1
|
Mubariz F, Saadin A, Lingenfelter N, Sarkar C, Banerjee A, Lipinski MM, Awad O. Deregulation of mTORC1-TFEB axis in human iPSC model of GBA1-associated Parkinson's disease. Front Neurosci 2023; 17:1152503. [PMID: 37332877 PMCID: PMC10272450 DOI: 10.3389/fnins.2023.1152503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Mutations in the GBA1 gene are the single most frequent genetic risk factor for Parkinson's disease (PD). Neurodegenerative changes in GBA1-associated PD have been linked to the defective lysosomal clearance of autophagic substrates and aggregate-prone proteins. To elucidate novel mechanisms contributing to proteinopathy in PD, we investigated the effect of GBA1 mutations on the transcription factor EB (TFEB), the master regulator of the autophagy-lysosomal pathway (ALP). Using PD patients' induced-pluripotent stem cells (iPSCs), we examined TFEB activity and regulation of the ALP in dopaminergic neuronal cultures generated from iPSC lines harboring heterozygous GBA1 mutations and the CRISPR/Cas9-corrected isogenic controls. Our data showed a significant decrease in TFEB transcriptional activity and attenuated expression of many genes in the CLEAR network in GBA1 mutant neurons, but not in the isogenic gene-corrected cells. In PD neurons, we also detected increased activity of the mammalian target of rapamycin complex1 (mTORC1), the main upstream negative regulator of TFEB. Increased mTORC1 activity resulted in excess TFEB phosphorylation and decreased nuclear translocation. Pharmacological mTOR inhibition restored TFEB activity, decreased ER stress and reduced α-synuclein accumulation, indicating improvement of neuronal protiostasis. Moreover, treatment with the lipid substrate reducing compound Genz-123346, decreased mTORC1 activity and increased TFEB expression in the mutant neurons, suggesting that mTORC1-TFEB alterations are linked to the lipid substrate accumulation. Our study unveils a new mechanism contributing to PD susceptibility by GBA1 mutations in which deregulation of the mTORC1-TFEB axis mediates ALP dysfunction and subsequent proteinopathy. It also indicates that pharmacological restoration of TFEB activity could be a promising therapeutic approach in GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
- Fahad Mubariz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Afsoon Saadin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicholas Lingenfelter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chinmoy Sarkar
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marta M. Lipinski
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Shen W, Jiang L, Zhao J, Wang H, Hu M, Chen L, Chen Y. Bioactive lipids and their metabolism: new therapeutic opportunities for Parkinson's disease. Eur J Neurosci 2021; 55:846-872. [PMID: 34904314 DOI: 10.1111/ejn.15566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, which can also be associated with non-motor symptoms. Its pathogenesis is thought to stem from a loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of Lewy bodies containing aggregated α-synuclein. Recent works suggested that lipids might play a pivotal role in the pathophysiology of PD. In particular, the so-called "bioactive" lipids whose changes in the concentration may lead to functional consequences and affect many pathophysiological processes, including neuroinflammation, are closely related to PD in terms of symptoms, disease progression, and incidence. This study aimed to explore the molecular metabolism and physiological functions of bioactive lipids, such as fatty acids (mainly unsaturated fatty acids), eicosanoids, endocannabinoids, oxysterols, representative sphingolipids, diacylglycerols, and lysophosphatidic acid, in the development of PD. The knowledge of bioactive lipids in PD gained through preclinical and clinical studies is expected to improve the understanding of disease pathogenesis and provide novel therapeutic avenues.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Jiang
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingyi Zhao
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Haili Wang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Meng Hu
- The Second Xiangya Hospital, Central Sounth University, Changsha, Hunan Province, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Ivanova MM, Dao J, Kasaci N, Adewale B, Nazari S, Noll L, Fikry J, Sanati AH, Goker-Alpan O. Cellular and biochemical response to chaperone versus substrate reduction therapies in neuropathic Gaucher disease. PLoS One 2021; 16:e0247211. [PMID: 34695170 PMCID: PMC8544834 DOI: 10.1371/journal.pone.0247211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Gaucher disease (GD) is caused by deficiency of the lysosomal membrane enzyme glucocerebrosidase (GCase) and the subsequent accumulation of its substrate, glucosylceramide (GC). Mostly missense mutations of the glucocerebrosidase gene (GBA) cause GCase misfolding and inhibition of proper lysosomal trafficking. The accumulated GC leads to lysosomal dysfunction and impairs the autophagy pathway. GD types 2 and 3 (GD2-3), or the neuronopathic forms, affect not only the Central Nervous System (CNS) but also have severe systemic involvement and progressive bone disease. Enzyme replacement therapy (ERT) successfully treats the hematologic manifestations; however, due to the lack of equal distribution of the recombinant enzyme in different organs, it has no direct impact on the nervous system and has minimal effect on bone involvement. Small molecules have the potential for better tissue distribution. Ambroxol (AMB) is a pharmacologic chaperone that partially recovers the mutated GCase activity and crosses the blood-brain barrier. Eliglustat (EGT) works by inhibiting UDP-glucosylceramide synthase, an enzyme that catalyzes GC biosynthesis, reducing GC influx load into the lysosome. Substrate reduction therapy (SRT) using EGT is associated with improvement in GD bone marrow burden score and bone mineral density parallel with the improvement in hematological parameters. We assessed the effects of EGT and AMB on GCase activity and autophagy-lysosomal pathway (ALP) in primary cell lines derived from patients with GD2-3 and compared to cell lines from healthy controls. We found that EGT, same as AMB, enhanced GCase activity in control cells and that an individualized response, that varied with GBA mutations, was observed in cells from patients with GD2-3. EGT and AMB enhanced the formation of lysosomal/late endosomal compartments and improved autophagy, independent of GBA mutations. Both AMB and EGT increased mitochondrial mass and density in GD2-3 fibroblasts, suggesting enhancement of mitochondrial function by activating the mitochondrial membrane potential. These results demonstrate that EGT and AMB, with different molecular mechanisms of action, enhance GCase activity and improve autophagy-lysosome dynamics and mitochondrial functions.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
- * E-mail:
| | - Julia Dao
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Neil Kasaci
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Benjamin Adewale
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Shaista Nazari
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Lauren Noll
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Jacqueline Fikry
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Armaghan Hafez Sanati
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| |
Collapse
|
4
|
Tang Z, Motoyoshi K, Honda T, Nakamura H, Murayama T. Amyloid Beta-Peptide 25-35 (Aβ 25-35) Induces Cytotoxicity via Multiple Mechanisms: Roles of the Inhibition of Glucosylceramide Synthase by Aβ 25-35 and Its Protection by D609. Biol Pharm Bull 2021; 44:1419-1426. [PMID: 34602551 DOI: 10.1248/bpb.b21-00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingolipids (SLs), such as ceramide, glucosylceramide (GlcCer), and sphingomyelin, play important roles in the normal development/functions of the brain and peripheral tissues. Disruption of SL homeostasis in cells/organelles, specifically up-regulation of ceramide, is involved in multiple diseases including Alzheimer's disease (AD). One of the pathological features of AD is aggregates of amyloid beta (Aβ) peptides, and SLs regulate both the formation/aggregation of Aβ and Aβ-induced cellular responses. Up-regulation of ceramide levels via de novo and salvage synthesis pathways is reported in Aβ-treated cells and brains with AD; however, the effects of Aβ on ceramide decomposition pathways have not been elucidated. Thus, we investigated the effects of the 25-35-amino acid Aβ peptide (Aβ25-35), the fundamental cytotoxic domain of Aβ, on SL metabolism in cells treated with the fluorescent nitrobenzo-2-oxa-1,3-diazole-labeled C6-ceramide (NBD-ceramide). Aβ25-35 treatment reduced the formation of NBD-GlcCer mediated by GlcCer synthase (GCS) without affecting the formation of NBD-sphingomyelin or NBD-ceramide-1-phosphate, and reduced cell viability. Aβ25-35-induced responses decreased in cells treated with D609, a putative inhibitor of sphingomyelin synthases. Aβ25-35-induced cytotoxicity significantly increased in GCS-knockout cells and pharmacological inhibition of GCS alone demonstrated cytotoxicity. Our study revealed that Aβ25-35-induced cytotoxicity is at least partially mediated by the inhibition of GCS activity.
