1
|
Zhang ZZ, Nasir A, Li D, Khan S, Bai Q, Yuan F. Effect of dexmedetomidine on ncRNA and mRNA profiles of cerebral ischemia-reperfusion injury in transient middle cerebral artery occlusion rats model. Front Pharmacol 2024; 15:1437445. [PMID: 39170713 PMCID: PMC11335533 DOI: 10.3389/fphar.2024.1437445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Ischemic stroke poses a significant global health burden, with rapid revascularization treatments being crucial but often insufficient to mitigate ischemia-reperfusion (I/R) injury. Dexmedetomidine (DEX) has shown promise in reducing cerebral I/R injury, but its potential molecular mechanism, particularly its interaction with non-coding RNAs (ncRNAs), remains unclear. This study investigates DEX's therapeutic effect and potential molecular mechanisms in reducing cerebral I/R injury. A transient middle cerebral artery obstruction (tMACO) model was established to simulate cerebral I/R injury in adult rats. DEX was administered pre-ischemia and post-reperfusion. RNA sequencing and bioinformatic analyses were performed on the ischemic cerebral cortex to identify differentially expressed non-coding RNAs (ncRNAs) and mRNAs. The sequencing results showed 6,494 differentially expressed (DE) mRNA and 2698 DE circRNA between the sham and tMCAO (I/R) groups. Additionally, 1809 DE lncRNA, 763 DE mRNA, and 2795 DE circRNA were identified between the I/R group and tMCAO + DEX (I/R + DEX) groups. Gene ontology (GO) analysis indicated significant enrichment in multicellular biogenesis, plasma membrane components, and protein binding. KEGG analysis further highlighted the potential mechanism of DEX action in reducing cerebral I/R injury, with hub genes involved in inflammatory pathways. This study demonstrates DEX's efficacy in reducing cerebral I/R injury and offers insights into its brain-protective effects, especially in ischemic stroke. Further research is warranted to fully understand DEX's neuroprotective mechanisms and its clinical applications.
Collapse
Affiliation(s)
- Zhen Zhen Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Nasir
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Li
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suliman Khan
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Bai
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Yuan
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Liu H, Jiang M, Chen Z, Li C, Yin X, Zhang X, Wu M. The Role of the Complement System in Synaptic Pruning after Stroke. Aging Dis 2024:AD.2024.0373. [PMID: 39012667 DOI: 10.14336/ad.2024.0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Stroke is a serious disease that can lead to local neurological dysfunction and cause great harm to the patient's health due to blood cerebral circulation disorder. Synaptic pruning is critical for the normal development of the human brain, which makes the synaptic circuit completer and more efficient by removing redundant synapses. The complement system is considered a key player in synaptic loss and cognitive impairment in neurodegenerative disease. After stroke, the complement system is over-activated, and complement proteins can be labeled on synapses. Microglia and astrocytes can recognize and engulf synapses through corresponding complement receptors. Complement-mediated excessive synaptic pruning can cause post-stroke cognitive impairment (PSCI) and secondary brain damage. This review summarizes the latest progress of complement-mediated synaptic pruning after stroke and the potential mechanisms. Targeting complement-mediated synaptic pruning may be essential for exploring therapeutic strategies for secondary brain injury (SBI) and neurological dysfunction after stroke.
Collapse
Affiliation(s)
- Hongying Liu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Chuan Li
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Xiaorong Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| |
Collapse
|
3
|
Lin J(C, Hwang S(W, Luo H, Mohamud Y. Double-Edged Sword: Exploring the Mitochondria-Complement Bidirectional Connection in Cellular Response and Disease. BIOLOGY 2024; 13:431. [PMID: 38927311 PMCID: PMC11200454 DOI: 10.3390/biology13060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Mitochondria serve an ultimate purpose that seeks to balance the life and death of cells, a role that extends well beyond the tissue and organ systems to impact not only normal physiology but also the pathogenesis of diverse diseases. Theorized to have originated from ancient proto-bacteria, mitochondria share similarities with bacterial cells, including their own circular DNA, double-membrane structures, and fission dynamics. It is no surprise, then, that mitochondria interact with a bacterium-targeting immune pathway known as a complement system. The complement system is an ancient and sophisticated arm of the immune response that serves as the body's first line of defense against microbial invaders. It operates through a complex cascade of protein activations, rapidly identifying and neutralizing pathogens, and even aiding in the clearance of damaged cells and immune complexes. This dynamic system, intertwining innate and adaptive immunity, holds secrets to understanding numerous diseases. In this review, we explore the bidirectional interplay between mitochondrial dysfunction and the complement system through the release of mitochondrial damage-associated molecular patterns. Additionally, we explore several mitochondria- and complement-related diseases and the potential for new therapeutic strategies.
Collapse
Affiliation(s)
- Jingfei (Carly) Lin
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Sinwoo (Wendy) Hwang
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
4
|
Gu X, Chen A, You M, Guo H, Tan S, He Q, Hu B. Extracellular vesicles: a new communication paradigm of complement in neurological diseases. Brain Res Bull 2023; 199:110667. [PMID: 37192717 DOI: 10.1016/j.brainresbull.2023.110667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/25/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
The complement system is crucial to the innate immune system. It has the function of destroying pathogens by activating the classical, alternative, and lectin pathways. The complement system is important in nervous system diseases such as cerebrovascular and neurodegenerative diseases. Activation of the complement system involves a series of intercellular signaling and cascade reactions. However, research on the source and transport mechanisms of the complement system in neurological diseases is still in its infancy. Studies have increasingly found that extracellular vesicles (EVs), a classic intercellular communication paradigm, may play a role in complement signaling disorders. Here, we systematically review the EV-mediated activation of complement pathways in different neurological diseases. We also discuss the prospect of EVs as future immunotherapy targets.
Collapse
Affiliation(s)
- Xinmei Gu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Senwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022.
| |
Collapse
|
5
|
Henrik SZŐKE, István BÓKKON, David M, Jan V, Ágnes K, Zoltán K, Ferenc F, Tibor K, László SL, Ádám D, Odilia M, Andrea K. The innate immune system and fever under redox control: A Narrative Review. Curr Med Chem 2022; 29:4324-4362. [DOI: 10.2174/0929867329666220203122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT:
In living cells, redox potential is vitally important for normal physiological processes that are closely regulated by antioxidants, free amino acids and proteins that either have reactive oxygen and nitrogen species capture capability or can be compartmentalized. Although hundreds of experiments support the regulatory role of free radicals and their derivatives, several authors continue to claim that these perform only harmful and non-regulatory functions. In this paper we show that countless intracellular and extracellular signal pathways are directly or indirectly linked to regulated redox processes. We also briefly discuss how artificial oxidative stress can have important therapeutic potential and the possible negative effects of popular antioxidant supplements.
Next, we present the argument supported by a large number of studies that several major components of innate immunity, as well as fever, is also essentially associated with regulated redox processes. Our goal is to point out that the production of excess or unregulated free radicals and reactive species can be secondary processes due to the perturbed cellular signal pathways. However, researchers on pharmacology should consider the important role of redox mechanisms in the innate immune system and fever.
Collapse
Affiliation(s)
- SZŐKE Henrik
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - BÓKKON István
- Neuroscience and Consciousness Research Department, Vision Research Institute,
Lowell, MA, USA
| | - martin David
- Department of Human Medicine, University Witten/Herdecke, Witten, Germany
| | - Vagedes Jan
- University Children’s Hospital, Tuebingen University, Tuebingen, Germany
| | - kiss Ágnes
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - kovács Zoltán
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - fekete Ferenc
- Department of Nyerges Gábor Pediatric Infectology, Heim Pál National Pediatric Institute, Budapest, Hungary
| | - kocsis Tibor
- Department of Clinical Governance, Hungarian National Ambulance Service, Budapest, Hungary
| | | | | | | | - kisbenedek Andrea
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
6
|
Kim SD, Kim M, Wu HH, Jin BK, Jeon MS, Song YS. Prunus cerasoides Extract and Its Component Compounds Upregulate Neuronal Neuroglobin Levels, Mediate Antioxidant Effects, and Ameliorate Functional Losses in the Mouse Model of Cerebral Ischemia. Antioxidants (Basel) 2021; 11:99. [PMID: 35052603 PMCID: PMC8773295 DOI: 10.3390/antiox11010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
Prunus cerasoides (PC) has been reported to have antimicrobial and anti-inflammatory properties, but its potential as a neuroprotective agent in a mouse model of cerebral ischemia has not been explored. Considering neuroglobin (Ngb), an endogenous neuroprotective factor, as a novel approach to neuroprotection, in this study, Ngb promoter activity, Ngb expression changes, and antioxidant protection by PC extract (PCE) and PC component compounds (PCCs) were analyzed in oxygen-glucose deprivation (OGD)-treated neurons. In vivo analysis involved transient middle cerebral artery occlusion (tMCAO) in mice with pre- and post-treatment exposure to PCE. Following ischemic stroke induction, neurological behavior scores were obtained, and cellular function-related signals were evaluated in the ischemic infarct areas. In addition to PCE, certain component compounds from PCE also significantly increased Ngb levels and attenuated the intracellular ROS production and cytotoxicity seen with OGD in primary neurons. Administration of PCE reduced the infarct volume and improved neurological deficit scores in ischemic stroke mice compared with the vehicle treatment. Increased Ngb levels in infarct penumbra with PCE treatment were also accompanied by decreased markers of apoptosis (activated p38 and cleaved caspase-3). Our findings point to the benefits of Ngb-mediated neuroprotection via PCE and its antioxidant activity in an ischemic stroke model.
