Collapse
Affiliation(s)
- D Bingul
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States
| | - K Kalra
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States
| | - E M Murata
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States
| | - A Belser
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States
| | - M B Dash
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States; Department of Psychology, Middlebury College, Middlebury, VT 05753, United States.
| |
Collapse
|
11
|
Abstract
The circadian clock is an endogenous, time-tracking system that directs multiple metabolic and physiological functions required for homeostasis. The master or central clock located within the suprachiasmatic nucleus in the hypothalamus governs peripheral clocks present in all systemic tissues, contributing to their alignment and ultimately to temporal coordination of physiology. Accumulating evidence reveals the presence of additional clocks in the brain and suggests the possibility that circadian circuits may feed back to these from the periphery. Here, we highlight recent advances in the communications between clocks and discuss how they relate to circadian physiology and metabolism.
Collapse
Affiliation(s)
- Carolina Magdalen Greco
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
12
|
Carroll CM, Macauley SL. The Interaction Between Sleep and Metabolism in Alzheimer's Disease: Cause or Consequence of Disease? Front Aging Neurosci 2019; 11:258. [PMID: 31616284 PMCID: PMC6764218 DOI: 10.3389/fnagi.2019.00258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and affects over 45 million people worldwide. Both type-2-diabetes (T2D), a metabolic condition associated with aging, and disrupted sleep are implicated in the pathogenesis of AD, but how sleep and metabolism interact to affect AD progression remains unclear. In the healthy brain, sleep/wake cycles are a well-coordinated interaction between metabolic and neuronal activity, but when disrupted, are associated with a myriad of health-related issues, including metabolic syndrome, cardiovascular disease, T2D, and AD. Therefore, this review will explore our current understanding of the relationship between metabolism, sleep, and AD-related pathology to identify the causes and consequences of disease progression in AD. Moreover, sleep disturbances and metabolic dysfunction could serve as potential therapeutic targets to mitigate the increased risk of AD in individuals with T2D or offer a novel approach for treating AD.
Collapse
Affiliation(s)
| | - Shannon L. Macauley
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
13
|
Alzheimer's Disease and Sleep-Wake Disturbances: Amyloid, Astrocytes, and Animal Models. J Neurosci 2019; 38:2901-2910. [PMID: 29563238 DOI: 10.1523/jneurosci.1135-17.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/21/2017] [Accepted: 10/18/2017] [Indexed: 01/24/2023] Open
Abstract
Sleep-wake abnormalities are common in patients with Alzheimer's disease, and can be a major reason for institutionalization. However, an emerging concept is that these sleep-wake disturbances are part of the causal pathway accelerating the neurodegenerative process. Recently, new findings have provided intriguing evidence for a positive feedback loop between sleep-wake dysfunction and β-amyloid (Aβ) aggregation. Studies in both humans and animal models have shown that extended periods of wakefulness increase Aβ levels and aggregation, and accumulation of Aβ causes fragmentation of sleep. This perspective is aimed at presenting evidence supporting causal links between sleep-wake dysfunction and aggregation of Aβ peptide in Alzheimer's disease, and explores the role of astrocytes, a specialized type of glial cell, in this context underlying Alzheimer's disease pathology. The utility of current animal models and the unexplored potential of alternative animal models for testing mechanisms involved in the reciprocal relationship between sleep disruption and Aβ are also discussed.Dual Perspectives Companion Paper: Microglia-Mediated Synapse Loss in Alzheimer's Disease by Lawrence Rajendran and Rosa Paolicelli.
Collapse
|
14
|
Bourdon AK, Spano GM, Marshall W, Bellesi M, Tononi G, Serra PA, Baghdoyan HA, Lydic R, Campagna SR, Cirelli C. Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep. Sci Rep 2018; 8:11225. [PMID: 30046159 PMCID: PMC6060152 DOI: 10.1038/s41598-018-29511-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80-100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the de novo pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.