Collapse
Affiliation(s)
- Zhihui Tang
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kaisei Motoyoshi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
5
|
Fabbri M, Perez-Lloret S, Rascol O. Therapeutic strategies for Parkinson's disease: promising agents in early clinical development. Expert Opin Investig Drugs 2020; 29:1249-1267. [PMID: 32853086 DOI: 10.1080/13543784.2020.1814252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION To date, no drug has demonstrated clinically indisputable neuroprotective efficacy in Parkinson's disease (PD). We also have no effective symptomatic treatment for disabling symptoms such as balance problems, and dementia, and we need to improve the efficacy and safety profile of drugs currently used in the management of motor complications. AREAS COVERED We examine the agents which appear to have most therapeutic promise based on concepts, feasibility in a reasonable time frame, and available clinical data and place an emphasis on disease-modifying treatments. PUBMED and Clinicaltrials.gov databases were searched for Phase I and II randomized trials for symptomatic or disease-modifying treatments considering only studies that began since 2010 or that were completed after 2015, up to 30 April 2020. EXPERT OPINION Encouraging progress has been made in our understanding of molecular pathways. We find passive immunization approaches against α-synuclein, LRRK2 kinase inhibitors, and treatment that can increase GCase activity, which have shown some efficacy on both GBA-mutated and non-mutated PD patients. The recognition of non-dopaminergic impairment and the prominent role of non-motor symptoms have prompted the development of trials on compounds that could tackle different neurotransmitter systems. Future approaches will encompass more personalized medicine strategies based on molecular signatures and non-motor phenotypes.
Collapse
Affiliation(s)
- Margherita Fabbri
- Clinical Investigation Center CIC1436, Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Centre and NeuroToul Center of Excellence in Neurodegeneration (COEN) of Toulouse; INSERM, University of Toulouse 3, CHU of Toulouse , Toulouse, France
| | - Santiago Perez-Lloret
- Center for Health Sciences Research, National Research Council (ININCA-UAI-CONICET) , Buenos Aires, Argentina.,Department of Physiology, School of Medicine, University of Buenos Aires (UBA) , Buenos Aires, Argentina
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Centre and NeuroToul Center of Excellence in Neurodegeneration (COEN) of Toulouse; INSERM, University of Toulouse 3, CHU of Toulouse , Toulouse, France
| |
Collapse
|
6
|
Abstract
Neurodegenerative diseases are, at present, major socio-economic burdens without effective treatments and their increasing prevalence means that these diseases will be a challenge for future generations. Neurodegenerative diseases may differ in etiology and pathology but are often caused by the accumulation of dysfunctional and aggregation-prone proteins. Autophagy, a conserved cellular mechanism, deals with cellular stress and waste product build-up and has been shown to reduce the accumulation of dysfunctional proteins in animal models of neurodegenerative diseases. Historically, progress in understanding the precise function of lipids has traditionally been far behind other biological molecules (like proteins) but emerging works demonstrate the importance of lipids in the autophagy pathway and how the disturbance of lipid metabolism is connected to neurodegeneration. Here we review how altered autophagy and the disturbance of lipid metabolism, particularly of phosphoinositols and sphingolipids, feature in neurodegenerative diseases and address work from the field that suggests that these potentially offer an opportunity of therapeutic intervention.
Collapse
Affiliation(s)
- Sergio Hernandez-Diaz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| | - Sandra-Fausia Soukup
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| |
Collapse
|
7
|
Iessi E, Marconi M, Manganelli V, Sorice M, Malorni W, Garofalo T, Matarrese P. On the role of sphingolipids in cell survival and death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:149-195. [PMID: 32247579 DOI: 10.1016/bs.ircmb.2020.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingolipids, universal components of biological membranes of all eukaryotic organisms, from yeasts to mammals, in addition of playing a structural role, also play an important part of signal transduction pathways. They participate or, also, ignite several fundamental subcellular signaling processes but, more in general, they directly contribute to key biological activities such as cell motility, growth, senescence, differentiation as well as cell fate, i.e., survival or death. The sphingolipid metabolic pathway displays an intricate network of reactions that result in the formation of multiple sphingolipids, including ceramide, and sphingosine-1-phosphate. Different sphingolipids, that have key roles in determining cell fate, can induce opposite effects: as a general rule, sphingosine-1-phosphate promotes cell survival and differentiation, whereas ceramide is known to induce apoptosis. Furthermore, together with cholesterol, sphingolipids also represent the basic lipid component of lipid rafts, cholesterol- and sphingolipid-enriched membrane microdomains directly involved in cell death and survival processes. In this review, we briefly describe the characteristics of sphingolipids and lipid membrane microdomains. In particular, we will consider the involvement of various sphingolipids per se and of lipid rafts in apoptotic pathway, both intrinsic and extrinsic, in nonapoptotic cell death, in autophagy, and in cell differentiation. In addition, their roles in the most common physiological and pathological contexts either as pathogenetic elements or as biomarkers of diseases will be considered. We would also hint how the manipulation of sphingolipid metabolism could represent a potential therapeutic target to be investigated and functionally validated especially for those diseases for which therapeutic options are limited or ineffective.