Collapse
Affiliation(s)
- So-Dam Kim
- Department of Pharmacology, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Minha Kim
- Translational Research Center, Department of Molecular Biomedicine, IRIMS and College of Medicine, Inha University, Incheon 22332, Korea; (M.K.); (M.-S.J.)
| | - Hong-Hua Wu
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China;
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Myung-Shin Jeon
- Translational Research Center, Department of Molecular Biomedicine, IRIMS and College of Medicine, Inha University, Incheon 22332, Korea; (M.K.); (M.-S.J.)
- Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22332, Korea
| | - Yun Seon Song
- Department of Pharmacology, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| |
Collapse
|
7
|
Integrated Metabolomics and Proteomics Dynamics of Serum Samples Reveals Dietary Zeolite Clinoptilolite Supplementation Restores Energy Balance in High Yielding Dairy Cows. Metabolites 2021; 11:metabo11120842. [PMID: 34940600 PMCID: PMC8705350 DOI: 10.3390/metabo11120842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Dairy cows can suffer from a negative energy balance (NEB) during their transition from the dry period to early lactation, which can increase the risk of postpartum diseases such as clinical ketosis, mastitis, and fatty liver. Zeolite clinoptilolite (CPL), due to its ion-exchange property, has often been used to treat NEB in animals. However, limited information is available on the dynamics of global metabolomics and proteomic profiles in serum that could provide a better understanding of the associated altered biological pathways in response to CPL. Thus, in the present study, a total 64 serum samples were collected from 8 control and 8 CPL-treated cows at different time points in the prepartum and postpartum stages. Labelled proteomics and untargeted metabolomics resulted in identification of 64 and 21 differentially expressed proteins and metabolites, respectively, which appear to play key roles in restoring energy balance (EB) after CPL supplementation. Joint pathway and interaction analysis revealed cross-talks among valproic acid, leucic acid, glycerol, fibronectin, and kinninogen-1, which could be responsible for restoring NEB. By using a global proteomics and metabolomics strategy, the present study concluded that CPL supplementation could lower NEB in just a few weeks, and explained the possible underlying pathways employed by CPL.
Collapse
|
8
|
Pei G, Ma N, Chen F, Guo L, Bai J, Deng J, He Z. Screening and Identification of Hub Genes in the Corticosteroid Resistance Network in Human Airway Epithelial Cells via Microarray Analysis. Front Pharmacol 2021; 12:672065. [PMID: 34707493 PMCID: PMC8542788 DOI: 10.3389/fphar.2021.672065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: Corticosteroid resistance is a major barrier to chronic obstructive pulmonary disease (COPD), but the exact mechanism of corticosteroid resistance in COPD has been less well studied. Methods: The microarray dataset GSE11906, which includes genomic and clinical data on COPD, was downloaded from the Gene Expression Omnibus (GEO) database, and the differentially expressed genes (DEGs) were identified using R software. Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes (KEGG) were utilized to enrich and analyze the gene cohort related to the response to steroid hormones, respectively. The Connectivity Map (CMap) database was used to screen corticosteroid resistance-related drugs that might exert a potential therapeutic effect. STRING was used to construct a protein-protein interaction (PPI) network of the gene cohort, and the CytoHubba plug-in of Cytoscape was used to screen the hub genes in the PPI network. The expression levels of hub genes in cigarette smoke extract (CSE)-stimulated bronchial epithelial cells were assayed by quantitative real-time PCR and western blotting. Results: Twenty-one genes were found to be correlated with the response to steroid hormones. In the CMap database, 32 small-molecule compounds that might exert a therapeutic effect on corticosteroid resistance in COPD were identified. Nine hub genes were extracted from the PPI network. The expression levels of the BMP4, FOS, FN1, EGFR, and SPP1 proteins were consistent with the microarray data obtained from molecular biology experiments. Scopoletin significantly restrained the increases in the levels of AKR1C3, ALDH3A1, FN1 and reversed the decreases of phosphorylated GR and HDAC2 caused by CSE exposure. Conclusion: The BMP4, FOS, FN1, EGFR, and SPP1 genes are closely correlated with CSE-induced glucocorticoid resistance in airway epithelial cells. Scopoletin may be a potential drug for the treatment of glucocorticoid resistance caused by CSE.
Collapse
Affiliation(s)
- Guangsheng Pei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Nan Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fugang Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liyan Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingmin Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Peterson SL, Li Y, Sun CJ, Wong KA, Leung KS, de Lima S, Hanovice NJ, Yuki K, Stevens B, Benowitz LI. Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve. J Neurosci 2021; 41:8508-8531. [PMID: 34417332 PMCID: PMC8513703 DOI: 10.1523/jneurosci.0555-21.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Axon regenerative failure in the mature CNS contributes to functional deficits following many traumatic injuries, ischemic injuries, and neurodegenerative diseases. The complement cascade of the innate immune system responds to pathogen threat through inflammatory cell activation, pathogen opsonization, and pathogen lysis, and complement is also involved in CNS development, neuroplasticity, injury, and disease. Here, we investigated the involvement of the classical complement cascade and microglia/monocytes in CNS repair using the mouse optic nerve injury (ONI) model, in which axons arising from retinal ganglion cells (RGCs) are disrupted. We report that central complement C3 protein and mRNA, classical complement C1q protein and mRNA, and microglia/monocyte phagocytic complement receptor CR3 all increase in response to ONI, especially within the optic nerve itself. Importantly, genetic deletion of C1q, C3, or CR3 attenuates RGC axon regeneration induced by several distinct methods, with minimal effects on RGC survival. Local injections of C1q function-blocking antibody revealed that complement acts primarily within the optic nerve, not retina, to support regeneration. Moreover, C1q opsonizes and CR3+ microglia/monocytes phagocytose growth-inhibitory myelin debris after ONI, a likely mechanism through which complement and myeloid cells support axon regeneration. Collectively, these results indicate that local optic nerve complement-myeloid phagocytic signaling is required for CNS axon regrowth, emphasizing the axonal compartment and highlighting a beneficial neuroimmune role for complement and microglia/monocytes in CNS repair.SIGNIFICANCE STATEMENT Despite the importance of achieving axon regeneration after CNS injury and the inevitability of inflammation after such injury, the contributions of complement and microglia to CNS axon regeneration are largely unknown. Whereas inflammation is commonly thought to exacerbate the effects of CNS injury, we find that complement proteins C1q and C3 and microglia/monocyte phagocytic complement receptor CR3 are each required for retinal ganglion cell axon regeneration through the injured mouse optic nerve. Also, whereas studies of optic nerve regeneration generally focus on the retina, we show that the regeneration-relevant role of complement and microglia/monocytes likely involves myelin phagocytosis within the optic nerve. Thus, our results point to the importance of the innate immune response for CNS repair.
Collapse
Affiliation(s)
- Sheri L Peterson
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Yiqing Li
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong China, 510060
| | - Christina J Sun
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Kimberly A Wong
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kylie S Leung
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Silmara de Lima
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Nicholas J Hanovice
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kenya Yuki
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, and
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
10
|
Chen H, Yan C, Cao J, Liu Z, Sun Y, Wang Y. Design, Synthesis, and Biological Evaluation of Novel Tetramethylpyrazine- nitrone Derivatives as Antioxidants. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201117145311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Thrombolysis and endovascular thrombectomy are the two main therapeutic
strategies for ischemic stroke in clinic. However, reperfusion injury causes oxidative stress leading
to overproduction of reactive oxygen species, mitochondrial dysfunction and subsequent cell death.
Methods:
We designed and synthesized two tetramethylpyrazine-nitrone derivatives (T-003 and T-
005) and investigated their abilities for scavenging free radicals and protective effects as well as
neurite outgrowth promotion in vitro.
Results:
Both of them showed potent radical-scavenging activity and neuroprotective effects
against iodoacetic acid-induced cell injury. Furthermore, T-003 and T-005 significantly promoted
neurite outgrowth in PC12 cells.
Conclusion:
Our results suggest that compound T-003 and T-005 could be potent antioxidants for
the treatment of neurological disease, particularly ischemic stroke.