Collapse
Affiliation(s)
- Allen K Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Giovanna Maria Spano
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States
| | - William Marshall
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Helen A Baghdoyan
- Department of Anesthesiology and Psychology, University of Tennessee, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ralph Lydic
- Department of Anesthesiology and Psychology, University of Tennessee, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States. .,Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, United States.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The goal of the present paper is to review current literature supporting the occurrence of fundamental changes in brain energy metabolism during the transition from wakefulness to sleep. RECENT FINDINGS Latest research in the field indicates that glucose utilization and the concentrations of several brain metabolites consistently change across the sleep-wake cycle. Lactate, a product of glycolysis that is involved in synaptic plasticity, has emerged as a good biomarker of brain state. Sleep-induced changes in cerebral metabolite levels result from a shift in oxidative metabolism, which alters the reliance of brain metabolism upon carbohydrates. We found wide support for the notion that brain energetics is state dependent. In particular, fatty acids and ketone bodies partly replace glucose as cerebral energy source during sleep. This mechanism plausibly accounts for increases in biosynthetic pathways and functional alterations in neuronal activity associated with sleep. A better account of brain energy metabolism during sleep might help elucidate the long mysterious restorative effects of sleep for the whole organism.
Collapse
Affiliation(s)
- Nadia Nielsen Aalling
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, 14640, USA
| | - Mauro DiNuzzo
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.
| |
Collapse
|
16
|
Wigren HK, Porkka-Heiskanen T. Novel concepts in sleep regulation. Acta Physiol (Oxf) 2018; 222:e13017. [PMID: 29253320 DOI: 10.1111/apha.13017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Knowledge regarding the cellular mechanisms of sleep regulation is accumulating rapidly. In addition to neurones, also non-neuronal brain cells (astrocytes and microglia) are emerging as potential players. New techniques, particularly optogenetics and designed receptors activated by artificial ligands (DREADD), have provided also sleep research with important additional tools to study the effect of either silencing or activating specific neuronal groups/neuronal networks by opening or shutting ion channels on cells. The advantages of these strategies are the possibility to genetically target specific cell populations and the possibility to either activate or inhibit them with inducing light signal into the brain. Studies probing circuits of NREM and REM sleep regulation, as well as their role in memory consolidation, have been conducted recently. In addition, fundamentally new thoughts and potential mechanisms have been introduced to the field. The role of non-neuronal tissues in the regulation of many brain functions has become evident. These non-neuronal cells, particularly astrocytes, integrate large number of neurones, and it has been suggested that one of their functions is to integrate the (neural) activity in larger brain areas-a feature that is one of the prominent features of also the state of sleep.
Collapse
Affiliation(s)
- H.-K. Wigren
- Department of Physiology; University of Helsinki; Helsinki Finland
| | | |
Collapse
|
17
|
Teles-Grilo Ruivo LM, Baker KL, Conway MW, Kinsley PJ, Gilmour G, Phillips KG, Isaac JTR, Lowry JP, Mellor JR. Coordinated Acetylcholine Release in Prefrontal Cortex and Hippocampus Is Associated with Arousal and Reward on Distinct Timescales. Cell Rep 2017; 18:905-917. [PMID: 28122241 PMCID: PMC5289927 DOI: 10.1016/j.celrep.2016.12.085] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/05/2016] [Accepted: 12/26/2016] [Indexed: 02/06/2023] Open
Abstract
Cholinergic neurotransmission throughout the neocortex and hippocampus regulates arousal, learning, and attention. However, owing to the poorly characterized timing and location of acetylcholine release, its detailed behavioral functions remain unclear. Using electrochemical biosensors chronically implanted in mice, we made continuous measurements of the spatiotemporal dynamics of acetylcholine release across multiple behavioral states. We found that tonic levels of acetylcholine release were coordinated between the prefrontal cortex and hippocampus and maximal during training on a rewarded working memory task. Tonic release also increased during REM sleep but was contingent on subsequent wakefulness. In contrast, coordinated phasic acetylcholine release occurred only during the memory task and was strongly localized to reward delivery areas without being contingent on trial outcome. These results show that coordinated acetylcholine release between the prefrontal cortex and hippocampus is associated with reward and arousal on distinct timescales, providing dual mechanisms to support learned behavior acquisition during cognitive task performance.
Collapse
Affiliation(s)
- Leonor M Teles-Grilo Ruivo
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK; Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Keeley L Baker
- Department of Chemistry, Maynooth University, Co. Kildare, Ireland
| | - Michael W Conway
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - Peter J Kinsley
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - Gary Gilmour
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - Keith G Phillips
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - John T R Isaac
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - John P Lowry
- Department of Chemistry, Maynooth University, Co. Kildare, Ireland.
