1
|
Ramalingam M, Jang S, Kim S, Bai H, Jeong G, Kim BC, Jeong HS. Rotenone and Its Derivative, Rotenoisin A, Induce Neurodegeneration Differentially in SH-SY5Y Cells. Biomedicines 2024; 12:1703. [PMID: 39200166 PMCID: PMC11351421 DOI: 10.3390/biomedicines12081703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Rotenone (ROT), the most significant rotenoid, which has shown anticancer activity, has also been reported to be toxic to normal cells, inducing Parkinson's disease (PD)-like neuronal loss with aggregation of α-synuclein (α-syn). To reduce the adverse effects of ROT, its derivative, rotenoisin A (ROA), is obtained by directly irradiating a ROT solution in methanol using γ-rays, which has been reported for potential anticancer properties. However, its PD-inducing effects have not yet been researched or reported. This study sought to compare the activities of ROA and ROT on the aggregation of α-syn, apoptosis, and autophagy in SH-SY5Y cells. ROA decreased cell survival less when compared with ROT on SH-SY5Y cells at 48 h in a dose-dependent manner. ROT (0.5 and 1 μM) and ROA (4 and 5 μM) decreased the expression of tyrosine hydroxylase. Western blot analysis of the Triton X-100 insoluble fraction revealed that both ROT and ROA significantly increased the levels of oligomeric, dimeric, and monomeric phosphorylated Serine129 α-syn and total monomeric α-syn. Moreover, both compounds decreased the proportion of neuronal nuclei, the neurofilament-heavy chain, and β3-tubulin. The phosphorylation of ERK and SAPK were reduced, whereas ROA did not act on Akt. Additionally, the increased Bax/Bcl-2 ratio further activated the downstream caspases cascade. ROT promoted the LC3BII/I ratio and p62 levels; however, different ROA doses resulted in different effects on autophagy while inducing PD-like impairments in SH-SY5Y cells.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (S.J.); (S.K.)
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (S.J.); (S.K.)
| | - Seongryul Kim
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (S.J.); (S.K.)
| | - Hyoungwoo Bai
- Department of Radiation Science, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea; (H.B.); (G.J.)
- Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gyeonghan Jeong
- Department of Radiation Science, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea; (H.B.); (G.J.)
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea;
- Department of Neurology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (S.J.); (S.K.)
| |
Collapse
|
2
|
Hou BY, Wu MH, Hsu HY, Lin YC, Yang DI. Polysaccharides from Basella alba Protect Post-Mitotic Neurons against Cell Cycle Re-Entry and Apoptosis Induced by the Amyloid-Beta Peptide by Blocking Sonic Hedgehog Expression. Int J Mol Sci 2024; 25:7316. [PMID: 39000427 PMCID: PMC11242684 DOI: 10.3390/ijms25137316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
The amyloid-beta peptide (Aβ) is the neurotoxic component in senile plaques of Alzheimer's disease (AD) brains. Previously we have reported that Aβ toxicity is mediated by the induction of sonic hedgehog (SHH) to trigger cell cycle re-entry (CCR) and apoptosis in post-mitotic neurons. Basella alba is a vegetable whose polysaccharides carry immunomodulatory and anti-cancer actions, but their protective effects against neurodegeneration have never been reported. Herein, we tested whether polysaccharides derived from Basella alba (PPV-6) may inhibit Aβ toxicity and explored its underlying mechanisms. In differentiated rat cortical neurons, Aβ25-35 reduced cell viability, damaged neuronal structure, and compromised mitochondrial bioenergetic functions, all of which were recovered by PPV-6. Immunocytochemistry and western blotting revealed that Aβ25-35-mediated induction of cell cycle markers including cyclin D1, proliferating cell nuclear antigen (PCNA), and histone H3 phosphorylated at Ser-10 (p-Histone H3) in differentiated neurons was all suppressed by PPV-6, along with mitigation of caspase-3 cleavage. Further studies revealed that PPV-6 inhibited Aβ25-35 induction of SHH; indeed, PPV-6 was capable of suppressing neuronal CCR and apoptosis triggered by the exogenous N-terminal fragment of sonic hedgehog (SHH-N). Our findings demonstrated that, in the fully differentiated neurons, PPV-6 exerts protective actions against Aβ neurotoxicity via the downregulation of SHH to suppress neuronal CCR and apoptosis.
Collapse
Affiliation(s)
- Bo-Yu Hou
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (B.-Y.H.); (M.-H.W.)
| | - Ming-Hsuan Wu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (B.-Y.H.); (M.-H.W.)
| | - Hui-Yu Hsu
- Mynature Biotech Inc., Yilan 260021, Taiwan;
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (B.-Y.H.); (M.-H.W.)
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
3
|
Strużyńska L. Dual Implications of Nanosilver-Induced Autophagy: Nanotoxicity and Anti-Cancer Effects. Int J Mol Sci 2023; 24:15386. [PMID: 37895066 PMCID: PMC10607027 DOI: 10.3390/ijms242015386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, efforts have been made to identify new anti-cancer therapies. Various types of nanomaterials, including silver nanoparticles (AgNPs), are being considered as an option. In addition to its well-known antibacterial activity, AgNPs exhibit cytotoxic potential in both physiological and cancer cells by inducing stress-mediated autophagy and apoptotic cell death. A rapidly growing collection of data suggests that the proper regulation of autophagic machinery may provide an efficient tool for suppressing the development of cancer. In this light, AgNPs have emerged as a potential anti-cancer agent to support therapy of the disease. This review summarizes current data indicating the dual role of AgNP-induced autophagy and highlights factors that may influence its protective vs. its toxic potential. It also stresses that our understanding of the cellular and molecular mechanisms of autophagy machinery in cancer cells, as well as AgNP-triggered autophagy in both normal and diseased cells, remains insufficient.
Collapse
Affiliation(s)
- Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str., 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Ha C, Bakshi S, Brahma MK, Potter LA, Chang SF, Sun Z, Benavides GA, He L, Umbarkar P, Zou L, Curfman S, Sunny S, Paterson AJ, Rajasekaran N, Barnes JW, Zhang J, Lal H, Xie M, Darley‐Usmar VM, Chatham JC, Wende AR. Sustained Increases in Cardiomyocyte Protein O-Linked β-N-Acetylglucosamine Levels Lead to Cardiac Hypertrophy and Reduced Mitochondrial Function Without Systolic Contractile Impairment. J Am Heart Assoc 2023; 12:e029898. [PMID: 37750556 PMCID: PMC10727241 DOI: 10.1161/jaha.123.029898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/03/2023] [Indexed: 09/27/2023]
Abstract
Background Lifestyle and metabolic diseases influence the severity and pathogenesis of cardiovascular disease through numerous mechanisms, including regulation via posttranslational modifications. A specific posttranslational modification, the addition of O-linked β-N acetylglucosamine (O-GlcNAcylation), has been implicated in molecular mechanisms of both physiological and pathologic adaptations. The current study aimed to test the hypothesis that in cardiomyocytes, sustained protein O-GlcNAcylation contributes to cardiac adaptations, and its progression to pathophysiology. Methods and Results Using a naturally occurring dominant-negative O-GlcNAcase (dnOGA) inducible cardiomyocyte-specific overexpression transgenic mouse model, we induced dnOGA in 8- to 10-week-old mouse hearts. We examined the effects of 2-week and 24-week dnOGA overexpression, which progressed to a 1.8-fold increase in protein O-GlcNAcylation. Two-week increases in protein O-GlcNAc levels did not alter heart weight or function; however, 24-week increases in protein O-GlcNAcylation led to cardiac hypertrophy, mitochondrial dysfunction, fibrosis, and diastolic dysfunction. Interestingly, systolic function was maintained in 24-week dnOGA overexpression, despite several changes in gene expression associated with cardiovascular disease. Specifically, mRNA-sequencing analysis revealed several gene signatures, including reduction of mitochondrial oxidative phosphorylation, fatty acid, and glucose metabolism pathways, and antioxidant response pathways after 24-week dnOGA overexpression. Conclusions This study indicates that moderate increases in cardiomyocyte protein O-GlcNAcylation leads to a differential response with an initial reduction of metabolic pathways (2-week), which leads to cardiac remodeling (24-week). Moreover, the mouse model showed evidence of diastolic dysfunction consistent with a heart failure with preserved ejection fraction. These findings provide insight into the adaptive versus maladaptive responses to increased O-GlcNAcylation in heart.