Collapse
Affiliation(s)
- Elisabetta Iessi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Walter Malorni
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
8
|
Koike K, Berdyshev EV, Mikosz AM, Bronova IA, Bronoff AS, Jung JP, Beatman EL, Ni K, Cao D, Scruggs AK, Serban KA, Petrache I. Role of Glucosylceramide in Lung Endothelial Cell Fate and Emphysema. Am J Respir Crit Care Med 2019; 200:1113-1125. [PMID: 31265321 PMCID: PMC6888657 DOI: 10.1164/rccm.201812-2311oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: The loss of pulmonary endothelial cells in emphysema is associated with increased lung ceramide. Ceramide perturbations may cause adaptive alterations in other bioactive sphingolipids, with pathogenic implications. We previously reported a negative correlation between emphysema and circulating glycosphingolipids (GSLs). Glucosylceramide (GlcCer), the initial GSL synthesized from ceramide by GCS (GlcCer synthase), is required for embryonic survival, but its role in the lung is unknown.Objectives: To determine if cigarette smoke (CS) alters lung GlcCer and to elucidate the role of GCS in lung endothelial cell fate.Methods: GlcCer was measured by tandem mass spectrometry in BAL fluid of CS- or elastase-exposed mice, and GCS was detected by Western blotting in chronic obstructive pulmonary disease lungs and CS extract-exposed primary human lung microvascular endothelial cells (HLMVECs). The role of GlcCer and GCS on mTOR (mammalian target of rapamycin) signaling, autophagy, lysosomal function, and cell death were studied in HLMVECs with or without CS exposure.Measurements and Main Results: Mice exposed to chronic CS or to elastase, and patients with chronic obstructive pulmonary disease, exhibited significantly decreased lung GlcCer and GCS. In mice, lung GlcCer levels were negatively correlated with airspace size. GCS inhibition in HLMVEC increased lysosomal pH, suppressed mTOR signaling, and triggered autophagy with impaired lysosomal degradation and apoptosis, recapitulating CS effects. In turn, increasing GlcCer by GCS overexpression in HLMVEC improved autophagic flux and attenuated CS-induced apoptosis.Conclusions: Decreased GSL production in response to CS may be involved in emphysema pathogenesis, associated with autophagy with impaired lysosomal degradation and lung endothelial cell apoptosis.
Collapse
Affiliation(s)
- Kengo Koike
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Evgeny V. Berdyshev
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Andrew M. Mikosz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Irina A. Bronova
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Anna S. Bronoff
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - John P. Jung
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Erica L. Beatman
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Kevin Ni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Danting Cao
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
- Pharmacology Graduate Program and
| | - April K. Scruggs
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Karina A. Serban
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Irina Petrache
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; and
- Pharmacology Graduate Program and
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
9
|
Brown RA, Voit A, Srikanth MP, Thayer JA, Kingsbury TJ, Jacobson MA, Lipinski MM, Feldman RA, Awad O. mTOR hyperactivity mediates lysosomal dysfunction in Gaucher's disease iPSC-neuronal cells. Dis Model Mech 2019; 12:dmm038596. [PMID: 31519738 PMCID: PMC6826018 DOI: 10.1242/dmm.038596] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Bi-allelic GBA1 mutations cause Gaucher's disease (GD), the most common lysosomal storage disorder. Neuronopathic manifestations in GD include neurodegeneration, which can be severe and rapidly progressive. GBA1 mutations are also the most frequent genetic risk factors for Parkinson's disease. Dysfunction of the autophagy-lysosomal pathway represents a key pathogenic event in GBA1-associated neurodegeneration. Using an induced pluripotent stem cell (iPSC) model of GD, we previously demonstrated that lysosomal alterations in GD neurons are linked to dysfunction of the transcription factor EB (TFEB). TFEB controls the coordinated expression of autophagy and lysosomal genes and is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1). To further investigate the mechanism of autophagy-lysosomal pathway dysfunction in neuronopathic GD, we examined mTORC1 kinase activity in GD iPSC neuronal progenitors and differentiated neurons. We found that mTORC1 is hyperactive in GD cells as evidenced by increased phosphorylation of its downstream protein substrates. We also found that pharmacological inhibition of glucosylceramide synthase enzyme reversed mTORC1 hyperactivation, suggesting that increased mTORC1 activity is mediated by the abnormal accumulation of glycosphingolipids in the mutant cells. Treatment with the mTOR inhibitor Torin1 upregulated lysosomal biogenesis and enhanced autophagic clearance in GD neurons, confirming that lysosomal dysfunction is mediated by mTOR hyperactivation. Further analysis demonstrated that increased TFEB phosphorylation by mTORC1 results in decreased TFEB stability in GD cells. Our study uncovers a new mechanism contributing to autophagy-lysosomal pathway dysfunction in GD, and identifies the mTOR complex as a potential therapeutic target for treatment of GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
- Robert A Brown
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Antanina Voit
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Manasa P Srikanth
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Julia A Thayer
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tami J Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- University of Maryland Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marlene A Jacobson
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Marta M Lipinski
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Wheeler S, Haberkant P, Bhardwaj M, Tongue P, Ferraz MJ, Halter D, Sprong H, Schmid R, Aerts JM, Sullo N, Sillence DJ. Cytosolic glucosylceramide regulates endolysosomal function in Niemann-Pick type C disease. Neurobiol Dis 2019; 127:242-252. [DOI: 10.1016/j.nbd.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
|
11
|
Shaffer CL, Dutra JK, Tseng WC, Weber ML, Bogart LJ, Hales K, Pang J, Volfson D, Am Ende CW, Green ME, Buhl DL. Pharmacological evaluation of clinically relevant concentrations of (2R,6R)-hydroxynorketamine. Neuropharmacology 2019; 153:73-81. [PMID: 31015046 DOI: 10.1016/j.neuropharm.2019.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/01/2019] [Accepted: 04/17/2019] [Indexed: 10/27/2022]
Abstract
Ketamine is a rapid-onset antidepressant whose efficacy long outlasts its pharmacokinetics. Multiple studies suggest ketamine's antidepressant effects require increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-dependent currents, which have recently been exclusively attributed to its N-methyl-d-aspartate receptor-inactive metabolite (2R,6R)-hydroxynorketamine ((2R,6R)-HNK). To investigate this AMPAR-activation claim further, we estimated and evaluated preclinically and clinically relevant unbound brain HNK concentrations (Cb,u). (2S,6S)-HNK and (2R,6R)-HNK were novelly synthesized, and their neuropharmacokinetic profiles were determined to project relevant Cb,u. Using concentrations (0.01-10 μM) bracketing the pertinent cross-species Cb,u, both compounds' AMPAR modulation was assessed in vitro by electrophysiological recordings and GluA1 surface expression. Neither (2S,6S)-HNK nor (2R,6R)-HNK bound orthosterically to or directly functionally activated AMPARs. (2R,6R)-HNK failed to evoke AMPAR-centric changes in any electrophysiological endpoint from adult rodent hippocampal slices. Conversely, time- and concentration-dependent increases in GluA1 expression occurred only with (2R,6R)-HNK (≥0.1 μM at ≥90 min). The (2R,6R)-HNK concentrations that increased GluA1 expression are consistent with its maximal Cb,u (0.92-4.84 μM) at reportedly efficacious doses of ketamine or (2R,6R)-HNK in mouse depression models, but ≥3-fold above its projected maximal human Cb,u (≤37.8 ± 14.3 nM) following ketamine's clinically antidepressant infusion. These findings provide insight into the observed AMPAR-affecting (2R,6R)-HNK concentrations versus its exposures attained clinically at an antidepressant ketamine dose. To optimize any clinical study with (2R,6R)-HNK to fully assess its translational pharmacology, future preclinical work should test (2R,6R)-HNK concentrations and/or Cb,u of 0.01-0.1 μM to parallel its projected human Cb,u at a clinically antidepressant ketamine dose.