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
18
|
Papouin T, Dunphy J, Tolman M, Foley JC, Haydon PG. Astrocytic control of synaptic function. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0154. [PMID: 28093548 DOI: 10.1098/rstb.2016.0154] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2016] [Indexed: 12/19/2022] Open
Abstract
Astrocytes intimately interact with synapses, both morphologically and, as evidenced in the past 20 years, at the functional level. Ultrathin astrocytic processes contact and sometimes enwrap the synaptic elements, sense synaptic transmission and shape or alter the synaptic signal by releasing signalling molecules. Yet, the consequences of such interactions in terms of information processing in the brain remain very elusive. This is largely due to two major constraints: (i) the exquisitely complex, dynamic and ultrathin nature of distal astrocytic processes that renders their investigation highly challenging and (ii) our lack of understanding of how information is encoded by local and global fluctuations of intracellular calcium concentrations in astrocytes. Here, we will review the existing anatomical and functional evidence of local interactions between astrocytes and synapses, and how it underlies a role for astrocytes in the computation of synaptic information.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Thomas Papouin
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| | - Jaclyn Dunphy
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| | - Michaela Tolman
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| | - Jeannine C Foley
- Neurobiology Department, Harvard Medical School, Boston, MA 02115, USA
| | - Philip G Haydon
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
19
|
DiNuzzo M, Nedergaard M. Brain energetics during the sleep-wake cycle. Curr Opin Neurobiol 2017; 47:65-72. [PMID: 29024871 PMCID: PMC5732842 DOI: 10.1016/j.conb.2017.09.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 09/16/2017] [Indexed: 12/11/2022]
Abstract
Brain activity during wakefulness is associated with high metabolic rates that are believed to support information processing and memory encoding. In spite of loss of consciousness, sleep still carries a substantial energy cost. Experimental evidence supports a cerebral metabolic shift taking place during sleep that suppresses aerobic glycolysis, a hallmark of environment-oriented waking behavior and synaptic plasticity. Recent studies reveal that glial astrocytes respond to the reduction of wake-promoting neuromodulators by regulating volume, composition and glymphatic drainage of interstitial fluid. These events are accompanied by changes in neuronal discharge patterns, astrocyte-neuron interactions, synaptic transactions and underlying metabolic features. Internally-generated neuronal activity and network homeostasis are proposed to account for the high sleep-related energy demand.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14640, USA
| |
Collapse
|
20
|
van den Top M, Zhao FY, Viriyapong R, Michael NJ, Munder AC, Pryor JT, Renaud LP, Spanswick D. The impact of ageing, fasting and high-fat diet on central and peripheral glucose tolerance and glucose-sensing neural networks in the arcuate nucleus. J Neuroendocrinol 2017; 29. [PMID: 28834571 DOI: 10.1111/jne.12528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
Obesity and ageing are risk factors for diabetes. In the present study, we investigated the effects of ageing, obesity and fasting on central and peripheral glucose tolerance and on glucose-sensing neuronal function in the arcuate nucleus of rats, with a view to providing insight into the central mechanisms regulating glucose homeostasis and how they change or are subject to dysfunction with ageing and obesity. We show that, following a glucose load, central glucose tolerance at the level of the cerebrospinal fluid (CSF) and plasma is significantly reduced in rats maintained on a high-fat diet (HFD). With ageing, up to 2 years, central glucose tolerance was impaired in an age-dependent manner, whereas peripheral glucose tolerance remained unaffected. Ageing-induced peripheral glucose intolerance was improved by a 24-hour fast, whereas central glucose tolerance was not corrected. Pre-wean, immature animals have elevated basal plasma glucose levels and a delayed increase in central glucose levels following peripheral glucose injection compared to mature animals. Electrophysiological recording techniques revealed an energy-status-dependent role for glucose-excited, inhibited and adapting neurones, along with glucose-induced changes in synaptic transmission. We conclude that ageing affects central glucose tolerance, whereas HFD profoundly affects central and peripheral glucose tolerance and, in addition, glucose-sensing neurones adapt function in an energy-status-dependent manner.