Collapse
Affiliation(s)
- Chae‐Myeong Ha
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Sayan Bakshi
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Manoja K. Brahma
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Luke A. Potter
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Samuel F. Chang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Zhihuan Sun
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Gloria A. Benavides
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Lihao He
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Prachi Umbarkar
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Luyun Zou
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Samuel Curfman
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Sini Sunny
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Andrew J. Paterson
- Division of Endocrinology, Diabetes, and Metabolism, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | | | - Jarrod W. Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Hind Lal
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Min Xie
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Victor M. Darley‐Usmar
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
5
|
Ouyang X, Wani WY, Benavides GA, Redmann MJ, Vo H, van Groen T, Darley-Usmar VM, Zhang J. Cathepsin D overexpression in the nervous system rescues lethality and A β42 accumulation of cathepsin D systemic knockout in vivo. Acta Pharm Sin B 2023; 13:4172-4184. [PMID: 37799377 PMCID: PMC10547960 DOI: 10.1016/j.apsb.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
The lysosome is responsible for protein and organelle degradation and homeostasis and the cathepsins play a key role in maintaining protein quality control. Cathepsin D (CTSD), is one such lysosomal protease, which when deficient in humans lead to neurolipofuscinosis (NCL) and is important in removing toxic protein aggregates. Prior studies demonstrated that CTSD germ-line knockout-CtsdKO (CDKO) resulted in accumulation of protein aggregates, decreased proteasomal activities, and postnatal lethality on Day 26 ± 1. Overexpression of wildtype CTSD, but not cathepsin B, L or mutant CTSD, decreased α-synuclein toxicity in worms and mammalian cells. In this study we generated a mouse line expressing human CTSD with a floxed STOP cassette between the ubiquitous CAG promoter and the cDNA. After crossing with Nestin-cre, the STOP cassette is deleted in NESTIN + cells to allow CTSD overexpression-CTSDtg (CDtg). The CDtg mice exhibited normal behavior and similar sensitivity to sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced neurodegeneration. By breeding CDtg mice with CDKO mice, we found that over-expression of CTSD extended the lifespan of the CDKO mice, partially rescued proteasomal deficits and the accumulation of Aβ42 in the CDKO. This new transgenic mouse provides supports for the key role of CTSD in protecting against proteotoxicity and offers a new model to study the role of CTSD enhancement in vivo.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Willayat Y. Wani
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew J. Redmann
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hai Vo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Benavides GA, Mueller T, Darley-Usmar V, Zhang J. Optimization of measurement of mitochondrial electron transport activity in postmortem human brain samples and measurement of susceptibility to rotenone and 4-hydroxynonenal inhibition. Redox Biol 2022; 50:102241. [PMID: 35066289 PMCID: PMC8792425 DOI: 10.1016/j.redox.2022.102241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial function is required to meet the energetic and metabolic requirements of the brain. Abnormalities in mitochondrial function, due to genetic or developmental factors, mitochondrial toxins, aging or insufficient mitochondrial quality control contribute to neurological and psychiatric diseases. Studying bioenergetics from postmortem human tissues has been challenging due to the diverse range of human genetics, health conditions, sex, age, and postmortem interval. Furthermore, fresh tissues that were in the past required for assessment of mitochondrial respiratory function were rarely available. Recent studies established protocols to use in bioenergetic analyses from frozen tissues using animal models and cell cultures. In this study we optimized these methods to determine the activities of mitochondrial electron transport in postmortem human brain. Further we demonstrate how these samples can be used to assess the susceptibility to the mitochondrial toxin rotenone and exposure to the reactive lipid species 4-hydroxynonenal. The establishment of such an approach will significantly impact translational studies of human diseases by allowing measurement of mitochondrial function in human tissue repositories.
Collapse
Affiliation(s)
- Gloria A Benavides
- Department of Pathology, Mitochondrial Medicine Laboratory, Birmingham, AL, 35294, USA
| | - Toni Mueller
- Department of Pathology, Mitochondrial Medicine Laboratory, Birmingham, AL, 35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, Mitochondrial Medicine Laboratory, Birmingham, AL, 35294, USA
| | - Jianhua Zhang
- Department of Pathology, Mitochondrial Medicine Laboratory, Birmingham, AL, 35294, USA; Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
7
|
Karthikkeyan G, Behera SK, Upadhyay SS, Pervaje R, Prasad TSK, Modi PK. Metabolomics analysis highlights Yashtimadhu (Glycyrrhiza glabra L.)-mediated neuroprotection in a rotenone-induced cellular model of Parkinson's disease by restoring the mTORC1-AMPK1 axis in autophagic regulation. Phytother Res 2022; 36:2207-2222. [PMID: 35307886 DOI: 10.1002/ptr.7449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Abstract
Parkinson's disease (PD) is an age-associated progressive neurodegenerative movement disorder, and its management strategies are known to cause complications with prolonged usage. We aimed to explore the neuroprotective mechanism of the Indian traditional medicine Yashtimadhu, prepared from the dried roots of Glycyrrhiza glabra L. (licorice) in the rotenone-induced cellular model of PD. Retinoic acid-differentiated IMR-32 cells were treated with rotenone (PD model) and Yashtimadhu extract. Mass spectrometry-based untargeted and targeted metabolomic profiling was carried out to discover altered metabolites. The untargeted metabolomics analysis highlighted the rotenone-induced dysregulation and Yashtimadhu-mediated restoration of metabolites involved in the metabolism of nucleic acids, amino acids, lipids, and citric acid cycle. Targeted validation of citric acid cycle metabolites showed decreased α-ketoglutarate and succinate with rotenone treatment and rescued by Yashtimadhu co-treatment. The dysregulation of the citric acid cycle by rotenone-induced energetic stress via dysregulation of the mTORC1-AMPK1 axis was prevented by Yashtimadhu. Yashtimadhu co-treatment restored rotenone-induced ATG7-dependent autophagy and eventually caspases-mediated cell death. Our analysis links the metabolic alterations modulating energy stress and autophagy, which underlies the Yashtimadhu-mediated neuroprotection in the rotenone-induced cellular model of PD.