Collapse
Affiliation(s)
- Christopher L Shaffer
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States.
| | - Jason K Dutra
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, CT, 06340, United States
| | - Wei Chou Tseng
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Mark L Weber
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Luke J Bogart
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Katherine Hales
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Jincheng Pang
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Dmitri Volfson
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Christopher W Am Ende
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, CT, 06340, United States
| | - Michael E Green
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Derek L Buhl
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States.
| |
Collapse
|
12
|
van Echten-Deckert G, Alam S. Sphingolipid metabolism - an ambiguous regulator of autophagy in the brain. Biol Chem 2019; 399:837-850. [PMID: 29908127 DOI: 10.1515/hsz-2018-0237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023]
Abstract
In mammals, the brain exhibits the highest lipid content in the body next to adipose tissue. Complex sphingolipids are characteristic compounds of neuronal membranes. Vital neural functions including information flux and transduction occur along these membranes. It is therefore not surprising that neuronal function and survival is dependent on the metabolism of these lipids. Autophagy is a critical factor for the survival of post-mitotic neurons. On the one hand, it fulfils homeostatic and waste-recycling functions and on the other hand, it constitutes an effective strategy to eliminate harmful proteins that cause neuronal death. A growing number of experimental data indicate that several sphingolipids as well as enzymes catalyzing their metabolic transformations efficiently but very differently affect neuronal autophagy and hence survival. This review attempts to elucidate the roles and mechanisms of sphingolipid metabolism with regard to the regulation of autophagy and its consequences for brain physiology and pathology.
Collapse
Affiliation(s)
- Gerhild van Echten-Deckert
- LIMES Institute, Unit Membrane Biology and Lipid Biochemistry, Kekulé-Institute of the University Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Shah Alam
- LIMES Institute, Unit Membrane Biology and Lipid Biochemistry, Kekulé-Institute of the University Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| |
Collapse
|
13
|
Wegner MS, Schömel N, Gruber L, Örtel SB, Kjellberg MA, Mattjus P, Kurz J, Trautmann S, Peng B, Wegner M, Kaulich M, Ahrends R, Geisslinger G, Grösch S. UDP-glucose ceramide glucosyltransferase activates AKT, promoted proliferation, and doxorubicin resistance in breast cancer cells. Cell Mol Life Sci 2018; 75:3393-3410. [PMID: 29549423 PMCID: PMC11105721 DOI: 10.1007/s00018-018-2799-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
The UDP-glucose ceramide glucosyltransferase (UGCG) is a key enzyme in the synthesis of glycosylated sphingolipids, since this enzyme generates the precursor for all complex glycosphingolipids (GSL), the GlcCer. The UGCG has been associated with several cancer-related processes such as maintaining cancer stem cell properties or multidrug resistance induction. The precise mechanisms underlying these processes are unknown. Here, we investigated the molecular mechanisms occurring after UGCG overexpression in breast cancer cells. We observed alterations of several cellular properties such as morphological changes, which enhanced proliferation and doxorubicin resistance in UGCG overexpressing MCF-7 cells. These cellular effects seem to be mediated by an altered composition of glycosphingolipid-enriched microdomains (GEMs), especially an accumulation of globotriaosylceramide (Gb3) and glucosylceramide (GlcCer), which leads to an activation of Akt and ERK1/2. The induction of the Akt and ERK1/2 signaling pathway results in an increased gene expression of multidrug resistance protein 1 (MDR1) and anti-apoptotic genes and a decrease of pro-apoptotic gene expression. Inhibition of the protein kinase C (PKC) and phosphoinositide 3 kinase (PI3K) reduced MDR1 gene expression. This study discloses how changes in UGCG expression impact several cellular signaling pathways in breast cancer cells resulting in enhanced proliferation and multidrug resistance.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Nina Schömel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Lisa Gruber
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stephanie Beatrice Örtel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Matti Aleksi Kjellberg
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, 20520, Turku, Finland
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, 20520, Turku, Finland
| | - Jennifer Kurz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Sandra Trautmann
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Bing Peng
- Leibniz-Institut für Analytische Wissenschaften, ISAS e. V., Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | - Martin Wegner
- Institute of Biochemistry II, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften, ISAS e. V., Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Sanches JM, Giraldo PC, Amaral R, Eberlin MN, Marques LA, Migliorini I, Nakahira M, Bieleveld MJM, Discacciati MG. Vaginal lipidomics of women with vulvovaginal candidiasis and cytolytic vaginosis: A non-targeted LC-MS pilot study. PLoS One 2018; 13:e0202401. [PMID: 30133508 PMCID: PMC6105002 DOI: 10.1371/journal.pone.0202401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
Objective To characterize the lipid profile in vaginal discharge of women with vulvovaginal candidiasis, cytolytic vaginosis, or no vaginal infection or dysbiosis. Design Cross-sectional study. Setting Genital Infections Ambulatory, Department of Tocogynecology, University of Campinas, Campinas, São Paulo–Brazil. Sample Twenty-four women were included in this study: eight with vulvovaginal candidiasis, eight with cytolytic vaginosis and eight with no vaginal infections or dysbiosis (control group). Methods The lipid profile in vaginal discharge of the different study groups was determined by liquid chromatography-mass spectrometry and further analyzed with MetaboAnalyst 3.0 platform. Main outcome measures Vaginal lipids concentration and its correlation with vulvovaginal candidiasis and cytolytic vaginosis. Results PCA, PLS-DA and hierarchical clustering analyses indicated 38 potential lipid biomarkers for the different groups, correlating with oxidative stress, inflammation, apoptosis and integrity of the vaginal epithelial tissue. Among these, greater concentrations were found for Glycochenodeoxycholic acid-7-sulfate, O-adipoylcarnitine, 1-eicosyl-2-heptadecanoyl-glycero-3-phosphoserine, undecanoic acid, formyl dodecanoate and lipoic acid in the vulvovaginal candidiasis group; N–(tetradecanoyl)-sphinganine, DL-PPMP, 1-oleoyl-cyclic phosphatidic, palmitic acid and 5-aminopentanoic acid in the cytolytic vaginosis group; and 1-nonadecanoyl-glycero-3-phosphate, eicosadienoic acid, 1-stearoyl-cyclic-phosphatidic acid, 1-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate, formyl 9Z-tetradecenoate and 7Z,10Z-hexadecadienoic acid in the control group. Conclusions Lipids related to oxidative stress and apoptosis were found in higher concentrations in women with vulvovaginal candidiasis and cytolytic vaginosis, while lipids related to epithelial tissue integrity were more pronounced in the control group. Furthermore, in women with cytolytic vaginosis, we observed higher concentrations of lipids related to bacterial overgrowth.