Collapse
Affiliation(s)
| | - F-Y Zhao
- NeuroSolutions Ltd, Coventry, UK
| | - R Viriyapong
- Warwick Medical School, University of Warwick, Coventry, UK
- MOAC DTC, University of Warwick, Coventry, UK
| | - N J Michael
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - A C Munder
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - J T Pryor
- Warwick Medical School, University of Warwick, Coventry, UK
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - L P Renaud
- Ottawa Hospital Research Institute, Ottawa Civic Hospital, Ottawa, ON, Canada
| | - D Spanswick
- NeuroSolutions Ltd, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Puentes-Mestril C, Aton SJ. Linking Network Activity to Synaptic Plasticity during Sleep: Hypotheses and Recent Data. Front Neural Circuits 2017; 11:61. [PMID: 28932187 PMCID: PMC5592216 DOI: 10.3389/fncir.2017.00061] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Research findings over the past two decades have supported a link between sleep states and synaptic plasticity. Numerous mechanistic hypotheses have been put forth to explain this relationship. For example, multiple studies have shown structural alterations to synapses (including changes in synaptic volume, spine density, and receptor composition) indicative of synaptic weakening after a period of sleep. Direct measures of neuronal activity and synaptic strength support the idea that a period of sleep can reduce synaptic strength. This has led to the synaptic homeostasis hypothesis (SHY), which asserts that during slow wave sleep, synapses are downscaled throughout the brain to counteract net strengthening of network synapses during waking experience (e.g., during learning). However, neither the cellular mechanisms mediating these synaptic changes, nor the sleep-dependent activity changes driving those cellular events are well-defined. Here we discuss potential cellular and network dynamic mechanisms which could underlie reductions in synaptic strength during sleep. We also discuss recent findings demonstrating circuit-specific synaptic strengthening (rather than weakening) during sleep. Based on these data, we explore the hypothetical role of sleep-associated network activity patterns in driving synaptic strengthening. We propose an alternative to SHY—namely that depending on experience during prior wake, a variety of plasticity mechanisms may operate in the brain during sleep. We conclude that either synaptic strengthening or synaptic weakening can occur across sleep, depending on changes to specific neural circuits (such as gene expression and protein translation) induced by experiences in wake. Clarifying the mechanisms underlying these different forms of sleep-dependent plasticity will significantly advance our understanding of how sleep benefits various cognitive functions.
Collapse
Affiliation(s)
- Carlos Puentes-Mestril
- Neuroscience Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| | - Sara J Aton
- Neuroscience Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| |
Collapse
|
22
|
Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle. Neuron 2017; 95:1365-1380.e5. [PMID: 28867552 DOI: 10.1016/j.neuron.2017.08.022] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/29/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023]
Abstract
Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions.
Collapse
|
23
|
Solis E, Bola RA, Fasulo BJ, Kiyatkin EA. Brain Hyperglycemia Induced by Heroin: Association with Metabolic Neural Activation. ACS Chem Neurosci 2017; 8:265-271. [PMID: 27736094 DOI: 10.1021/acschemneuro.6b00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Glucose enters the brain extracellular space from arterial blood, and its proper delivery is essential for metabolic activity of brain cells. By using enzyme-based biosensors coupled with high-speed amperometry in freely moving rats, we previously showed that glucose levels in the nucleus accumbens (NAc) display high variability, increasing rapidly following exposure to various arousing stimuli. In this study, the same technology was used to assess NAc glucose fluctuations induced by intravenous heroin. Heroin passively injected at a low dose optimal for maintaining self-administration behavior (100 μg/kg) induces a rapid but moderate glucose rise (∼150-200 μM or ∼15-25% over resting baseline). When the heroin dose was doubled and tripled, the increase became progressively larger in magnitude and longer in duration. Heroin-induced glucose increases also occurred in other brain structures (medial thalamus, lateral striatum, hippocampus), suggesting that brain hyperglycemia is a whole-brain phenomenon but changes were notably distinct in each structure. While local vasodilation appears to be the possible mechanism underlying the rapid rise in extracellular glucose levels, the driving factor for this vasodilation (central vs peripheral) remains to be clarified. The heroin-induced NAc glucose increases positively correlated with increases in intracerebral heat production determined in separate experiments using multisite temperature recordings (NAc, temporal muscle and skin). However, glucose levels rise very rapidly, preceding much slower increases in brain heat production, a measure of metabolic activation associated with glucose consumption.
Collapse
Affiliation(s)
- Ernesto Solis
- In-Vivo Electrophysiology
Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse
− Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - R. Aaron Bola
- In-Vivo Electrophysiology
Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse
− Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Bradley J. Fasulo
- In-Vivo Electrophysiology
Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse
− Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Eugene A. Kiyatkin
- In-Vivo Electrophysiology
Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse
− Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
24
|
Newton AJH, Wall MJ, Richardson MJE. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations. J Neurophysiol 2016; 117:937-949. [PMID: 27927788 PMCID: PMC5338626 DOI: 10.1152/jn.00788.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions. Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions.