Collapse
Affiliation(s)
- Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Santosh Kumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
8
|
Evaluation of 6-Hydroxydopamine and Rotenone In Vitro Neurotoxicity on Differentiated SH-SY5Y Cells Using Applied Computational Statistics. Int J Mol Sci 2022; 23:ijms23063009. [PMID: 35328430 PMCID: PMC8953223 DOI: 10.3390/ijms23063009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
With the increase in life expectancy and consequent aging of the world’s population, the prevalence of many neurodegenerative diseases is increasing, without concomitant improvement in diagnostics and therapeutics. These diseases share neuropathological hallmarks, including mitochondrial dysfunction. In fact, as mitochondrial alterations appear prior to neuronal cell death at an early phase of a disease’s onset, the study and modulation of mitochondrial alterations have emerged as promising strategies to predict and prevent neurotoxicity and neuronal cell death before the onset of cell viability alterations. In this work, differentiated SH-SY5Y cells were treated with the mitochondrial-targeted neurotoxicants 6-hydroxydopamine and rotenone. These compounds were used at different concentrations and for different time points to understand the similarities and differences in their mechanisms of action. To accomplish this, data on mitochondrial parameters were acquired and analyzed using unsupervised (hierarchical clustering) and supervised (decision tree) machine learning methods. Both biochemical and computational analyses resulted in an evident distinction between the neurotoxic effects of 6-hydroxydopamine and rotenone, specifically for the highest concentrations of both compounds.
Collapse
|
9
|
University of Alabama at Birmingham Nathan Shock Center: comparative energetics of aging. GeroScience 2021; 43:2149-2160. [PMID: 34304389 DOI: 10.1007/s11357-021-00414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/09/2022] Open
Abstract
The UAB Nathan Shock Center focuses on comparative energetics and aging. Energetics, as defined for this purpose, encompasses the causes, mechanisms, and consequences of the acquisition, storage, and use of metabolizable energy. Comparative energetics is the study of metabolic processes at multiple scales and across multiple species as it relates to health and aging. The link between energetics and aging is increasingly understood in terms of dysregulated mitochondrial function, altered metabolic signaling, and aberrant nutrient responsiveness with increasing age. The center offers world-class expertise in comprehensive, integrated energetic assessment and analysis from the level of the organelle to the organism and across species from the size of worms to rats as well as state-of-the-art data analytics. The range of services offered by our three research cores, (1) The Organismal Energetics Core, (2) Mitometabolism Core, and (3) Data Analytics Core, is described herein.
Collapse
|
10
|
Ren H, Zhai W, Lu X, Wang G. The Cross-Links of Endoplasmic Reticulum Stress, Autophagy, and Neurodegeneration in Parkinson's Disease. Front Aging Neurosci 2021; 13:691881. [PMID: 34168552 PMCID: PMC8218021 DOI: 10.3389/fnagi.2021.691881] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, and it is characterized by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), as well as the presence of intracellular inclusions with α-synuclein as the main component in surviving DA neurons. Emerging evidence suggests that the imbalance of proteostasis is a key pathogenic factor for PD. Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and autophagy, two major pathways for maintaining proteostasis, play important roles in PD pathology and are considered as attractive therapeutic targets for PD treatment. However, although ER stress/UPR and autophagy appear to be independent cellular processes, they are closely related to each other. In this review, we focused on the roles and molecular cross-links between ER stress/UPR and autophagy in PD pathology. We systematically reviewed and summarized the most recent advances in regulation of ER stress/UPR and autophagy, and their cross-linking mechanisms. We also reviewed and discussed the mechanisms of the coexisting ER stress/UPR activation and dysregulated autophagy in the lesion regions of PD patients, and the underlying roles and molecular crosslinks between ER stress/UPR activation and the dysregulated autophagy in DA neurodegeneration induced by PD-associated genetic factors and PD-related neurotoxins. Finally, we indicate that the combined regulation of ER stress/UPR and autophagy would be a more effective treatment for PD rather than regulating one of these conditions alone.
Collapse
Affiliation(s)
- Haigang Ren
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wanqing Zhai
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Xiaojun Lu
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Guanghui Wang
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Wang Y, Li C, Zhang X, Kang X, Li Y, Zhang W, Chen Y, Liu Y, Wang W, Ge M, Du L. Exposure to PM2.5 aggravates Parkinson's disease via inhibition of autophagy and mitophagy pathway. Toxicology 2021; 456:152770. [PMID: 33823232 DOI: 10.1016/j.tox.2021.152770] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Extensive health studies had declared that exposure to particulate matter (PM) was closely associated with neurodegenerative diseases, i.e. Parkinson's disease (PD). Our aim was to clarify the potential molecular mechanism by which PM2.5 aggravated PD symptoms using in vitro and in vivo PD models. In this study, PC12 cells treated with rotenone (1 μM) and/or PM2.5 (50 μg/mL) for 4 days was used as the in vitro model. C57BL/6 J mice expored to PM2.5 (inhalation, 2.5 mg/kg) and rotenone (intraperitoneal injection, 30 mg/kg) for 28 days was used as the in vivo model. Rapamycin was used to promote the level of autophagy. The results showed that after exposure to PM2.5, the apoptosis of rotenone-treated PC12 cells were increased by increasing the ROS levels and decreasing the levels of mitochondrial membrane potential. In rotenone-treated PC12 cells, exposure to PM2.5 could decrease the expression levels of LC3II and Atg5, and increase the expression level of mTOR, suggesting that PM2.5 exposure inhibited autophagy. Furthermore, the mitophagy related genes, including PINK1 and Parkin, were decreased. At the same time, inhalation of PM2.5 could relieve the behavioral abnormalities of PD mouse induced by rotenone. The levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were significantly increased. Inhalation of PM2.5 could induce the oxidative stress and apoptosis in the substantia nigra of PD mouse, as well as the key markers of autophagy and mitophagy were also changed, which was consistent with the cell model. Besides, rapamycin would relieve the damaging effect of PM2.5 by triggering autophagy and mitophagy in rotenone-induced PD models. These results indicated that exposure to PM2.5 aggravated the behavioral abnormalities of PD symptoms through increasing oxidative stress, decreasing autophagy and mitophagy, and inducing mitochondria-mediated neuronal apoptosis. These findings not only revealed the effects and mechanism of PM2.5 exposure on PD, but also provided fundamental data that can be exploited to develop environmental safety policies.
Collapse
Affiliation(s)
- Yueqi Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100190, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
| | - Changjian Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100190, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoxuan Kang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei, Shijiazhuang, 050024, China
| | - Yaru Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
12
|
Pokusa M, Hajdúchová D, Menichová V, Evinová A, Hatoková Z, Kráľová-Trančíková A. Vulnerability of subcellular structures to pathogenesis induced by rotenone in SH-SY5Y cells. Physiol Res 2021; 70:89-99. [PMID: 33453717 DOI: 10.33549/physiolres.934477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Numerous pathological changes of subcellular structures are characteristic hallmarks of neurodegeneration. The main research has focused to mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomal networks as well as microtubular system of the cell. The sequence of specific organelle damage during pathogenesis has not been answered yet. Exposition to rotenone is used for simulation of neurodegenerative changes in SH-SY5Y cells, which are widely used for in vitro modelling of Parkinson´s disease pathogenesis. Intracellular effects were investigated in time points from 0 to 24 h by confocal microscopy and biochemical analyses. Analysis of fluorescent images identified the sensitivity of organelles towards rotenone in this order: microtubular cytoskeleton, mitochondrial network, endoplasmic reticulum, Golgi apparatus and lysosomal network. All observed morphological changes of intracellular compartments were identified before alphaS protein accumulation. Therefore, their potential as an early diagnostic marker is of interest. Understanding of subcellular sensitivity in initial stages of neurodegeneration is crucial for designing new approaches and a management of neurodegenerative disorders.