Collapse
Affiliation(s)
- Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou,China
| | - Chunyan Yan
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou,China
| | - Jie Cao
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou,China
| | - Zheng Liu
- Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan,China
| | - Yewei Sun
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou,China
| | - Yuqiang Wang
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou,China
| |
Collapse
|
11
|
Kim M, Kim SD, Kim KI, Jeon EH, Kim MG, Lim YR, Lkhagva-Yondon E, Oh Y, Na K, Chung YC, Jin BK, Song YS, Jeon MS. Dynamics of T Lymphocyte between the Periphery and the Brain from the Acute to the Chronic Phase Following Ischemic Stroke in Mice. Exp Neurobiol 2021; 30:155-169. [PMID: 33707347 PMCID: PMC8118758 DOI: 10.5607/en20062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022] Open
Abstract
Stroke causes systemic immunosuppression. T lymphocytes are involved in infarct size in the early stages of stroke. However, the phenotypes of T lymphocytes and their functions in peripheral immune organs and the brain have not been well analyzed in the acute and chronic phases of stroke. Here, we investigated pathological phenotypic alterations in the systemic immune response, especially changes in T lymphocytes, from one day to six months after ischemic stroke in mice. Impairment in thymocyte numbers, development, proliferation, and apoptosis were observed for up to two weeks. The number of mature T cells in the spleen and blood decreased and showed reduced interferon-γ production. Increased numbers of CD4-CD8-CD3+ double-negative T cells were observed in the mouse brain during the early stages of stroke, whereas interleukin (IL)-10+Foxp3+ regulatory T lymphocytes increased from two weeks during the chronic phase. These phenotypes correlated with body weight and neurological severity scores. The recovery of T lymphocyte numbers and increases in IL-10+Foxp3+ regulatory T lymphocytes may be important for long-term neurological outcomes. Dynamic changes in T lymphocytes between the acute and chronic phases may play different roles in pathogenesis and recovery. This study provides fundamental information regarding the T lymphocyte alterations from the brain to the peripheral immune organs following stroke.
Collapse
Affiliation(s)
- Minha Kim
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea
| | - So-Dam Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Kyoung In Kim
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Eun Hae Jeon
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea.,Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22332, Korea
| | - Min Gee Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Yu-Ree Lim
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea
| | - Enkhmaa Lkhagva-Yondon
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea.,Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22332, Korea
| | - Yena Oh
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea
| | - Kwangmin Na
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea
| | - Young Cheul Chung
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yun Seon Song
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Myung-Shin Jeon
- Translational Research Center, Department of Molecular Biomedicine, IRIMS, and College of Medicine, Inha University, Incheon 22332, Korea.,Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22332, Korea.,Convergent Research Center for Metabolism and Immunoregulation, Inha University, Incheon 22212, Korea
| |
Collapse
|
12
|
Ziabska K, Ziemka-Nalecz M, Pawelec P, Sypecka J, Zalewska T. Aberrant Complement System Activation in Neurological Disorders. Int J Mol Sci 2021; 22:4675. [PMID: 33925147 PMCID: PMC8125564 DOI: 10.3390/ijms22094675] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The complement system is an assembly of proteins that collectively participate in the functions of the healthy and diseased brain. The complement system plays an important role in the maintenance of uninjured (healthy) brain homeostasis, contributing to the clearance of invading pathogens and apoptotic cells, and limiting the inflammatory immune response. However, overactivation or underregulation of the entire complement cascade within the brain may lead to neuronal damage and disturbances in brain function. During the last decade, there has been a growing interest in the role that this cascading pathway plays in the neuropathology of a diverse array of brain disorders (e.g., acute neurotraumatic insult, chronic neurodegenerative diseases, and psychiatric disturbances) in which interruption of neuronal homeostasis triggers complement activation. Dysfunction of the complement promotes a disease-specific response that may have either beneficial or detrimental effects. Despite recent advances, the explicit link between complement component regulation and brain disorders remains unclear. Therefore, a comprehensible understanding of such relationships at different stages of diseases could provide new insight into potential therapeutic targets to ameliorate or slow progression of currently intractable disorders in the nervous system. Hence, the aim of this review is to provide a summary of the literature on the emerging role of the complement system in certain brain disorders.
Collapse
Affiliation(s)
| | | | | | | | - Teresa Zalewska
- Mossakowski Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (K.Z.); (M.Z.-N.); (P.P.); (J.S.)
| |
Collapse
|
13
|
Zhao S, Cheng CK, Zhang CL, Huang Y. Interplay Between Oxidative Stress, Cyclooxygenases, and Prostanoids in Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:784-799. [PMID: 32323554 DOI: 10.1089/ars.2020.8105] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Endothelial cells lining the lumen of blood vessels play an important role in the regulation of cardiovascular functions through releasing both vasoconstricting and vasodilating factors. The production and function of vasoconstricting factors are largely elevated in hypertension, diabetes, atherosclerosis, and ischemia/reperfusion injuries. Cyclooxygenases (COXs) are the major enzymes producing five different prostanoids that act as either contracting or relaxing substances. Under conditions of increased oxidative stress, the expressions and activities of COX isoforms are altered, resulting in changes in production of various prostanoids and thus affecting vascular tone. This review briefly summarizes the relationship between oxidative stress, COXs, and prostanoids, thereby providing new insights into the pathophysiological mechanisms of cardiovascular diseases (CVDs). Recent Advances: Many new drugs targeting oxidative stress, COX-2, and prostanoids against common CVDs have been evaluated in recent years and they are summarized in this review. Critical Issues: Comprehensive understanding of the complex interplay between oxidative stress, COXs, and prostanoids in CVDs helps develop more effective measures against cardiovascular pathogenesis. Future Directions: Apart from minimizing the undesired effects of harmful prostanoids, future studies shall investigate the restoration of vasoprotective prostanoids as a means to combat CVDs. Antioxid. Redox Signal. 34, 784-799.
Collapse
Affiliation(s)
- Sha Zhao
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chak Kwong Cheng
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cheng-Lin Zhang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Ruzafa N, Pereiro X, Fonollosa A, Araiz J, Acera A, Vecino E. Plasma Rich in Growth Factors (PRGF) Increases the Number of Retinal Müller Glia in Culture but Not the Survival of Retinal Neurons. Front Pharmacol 2021; 12:606275. [PMID: 33767620 PMCID: PMC7985077 DOI: 10.3389/fphar.2021.606275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/02/2021] [Indexed: 01/19/2023] Open
Abstract
Plasma rich in growth factors (PRGF) is a subtype of platelet-rich plasma (PRP) that stimulates tissue regeneration and may promote neuronal survival. It has been employed in ophthalmology to achieve tissue repair in some retinal pathologies, although how PRGF acts in the retina is still poorly understood. As a part of the central nervous system, the retina has limited capacity for repair capacity following damage, and retinal insult can provoke the death of retinal ganglion cells (RGCs), potentially producing irreversible blindness. RGCs are in close contact with glial cells, such as Müller cells, that help maintain homeostasis in the retina. In this study, the aim was to determine whether PRGF can protect RGCs and whether it increases the number of Müller cells. Therefore, PRGF were tested on primary cell cultures of porcine RGCs and Müller cells, as well as on co-cultures of these two cell types. Moreover, the inflammatory component of PRGF was analyzed and the cytokines in the different PRGFs were quantified. In addition, we set out to determine if blocking the inflammatory components of PRGF alters its effect on the cells in culture. The presence of PRGF compromises RGC survival in pure cultures and in co-culture with Müller cells, but this effect was reversed by heat-inactivation of the PRGF. The detrimental effect of PRGF on RGCs could be in part due to the presence of cytokines and specifically, to the presence of pro-inflammatory cytokines that compromise their survival. However, other factors are likely to be present in the PRGF that have a deleterious effect on the RGCs since the exposure to antibodies against these cytokines were insufficient to protect RGCs. Moreover, PRGF promotes Müller cell survival. In conclusion, PRGF hinders the survival of RGCs in the presence or absence of Müller cells, yet it promotes Müller cell survival that could be the reason of retina healing observed in the in vivo treatments, with some cytokines possibly implicated. Although PRGF could stimulate tissue regeneration, further studies should be performed to evaluate the effect of PRGF on neurons and the implication of its potential inflammatory role in such processes.