Collapse
Affiliation(s)
- Adam J H Newton
- Warwick Mathematics Institute, University of Warwick, Coventry, United Kingdom; and
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
25
|
Limnuson K, Narayan RK, Chiluwal A, Golanov EV, Bouton CE, Li C. A User-Configurable Headstage for Multimodality Neuromonitoring in Freely Moving Rats. Front Neurosci 2016; 10:382. [PMID: 27594826 PMCID: PMC4990626 DOI: 10.3389/fnins.2016.00382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/05/2016] [Indexed: 11/21/2022] Open
Abstract
Multimodal monitoring of brain activity, physiology, and neurochemistry is an important approach to gain insight into brain function, modulation, and pathology. With recent progress in micro- and nanotechnology, micro-nano-implants have become important catalysts in advancing brain research. However, to date, only a limited number of brain parameters have been measured simultaneously in awake animals in spite of significant recent progress in sensor technology. Here we have provided a cost and time effective approach to designing a headstage to conduct a multimodality brain monitoring in freely moving animals. To demonstrate this method, we have designed a user-configurable headstage for our micromachined multimodal neural probe. The headstage can reliably record direct-current electrocorticography (DC-ECoG), brain oxygen tension (PbrO2), cortical temperature, and regional cerebral blood flow (rCBF) simultaneously without significant signal crosstalk or movement artifacts for 72 h. Even in a noisy environment, it can record low-level neural signals with high quality. Moreover, it can easily interface with signal conditioning circuits that have high power consumption and are difficult to miniaturize. To the best of our knowledge, this is the first time where multiple physiological, biochemical, and electrophysiological cerebral variables have been simultaneously recorded from freely moving rats. We anticipate that the developed system will aid in gaining further insight into not only normal cerebral functioning but also pathophysiology of conditions such as epilepsy, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- Kanokwan Limnuson
- Cushing Neuromonitoring Laboratory, The Feinstein Institute for Medical Research Manhasset, NY, USA
| | - Raj K Narayan
- Cushing Neuromonitoring Laboratory, The Feinstein Institute for Medical ResearchManhasset, NY, USA; Department of Neurosurgery, Hofstra Northwell School of MedicineHempstead, NY, USA
| | - Amrit Chiluwal
- Department of Neurosurgery, Hofstra Northwell School of Medicine Hempstead, NY, USA
| | - Eugene V Golanov
- Cushing Neuromonitoring Laboratory, The Feinstein Institute for Medical Research Manhasset, NY, USA
| | - Chad E Bouton
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research Manhasset, NY, USA
| | - Chunyan Li
- Cushing Neuromonitoring Laboratory, The Feinstein Institute for Medical ResearchManhasset, NY, USA; Department of Neurosurgery, Hofstra Northwell School of MedicineHempstead, NY, USA; Center for Bioelectronic Medicine, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| |
Collapse
|
26
|
Xu X, Wang L, Zhang Y, Su T, Chen L, Zhang Y, Ma W, Xie Y, Wang T, Yang F, He L, Wang W, Fu X, Hao H, Ma Y. Effects of chronic sleep deprivation on glucose homeostasis in rats. Sleep Biol Rhythms 2016; 14:321-328. [PMID: 27738407 PMCID: PMC5037153 DOI: 10.1007/s41105-016-0061-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that chronic sleep disturbances resulted in metabolic disorders. The purpose of this study was to assess the relationship between chronic sleep deprivation (CSD) and the glucose homeostasis in rats. Twenty-four rats were randomly divided into CSD group and control (CON) group. The CSD rats were intervened by a modified multiple platform method (MMPM) to establish an animal model of chronic sleep disturbances. After 3-month intervention, all rats were subjected to an intraperitoneal glucose tolerance test (IPGTT) and an insulin tolerance test (ITT), and the body weight, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, lipid profile group, and homeostasis model assessment-IR (HOMA-IR) were measured. Both the CSD and CON groups had an attenuation of weight gain after 3-month intervention. The plasma glucose level of CSD group was higher than that of the CON group during the IPGTT (P < 0.01). The CSD rats showed a marked increase in HOMA-IR and ITT compared with the CON group (P < 0.01). There were no significant differences of AST, ALT, creatinine, and most lipid parameters between the CSD and CON groups (P > 0.05). The CSD has a marked effect on glucose homeostasis, comprising glucose intolerance and insulin resistance.