Collapse
Affiliation(s)
- M Pokusa
- Biomedical Center Martin, Martin, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
13
|
Adiponectin protects HL-1 cardiomyocytes against rotenone-induced cytotoxicity through AMPK activation. Toxicol Lett 2020; 335:82-90. [PMID: 33137417 DOI: 10.1016/j.toxlet.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
The relationship between mitochondrial dysfunction or ER stress with pathogenesis of cardiovascular disease is well documented, but the crosstalk between them in cardiovascular diseases is not clear. Adiponectin (APN) is reported to become a potential cardioprotective molecule, but whether and how APN regulates mitochondrial dysfunction and ER stress is not clear. In this study, we used rotenone-treated HL-1 atrial cardiomyocytes as an in vitro model of mitochondrial dysfunction to investigate the possible interactions between mitochondrial dysfunction and ER stress and explore the effects of APN on rotenone-induced cytotoxicity and the underlying mechanisms. It found that rotenone treatment significantly activated the ER stress PRK-like endoplasmic reticulum kinase (PERK)-dependent pathway, decreased autophagic flux and APN expression in a dose-dependent manner. Pretreatment of GSK2606414, an inhibitor of PERK kinase activity, attenuated the rotenone-induced decrease of APN expression. In return exogenous APN pretreatment inhibited rotenone-induced ER stress and activated autophagy via AMP-activated protein kinase (AMPK) activation and protected HL-1 cells against apoptosis and enhanced the viability after rotenone treatment. In conclusion, rotenone treatment induced significant cardiomyocyte cytotoxicity and ER stress, suppressed autophagy, and decreased APN expression in HL-1 cells. APN in return inhibited ER stress and activated autophagy through AMPK activation, thus alleviating rotenone induced HL-1 apoptosis.
Collapse
|
14
|
Pyrroloquinoline Quinone Inhibits Rotenone-Induced Microglia Inflammation by Enhancing Autophagy. Molecules 2020; 25:molecules25194359. [PMID: 32977419 PMCID: PMC7582530 DOI: 10.3390/molecules25194359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is a feature common to neurodegenerative diseases, such as Parkinson’s disease (PD), which might be responsive to therapeutic intervention. Rotenone has been widely used to establish PD models by inducing mitochondrial dysfunction and inflammation. Our previous studies have reported that pyrroloquinoline quinone (PQQ), a naturally occurring redox cofactor, could prevent mitochondrial dysfunction in rotenone induced PD models by regulating mitochondrial functions. In the present study, we aimed to investigate the effect of PQQ on neuroinflammation and the mechanism involved. BV2 microglia cells were pre-treated with PQQ followed by rotenone incubation. The data showed that PQQ did not affect the cell viability of BV2 cells treated with rotenone, while the conditioned medium (CM) of BV2 cells pre-treated with PQQ significantly increased cell viability of SH-SY5Y cells. In rotenone-treated BV2 cells, PQQ dose-dependently decreased lactate dehydrogenase (LDH) release and suppressed the up-regulation of pro-inflammation factors, such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in the cultured media, as well as nitric oxide (NO) release induced by rotenone. PQQ pretreatment also increased the ratio of LC3-II/LC3-I and expression of Atg5 in BV2 cells stimulated with rotenone. Additionally, the autophagosome observed by transmission electron microscopy (TEM) and co-localization of mitochondria with lysosomes indicated that mitophagy was induced by PQQ in rotenone-injured BV2 cells, and the PINK1/parkin mediated mitophagy pathway was regulated by PQQ. Further, autophagy inhibitor, 3-methyladenine (3-MA), partially abolished the neuroprotective effect of PQQ and attenuated the inhibition of inflammation with PQQ pretreatment. Taken together, our data extend our understanding of the neuroprotective effect of PQQ against rotenone-induced injury and provide evidence that autophagy enhancement might be a novel therapeutic strategy for PD treatment.
Collapse
|
15
|
Nuclear receptor binding factor 2 (NRBF2) is required for learning and memory. J Transl Med 2020; 100:1238-1251. [PMID: 32350405 DOI: 10.1038/s41374-020-0433-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/13/2023] Open
Abstract
The mechanisms which underlie defects in learning and memory are a major area of focus with the increasing incidence of Alzheimer's disease in the aging population. The complex genetically-controlled, age-, and environmentally-dependent onset and progression of the cognitive deficits and neuronal pathology call for better understanding of the fundamental biology of the nervous system function. In this study, we focus on nuclear receptor binding factor-2 (NRBF2) which modulates the transcriptional activities of retinoic acid receptor α and retinoid X receptor α, and the autophagic activities of the BECN1-VPS34 complex. Since both transcriptional regulation and autophagic function are important in supporting neuronal function, we hypothesized that NRBF2 deficiency may lead to cognitive deficits. To test this, we developed a new mouse model with nervous system-specific knockout of Nrbf2. In a series of behavioral assessment, we demonstrate that NRBF2 knockout in the nervous system results in profound learning and memory deficits. Interestingly, we did not find deficits in autophagic flux in primary neurons and the autophagy deficits were minimal in the brain. In contrast, RNAseq analyses have identified altered expression of genes that have been shown to impact neuronal function. The observation that NRBF2 is involved in learning and memory suggests a new mechanism regulating cognition involving the role of this protein in regulating networks related to the function of retinoic acid receptors, protein folding, and quality control.
Collapse
|
16
|
Hill BG, Shiva S, Ballinger S, Zhang J, Darley-Usmar VM. Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biol Chem 2019; 401:3-29. [PMID: 31815377 PMCID: PMC6944318 DOI: 10.1515/hsz-2019-0268] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
It is now becoming clear that human metabolism is extremely plastic and varies substantially between healthy individuals. Understanding the biochemistry that underlies this physiology will enable personalized clinical interventions related to metabolism. Mitochondrial quality control and the detailed mechanisms of mitochondrial energy generation are central to understanding susceptibility to pathologies associated with aging including cancer, cardiac and neurodegenerative diseases. A precision medicine approach is also needed to evaluate the impact of exercise or caloric restriction on health. In this review, we discuss how technical advances in assessing mitochondrial genetics, cellular bioenergetics and metabolomics offer new insights into developing metabolism-based clinical tests and metabolotherapies. We discuss informatics approaches, which can define the bioenergetic-metabolite interactome and how this can help define healthy energetics. We propose that a personalized medicine approach that integrates metabolism and bioenergetics with physiologic parameters is central for understanding the pathophysiology of diseases with a metabolic etiology. New approaches that measure energetics and metabolomics from cells isolated from human blood or tissues can be of diagnostic and prognostic value to precision medicine. This is particularly significant with the development of new metabolotherapies, such as mitochondrial transplantation, which could help treat complex metabolic diseases.
Collapse
Affiliation(s)
- Bradford G. Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15143
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
17
|
Alpha-Synuclein Preserves Mitochondrial Fusion and Function in Neuronal Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4246350. [PMID: 31871549 PMCID: PMC6907050 DOI: 10.1155/2019/4246350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/12/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Dysregulations of mitochondria with alterations in trafficking and morphology of these organelles have been related to Parkinson's disease (PD), a neurodegenerative disorder characterized by brain accumulation of Lewy bodies (LB), intraneuronal inclusions mainly composed of α-synuclein (α-syn) fibrils. Experimental evidence supports that α-syn pathological aggregation can negatively impinge on mitochondrial functions suggesting that this protein may be crucially involved in the control of mitochondrial homeostasis. The aim of this study was to assay this hypothesis by analyzing mitochondrial function and morphology in primary cortical neurons from C57BL/6JOlaHsd α-syn null and C57BL/6J wild-type (wt) mice. Primary cortical neurons from mice lacking α-syn showed decreased respiration capacity measured with a Seahorse XFe24 Extracellular Flux Analyzer. In addition, morphological Airyscan superresolution microscopy showed the presence of fragmented mitochondria while real-time PCR and western blot confirmed altered expression of proteins involved in mitochondrial shape modifications in the primary cortical neurons of α-syn null mice. Transmission electron microscopy (TEM) studies showed that α-syn null neurons exhibited impaired mitochondria-endoplasmic reticulum (ER) physical interaction. Specifically, we identified a decreased number of mitochondria-ER contacts (MERCs) paralleled by a significant increase in ER-mitochondria distance (i.e., MERC length). These findings support that α-syn physiologically preserves mitochondrial functions and homeostasis. Studying α-syn/mitochondria interplay in health and disease is thus pivotal for understanding their involvement in PD and other LB disorders.