Collapse
Affiliation(s)
- Noelia Ruzafa
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain.,Begiker-Ophthalmology Research Group, Cruces Hospital, BioCruces Health Research Institute, Bilbao, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain.,Begiker-Ophthalmology Research Group, Cruces Hospital, BioCruces Health Research Institute, Bilbao, Spain
| | - Alex Fonollosa
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain.,Begiker-Ophthalmology Research Group, Cruces Hospital, BioCruces Health Research Institute, Bilbao, Spain.,Department of Ophthalmology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Javier Araiz
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain.,Department of Ophthalmology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Arantxa Acera
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain.,Biodonostia Health Research Institute, Donostia Hospital, San Sebastian, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain.,Begiker-Ophthalmology Research Group, Cruces Hospital, BioCruces Health Research Institute, Bilbao, Spain
| |
Collapse
|
15
|
PIWIL1 governs the crosstalk of cancer cell metabolism and immunosuppressive microenvironment in hepatocellular carcinoma. Signal Transduct Target Ther 2021; 6:86. [PMID: 33633112 PMCID: PMC7907082 DOI: 10.1038/s41392-021-00485-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Altered energy metabolism of cancer cells shapes the immune cell response in the tumor microenvironment that facilitates tumor progression. Herein, we reported the novel of tumor cell-expressed Piwi Like RNA-Mediated Gene Silencing 1 (PIWIL1) in mediating the crosstalk of fatty acid metabolism and immune response of human hepatocellular carcinoma (HCC). PIWIL1 expression in HCC was increased compared to normal hepatic tissues and was positively correlated with the proliferation rate of HCC cell lines. PIWIL1 overexpression accelerated in vitro proliferation and in vivo growth of HCC tumors, while PIWIL1 knockdown showed opposite effects. PIWIL1 increased oxygen consumption and energy production via fatty acid metabolism without altering aerobic glycolysis. Inhibition of fatty acid metabolism abolished PIWIL1-induced HCC proliferation and growth. RNA-seq analysis revealed that immune system regulation might be involved, which was echoed by the experimental observation that PIWIL1-overexpressing HCC cells attracted myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment. MDSCs depletion reduced the proliferation and growth of PIWIL1-overexpressing HCC tumors. Complement C3, whose secretion was induced by PIWIL1 in HCC cells, mediates the interaction of HCC cells with MDSCs by activated p38 MAPK signaling in MDSCs, which in turn initiated expression of immunosuppressive cytokine IL10. Neutralizing IL10 secretion reduced the immunosuppressive activity of MDSCs in the microenvironment of PIWIL1-overexpressing HCC. Taken together, our study unraveled the critical role of PIWIL1 in initiating the interaction of cancer cell metabolism and immune cell response in HCC. Tumor cells-expressed PIWIL1 may be a potential target for the development of novel HCC treatment.
Collapse
|
16
|
Yang P, Zhu Z, Zang Y, Bu X, Xu T, Zhong C, Wang A, Peng H, Guo D, Zheng X, Xu T, Chen J, Zhang Y, He J. Increased Serum Complement C3 Levels Are Associated With Adverse Clinical Outcomes After Ischemic Stroke. Stroke 2021; 52:868-877. [PMID: 33517703 DOI: 10.1161/strokeaha.120.031715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Complement C3 has been implicated in inflammation and ischemia/reperfusion injury, but its impact on the prognosis of ischemic stroke remains unclear. Aim of this study was to prospectively investigate the association between serum complement C3 and adverse clinical outcomes after ischemic stroke. METHODS We measured serum complement C3 levels for 3474 patients with ischemic stroke in 26 participating hospitals and collected data of clinical outcomes at 3 months after ischemic stroke. The primary outcome was composite outcome of death and major disability (modified Rankin Scale score ≥3) at 3 months after stroke onset and secondary outcomes included major disability, death, and vascular events. RESULTS During 3 months of follow-up, 866 participants (25.4%) developed primary outcome. After multivariate adjustment, elevated serum complement C3 levels were associated with increased risk of primary outcome (odds ratio, 1.30 [95% CI, 1.02-1.65]; Ptrend=0.038) when 2 extreme tertiles were compared. Each SD increase of log-transformed complement C3 was associated with 13% (95% CI, 2%-25%) increased risk of primary outcome. Multivariable-adjusted spline regression model showed a linear relationship between serum complement C3 and the risk of primary outcome (Plinearity=0.022). Addition of serum complement C3 to conventional risk factors significantly improved the risk prediction of primary outcome (net reclassification index: 8.87%, P=0.028; integrated discrimination index: 0.19%, P=0.029). CONCLUSIONS High serum complement C3 levels at baseline were associated with increased risks of adverse clinical outcomes at 3 months after ischemic stroke, suggesting that serum complement C3 may be a valuable prognostic biomarker for ischemic stroke.
Collapse
Affiliation(s)
- Pinni Yang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Z.Z., D.G., J.C., J.H.)
| | - Yuhan Zang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
- Department of Epidemiology, School of Public health, Chongqing Medical University, China (X.B.)
| | - Tian Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Z.Z., D.G., J.C., J.H.)
| | - Xiaowei Zheng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
- Department of Neurology, Affiliated Hospital of Nantong University, China (T.X.)
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Z.Z., D.G., J.C., J.H.)
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (J.C., J.H.)
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
| | - Jiang He
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (P.Y., Z.Z., Y. Zang, X.B., T.X., C.Z., A.W., H.P., D.G., X.Z., T.X., Y. Zhang, X.Z.)
| |
Collapse
|
17
|
Kaneko N, Satta S, Komuro Y, Muthukrishnan SD, Kakarla V, Guo L, An J, Elahi F, Kornblum HI, Liebeskind DS, Hsiai T, Hinman JD. Flow-Mediated Susceptibility and Molecular Response of Cerebral Endothelia to SARS-CoV-2 Infection. Stroke 2021; 52:260-270. [PMID: 33161843 PMCID: PMC7769899 DOI: 10.1161/strokeaha.120.032764] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with an increased rate of cerebrovascular events including ischemic stroke and intracerebral hemorrhage. The mechanisms underlying cerebral endothelial susceptibility and response to SARS-CoV-2 are unknown yet critical to understanding the association of SARS-CoV-2 infection with cerebrovascular events. METHODS Endothelial cells were isolated from human brain and analyzed by RNA sequencing. Human umbilical vein and human brain microvascular cells were used in both monolayer culture and endothelialized within a 3-dimensional printed vascular model of the middle cerebral artery. Gene expression levels were measured by quantitative polymerase chain reaction and direct RNA hybridization. Recombinant SARS-CoV-2 S protein and S protein-containing liposomes were used to measure endothelial binding by immunocytochemistry. RESULTS ACE2 (angiotensin-converting enzyme-2) mRNA levels were low in human brain and monolayer endothelial cell culture. Within the 3-dimensional printed vascular model, ACE2 gene expression and protein levels were progressively increased by vessel size and flow rates. SARS-CoV-2 S protein-containing liposomes were detected in human umbilical vein endothelial cells and human brain microvascular endothelial cells in 3-dimensional middle cerebral artery models but not in monolayer culture consistent with flow dependency of ACE2 expression. Binding of SARS-CoV-2 S protein triggered 83 unique genes in human brain endothelial cells including upregulation of complement component C3. CONCLUSIONS Brain endothelial cells are susceptible to direct SARS-CoV-2 infection through flow-dependent expression of ACE2. Viral S protein binding triggers a unique gene expression profile in brain endothelia that may explain the association of SARS-CoV-2 infection with cerebrovascular events.