Collapse
Affiliation(s)
- José Marcos Sanches
- Campinas State University, Department of Tocoginecology, Campinas, São Paulo, Brazil
- * E-mail:
| | - Paulo César Giraldo
- Campinas State University, Department of Tocoginecology, Campinas, São Paulo, Brazil
| | - Rose Amaral
- Campinas State University, Department of Tocoginecology, Campinas, São Paulo, Brazil
| | | | | | - Isabel Migliorini
- Campinas State University, Department of Tocoginecology, Campinas, São Paulo, Brazil
| | - Marcel Nakahira
- Campinas State University, Institute of Chemistry, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
15
|
Abstract
Macroautophagy (herein referred to as autophagy) is a highly conserved stress response that engulfs damaged proteins, lipids, and/or organelles within double-membrane vesicles called autophagosomes for lysosomal degradation. Dysregulated autophagy is a hallmark of cancer; and thus, there is great interest in modulating autophagy for cancer therapy. Sphingolipids regulate each step of autophagosome biogenesis with roles for sphingolipid metabolites and enzymes spanning from the initial step of de novo ceramide synthesis to the sphingosine-1-phosphate lyase 1-mediated exit from the sphingolipid pathway. Notably, sphingolipid metabolism occurs at several of the organelles that contribute to autophagosome biogenesis to suggest that local changes in sphingolipids may regulate autophagy. As sphingolipid metabolism is frequently dysregulated in cancer, a molecular understanding of sphingolipids in stress-induced autophagy may provide insight into the mechanisms driving tumor development and progression. On the contrary, modulation of sphingolipid metabolites and/or enzymes can induce autophagy-dependent cell death for cancer therapy. This chapter will overview the major steps in mammalian autophagy, discuss the regulation of each step by sphingolipid metabolites, and describe the functions of sphingolipid-mediated autophagy in cancer. While our understanding of the signaling and biophysical properties of sphingolipids in autophagy remains in its infancy, the unique cross talk between the two pathways is an exciting area for further development, particularly in the context of cancer therapy.
Collapse
Affiliation(s)
- Megan M Young
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Hong-Gang Wang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
16
|
Clozapine Modulates Glucosylceramide, Clears Aggregated Proteins, and Enhances ATG8/LC3 in Caenorhabditis elegans. Neuropsychopharmacology 2017; 42:951-962. [PMID: 27711049 PMCID: PMC5312067 DOI: 10.1038/npp.2016.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/27/2016] [Accepted: 09/21/2016] [Indexed: 12/31/2022]
Abstract
Defining the mechanisms of action of the antipsychotic drug (APD), clozapine, is of great importance, as clozapine is more effective and has therapeutic benefits in a broader range of psychiatric disorders compared with other APDs. Its range of actions have not been fully characterized. Exposure to APDs early in development causes dose-dependent developmental delay and lethality in Caenorhabditis elegans. A previous genome-wide RNAi screen for suppressors of clozapine-induced developmental delay and lethality revealed 40 candidate genes, including sms-1, which encodes a sphingomyelin synthase. One sms-1 isoform is expressed in the C. elegans pharynx, and its transgene rescues the sms-1 mutant phenotype. We examined pharyngeal pumping and observed that clozapine-induced inhibition of pharyngeal pumping requires sms-1, a finding that may explain the role of the gene in mediating clozapine-induced developmental delay/lethality. By analyzing multiple enzymes involved in sphingolipid metabolism, and by observing the effect of addition of various lipids directly to the worms, we suggest that glucosylceramide may be a key mediator of the effects of clozapine. We further observed that clozapine clears protein aggregates, such as α-synuclein, PolyQ protein, and α-1-antitrypsin mutant protein. In addition, it enhances ATG8/LC3. We conclude that clozapine appears to affect the development and induce lethality of worms, in part, through modulating glucosylceramide. We discuss the possible connections among glucosylceramide, protein aggregate clearance, and autophagy. Interactions, including mechanistic pathways involving these elements, may underlie some of the clinical effects of clozapine.
Collapse
|
17
|
Stefanovic M, Tutusaus A, Martinez-Nieto GA, Bárcena C, de Gregorio E, Moutinho C, Barbero-Camps E, Villanueva A, Colell A, Marí M, García-Ruiz C, Fernandez-Checa JC, Morales A. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget 2016; 7:8253-67. [PMID: 26811497 PMCID: PMC4884990 DOI: 10.18632/oncotarget.6982] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/13/2016] [Indexed: 01/26/2023] Open
Abstract
Evasive mechanisms triggered by the tyrosine kinase inhibitor sorafenib reduce its efficacy in hepatocellular carcinoma (HCC) treatment. Drug-resistant cancer cells frequently exhibit sphingolipid dysregulation, reducing chemotherapeutic cytotoxicity via the induction of ceramide-degrading enzymes. However, the role of ceramide in sorafenib therapy and resistance in HCC has not been clearly established. Our data reveals that ceramide-modifying enzymes, particularly glucosylceramide synthase (GCS), are upregulated during sorafenib treatment in hepatoma cells (HepG2 and Hep3B), and more importantly, in sorafenib-resistant cell lines. GCS silencing or pharmacological GCS inhibition sensitized hepatoma cells to sorafenib exposure. GCS inhibition, combined with sorafenib, triggered cytochrome c release and ATP depletion in sorafenib-treated hepatoma cells, leading to mitochondrial cell death after energetic collapse. Conversely, genetic GCS overexpression increased sorafenib resistance. Of interest, GCS inhibition improved sorafenib effectiveness in a xenograft mouse model, recovering drug sensitivity of sorafenib-resistant tumors in mice. In conclusion, our results reveal GCS induction as a mechanism of sorafenib resistance, suggesting that GCS targeting may be a novel strategy to increase sorafenib efficacy in HCC management, and point to target the mitochondria as the subcellular location where sorafenib therapy could be potentiated.