Collapse
Affiliation(s)
- Xiaowen Xu
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Liang Wang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Yan Zhang
- Center for Systems Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Tianjiao Su
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Liying Chen
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Yan Zhang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Weifeng Ma
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Yuanyuan Xie
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Tiantian Wang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Fan Yang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Li He
- Director of Division of Science and Technology, National Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, Beijing, 100050 China
| | - Wenjiao Wang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Xuemei Fu
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Hongxia Hao
- Center of Health Care, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Yuanzheng Ma
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| |
Collapse
|
27
|
Petit JM, Magistretti P. Regulation of neuron–astrocyte metabolic coupling across the sleep–wake cycle. Neuroscience 2016; 323:135-56. [DOI: 10.1016/j.neuroscience.2015.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022]
|
28
|
de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex. Sleep 2016; 39:861-74. [PMID: 26715225 DOI: 10.5665/sleep.5644] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/21/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVE The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. METHODS Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6-8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). RESULTS Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. CONCLUSIONS Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss.
Collapse
Affiliation(s)
- Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Aaron B Nelson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Juliana Noguti
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
29
|
Bola RA, Kiyatkin EA. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation. Front Physiol 2016; 7:39. [PMID: 26913008 PMCID: PMC4753326 DOI: 10.3389/fphys.2016.00039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/28/2016] [Indexed: 12/13/2022] Open
Abstract
Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be strongly modulated by pharmacological drugs via drug-induced changes in metabolic activity and the tone of cerebral vessels.
Collapse
Affiliation(s)
- R Aaron Bola
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health Baltimore, MD, USA
| | - Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
30
|
Wakabayashi KT, Kiyatkin EA. Behavior-associated and post-consumption glucose entry into the nucleus accumbens extracellular space during glucose free-drinking in trained rats. Front Behav Neurosci 2015; 9:173. [PMID: 26190984 PMCID: PMC4488749 DOI: 10.3389/fnbeh.2015.00173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/19/2015] [Indexed: 01/27/2023] Open
Abstract
Glucose is the primary energetic substrate for the metabolic activity of brain cells and its proper delivery from the arterial blood is essential for neural activity and normal brain functions. Glucose is also a unique natural reinforcer, supporting glucose-drinking behavior without food or water deprivation. While it is known that glucose enters brain tissue via gradient-dependent facilitated diffusion, it remains unclear how glucose levels are changed during natural behavior and whether the direct central action of ingested glucose can be involved in regulating glucose-drinking behavior. Here, we used glucose biosensors with high-speed amperometry to examine the pattern of phasic and tonic changes in extracellular glucose in the nucleus accumbens (NAc) during unrestricted glucose-drinking in well-trained rats. We found that the drinking behavior is highly cyclic and is associated with relatively large and prolonged increases in extracellular glucose levels. These increases had two distinct components: a highly phasic but relatively small behavior-related rise and a larger tonic elevation that results from the arrival of consumed glucose into the brain's extracellular space. The large post-ingestion increases in NAc glucose began minutes after the cessation of drinking and were consistently associated with periods of non-drinking, suggesting that the central action of ingested glucose could inhibit drinking behavior by inducing a pause in activity between repeated drinking bouts. Finally, the difference in NAc glucose responses found between active, behavior-mediated and passive glucose delivery via an intra-gastric catheter confirms that motivated behavior is also associated with metabolic glucose use by brain cells.