Collapse
Affiliation(s)
- Naoki Kaneko
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles
| | - Sandro Satta
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles
| | - Yutaro Komuro
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
| | - Sree Deepthi Muthukrishnan
- Intellectual and Developmental Disabilities Research Center, Semel Institute of Neuroscience, University of California Los Angeles
| | | | - Lea Guo
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles
| | - Jennifer An
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
| | - Fanny Elahi
- Memory and Aging Center, University of California San Francisco
| | - Harley I. Kornblum
- Intellectual and Developmental Disabilities Research Center, Semel Institute of Neuroscience, University of California Los Angeles
| | - David S. Liebeskind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
| | - Tzung Hsiai
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles
- Veterans Healthcare Administration, Greater Los Angeles Healthcare System
| | - Jason D. Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
- Veterans Healthcare Administration, Greater Los Angeles Healthcare System
| |
Collapse
|
18
|
Ma Y, Jiang L, Wang L, Li Y, Liu Y, Lu W, Shi R, Zhang L, Fu Z, Qu M, Liu Y, Wang Y, Zhang Z, Yang GY. Endothelial progenitor cell transplantation alleviated ischemic brain injury via inhibiting C3/C3aR pathway in mice. J Cereb Blood Flow Metab 2020; 40:2374-2386. [PMID: 31865842 PMCID: PMC7820683 DOI: 10.1177/0271678x19892777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial progenitor cell transplantation is a potential therapeutic approach in brain ischemia. However, whether the therapeutic effect of endothelial progenitor cells is via affecting complement activation is unknown. We established a mouse focal ischemia model (n = 111) and transplanted endothelial progenitor cells into the peri-infarct region immediately after brain ischemia. Neurological outcomes and brain infarct/atrophy volume were examined after ischemia. Expression of C3, C3aR and pro-inflammatory factors were further examined to explore the role of endothelial progenitor cells in ischemic brain. We found that endothelial progenitor cells improved neurological outcomes and reduced brain infarct/atrophy volume after 1 to 14 days of ischemia compared to the control (p < 0.05). C3 and C3aR expression in the brain was up-regulated at 1 day up to 14 days (p < 0.05). Endothelial progenitor cells reduced astrocyte-derived C3 (p < 0.05) and C3aR expression (p < 0.05) after ischemia. Endothelial progenitor cells also reduced inflammatory response after ischemia (p < 0.05). Endothelial progenitor cell transplantation reduced astrocyte-derived C3 expression in the brain after ischemic stroke, together with decreased C3aR and inflammatory response contributing to neurological function recovery. Our results indicate that modulating complement C3/C3aR pathway is a novel therapeutic target for the ischemic stroke.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Jiang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenjing Lu
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Linyuan Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zongjie Fu
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Meijie Qu
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yingling Liu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yongting Wang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front Immunol 2020; 11:2021. [PMID: 33013859 PMCID: PMC7513624 DOI: 10.3389/fimmu.2020.02021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological disorders are major contributors to death and disability worldwide. The pathology of injuries and disease processes includes a cascade of events that often involve molecular and cellular components of the immune system and their interaction with cells and structures within the central nervous system. Because of this, there has been great interest in developing neuroprotective therapeutic approaches that target neuroinflammatory pathways. Several neuroprotective anti-inflammatory agents have been investigated in clinical trials for a variety of neurological diseases and injuries, but to date the results from the great majority of these trials has been disappointing. There nevertheless remains great interest in the development of neuroprotective strategies in this arena. With this in mind, the complement system is being increasingly discussed as an attractive therapeutic target for treating brain injury and neurodegenerative conditions, due to emerging data supporting a pivotal role for complement in promoting multiple downstream activities that promote neuroinflammation and degeneration. As we move forward in testing additional neuroprotective and immune-modulating agents, we believe it will be useful to review past trials and discuss potential factors that may have contributed to failure, which will assist with future agent selection and trial design, including for complement inhibitors. In this context, we also discuss inhibition of the complement system as a potential neuroprotective strategy for neuropathologies of the central nervous system.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Davis M. Borucki
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Mohammed Alshareef
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
20
|
Saez D, Dushime R, Wu H, Ramos Cordova LB, Shukla K, Brown-Harding H, Furdui CM, Tsang AW. Sulforaphane promotes chlamydial infection by suppressing mitochondrial protein oxidation and activation of complement C3. Protein Sci 2020; 28:216-227. [PMID: 30367535 DOI: 10.1002/pro.3536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022]
Abstract
Sulforaphane (SFN), a phytochemical found in broccoli and other cruciferous vegetables, is a potent antioxidant and anti-inflammatory agent with reported effects in cancer chemoprevention and suppression of infection with intracellular pathogens. Here we report on the impact of SFN on infection with Chlamydia trachomatis (Ct), a common sexually transmitted pathogen responsible for 131 million new cases annually worldwide. Astoundingly, we find that SFN as well as broccoli sprouts extract (BSE) promote Ct infection of human host cells. Both the number and size of Ct inclusions were increased when host cells were pretreated with SFN or BSE. The initial investigations presented here point to both the antioxidant and thiol alkylating properties of SFN as regulators of Ct infection. SFN decreased mitochondrial protein sulfenylation and promoted Ct development, which were both reversed by treatment with mitochondria-targeted paraquat (MitoPQ). Inhibition of the complement component 3 (complement C3) by SFN was also identified as a mechanism by which SFN promotes Ct infections. Mass spectrometry analysis found alkylation of cysteine 1010 (Cys1010) in complement C3 by SFN. The studies reported here raise awareness of the Ct infection promoting activity of SFN, and also identify potential mechanisms underlying this activity.
Collapse
Affiliation(s)
- Daniel Saez
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Rosine Dushime
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Lourdes B Ramos Cordova
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Kirtikar Shukla
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | | | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, North Carolina
| |
Collapse
|
21
|
Lee JD, Coulthard LG, Woodruff TM. Complement dysregulation in the central nervous system during development and disease. Semin Immunol 2019; 45:101340. [PMID: 31708347 DOI: 10.1016/j.smim.2019.101340] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
The complement cascade is an important arm of the immune system that plays a key role in protecting the central nervous system (CNS) from infection. Recently, it has also become clear that complement proteins have fundamental roles in the developing and aging CNS that are distinct from their roles in immunity. During neurodevelopment, complement signalling is involved in diverse processes including neural tube closure, neural progenitor proliferation and differentiation, neuronal migration, and synaptic pruning. In acute neurotrauma and ischamic brain injury, complement drives inflammation and neuronal death, but also neuroprotection and regeneration. In diseases of the aging CNS including dementias and motor neuron disease, chronic complement activation is associated with glial activation, and synapse and neuron loss. Proper regulation of complement is thus essential to allow for an appropriately developed CNS and prevention of excessive damage following neurotrauma or during neurodegeneration. This review provides a comprehensive overview of the evidence for functional roles of complement in brain formation, and its dysregulation during acute and chronic disease. We also provide working models for how complement can lead to neurodevelopmental disorders such as schizophrenia and autism, and either protect, or propagate neurodegenerative diseases including Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Liam G Coulthard
- Royal Brisbane and Women's Hospital, Herston, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
22
|
Clarke AR, Christophe BR, Khahera A, Sim JL, Connolly ES. Therapeutic Modulation of the Complement Cascade in Stroke. Front Immunol 2019; 10:1723. [PMID: 31417544 PMCID: PMC6682670 DOI: 10.3389/fimmu.2019.01723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 01/22/2023] Open
Abstract
Stroke is a leading cause of death and disability worldwide and an increasing number of ischemic stroke patients are undergoing pharmacological and mechanical reperfusion. Both human and experimental models of reperfused ischemic stroke have implicated the complement cascade in secondary tissue injury. Most data point to the lectin and alternative pathways as key to activation, and C3a and C5a binding of their receptors as critical effectors of injury. During periods of thrombolysis use to treat stroke, acute experimental complement cascade blockade has been found to rescue tissue and improves functional outcome. Blockade of the complement cascade during the period of tissue reorganization, repair, and recovery is by contrast not helpful and in fact is likely to be deleterious with emerging data suggesting downstream upregulation of the cascade might even facilitate recovery. Successful clinical translation will require the right clinical setting and pharmacologic strategies that are capable of targeting the key effectors early while not inhibiting delayed repair. Early reports in a variety of disease states suggest that such pharmacologic strategies appear to have a favorable risk profile and offer substantial hope for patients.
Collapse
Affiliation(s)
- Alison R Clarke
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Brandon R Christophe
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Anadjeet Khahera
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Justin L Sim
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - E Sander Connolly
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
23
|
Late Breaking Abstracts. J Cereb Blood Flow Metab 2019; 39:609-637. [PMID: 31265795 PMCID: PMC6610573 DOI: 10.1177/0271678x19850989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Ahmad S, Kindelin A, Khan SA, Ahmed M, Hoda MN, Bhatia K, Ducruet AF. C3a Receptor Inhibition Protects Brain Endothelial Cells Against Oxygen-glucose Deprivation/Reperfusion. Exp Neurobiol 2019; 28:216-228. [PMID: 31138990 PMCID: PMC6526115 DOI: 10.5607/en.2019.28.2.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
The complement cascade is a central component of innate immunity which plays a critical role in brain inflammation. Complement C3a receptor (C3aR) is a key mediator of post-ischemic cerebral injury, and pharmacological antagonism of the C3a receptor is neuroprotective in stroke. Cerebral ischemia injures brain endothelial cells, causing blood brain barrier (BBB) disruption which further exacerbates ischemic neuronal injury. In this study, we used an in vitro model of ischemia (oxygen glucose deprivation; OGD) to investigate the protective effect of a C3aR antagonist (C3aRA, SB290157) on brain endothelial cells (bEnd.3). Following 24 hours of reperfusion, OGD-induced cell death was assessed by TUNEL and Caspase-3 staining. Western blot and immunocytochemistry were utilized to demonstrate that OGD upregulates inflammatory, oxidative stress and antioxidant markers (ICAM-1, Cox-2, Nox-2 and MnSOD) in endothelial cells and that C3aRA treatment significantly attenuate these markers. We also found that C3aRA administration restored the expression level of the tight junction protein occludin in endothelial cells following OGD. Interestingly, OGD/reperfusion injury increased the phosphorylation of ERK1/2 and C3aR inhibition significantly reduced the activation of ERK suggesting that endothelial C3aR may act via ERK signaling. Furthermore, exogenous C3a administration stimulates these same inflammatory mechanisms both with and without OGD, and C3aRA suppresses these C3a-mediated responses, supporting an antagonist role for C3aRA. Based on these results, we conclude that C3aRA administration attenuates inflammation, oxidative stress, ERK activation, and protects brain endothelial cells following experimental brain ischemia.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Adam Kindelin
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Shah Alam Khan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA.,Oman Medical College, Muscat 130, Sultanate of Oman
| | - Maaz Ahmed
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Md Nasrul Hoda
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Kanchan Bhatia
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA.,School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85004, USA
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| |
Collapse
|
25
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Panachan J, Chokchaichamnankit D, Weeraphan C, Srisomsap C, Masaratana P, Hatairaktham S, Panichkul N, Svasti J, Kalpravidh RW. Differentially expressed plasma proteins of β-thalassemia/hemoglobin E patients in response to curcuminoids/vitamin E antioxidant cocktails. ACTA ACUST UNITED AC 2019; 24:300-307. [PMID: 30661467 DOI: 10.1080/16078454.2019.1568354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Iron overload and oxidative stress are the major causes of serious complications and mortality in thalassemic patients. Our previous work supports the synergistic effects of antioxidant cocktails (curcuminoids or vitamin E, N-acetylcysteine, and deferiprone) in treatment of β-thalassemia/Hb E patients. This further 2-DE-based proteomic study aimed to identify the plasma proteins that expressed differentially in response to antioxidant cocktails. METHODS Frozen plasma samples of ten normal subjects and ten β-thalassemia/Hb E patients at three-time points (baseline, month 6, and month 12) were reduced the dynamic range of proteome using ProteoMiner kit and separated proteins by two-dimensional gel electrophoresis. Differentially expressed proteins were identified using tandem mass spectrometry. Several plasma proteins were validated by ELISA and Western blot analysis. RESULTS Thirteen and 11 proteins were identified with altered expression levels in the curcuminoids- and vitamin E cocktail groups, respectively. The associations between vitronectin (VTN) expression and total bilirubin levels, as well as between serum paraoxonase/arylesterase 1 (PON1) expression and blood reactive oxygen species were observed. Validation results were consistent with proteomics results. DISCUSSION AND CONCLUSIONS These plasma proteins may provide better understanding of the mechanisms underlying the therapeutic effects of antioxidant cocktails in thalassemic patients.