Collapse
Affiliation(s)
- Milica Stefanovic
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | | | - Cristina Bárcena
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | - Estefania de Gregorio
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | - Catia Moutinho
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute, Barcelona, Catalonia, Spain
| | - Elisabet Barbero-Camps
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | - Alberto Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology - Bellvitge Biomedical Research Institute, Barcelona, Catalonia, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain.,Liver Unit, Hospital Clinic, CIBEREHD, Barcelona, Catalonia, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain.,Liver Unit, Hospital Clinic, CIBEREHD, Barcelona, Catalonia, Spain.,Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine of The University of Southern California, Los Angeles, CA, USA
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| |
Collapse
|
18
|
Li J, Li S, Zhang L, Ouyang L, Liu B. Deconvoluting the complexity of autophagy and Parkinson's disease for potential therapeutic purpose. Oncotarget 2016; 6:40480-95. [PMID: 26415234 PMCID: PMC4747347 DOI: 10.18632/oncotarget.5803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/12/2015] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the preferential death of dopaminergic neurons. In the past two decades, great progress has been made toward understanding the pathogenesis of PD; however, its precise pathogenesis still remains unclear. Recently, accumulating evidence has suggested that macroautophagy (herein referred to as autophagy) is tightly linked to PD. Dysregulation of autophagic pathways has been observed in the brains of PD patients and in animal models of PD. More importantly, a number of PD-associated proteins, such as α-synuclein, LRRK2, Parkin and PINK1 have been further revealed to be involved in autophagy. Thus, it is now acknowledged that constitutive autophagy is essential for neuronal survival and that dysregulation of autophagy leads to PD. In this review, we focus on summarizing the relationships amongst PD-associated proteins, autophagy and PD. Moreover, we also demonstrate some autophagy-modulating compounds and autophagic microRNAs in PD models, which may provide better promising strategies for potential PD therapy.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Sijia Li
- State Key Laboratory of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Budani M, Mylvaganam M, Binnington B, Lingwood C. Synthesis of a novel photoactivatable glucosylceramide cross-linker. J Lipid Res 2016; 57:1728-36. [PMID: 27412675 DOI: 10.1194/jlr.d069609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 01/08/2023] Open
Abstract
The biosynthesis of glucosylceramide (GlcCer) is a key rate-limiting step in complex glycosphingolipid (GSL) biosynthesis. To further define interacting partners of GlcCer, we have made a cleavable, biotinylated, photoreactive GlcCer analog in which the reactive nitrene is closely apposed to the GlcCer head group, by substituting the native fatty acid with d, l-2-aminohexadecanoic acid. Two amino-GlcCer diastereomer cross-linkers (XLA and XLB) were generated. XLB proved an effective lactosylceramide (LacCer) synthase substrate while XLA was inhibitory. Both probes specifically bound and cross-linked the GlcCer binding protein, glycolipid transfer protein (GLTP), but not other GSL binding proteins (Shiga toxin and cholera toxin). GlcCer inhibited GLTP cross-linking. Both GlcCer cross-linkers competed with microsomal nitrobenzoxadiazole (NBD)-GlcCer anabolism to NBD-LacCer. GLTP showed marked, ATP-dependent enhancement of cell-free intact microsomal LacCer synthesis from endogenous or exogenous liposomal GlcCer, supporting a role in the transport/membrane translocation of cytosolic and extra-Golgi GlcCer. GLTP was specifically labeled by either XLA or XLB GlcCer cross-linker during this process, together with a (the same) small subset of microsomal proteins. These cross-linkers will serve to probe physiologically relevant GlcCer-interacting cellular proteins.
Collapse
Affiliation(s)
- Monique Budani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada Division of Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Murugesapillai Mylvaganam
- Division of Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Beth Binnington
- Division of Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Clifford Lingwood
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada Division of Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
20
|
Sundaram K, Mather AR, Marimuthu S, Shah PP, Snider AJ, Obeid LM, Hannun YA, Beverly LJ, Siskind LJ. Loss of neutral ceramidase protects cells from nutrient- and energy -deprivation-induced cell death. Biochem J 2016; 473:743-55. [PMID: 26747710 PMCID: PMC5513154 DOI: 10.1042/bj20150586] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
Sphingolipids are a family of lipids that regulate the cell cycle, differentiation and cell death. Sphingolipids are known to play a role in the induction of apoptosis, but a role for these lipids in necroptosis is largely unknown. Necroptosis is a programmed form of cell death that, unlike apoptosis, does not require ATP. Necroptosis can be induced under a variety of conditions, including nutrient deprivation and plays a major role in ischaemia/reperfusion injury to organs. Sphingolipids play a role in ischaemia/reperfusion injury in several organs. Thus, we hypothesized that sphingolipids mediate nutrient-deprivation-induced necroptosis. To address this, we utilized mouse embryonic fibroblast (MEFs) treated with 2-deoxyglucose (2DG) and antimycin A (AA) to inhibit glycolysis and mitochondrial electron transport. 2DG/AA treatment of MEFs induced necroptosis as it was receptor- interacting protein (RIP)-1/3 kinase-dependent and caspase-independent. Ceramides, sphingosine (Sph) and sphingosine 1-phosphate (S1P) were increased following 2DG/AA treatment. Cells lacking neutral ceramidase (nCDase(-/-)) were protected from 2DG/AA. Although nCDase(-/-) cells generated ceramides following 2DG/AA treatment, they did not generate Sph or S1P. This protection was stimulus-independent as nCDase(-/-) cells were also protected from endoplasmic reticulum (ER) stressors [tunicamycin (TN) or thapsigargin (TG)]. nCDase(-/-) MEFs had higher autophagic flux and mitophagy than wild-type (WT) MEFs and inhibition of autophagy sensitized them to necroptosis. These data indicate that loss of nCDase protects cells from nutrient- deprivation-induced necroptosis via autophagy, and clearance of damaged mitochondria. Results suggest that nCDase is a mediator of necroptosis and might be a novel therapeutic target for protection from ischaemic injury.