Collapse
|
18
|
Synergistic Effect of Mitochondrial and Lysosomal Dysfunction in Parkinson's Disease. Cells 2019; 8:cells8050452. [PMID: 31091796 PMCID: PMC6563092 DOI: 10.3390/cells8050452] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Crosstalk between lysosomes and mitochondria plays a central role in Parkinson’s Disease (PD). Lysosomal function may be influenced by mitochondrial quality control, dynamics and/or respiration, but whether dysfunction of endocytic or autophagic pathway is associated with mitochondrial impairment determining accumulation of defective mitochondria, is not yet understood. Here, we performed live imaging, western blotting analysis, sequencing of mitochondrial DNA (mtDNA) and senescence-associated beta-galactosidase activity assay on primary fibroblasts from a young patient affected by PD, her mother and a healthy control to analyze the occurrence of mtDNA mutations, lysosomal abundance, acidification and function, mitochondrial biogenesis activation and senescence. We showed synergistic alterations in lysosomal functions and mitochondrial biogenesis, likely associated with a mitochondrial genetic defect, with a consequent block of mitochondrial turnover and occurrence of premature cellular senescence in PARK2-PD fibroblasts, suggesting that these alterations represent potential mechanisms contributing to the loss of dopaminergic neurons.
Collapse
|
19
|
Possible Clues for Brain Energy Translation via Endolysosomal Trafficking of APP-CTFs in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2764831. [PMID: 30420907 PMCID: PMC6215552 DOI: 10.1155/2018/2764831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/14/2018] [Accepted: 08/19/2018] [Indexed: 02/07/2023]
Abstract
Vascular dysfunctions, hypometabolism, and insulin resistance are high and early risk factors for Alzheimer's disease (AD), a leading neurological disease associated with memory decline and cognitive dysfunctions. Early defects in glucose transporters and glycolysis occur during the course of AD progression. Hypometabolism begins well before the onset of early AD symptoms; this timing implicates the vulnerability of hypometabolic brain regions to beta-secretase 1 (BACE-1) upregulation, oxidative stress, inflammation, synaptic failure, and cell death. Despite the fact that ketone bodies, astrocyte-neuron lactate shuttle, pentose phosphate pathway (PPP), and glycogenolysis compensate to provide energy to the starving AD brain, a considerable energy crisis still persists and increases during disease progression. Studies that track brain energy metabolism in humans, animal models of AD, and in vitro studies reveal striking upregulation of beta-amyloid precursor protein (β-APP) and carboxy-terminal fragments (CTFs). Currently, the precise role of CTFs is unclear, but evidence supports increased endosomal-lysosomal trafficking of β-APP and CTFs through autophagy through a vague mechanism. While intracellular accumulation of Aβ is attributed as both the cause and consequence of a defective endolysosomal-autophagic system, much remains to be explored about the other β-APP cleavage products. Many recent works report altered amino acid catabolism and expression of several urea cycle enzymes in AD brains, but the precise cause for this dysregulation is not fully explained. In this paper, we try to connect the role of CTFs in the energy translation process in AD brain based on recent findings.
Collapse
|
20
|
Redmann M, Benavides GA, Wani WY, Berryhill TF, Ouyang X, Johnson MS, Ravi S, Mitra K, Barnes S, Darley-Usmar VM, Zhang J. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture. Redox Biol 2018; 17:59-69. [PMID: 29677567 PMCID: PMC6006680 DOI: 10.1016/j.redox.2018.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial quality is under surveillance by autophagy, the cell recycling process which degrades and removes damaged mitochondria. Inadequate autophagy results in deterioration in mitochondrial quality, bioenergetic dysfunction, and metabolic stress. Here we describe in an integrated work-flow to assess parameters of mitochondrial morphology, function, mtDNA and protein damage, metabolism and autophagy regulation to provide the framework for a practical assessment of mitochondrial quality. This protocol has been tested with cell cultures, is highly reproducible, and is adaptable to studies when cell numbers are limited, and thus will be of interest to researchers studying diverse physiological and pathological phenomena in which decreased mitochondrial quality is a contributory factor.
Collapse
Affiliation(s)
- Matthew Redmann
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gloria A Benavides
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Willayat Yousuf Wani
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Taylor F Berryhill
- Department of Pharmacology and Toxicology and Targeted Metabolomics & Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Xiaosen Ouyang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Michelle S Johnson
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Saranya Ravi
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Stephen Barnes
- Department of Pharmacology and Toxicology and Targeted Metabolomics & Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Victor M Darley-Usmar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jianhua Zhang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; VA Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
21
|
Robke L, Futamura Y, Konstantinidis G, Wilke J, Aono H, Mahmoud Z, Watanabe N, Wu YW, Osada H, Laraia L, Waldmann H. Discovery of the novel autophagy inhibitor aumitin that targets mitochondrial complex I. Chem Sci 2018; 9:3014-3022. [PMID: 29732085 PMCID: PMC5916016 DOI: 10.1039/c7sc05040b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
Macroautophagy is a conserved eukaryotic process for degradation of cellular components in response to lack of nutrients. It is involved in the development of diseases, notably cancer and neurological disorders including Parkinson's disease. Small molecule autophagy modulators have proven to be valuable tools to dissect and interrogate this crucial metabolic pathway and are in high demand. Phenotypic screening for autophagy inhibitors led to the discovery of the novel autophagy inhibitor aumitin. Target identification and confirmation revealed that aumitin inhibits mitochondrial respiration by targeting complex I. We show that inhibition of autophagy by impairment of mitochondrial respiration is general for several mitochondrial inhibitors that target different mitochondrial complexes. Our findings highlight the importance of mitochondrial respiration for autophagy regulation.
Collapse
Affiliation(s)
- Lucas Robke
- Max-Planck-Institute of Molecular Physiology , Department of Chemical Biology , Otto-Hahn-Str. 11 , 44227 Dortmund , Germany
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 4a , 44227 Dortmund , Germany .