Collapse
Affiliation(s)
- Jirawan Panachan
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | | | - Churat Weeraphan
- b Laboratory of Biochemistry , Chulabhorn Research Institute , Bangkok , Thailand.,c Department of Molecular Biotechnology and Bioinformatics, Faculty of Science , Prince of Songkla University , Songkla , Thailand
| | - Chantragan Srisomsap
- b Laboratory of Biochemistry , Chulabhorn Research Institute , Bangkok , Thailand
| | - Patarabutr Masaratana
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Suneerat Hatairaktham
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Narumol Panichkul
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Jisnuson Svasti
- b Laboratory of Biochemistry , Chulabhorn Research Institute , Bangkok , Thailand.,d Applied Biological Sciences Program, Chulabhorn Research Institute , Bangkok , Thailand
| | - Ruchaneekorn W Kalpravidh
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| |
Collapse
|
27
|
Zhao Y, Luo C, Chen J, Sun Y, Pu D, Lv A, Zhu S, Wu J, Wang M, Zhou J, Liao Z, Zhao K, Xiao Q. High glucose-induced complement component 3 up-regulation via RAGE-p38MAPK-NF-κB signalling in astrocytes: In vivo and in vitro studies. J Cell Mol Med 2018; 22:6087-6098. [PMID: 30246940 PMCID: PMC6237571 DOI: 10.1111/jcmm.13884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetes is considered as a risk for cognitive decline, which is characterized by neurodegenerative alteration and innate immunity activation. Recently, complement 3 (C3), the critical central component of complement system, has been reported to play a key role in neurodegenerative alterations under pathological condition. Receptor for advanced glycation end products (RAGE) activation is confirmed to mediate several inflammatory cytokines production. However, whether C3 activation participates in the diabetic neuropathology and whether this process is regulated by RAGE activation remains unknown. The present study aimed to investigate the role of C3 in streptozotocin‐induced diabetic mice and high glucose‐induced primary astrocytes and the underlying modulatory mechanisms. The decreased synaptophysin density and increased C3 deposition at synapses were observed in the diabetic brain compared to the control brain. Furthermore, the elevated C3 was co‐localized with GFAP‐positive astrocytes in the diabetic brain slice in vivo and high glucose‐induced astrocytes culture in vitro. Diabetes/high glucose‐induced up‐regulation of C3 expression at gene, protein and secretion levels, which were attenuated by pre‐treatment with RAGE, p38MAPK and NF‐κB inhibitors separately. These results demonstrate that high glucose induces C3 up‐regulation via RAGE‐ p38MAPK‐NF‐κB signalling in vivo and in vitro, which might be associated with synaptic protein loss.
Collapse
Affiliation(s)
- Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Cheng Luo
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Die Pu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ankang Lv
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiyu Zhu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Wu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Meili Wang
- The First People's Hospital of Zunyi, Zunyi, China
| | - Jing Zhou
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kexiang Zhao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Sigfridsson E, Marangoni M, Johnson JA, Hardingham GE, Fowler JH, Horsburgh K. Astrocyte-specific overexpression of Nrf2 protects against optic tract damage and behavioural alterations in a mouse model of cerebral hypoperfusion. Sci Rep 2018; 8:12552. [PMID: 30135571 PMCID: PMC6105641 DOI: 10.1038/s41598-018-30675-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
Mouse models have shown that cerebral hypoperfusion causes white matter disruption and memory impairment relevant to the study of vascular cognitive impairment and dementia. The associated mechanisms include inflammation and oxidative stress are proposed to drive disruption of myelinated axons within hypoperfused white matter. The aim of this study was to determine if increased endogenous anti-oxidant and anti-inflammatory signalling in astrocytes was protective in a model of mild cerebral hypoperfusion. Transgenically altered mice overexpressing the transcription factor Nrf2 (GFAP-Nrf2) and wild type littermates were subjected to bilateral carotid artery stenosis or sham surgery. Behavioural alterations were assessed using the radial arm maze and tissue was collected for pathology and transcriptome analysis six weeks post-surgery. GFAP-Nrf2 mice showed less pronounced behavioural impairments compared to wild types following hypoperfusion, paralleled by reduced optic tract white matter disruption and astrogliosis. There was no effect of hypoperfusion on anti-oxidant gene alterations albeit the levels were increased in GFAP-Nrf2 mice. Instead, pro-inflammatory gene expression was determined to be significantly upregulated in the optic tract of hypoperfused wild type mice but differentially affected in GFAP-Nrf2 mice. In particular, complement components (C4 and C1q) were increased in wild type hypoperfused mice but expressed at levels similar to controls in hypoperfused GFAP-Nrf2 mice. This study provides evidence that overexpression of Nrf2 in astrocytes exerts beneficial effects through repression of inflammation and supports the potential use of Nrf2-activators in the amelioration of cerebrovascular-related inflammation and white matter degeneration.
Collapse
Affiliation(s)
- Emma Sigfridsson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Martina Marangoni
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Jeffrey A Johnson
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, USA
- Center for Neuroscience, University of Wisconsin, Madison, USA
- Waisman Center, University of Wisconsin, Madison, USA
| | - Giles E Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jill H Fowler
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
29
|
Jager NM, Poppelaars F, Daha MR, Seelen MA. Complement in renal transplantation: The road to translation. Mol Immunol 2017; 89:22-35. [PMID: 28558950 DOI: 10.1016/j.molimm.2017.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
Renal transplantation is the treatment of choice for patients with end-stage renal disease. The vital role of the complement system in renal transplantation is widely recognized. This review discusses the role of complement in the different phases of renal transplantation: in the donor, during preservation, in reperfusion and at the time of rejection. Here we examine the current literature to determine the importance of both local and systemic complement production and how complement activation contributes to the pathogenesis of renal transplant injury. In addition, we dissect the complement pathways involved in the different phases of renal transplantation. We also review the therapeutic strategies that have been tested to inhibit complement during the kidney transplantation. Several clinical trials are currently underway to evaluate the therapeutic potential of complement inhibition for the treatment of brain death-induced renal injury, renal ischemia-reperfusion injury and acute rejection. We conclude that it is expected that in the near future, complement-targeted therapeutics will be used clinically in renal transplantation. This will hopefully result in improved renal graft function and increased graft survival.
Collapse
Affiliation(s)
- Neeltina M Jager
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mohamed R Daha
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nephrology, Leiden University Medical Center, University of Leiden, Leiden, The Netherlands
| | - Marc A Seelen
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Mulder M, Geocadin RG. Neurology of cardiopulmonary resuscitation. HANDBOOK OF CLINICAL NEUROLOGY 2017; 141:593-617. [PMID: 28190437 DOI: 10.1016/b978-0-444-63599-0.00032-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter aims to provide an up-to-date review of the science and clinical practice pertaining to neurologic injury after successful cardiopulmonary resuscitation. The past two decades have seen a major shift in the science and practice of cardiopulmonary resuscitation, with a major emphasis on postresuscitation neurologic care. This chapter provides a nuanced and thoughtful historic and bench-to-bedside overview of the neurologic aspects of cardiopulmonary resuscitation. A particular emphasis is made on the anatomy and pathophysiology of hypoxic-ischemic encephalopathy, up-to-date management of survivors of cardiopulmonary resuscitation, and a careful discussion on neurologic outcome prediction. Guidance to practice evidence-based clinical care when able and thoughtful, pragmatic suggestions for care where evidence is lacking are also provided. This chapter serves as both a useful clinical guide and an updated, thorough, and state-of-the-art reference on the topic for advanced students and experienced practitioners in the field.