Collapse
Affiliation(s)
- Kumaran Sundaram
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, U.S.A
| | - Andrew R Mather
- University of South Carolina Medical School, Columbia, SC 29209, U.S.A
| | - Subathra Marimuthu
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, U.S.A
| | - Parag P Shah
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, U.S.A. James Graham Brown Cancer Center, University of Louisville, KY 40202, U.S.A
| | - Ashley J Snider
- Department of Medicine, Stony Brook Cancer Center, Stony Brook University, NY 11794, U.S.A. ∥Northport Veterans Affairs Medical Center, Northport, NY 11768, U.S.A
| | - Lina M Obeid
- Department of Medicine, Stony Brook Cancer Center, Stony Brook University, NY 11794, U.S.A. ∥Northport Veterans Affairs Medical Center, Northport, NY 11768, U.S.A
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook Cancer Center, Stony Brook University, NY 11794, U.S.A
| | - Levi J Beverly
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, U.S.A. James Graham Brown Cancer Center, University of Louisville, KY 40202, U.S.A. Department of Medicine, University of Louisville, KY 40202, U.S.A
| | - Leah J Siskind
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, U.S.A. James Graham Brown Cancer Center, University of Louisville, KY 40202, U.S.A.
| |
Collapse
|
21
|
Msanne J, Chen M, Luttgeharm KD, Bradley AM, Mays ES, Paper JM, Boyle DL, Cahoon RE, Schrick K, Cahoon EB. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:188-201. [PMID: 26313010 PMCID: PMC4765501 DOI: 10.1111/tpj.13000] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 05/03/2023]
Abstract
Glucosylceramides (GlcCer), glucose-conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryotic cells. Yet the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi-organ eukaryotes. To address this, we examined Arabidopsis lines that were lacking or deficient in GlcCer by insertional disruption or by RNA interference (RNAi) suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated 'gcs-1') were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs-1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild-type plants. However, gcs-1 calli, in contrast to wild-type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ-specific cell differentiation, calli from gcs-1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs-1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild-type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild-type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell-type differentiation and organogenesis, and plant cells produce amounts of GlcCer in excess of that required for normal development.
Collapse
Affiliation(s)
- Joseph Msanne
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- School of Natural Resources, 807 Hardin Hall, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ming Chen
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kyle D. Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Amanda M. Bradley
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Elizabeth S. Mays
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Janet M. Paper
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel L. Boyle
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Rebecca E. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kathrin Schrick
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
- Corresponding Authors: Edgar B. Cahoon, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68506, USA, Phone: +1 402 472 5611, . Kathrin Schrick, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506-4901, Phone: +1 785 532 6360,
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Corresponding Authors: Edgar B. Cahoon, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68506, USA, Phone: +1 402 472 5611, . Kathrin Schrick, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506-4901, Phone: +1 785 532 6360,
| |
Collapse
|
22
|
Awad O, Sarkar C, Panicker LM, Miller D, Zeng X, Sgambato JA, Lipinski MM, Feldman RA. Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Hum Mol Genet 2015. [PMID: 26220978 DOI: 10.1093/hmg/ddv297] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase). The severe forms of GD are associated with neurodegeneration with either rapid (Type 2) or slow progression (Type 3). Although the neurodegenerative process in GD has been linked to lysosomal dysfunction, the mechanisms involved are largely unknown. To identify the lysosomal alterations in GD neurons and uncover the mechanisms involved, we used induced pluripotent stem cells (iPSCs) derived from patients with GD. In GD iPSC-derived neuronal cells (iPSC-NCs), GBA1 mutations caused widespread lysosomal depletion, and a block in autophagic flux due to defective lysosomal clearance of autophagosomes. Autophagy induction by rapamycin treatment in GD iPSC-NCs led to cell death. Further analysis showed that in GD iPSC-NCs, expression of the transcription factor EB (TFEB), the master regulator of lysosomal genes, and lysosomal gene expression, were significantly downregulated. There was also reduced stability of the TFEB protein and altered lysosomal protein biosynthesis. Treatment of mutant iPSC-NCs with recombinant GCase (rGCase) reverted the lysosomal depletion and autophagy block. The effect of rGCase on restoring lysosomal numbers in mutant cells was enhanced in the presence of overexpressed TFEB, but TFEB overexpression alone did not reverse the lysosomal depletion phenotype. Our results suggest that GBA1 mutations interfere with TFEB-mediated lysosomal biogenesis, and that the action of GCase in maintaining a functioning pool of lysosomes is exerted in part through TFEB. The lysosomal alterations described here are likely to be a major determinant in GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
- Ola Awad
- Department of Microbiology and Immunology
| | | | | | | | - Xianmin Zeng
- Buck Institute for Age Research, Novato, CA, USA
| | | | - Marta M Lipinski
- Department of Anesthesiology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA and
| | | |
Collapse
|
23
|
Button RW, Luo S, Rubinsztein DC. Autophagic activity in neuronal cell death. Neurosci Bull 2015; 31:382-94. [PMID: 26077705 DOI: 10.1007/s12264-015-1528-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Abstract
As post-mitotic cells with great energy demands, neurons depend upon the homeostatic and waste-recycling functions provided by autophagy. In addition, autophagy also promotes survival during periods of harsh stress and targets aggregate-prone proteins associated with neurodegeneration for degradation. Despite this, autophagy has also been controversially described as a mechanism of programmed cell death. Instances of autophagic cell death are typically associated with elevated numbers of cytoplasmic autophagosomes, which have been assumed to lead to excessive degradation of cellular components. Due to the high activity and reliance on autophagy in neurons, these cells may be particularly susceptible to autophagic death. In this review, we summarize and assess current evidence in support of autophagic cell death in neurons, as well as how the dysregulation of autophagy commonly seen in neurodegeneration can contribute to neuron loss. From here, we discuss potential treatment strategies relevant to such cell-death pathways.