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Yushi Futamura
- Chemical Biology Research Group , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Georgios Konstantinidis
- Chemical Genomics Centre of the Max-Planck-Society , Otto-Hahn-Str. 15 , 44227 Dortmund , Germany
| | - Julian Wilke
- Max-Planck-Institute of Molecular Physiology , Department of Chemical Biology , Otto-Hahn-Str. 11 , 44227 Dortmund , Germany
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 4a , 44227 Dortmund , Germany .
| | - Harumi Aono
- Chemical Biology Research Group , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Zhwan Mahmoud
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 4a , 44227 Dortmund , Germany .
| | - Nobumoto Watanabe
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
- Bio-Active Compounds Discovery Research Unit , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max-Planck-Society , Otto-Hahn-Str. 15 , 44227 Dortmund , Germany
| | - Hiroyuki Osada
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
- Chemical Biology Research Group , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Luca Laraia
- Max-Planck-Institute of Molecular Physiology , Department of Chemical Biology , Otto-Hahn-Str. 11 , 44227 Dortmund , Germany
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology , Department of Chemical Biology , Otto-Hahn-Str. 11 , 44227 Dortmund , Germany
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 4a , 44227 Dortmund , Germany .
| |
Collapse
|
22
|
Zhang J, Culp ML, Craver JG, Darley-Usmar V. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson's disease. J Neurochem 2018; 144:691-709. [PMID: 29341130 PMCID: PMC5897151 DOI: 10.1111/jnc.14308] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a movement disorder with widespread neurodegeneration in the brain. Significant oxidative, reductive, metabolic, and proteotoxic alterations have been observed in PD postmortem brains. The alterations of mitochondrial function resulting in decreased bioenergetic health is important and needs to be further examined to help develop biomarkers for PD severity and prognosis. It is now becoming clear that multiple hits on metabolic and signaling pathways are likely to exacerbate PD pathogenesis. Indeed, data obtained from genetic and genome association studies have implicated interactive contributions of genes controlling protein quality control and metabolism. For example, loss of key proteins that are responsible for clearance of dysfunctional mitochondria through a process called mitophagy has been found to cause PD, and a significant proportion of genes associated with PD encode proteins involved in the autophagy-lysosomal pathway. In this review, we highlight the evidence for the targeting of mitochondria by proteotoxic, redox and metabolic stress, and the role autophagic surveillance in maintenance of mitochondrial quality. Furthermore, we summarize the role of α-synuclein, leucine-rich repeat kinase 2, and tau in modulating mitochondrial function and autophagy. Among the stressors that can overwhelm the mitochondrial quality control mechanisms, we will discuss 4-hydroxynonenal and nitric oxide. The impact of autophagy is context depend and as such can have both beneficial and detrimental effects. Furthermore, we highlight the potential of targeting mitochondria and autophagic function as an integrated therapeutic strategy and the emerging contribution of the microbiome to PD susceptibility.
Collapse
Affiliation(s)
- Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| | - M Lillian Culp
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jason G Craver
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| |
Collapse
|
23
|
Timón-Gómez A, Sanfeliu-Redondo D, Pascual-Ahuir A, Proft M. Regulation of the Stress-Activated Degradation of Mitochondrial Respiratory Complexes in Yeast. Front Microbiol 2018; 9:106. [PMID: 29441058 PMCID: PMC5797626 DOI: 10.3389/fmicb.2018.00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/17/2018] [Indexed: 02/05/2023] Open
Abstract
Repair and removal of damaged mitochondria is a key process for eukaryotic cell homeostasis. Here we investigate in the yeast model how different protein complexes of the mitochondrial electron transport chain are subject to specific degradation upon high respiration load and organelle damage. We find that the turnover of subunits of the electron transport complex I equivalent and complex III is preferentially stimulated upon high respiration rates. Particular mitochondrial proteases, but not mitophagy, are involved in this activated degradation. Further mitochondrial damage by valinomycin treatment of yeast cells triggers the mitophagic removal of the same respiratory complexes. This selective protein degradation depends on the mitochondrial fusion and fission apparatus and the autophagy adaptor protein Atg11, but not on the mitochondrial mitophagy receptor Atg32. Loss of autophagosomal protein function leads to valinomycin sensitivity and an overproduction of reactive oxygen species upon mitochondrial damage. A specific event in this selective turnover of electron transport chain complexes seems to be the association of Atg11 with the mitochondrial network, which can be achieved by overexpression of the Atg11 protein even in the absence of Atg32. Furthermore, the interaction of various Atg11 molecules via the C-terminal coil domain is specifically and rapidly stimulated upon mitochondrial damage and could therefore be an early trigger of selective mitophagy in response to the organelles dysfunction. Our work indicates that autophagic quality control upon mitochondrial damage operates in a selective manner.
Collapse
Affiliation(s)
- Alba Timón-Gómez
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia-CSIC, Valencia, Spain.,Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Valencia, Spain
| | - David Sanfeliu-Redondo
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Valencia, Spain
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia-CSIC, Valencia, Spain
| |
Collapse
|
24
|
Terron A, Bal-Price A, Paini A, Monnet-Tschudi F, Bennekou SH, Leist M, Schildknecht S. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch Toxicol 2018; 92:41-82. [PMID: 29209747 PMCID: PMC5773657 DOI: 10.1007/s00204-017-2133-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have observed an association between pesticide exposure and the development of Parkinson's disease, but have not established causality. The concept of an adverse outcome pathway (AOP) has been developed as a framework for the organization of available information linking the modulation of a molecular target [molecular initiating event (MIE)], via a sequence of essential biological key events (KEs), with an adverse outcome (AO). Here, we present an AOP covering the toxicological pathways that link the binding of an inhibitor to mitochondrial complex I (i.e., the MIE) with the onset of parkinsonian motor deficits (i.e., the AO). This AOP was developed according to the Organisation for Economic Co-operation and Development guidelines and uploaded to the AOP database. The KEs linking complex I inhibition to parkinsonian motor deficits are mitochondrial dysfunction, impaired proteostasis, neuroinflammation, and the degeneration of dopaminergic neurons of the substantia nigra. These KEs, by convention, were linearly organized. However, there was also evidence of additional feed-forward connections and shortcuts between the KEs, possibly depending on the intensity of the insult and the model system applied. The present AOP demonstrates mechanistic plausibility for epidemiological observations on a relationship between pesticide exposure and an elevated risk for Parkinson's disease development.
Collapse
Affiliation(s)
| | | | - Alicia Paini
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany
| | - Stefan Schildknecht
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany.
| |
Collapse
|
25
|
Liang Y, Zhou T, Chen Y, Lin D, Jing X, Peng S, Zheng D, Zeng Z, Lei M, Wu X, Huang K, Yang L, Xiao S, Liu J, Tao E. Rifampicin inhibits rotenone-induced microglial inflammation via enhancement of autophagy. Neurotoxicology 2017; 63:137-145. [PMID: 28986232 DOI: 10.1016/j.neuro.2017.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/30/2017] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
Abstract
Mitochondrial and autophagic dysfunction, as well as neuroinflammation, are associated with the pathophysiology of Parkinson's disease (PD). Rotenone, an inhibitor of mitochondrial complex I, has been associated as an environmental neurotoxin related to PD. Our previous studies reported that rifampicin inhibited microglia activation and production of proinflammatory mediators induced by rotenone, but the precise mechanism has not been completely elucidated. BV2 cells were pretreated for 2h with rifampicin followed by 0.1μM rotenone, alone or in combination with chloroquine. Here, we demonstrate that rifampicin pretreatment alleviated rotenone induced release of IL-1β and IL-6, and its effects were suppressed when autophagy was inhibited by chloroquine. Moreover, preconditioning with 50μM rifampicin significantly increased viability of SH-SY5Y cells cocultured with rotenone-treated BV2 cells in the transwell coculture system. Chloroquine partially abolished the neuroprotective effects of rifampicin pretreatment. Rifampicin pretreatment significantly reversed rotenone-induced mitochondrial membrane potential reduction and reactive oxygen species accumulation. We suggest that the mechanism for rifampicin-mediated anti-inflammatory and antioxidant effects is the enhancement of autophagy. Indeed, the ratio of LC3-II/LC3-I in rifampicin-pretreated BV2 cells was significantly higher than that in cells without pretreatment. Fluorescence and electron microscopy analyses indicate an increase of lysosomes colocalized with mitochondria in cells pretreated with rifampicin, which confirms that the damaged mitochondria were cleared through autophagy (mitophagy). Taken together, the data provide further evidence that rifampicin exerts neuroprotection against rotenone-induced microglia inflammation, partially through the autophagy pathway. Modulation of autophagy by rifampicin is a novel therapeutic strategy for PD.