Collapse
Affiliation(s)
- Ken T Wakabayashi
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health Baltimore, MD, USA
| | - Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
31
|
Effects of growth hormone-releasing hormone on sleep and brain interstitial fluid amyloid-β in an APP transgenic mouse model. Brain Behav Immun 2015; 47:163-71. [PMID: 25218899 PMCID: PMC4362875 DOI: 10.1016/j.bbi.2014.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/13/2014] [Accepted: 09/03/2014] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by impairment of cognitive function, extracellular amyloid plaques, intracellular neurofibrillary tangles, and synaptic and neuronal loss. There is substantial evidence that the aggregation of amyloid β (Aβ) in the brain plays a key role in the pathogenesis of AD and that Aβ aggregation is a concentration dependent process. Recently, it was found that Aβ levels in the brain interstitial fluid (ISF) are regulated by the sleep-wake cycle in both humans and mice; ISF Aβ is higher during wakefulness and lower during sleep. Intracerebroventricular infusion of orexin increased wakefulness and ISF Aβ levels, and chronic sleep deprivation significantly increased Aβ plaque formation in amyloid precursor protein transgenic (APP) mice. Growth hormone-releasing hormone (GHRH) is a well-documented sleep regulatory substance which promotes non-rapid eye movement sleep. GHRHR(lit/lit) mice that lack functional GHRH receptor have shorter sleep duration and longer wakefulness during light periods. The current study was undertaken to determine whether manipulating sleep by interfering with GHRH signaling affects brain ISF Aβ levels in APPswe/PS1ΔE9 (PS1APP) transgenic mice that overexpress mutant forms of APP and PSEN1 that cause autosomal dominant AD. We found that intraperitoneal injection of GHRH at dark onset increased sleep and decreased ISF Aβ and that delivery of a GHRH antagonist via reverse-microdialysis suppressed sleep and increased ISF Aβ. The diurnal fluctuation of ISF Aβ in PS1APP/GHRHR(lit/lit) mice was significantly smaller than that in PS1APP/GHRHR(lit/+) mice. However despite decreased sleep in GHRHR deficient mice, this was not associated with an increase in Aβ accumulation later in life. One of several possibilities for the finding is the fact that GHRHR deficient mice have GHRH-dependent but sleep-independent factors which protect against Aβ deposition.
Collapse
|
32
|
Pekkurnaz G, Trinidad JC, Wang X, Kong D, Schwarz TL. Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 2014; 158:54-68. [PMID: 24995978 DOI: 10.1016/j.cell.2014.06.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 02/20/2014] [Accepted: 04/28/2014] [Indexed: 01/17/2023]
Abstract
Cells allocate substantial resources toward monitoring levels of nutrients that can be used for ATP generation by mitochondria. Among the many specialized cell types, neurons are particularly dependent on mitochondria due to their complex morphology and regional energy needs. Here, we report a molecular mechanism by which nutrient availability in the form of extracellular glucose and the enzyme O-GlcNAc Transferase (OGT), whose activity depends on glucose availability, regulates mitochondrial motility in neurons. Activation of OGT diminishes mitochondrial motility. We establish the mitochondrial motor-adaptor protein Milton as a required substrate for OGT to arrest mitochondrial motility by mapping and mutating the key O-GlcNAcylated serine residues. We find that the GlcNAcylation state of Milton is altered by extracellular glucose and that OGT alters mitochondrial motility in vivo. Our findings suggest that, by dynamically regulating Milton GlcNAcylation, OGT tailors mitochondrial dynamics in neurons based on nutrient availability.
Collapse
Affiliation(s)
- Gulcin Pekkurnaz
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan C Trinidad
- Department of Chemistry, Biological Mass Spectrometry Facility, Indiana University, Bloomington, IN 47405, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University, Stanford, CA 94304, USA
| | - Dong Kong
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Thomas L Schwarz
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
The changing brain--insights into the mechanisms of neural and behavioral adaptation to the environment. Neuroscience 2013; 247:412-22. [PMID: 23602885 DOI: 10.1016/j.neuroscience.2013.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Kavli Prize in Neuroscience was awarded for the third time in September 2012, by the Norwegian Academy of Science and Letters in Oslo. The accompanying Kavli Prize Symposium on Neuroscience, held in Bergen and Trondheim, was a showcase of excellence in neuroscience research. The common theme of the Symposium presentations was the mechanisms by which animals adapt to their environment. The symposium speakers--Michael Greenberg, Erin Schuman, Chiara Cirelli, Michael Meaney, Catherine Dulac, Hopi Hoekstra, and Stanislas Dehaene--covered topics ranging from the molecular and cellular levels to the systems level and behavior. Thus a single amino acid change in a transcriptional repressor can disrupt gene regulation through neural activity (Greenberg). Deep sequencing analysis of the neuropil transcriptome indicates that a large fraction of the synaptic proteome is synthesized in situ in axons and dendrites, permitting local regulation (Schuman). The nature of the 'reset' function that makes animals dependent of sleep is being revealed (Cirelli). Maternal behavior can cause changes in gene expression that stably modify behavior in the offspring (Meaney). Removal of a single sensory channel protein in the vomero-nasal organ can switch off male-specific and switch on female-specific innate behavior of mice in response to environmental stimulation (Dulac). Innate behaviors can be stably transmitted from parent to offspring through generations even when those behaviors cannot be expressed, as illustrated by the elaborate burrowing behavior in a rodent species, in which independent genetic regions regulate distinct modules of the burrowing pattern (Hoekstra). Finally, at the other extreme of the nature-nurture scale, functional magnetic resonance imaging (fMRI) analysis in children and adults identified a brain area specifically involved in reading (Dehaene). As the area must originally have developed for a purpose other than reading, such as shape recognition, this illustrates the use of a previously formed neural structure to tackle a new challenge.