Collapse
Affiliation(s)
- Robert W Button
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth, PL6 8BU, UK
| | | | | |
Collapse
|
24
|
Subathra M, Korrapati M, Howell LA, Arthur JM, Shayman JA, Schnellmann RG, Siskind LJ. Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells. Am J Physiol Renal Physiol 2015; 309:F204-15. [PMID: 26041445 DOI: 10.1152/ajprenal.00150.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022] Open
Abstract
Glycosphingolipids (GSLs) play a role in insulin resistance and diabetes, but their role in diabetic nephropathy (DN) has received limited attention. We used 9- and 17-wk-old nondiabetic db/m and diabetic db/db mice to examine the role of GSLs in DN. Cerebrosides or monoglycosylated GSLs [hexosylceramides (HexCers); glucosyl- and galactosylceramides] and lactosylceramide (LacCers) were elevated in db/db mouse kidney cortices, specifically in glomeruli, and also in urine. In our recent paper (25), we observed that the kidneys exhibited glomerular hypertrophy and proximal tubular vacuolization and increased fibrosis markers at these time points. Mesangial cells contribute to hyperglycemia-induced glomerular hypertrophy in DN. Hyperglycemic culture conditions, similar to that present in diabetes, were sufficient to elevate mesangial cell HexCers and increase markers of fibrosis, extracellular matrix proteins, and cellular hypertrophy. Inhibition of glucosylceramide synthase or lowering glucose levels decreased markers of fibrosis and extracellular matrix proteins and reversed mesangial cell hypertrophy. Hyperglycemia increased phosphorylated (p)SMAD3 and pAkt levels and reduced phosphatase and tensin homolog levels, which were reversed with glucosylceramide synthase inhibition. These data suggest that inhibition of glucosylceramide synthase reversed mesangial cell hypertrophy through decreased pAkt and pSmad3 and increased pathways responsible for protein degradation. Importantly, urinary GSL levels were higher in patients with DN compared with healthy control subjects, implicating a role for these lipids in human DN. Thus, hyperglycemia in type II diabetes leads to renal dysfunction at least in part by inducing accumulation of HexCers and LacCers in mesangial cells, resulting in fibrosis, extracellular matrix production, and hypertrophy.
Collapse
Affiliation(s)
- Marimuthu Subathra
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Midhun Korrapati
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Lauren A Howell
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - John M Arthur
- University of Arkansas for Medical Sciences, Little Rock, Arkansas; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - James A Shayman
- Nephrology Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky;
| |
Collapse
|
25
|
Abstract
For over a century, researchers have observed similar neurodegenerative hallmarks in brains of people affected by rare early-onset lysosomal storage diseases and late-onset neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Increasing evidence suggests these apparently disparate diseases share a common underlying feature, namely, a dysfunctional clearance of cellular cargo through the secretory-endosomal-autophagic-lysosomal-exocytic (SEALE) network. By providing examples of rare and common neurodegenerative diseases known to have pathologically altered cargo flux through the SEALE network, we explore the unifying hypothesis that impaired catabolism or exocytosis of SEALE cargo, places a burden of stress on neurons that initiates pathogenesis. We also describe how a growing understanding of genetic, epigenetic and age-related modifications of the SEALE network, has inspired a number of novel disease-modifying therapeutic approaches aimed at alleviating SEALE storage and providing therapeutic benefit to people affected by these devastating diseases across the age spectrum.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland.
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom.
| |
Collapse
|
26
|
Sardi SP, Cheng SH, Shihabuddin LS. Gaucher-related synucleinopathies: the examination of sporadic neurodegeneration from a rare (disease) angle. Prog Neurobiol 2015; 125:47-62. [PMID: 25573151 DOI: 10.1016/j.pneurobio.2014.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/01/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
Gaucher disease, the most common lysosomal storage disease, is caused by a recessively inherited deficiency in glucocerebrosidase and subsequent accumulation of toxic lipid substrates. Heterozygous mutations in the lysosomal glucocerebrosidase gene (GBA1) have recently been recognized as the highest genetic risk factor for the development of α-synuclein aggregation disorders ("synucleinopathies"), including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Despite the wealth of experimental, clinical and genetic evidence that supports the association between mutant genotypes and synucleinopathy risk, the precise mechanisms by which GBA1 mutations lead to PD and DLB remain unclear. Decreased glucocerebrosidase activity has been demonstrated to promote α-synuclein misprocessing. Furthermore, aberrant α-synuclein species have been reported to downregulate glucocerebrosidase activity, which further contributes to disease progression. In this review, we summarize the recent findings that highlight the complexity of this pathogenetic link and how several pathways that connect glucocerebrosidase insufficiency with α-synuclein misprocessing have emerged as potential therapeutic targets. From a translational perspective, we discuss how various therapeutic approaches to lysosomal dysfunction have been explored for the treatment of GBA1-related synucleinopathies, and potentially, for non-GBA1-associated neurodegenerative diseases. In summary, the link between GBA1 and synucleinopathies has become the paradigm of how the study of a rare lysosomal disease can transform the understanding of the etiopathology, and hopefully the treatment, of a more prevalent and multifactorial disorder.
Collapse
Affiliation(s)
- S Pablo Sardi
- Genzyme, a Sanofi Company, 49 New York Avenue, Framingham, MA 01701, USA.
| | - Seng H Cheng
- Genzyme, a Sanofi Company, 49 New York Avenue, Framingham, MA 01701, USA
| | | |
Collapse
|
27
|
Barnes S, Xu YH, Zhang W, Liou B, Setchell KDR, Bao L, Grabowski GA, Sun Y. Ubiquitous transgene expression of the glucosylceramide-synthesizing enzyme accelerates glucosylceramide accumulation and storage cells in a Gaucher disease mouse model. PLoS One 2014; 9:e116023. [PMID: 25551612 PMCID: PMC4281226 DOI: 10.1371/journal.pone.0116023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
Gaucher disease is a lysosomal storage disease caused by defective activity of acid β-glucosidase (GCase), which leads to the accumulation of its major substrates, glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph) in many cells. To modulate cellular substrate concentration in viable mouse models of Gaucher disease (Gba1 mutants), a novel mouse model was created with enhanced glycosphingolipid biosynthesis. This was accomplished by cross-breeding Gba1 mutant mice with mice expressing a transgene (GCStg) containing the mouse glucosylceramide synthase (GCS, Ugcg) cDNA driven by the ROSA promoter, yielding GCStg/Gba1 mice. The GCStg rescued Ugcg null mice from embryonic lethality. GCStg/Gba1 mice showed 2-3 fold increases in tissue GCS activity as well as accelerated GlcCer accumulation and the appearance of lipid-laden CD68 positive macrophages in visceral organs. Although GlcCer/GlcSph concentrations were elevated in the brain, there was no neurodegenerative phenotype up to 1 yr of age conceivably due to the greater residual GCase hydrolytic activity in the brains than in the visceral tissues of 9V/null mice. These studies provide 'proof of principle' for threshold substrate flux that modifies phenotypic development in Gaucher disease and other lysosomal storage diseases.
Collapse
Affiliation(s)
- Sonya Barnes
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - You-Hai Xu
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Wujuan Zhang
- The Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Benjamin Liou
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kenneth D. R. Setchell
- The Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Liming Bao
- Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, United States of America
| | - Gregory A. Grabowski
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Synageva BioPharma Corp., Lexington, Massachusetts, United States of America
| | - Ying Sun
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|