Collapse
Affiliation(s)
- Yanran Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Tianen Zhou
- Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Ying Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Danyu Lin
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Xiuna Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Sudan Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Dezhi Zheng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Zhifen Zeng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Ming Lei
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Xia Wu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Kaixun Huang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Lianhong Yang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Songhua Xiao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Jun Liu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Enxiang Tao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China.
| |
Collapse
|
26
|
Dodson M, Wani WY, Redmann M, Benavides GA, Johnson MS, Ouyang X, Cofield SS, Mitra K, Darley-Usmar V, Zhang J. Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons. Autophagy 2017; 13:1828-1840. [PMID: 28837411 DOI: 10.1080/15548627.2017.1356948] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The production of reactive species contributes to the age-dependent accumulation of dysfunctional mitochondria and protein aggregates, all of which are associated with neurodegeneration. A putative mediator of these effects is the lipid peroxidation product 4-hydroxynonenal (4-HNE), which has been shown to inhibit mitochondrial function, and accumulate in the postmortem brains of patients with neurodegenerative diseases. This deterioration in mitochondrial quality could be due to direct effects on mitochondrial proteins, or through perturbation of the macroautophagy/autophagy pathway, which plays an essential role in removing damaged mitochondria. Here, we use a click chemistry-based approach to demonstrate that alkyne-4-HNE can adduct to specific mitochondrial and autophagy-related proteins. Furthermore, we found that at lower concentrations (5-10 μM), 4-HNE activates autophagy, whereas at higher concentrations (15 μM), autophagic flux is inhibited, correlating with the modification of key autophagy proteins at higher concentrations of alkyne-4-HNE. Increasing concentrations of 4-HNE also cause mitochondrial dysfunction by targeting complex V (the ATP synthase) in the electron transport chain, and induce significant changes in mitochondrial fission and fusion protein levels, which results in alterations to mitochondrial network length. Finally, inhibition of autophagy initiation using 3-methyladenine (3MA) also results in a significant decrease in mitochondrial function and network length. These data show that both the mitochondria and autophagy are critical targets of 4-HNE, and that the proteins targeted by 4-HNE may change based on its concentration, persistently driving cellular dysfunction.
Collapse
Affiliation(s)
- Matthew Dodson
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Willayat Y Wani
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Matthew Redmann
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Gloria A Benavides
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Michelle S Johnson
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Xiaosen Ouyang
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA.,e Department of Veterans Affairs , Birmingham VA Medical Center , Birmingham , AL , USA
| | - Stacey S Cofield
- c Department of Biostatistics , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Kasturi Mitra
- d Department of Genetics , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Victor Darley-Usmar
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Jianhua Zhang
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA.,e Department of Veterans Affairs , Birmingham VA Medical Center , Birmingham , AL , USA
| |
Collapse
|
27
|
Wani WY, Ouyang X, Benavides GA, Redmann M, Cofield SS, Shacka JJ, Chatham JC, Darley-Usmar V, Zhang J. O-GlcNAc regulation of autophagy and α-synuclein homeostasis; implications for Parkinson's disease. Mol Brain 2017; 10:32. [PMID: 28724388 PMCID: PMC5517830 DOI: 10.1186/s13041-017-0311-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
Post-translational modification on protein Ser/Thr residues by O-linked attachment of ß-N-acetyl-glucosamine (O-GlcNAcylation) is a key mechanism integrating redox signaling, metabolism and stress responses. One of the most common neurodegenerative diseases that exhibit aberrant redox signaling, metabolism and stress response is Parkinson’s disease, suggesting a potential role for O-GlcNAcylation in its pathology. To determine whether abnormal O-GlcNAcylation occurs in Parkinson’s disease, we analyzed lysates from the postmortem temporal cortex of Parkinson’s disease patients and compared them to age matched controls and found increased protein O-GlcNAcylation levels. To determine whether increased O-GlcNAcylation affects neuronal function and survival, we exposed rat primary cortical neurons to thiamet G, a highly selective inhibitor of the enzyme which removes the O-GlcNAc modification from target proteins, O-GlcNAcase (OGA). We found that inhibition of OGA by thiamet G at nanomolar concentrations significantly increased protein O-GlcNAcylation, activated MTOR, decreased autophagic flux, and increased α-synuclein accumulation, while sparing proteasomal activities. Inhibition of MTOR by rapamycin decreased basal levels of protein O-GlcNAcylation, decreased AKT activation and partially reversed the effect of thiamet G on α-synuclein monomer accumulation. Taken together we have provided evidence that excessive O-GlcNAcylation is detrimental to neurons by inhibition of autophagy and by increasing α-synuclein accumulation.
Collapse
Affiliation(s)
- Willayat Y Wani
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA
| | - Xiaosen Ouyang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA
| | - Gloria A Benavides
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA
| | - Matthew Redmann
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA
| | - Stacey S Cofield
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294-0022, USA
| | - John J Shacka
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294-0019, USA.,Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA
| | - John C Chatham
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA
| | - Victor Darley-Usmar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA
| | - Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA. .,Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA.
| |
Collapse
|
28
|
Ramdial K, Franco MC, Estevez AG. Cellular mechanisms of peroxynitrite-induced neuronal death. Brain Res Bull 2017; 133:4-11. [DOI: 10.1016/j.brainresbull.2017.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/21/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
|
29
|
Redmann M, Benavides GA, Berryhill TF, Wani WY, Ouyang X, Johnson MS, Ravi S, Barnes S, Darley-Usmar VM, Zhang J. Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol 2016; 11:73-81. [PMID: 27889640 PMCID: PMC5124357 DOI: 10.1016/j.redox.2016.11.004] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
Autophagy is an important cell recycling program responsible for the clearance of damaged or long-lived proteins and organelles. Pharmacological modulators of this pathway have been extensively utilized in a wide range of basic research and pre-clinical studies. Bafilomycin A1 and chloroquine are commonly used compounds that inhibit autophagy by targeting the lysosomes but through distinct mechanisms. Since it is now clear that mitochondrial quality control, particularly in neurons, is dependent on autophagy, it is important to determine whether these compounds modify cellular bioenergetics. To address this, we cultured primary rat cortical neurons from E18 embryos and used the Seahorse XF96 analyzer and a targeted metabolomics approach to measure the effects of bafilomycin A1 and chloroquine on bioenergetics and metabolism. We found that both bafilomycin and chloroquine could significantly increase the autophagosome marker LC3-II and inhibit key parameters of mitochondrial function, and increase mtDNA damage. Furthermore, we observed significant alterations in TCA cycle intermediates, particularly those downstream of citrate synthase and those linked to glutaminolysis. Taken together, these data demonstrate a significant impact of bafilomycin and chloroquine on cellular bioenergetics and metabolism consistent with decreased mitochondrial quality associated with inhibition of autophagy. Autophagy inhibition decreased mitochondrial bioenergetics in intact neurons. Autophagy inhibition decreased mitochondrial complexes I, II or IV substrate linked respiration. Autophagy inhibition increased mitochondrial DNA damage. Autophagy inhibition decreased major components of the Krebs cycle. Autophagy inhibition resulted in decreased citrate synthase activities.