Collapse
Affiliation(s)
- M Mulder
- Department of Critical Care and the John Nasseff Neuroscience Institute, Abbott Northwestern Hospital, Allina Health, Minneapolis, MN, USA
| | - R G Geocadin
- Neurosciences Critical Care Division, Department of Anesthesiology and Critical Care Medicine and Departments of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Chen H, Tan G, Cao J, Zhang G, Yi P, Yu P, Sun Y, Zhang Z, Wang Y. Design, Synthesis, and Biological Evaluation of Novel Tetramethylpyrazine Derivatives as Potential Neuroprotective Agents. Chem Pharm Bull (Tokyo) 2016; 65:56-65. [PMID: 27746410 DOI: 10.1248/cpb.c16-00699] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress plays a crucial role in neurological diseases, resulting in excessive production of reactive oxygen species, mitochondrial dysfunction and cell death. In this work, we designed and synthesized a series of tetramethylpyrazine (TMP) derivatives and investigated their abilities for scavenging free radicals and preventing against oxidative stress-induced neuronal damage in vitro. Among them, compound 22a, consisted of TMP, caffeic acid and a nitrone group, showed potent radical-scavenging activity. Compound 22a had broad neuroprotective effects, including rescuing iodoacetic acid-induced neuronal loss, preventing from tert-butylhydroperoxide (t-BHP)-induced neuronal injury. Compound 22a exerted its neuroprotective effect against t-BHP injury via activation of the phosphatidyl inositol 3-kinase (PI3K)/Akt signaling pathway. Furthermore, in a rat model of permanent middle cerebral artery occlusion, compound 22a significantly improved neurological deficits, and alleviated the infarct area and brain edema. In conclusion, our results suggest that compound 22a could be a potential neuroprotective agent for the treatment of neurological disease, particularly ischemic stroke.
Collapse
Affiliation(s)
- Haiyun Chen
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Neuroprotective effect of mesenchymal stem cell through complement component 3 downregulation after transient focal cerebral ischemia in mice. Neurosci Lett 2016; 633:227-234. [DOI: 10.1016/j.neulet.2016.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
|
33
|
Simats A, García-Berrocoso T, Montaner J. Neuroinflammatory biomarkers: From stroke diagnosis and prognosis to therapy. Biochim Biophys Acta Mol Basis Dis 2015; 1862:411-24. [PMID: 26524637 DOI: 10.1016/j.bbadis.2015.10.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 12/29/2022]
Abstract
Stroke is the third leading cause of death in industrialized countries and one of the largest causes of permanent disability worldwide. Therapeutic options to fight stroke are still limited and the only approved drug is tissue-plasminogen activator (tPA) and/or mechanical thrombectomy. Post-stroke inflammation is well known to contribute to the expansion of the ischemic lesion, whereas its resolution stimulates tissue repair and neuroregeneration processes. As inflammation highly influences susceptibility of stroke patients to overcome the disease, there is an increasing need to develop new diagnostic, prognostic and therapeutic strategies for post-stroke inflammation. This review provides a brief overview of the contribution of the inflammatory mechanisms to the pathophysiology of stroke. It specially focuses on the role of inflammatory biomarkers to help predicting stroke patients' outcome since some of those biomarkers might turn out to be targets to be therapeutically altered overcoming the urgent need for the identification of potent drugs to modulate stroke-associated inflammation. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain.
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain.
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain; Neurology Department, Hospital Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
34
|
Alawieh A, Elvington A, Tomlinson S. Complement in the Homeostatic and Ischemic Brain. Front Immunol 2015; 6:417. [PMID: 26322048 PMCID: PMC4533015 DOI: 10.3389/fimmu.2015.00417] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/30/2015] [Indexed: 11/29/2022] Open
Abstract
The complement system is a component of the immune system involved in both recognition and response to pathogens, and it is implicated in an increasing number of homeostatic and disease processes. It is well documented that reperfusion of ischemic tissue results in complement activation and an inflammatory response that causes post-reperfusion injury. This occurs following cerebral ischemia and reperfusion and triggers secondary damage that extends beyond the initial infarcted area, an outcome that has rationalized the use of complement inhibitors as candidate therapeutics after stroke. In the central nervous system, however, recent studies have revealed that complement also has essential roles in synaptic pruning, neurogenesis, and neuronal migration. In the context of recovery after stroke, these apparent divergent functions of complement may account for findings that the protective effect of complement inhibition in the acute phase after stroke is not always maintained in the subacute and chronic phases. The development of effective stroke therapies based on modulation of the complement system will require a detailed understanding of complement-dependent processes in both early neurodegenerative events and delayed neuro-reparatory processes. Here, we review the role of complement in normal brain physiology, the events initiating complement activation after cerebral ischemia-reperfusion injury, and the contribution of complement to both injury and recovery. We also discuss how the design of future experiments may better characterize the dual role of complement in recovery after ischemic stroke.
Collapse
Affiliation(s)
- Ali Alawieh
- Neuroscience Institute, Department of Neurosciences, Medical University of South Carolina , Charleston, SC , USA
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO , USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Ralph H. Johnson Veteran Affairs Medical Center, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
35
|
Yang JCS, Lin MW, Rau CS, Jeng SF, Lu TH, Wu YC, Chen YC, Tzeng SL, Wu CJ, Hsieh CH. Altered exosomal protein expression in the serum of NF-κB knockout mice following skeletal muscle ischemia-reperfusion injury. J Biomed Sci 2015; 22:40. [PMID: 26059504 PMCID: PMC4461928 DOI: 10.1186/s12929-015-0147-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/15/2015] [Indexed: 02/06/2023] Open
Abstract
Background The NF-κB signaling pathway plays a role in local and remote tissue damage following ischemia-reperfusion (I/R) injury to skeletal muscles. Evidence suggests that exosomes can act as intercellular communicators by transporting active proteins to remote cells and may play a role in regulating inflammatory processes. This study aimed to profile the exosomal protein expression in the serum of NF-κB knockout mice following skeletal muscle ischemia-reperfusion injury. Results To investigate the potential changes in protein expression mediated by NF-κB in secreted exosomes in the serum following I/R injury, the levels of circulating exosomal proteomes in C57BL/6 and NF-κB−/− mice were compared using two dimensional differential in-gel electrophoresis (2-DE), liquid chromatography tandem mass spectrometry (LC-MS/MS), and proteomic analysis. In C57BL/6 mice, the levels of circulating exosomal proteins, including complement component C3 prepropeptide, PK-120 precursor, alpha-amylase one precursor, beta-enolase isoform 1, and adenylosuccinate synthetase isozyme 1, increased following I/R injury. However, in the NF-κB−/− mice, the expression of the following was upregulated in the exosomes: protease, serine 1; glyceraldehyde-3-phosphate dehydrogenase-like isoform 1; glyceraldehyde-3-phosphate dehydrogenase; and pregnancy zone protein. In contrast, the expression of apolipoprotein B, complement component C3 prepropeptide, and immunoglobulin kappa light chain variable region was downregulated in NF-κB−/− mice. Bioinformatic annotation using the Protein Analysis Through Evolutionary Relationships (PANTHER) database revealed that the expression of the exosomal proteins that participate in metabolic processes and in biological regulation was lower in NF-κB−/− mice than in C57BL/6 mice, whereas the expression of proteins that participate in the response to stimuli, in cellular processes, and in the immune system was higher. Conclusions The data presented in this study suggest that NF-κB might regulate exosomal protein expression at a remote site via circulation following I/R injury.
Collapse
Affiliation(s)
- Johnson Chia-Shen Yang
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Sung District, Kaohsiung City, 833, Taiwan.
| | - Ming-Wei Lin
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Sung District, Kaohsiung City, 833, Taiwan.