Collapse
|
34
|
Porkka-Heiskanen T, Zitting KM, Wigren HK. Sleep, its regulation and possible mechanisms of sleep disturbances. Acta Physiol (Oxf) 2013; 208:311-28. [PMID: 23746394 DOI: 10.1111/apha.12134] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/16/2013] [Accepted: 06/04/2013] [Indexed: 12/22/2022]
Abstract
The state of sleep consists of different phases that proceed in successive, tightly regulated order through the night forming a physiological program, which for each individual is different but stabile from one night to another. Failure to accomplish this program results in feeling of unrefreshing sleep and tiredness in the morning. The program core is constructed by genetic factors but regulated by circadian rhythm and duration and intensity of day time brain activity. Many environmental factors modulate sleep, including stress, health status and ingestion of vigilance-affecting nutrients or medicines (e.g. caffeine). Acute sleep loss results in compromised cognitive performance, memory deficits, depressive mood and involuntary sleep episodes during the day. Moreover, prolonged sleep curtailment has many adverse health effects, as evidenced by both epidemiological and experimental studies. These effects include increased risk for depression, type II diabetes, obesity and cardiovascular diseases. In addition to voluntary restriction of sleep, shift work, irregular working hours, jet lag and stress are important factors that induce curtailed or bad quality sleep and/or insomnia. This review covers the current theories on the function of normal sleep and describes current knowledge on the physiologic effects of sleep loss. It provides insights into the basic mechanisms of the regulation of wakefulness and sleep creating a theoretical background for understanding different disturbances of sleep.
Collapse
Affiliation(s)
| | - K.-M. Zitting
- Institute of Biomedicine; University of Helsinki; Helsinki; Finland
| | - H.-K. Wigren
- Institute of Biomedicine; University of Helsinki; Helsinki; Finland
| |
Collapse
|
35
|
Machaalani R, Hunt NJ, Waters KA. Effects of changes in energy homeostasis and exposure of noxious insults on the expression of orexin (hypocretin) and its receptors in the brain. Brain Res 2013; 1526:102-22. [PMID: 23830852 DOI: 10.1016/j.brainres.2013.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 12/23/2022]
Abstract
This review summarizes data regarding the brain expression of the orexin (hypocretin) system including: prepro-orexin (PPO), orexin A (OxA), orexin B (OxB) and the two orexin receptors 1 and 2 (OxR1, OxR2). Clinical data is limited to OxA and OxB in cerebral spinal fluid and serum/plasma, thus necessitating the development of animal models to undertake mechanistic studies. We focus on changes in animal models that were either exposed to a regime of altered sleep, metabolic energy homeostasis, exposed to drugs and noxious insults. Many more expressional studies are available for PPO, OxA and OxB levels, compared to studies of the receptors. Interestingly, the direction and pattern of change for PPO, OxA and OxB is inconsistent amongst studies, whereas for the receptors, there tends to be increased expression for both OxR1 and OxR2 after alterations in energy homeostasis, and an increased expression after noxious insults or exposure to some drugs. The clinical implications of these results from animal models are discussed in light of the findings from human studies, and future research directions are suggested to fill knowledge gaps with regard to the orexin system, particularly during early brain development.
Collapse
Affiliation(s)
- Rita Machaalani
- Department of Medicine, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
36
|
Abstract
AbstractMemory consolidation is the process by which relevant information is selected and transferred from a short-term, fragile state, into a stable, longer term domain from which it can be recalled. Effective memory underpins our ability to carry out everyday activities. When memory consolidation fails, such as in Alzheimer’s disease, the consequences can be devastating. Understanding the neurobiology of memory will help develop treatments for patients with memory loss. Here we describe the myriad processes involved in memory consolidation, including cholinergic and dopaminergic neurotransmission predominantly in hippocampal networks. We discuss established therapies as well as potential novel strategies for boosting cognition. Future approaches to enhancement of memory consolidation include not only pharmacological and neurosurgical treatments, but also lifestyle interventions — for example, modifications to sleep, exercise and diet.
Collapse
|