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan.
| | - Seng-Feng Jeng
- Department of Plastic Surgery, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan.
| | - Tsu-Hsiang Lu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Sung District, Kaohsiung City, 833, Taiwan.
| | - Yi-Chan Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Sung District, Kaohsiung City, 833, Taiwan.
| | - Yi-Chun Chen
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Sung District, Kaohsiung City, 833, Taiwan.
| | - Siou-Ling Tzeng
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Sung District, Kaohsiung City, 833, Taiwan.
| | - Chia-Jung Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Sung District, Kaohsiung City, 833, Taiwan.
| | - Ching-Hua Hsieh
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Sung District, Kaohsiung City, 833, Taiwan.
| |
Collapse
|
36
|
Xu DP, Zhang K, Zhang ZJ, Sun YW, Guo BJ, Wang YQ, Hoi PM, Han YF, Lee SMY. A novel tetramethylpyrazine bis-nitrone (TN-2) protects against 6-hydroxyldopamine-induced neurotoxicity via modulation of the NF-κB and the PKCα/PI3-K/Akt pathways. Neurochem Int 2014; 78:76-85. [DOI: 10.1016/j.neuint.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/16/2014] [Accepted: 09/01/2014] [Indexed: 01/28/2023]
|
37
|
Xu D, Duan H, Zhang Z, Cui W, Wang L, Sun Y, Lang M, Hoi PM, Han Y, Wang Y, Lee SM. The novel tetramethylpyrazine bis-nitrone (TN-2) protects against MPTP/MPP+-induced neurotoxicity via inhibition of mitochondrial-dependent apoptosis. J Neuroimmune Pharmacol 2014; 9:245-58. [PMID: 24233519 DOI: 10.1007/s11481-013-9514-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/31/2013] [Indexed: 11/25/2022]
Abstract
Mitochondrial-dependent apoptosis plays an important role in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Methyl-4-phenyl-1,2,3,6-tetra- hydropyridine (MPTP), the most widely used neurotoxin to simulate PD, is converted to 1-methyl-4-phenylpyridinium (MPP(+)) in vivo. MPP(+) induces excessive intracellular reactive oxygen species (ROS), leading to mitochondrial-dependent apoptosis via sequentially opening mitochondria permeability transition pore (mPTP) to release cytochrome c from mitochondria into cytoplasm and activate pro-apoptotic caspase proteins. We have previously synthesized 2,5-[[(1,1-dimethylethyl)oxidoimino]methyl]-3,6-trimethylpyrazine (TN-2), a novel derivative of the Chinese herb medicine tetramethylpyrazine (TMP). TN-2 is armed with two powerful free radical-scavenging nitrone moieties. TN-2 significantly reversed the loss of dopaminergic neurons in the substantia nigra and the decrease in dopamine level in the striatum induced by MPTP in mice. TN-2 ameliorated the MPTP-induced decrease of brain superoxide dismutase activity and glutathione concentration and increase of brain malondialdehyde. In addition, TN-2 inhibited MPP(+)-induced neuronal damage/apoptosis in primary cerebellum granular neurons (CGNs) and SH-SY5Y cells. TN-2 decreased excessive intracellular ROS, prevented the loss of mitochondrial membrane potential, blocked the release of mitochondrial cytochrome c and inhibited the activation of caspase-3 and caspase-9. Moreover, TN-2 treatment increased the mRNA expression of mitochondrial biogenesis factors peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PGC- 1α and β) and mitochondrial transcription factor A (Tfam) in SH-SY5Y cells and CGNs. These results suggest that TN-2 protects dopaminergic neurons against MPTP/MPP(+)-induced neurotoxicity via the inhibition of mitochondrial-dependent apoptosis and possibly via the activation of mitochondrial biogenesis, indicating that TN-2 is a potential new treatment for PD.
Collapse
|
38
|
Duan ZZ, Zhou XL, Li YH, Zhang F, Li FY, Su-Hua Q. Protection ofMomordica charantiapolysaccharide against intracerebral hemorrhage-induced brain injury through JNK3 signaling pathway. J Recept Signal Transduct Res 2014; 35:523-9. [DOI: 10.3109/10799893.2014.963871] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Yang C, Xu Z, Zhao Z, Li L, Zhao T, Peng D, Xu M, Rong R, Long YQ, Zhu T. A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2306-17. [PMID: 25220479 DOI: 10.1016/j.bbadis.2014.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 08/14/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Helix B surface peptide (HBSP), derived from erythropoietin, displays powerful tissue protection during kidney ischemia reperfusion (IR) injury without erythropoietic side effects. We employed cyclization strategy for the first time, and synthesized thioether-cyclized helix B peptide (CHBP) to improve metabolic stability and renoprotective effect. LC-MS/MS analysis was adopted to examine the stability of CHBP in vitro and in vivo. The renoprotective effect of CHBP in terms of renal function, apoptosis, inflammation, extracellular matrix deposition, and histological injury was also detected in vivo and in vitro. Antibody array and western blot were performed to analyze the signal pathway of involvement by CHBP in the IR model and renal tubular epithelial cells. In this study, thioether-cyclized peptide was significantly stable in vivo and in vitro. One dose of 8nmol/kg CHBP administered intraperitoneally at the onset of reperfusion improved renal protection compared with three doses of 8nmol/kg linear HBSP in a 48h murine IR model. In a one-week model, the one dose CHBP-treated group exhibited remarkably improved renal function over the IR group, and attenuated kidney injury, including reduced inflammation and apoptosis. Interestingly, we found that the phosphorylation of autophagy protein mTORC1 was dramatically reduced upon CHBP treatment. We also demonstrated that CHBP induced autophagy via inhibition of mTORC1 and activation of mTORC2, leading to renoprotective effects on IR. Our results indicate that the novel metabolically stable CHBP is a promising therapeutic medicine for kidney IR injury treatment.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Zhongliang Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zitong Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Long Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tian Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Dian Peng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China; Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ya-Qiu Long
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China; Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Peterson SL, Anderson AJ. Complement and spinal cord injury: traditional and non-traditional aspects of complement cascade function in the injured spinal cord microenvironment. Exp Neurol 2014; 258:35-47. [PMID: 25017886 DOI: 10.1016/j.expneurol.2014.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 12/21/2022]
Abstract
The pathology associated with spinal cord injury (SCI) is caused not only by primary mechanical trauma, but also by secondary responses of the injured CNS. The inflammatory response to SCI is robust and plays an important but complex role in the progression of many secondary injury-associated pathways. Although recent studies have begun to dissect the beneficial and detrimental roles for inflammatory cells and proteins after SCI, many of these neuroimmune interactions are debated, not well understood, or completely unexplored. In this regard, the complement cascade is a key component of the inflammatory response to SCI, but is largely underappreciated, and our understanding of its diverse interactions and effects in this pathological environment is limited. In this review, we discuss complement in the context of SCI, first in relation to traditional functions for complement cascade activation, and then in relation to novel roles for complement proteins in a variety of models.
Collapse
Affiliation(s)
- Sheri L Peterson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
41
|
Is plasma C3 and C4 levels useful in young cerebral ischemic stroke patients? Associations with prognosis at 3 months. J Thromb Thrombolysis 2014; 39:209-14. [DOI: 10.1007/s11239-014-1100-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Majid A. Neuroprotection in stroke: past, present, and future. ISRN NEUROLOGY 2014; 2014:515716. [PMID: 24579051 PMCID: PMC3918861 DOI: 10.1155/2014/515716] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/16/2013] [Indexed: 01/05/2023]
Abstract
Stroke is a devastating medical condition, killing millions of people each year and causing serious injury to many more. Despite advances in treatment, there is still little that can be done to prevent stroke-related brain damage. The concept of neuroprotection is a source of considerable interest in the search for novel therapies that have the potential to preserve brain tissue and improve overall outcome. Key points of intervention have been identified in many of the processes that are the source of damage to the brain after stroke, and numerous treatment strategies designed to exploit them have been developed. In this review, potential targets of neuroprotection in stroke are discussed, as well as the various treatments that have been targeted against them. In addition, a summary of recent progress in clinical trials of neuroprotective agents in stroke is provided.
Collapse
Affiliation(s)
- Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
- Department of Neurology and Manchester Academic Health Sciences Centre, Salford Royal Hospital, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
43
|
Pretreatment with apoaequorin protects hippocampal CA1 neurons from oxygen-glucose deprivation. PLoS One 2013; 8:e79002. [PMID: 24244400 PMCID: PMC3823939 DOI: 10.1371/journal.pone.0079002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/26/2013] [Indexed: 12/26/2022] Open
Abstract
Ischemic stroke affects ∼795,000 people each year in the U.S., which results in an estimated annual cost of $73.7 billion. Calcium is pivotal in a variety of neuronal signaling cascades, however, during ischemia, excess calcium influx can trigger excitotoxic cell death. Calcium binding proteins help neurons regulate/buffer intracellular calcium levels during ischemia. Aequorin is a calcium binding protein isolated from the jellyfish Aequorea victoria, and has been used for years as a calcium indicator, but little is known about its neuroprotective properties. The present study used an in vitro rat brain slice preparation to test the hypothesis that an intra-hippocampal infusion of apoaequorin (the calcium binding component of aequorin) protects neurons from ischemic cell death. Bilaterally cannulated rats received an apoaequorin infusion in one hemisphere and vehicle control in the other. Hippocampal slices were then prepared and subjected to 5 minutes of oxygen-glucose deprivation (OGD), and cell death was assayed by trypan blue exclusion. Apoaequorin dose-dependently protected neurons from OGD--doses of 1% and 4% (but not 0.4%) significantly decreased the number of trypan blue-labeled neurons. This effect was also time dependent, lasting up to 48 hours. This time dependent effect was paralleled by changes in cytokine and chemokine expression, indicating that apoaequorin may protect neurons via a neuroimmunomodulatory mechanism. These data support the hypothesis that pretreatment with apoaequorin protects neurons against ischemic cell death, and may be an effective neurotherapeutic.
Collapse
|