Collapse
Affiliation(s)
- Matthew Redmann
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gloria A Benavides
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Taylor F Berryhill
- Targeted Metabolomics & Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Willayat Y Wani
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Xiaosen Ouyang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Michelle S Johnson
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Saranya Ravi
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Stephen Barnes
- Targeted Metabolomics & Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Victor M Darley-Usmar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jianhua Zhang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; VA Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
30
|
Sala G, Marinig D, Riva C, Arosio A, Stefanoni G, Brighina L, Formenti M, Alberghina L, Colangelo AM, Ferrarese C. Rotenone down-regulates HSPA8/hsc70 chaperone protein in vitro: A new possible toxic mechanism contributing to Parkinson's disease. Neurotoxicology 2016; 54:161-169. [PMID: 27133439 DOI: 10.1016/j.neuro.2016.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/30/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
HSPA8/hsc70 (70-kDa heat shock cognate) chaperone protein exerts multiple protective roles. Beside its ability to confer to the cells a generic resistance against several metabolic stresses, it is also involved in at least two critical processes whose activity is essential in preventing Parkinson's disease (PD) pathology. Actually, hsc70 protein acts as the main carrier of chaperone-mediated autophagy (CMA), a selective catabolic pathway for alpha-synuclein, the main pathogenic protein that accumulates in degenerating dopaminergic neurons in PD. Furthermore, hsc70 efficiently fragments alpha-synuclein fibrils in vitro and promotes depolymerization into non-toxic alpha-synuclein monomers. Considering that the mitochondrial complex I inhibitor rotenone, used to generate PD animal models, induces alpha-synuclein aggregation, this study was designed in order to verify whether rotenone exposure leads to hsc70 alteration possibly contributing to alpha-synuclein aggregation. To this aim, human SH-SY5Y neuroblastoma cells were treated with rotenone and hsc70 mRNA and protein expression were assessed; the effect of rotenone on hsc70 was compared with that exerted by hydrogen peroxide, a generic oxidative stress donor with no inhibitory activity on mitochondrial complex I. Furthermore, the effect of rotenone on hsc70 was verified in primary mouse cortical neurons. The possible contribution of macroautophagy to rotenone-induced hsc70 modulation was explored and the influence of hsc70 gene silencing on neurotoxicity was assessed. We demonstrated that rotenone, but not hydrogen peroxide, induced a significant reduction of hsc70 mRNA and protein expression. We also observed that the toxic effect of rotenone on alpha-synuclein levels was amplified when macroautophagy was inhibited, although rotenone-induced hsc70 reduction was independent from macroautophagy. Finally, we demonstrated that hsc70 gene silencing up-regulated alpha-synuclein mRNA and protein levels without affecting cell viability and without altering rotenone- and hydrogen peroxide-induced cytotoxicity. These findings demonstrate the existence of a novel mechanism of rotenone toxicity mediated by hsc70 and indicate that dysfunction of both CMA and macroautophagy can synergistically exacerbate alpha-synuclein toxicity, suggesting that hsc70 up-regulation may represent a valuable therapeutic strategy for PD.
Collapse
Affiliation(s)
- Gessica Sala
- Lab. of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy.
| | - Daniele Marinig
- Lab. of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; PhD Program in Neuroscience, University of Milano-Bicocca, Milano, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Chiara Riva
- Lab. of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Alessandro Arosio
- Lab. of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Giovanni Stefanoni
- Lab. of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; Dept. of Neurology, San Gerardo Hospital, Monza, Milano, Italy
| | - Laura Brighina
- Dept. of Neurology, San Gerardo Hospital, Monza, Milano, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Matteo Formenti
- Lab. of Neuroscience R. Levi-Montalcini, Dept. of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy; SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Lilia Alberghina
- Lab. of Neuroscience R. Levi-Montalcini, Dept. of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy; SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Anna Maria Colangelo
- Lab. of Neuroscience R. Levi-Montalcini, Dept. of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy; SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Carlo Ferrarese
- Lab. of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; Dept. of Neurology, San Gerardo Hospital, Monza, Milano, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
31
|
Redmann M, Darley-Usmar V, Zhang J. The Role of Autophagy, Mitophagy and Lysosomal Functions in Modulating Bioenergetics and Survival in the Context of Redox and Proteotoxic Damage: Implications for Neurodegenerative Diseases. Aging Dis 2016; 7:150-62. [PMID: 27114848 PMCID: PMC4809607 DOI: 10.14336/ad.2015.0820] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Redox and proteotoxic stress contributes to age-dependent accumulation of dysfunctional mitochondria and protein aggregates, and is associated with neurodegeneration. The free radical theory of aging inspired many studies using reactive species scavengers such as alpha-tocopherol, ascorbate and coenzyme Q to suppress the initiation of oxidative stress. However, clinical trials have had limited success in the treatment of neurodegenerative diseases. We ascribe this to the emerging literature which suggests that the oxidative stress hypothesis does not encompass the role of reactive species in cell signaling and therefore the interception with reactive species with antioxidant supplementation may result in disruption of redox signaling. In addition, the accumulation of redox modified proteins or organelles cannot be reversed by oxidant intercepting antioxidants and must then be removed by alternative mechanisms. We have proposed that autophagy serves this essential function in removing damaged or dysfunctional proteins and organelles thus preserving neuronal function and survival. In this review, we will highlight observations regarding the impact of autophagy regulation on cellular bioenergetics and survival in response to reactive species or reactive species generating compounds, and in response to proteotoxic stress.
Collapse
Affiliation(s)
- Matthew Redmann
- Center for Free Radical Biology,; Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology,; Department of Pathology, University of Alabama at Birmingham
| | - Jianhua Zhang
- Center for Free Radical Biology,; Department of Pathology, University of Alabama at Birmingham,; Department of Veterans Affairs, Birmingham VA Medical Center, Birmingham, Alabama 35294, USA
| |
Collapse
|
32
|
Pal R, Bajaj L, Sharma J, Palmieri M, Di Ronza A, Lotfi P, Chaudhury A, Neilson J, Sardiello M, Rodney GG. NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson's disease. Sci Rep 2016; 6:22866. [PMID: 26960433 PMCID: PMC4785399 DOI: 10.1038/srep22866] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/22/2016] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and aberrant accumulation of misfolded proteins in the cytosol are key pathological features associated with Parkinson's disease (PD). NADPH oxidase (Nox2) is upregulated in the pathogenesis of PD; however, the underlying mechanism(s) of Nox2-mediated oxidative stress in PD pathogenesis are still unknown. Using a rotenone-inducible cellular model of PD, we observed that a short exposure to rotenone (0.5 μM) resulted in impaired autophagic flux through activation of a Nox2 dependent Src/PI3K/Akt axis, with a consequent disruption of a Beclin1-VPS34 interaction that was independent of mTORC1 activity. Sustained exposure to rotenone at a higher dose (10 μM) decreased mTORC1 activity; however, autophagic flux was still impaired due to dysregulation of lysosomal activity with subsequent induction of the apoptotic machinery. Cumulatively, our results highlight a complex pathogenic mechanism for PD where short- and long-term oxidative stress alters different signaling pathways, ultimately resulting in anomalous autophagic activity and disease phenotype. Inhibition of Nox2-dependent oxidative stress attenuated the impaired autophagy and cell death, highlighting the importance and therapeutic potential of these pathways for treating patients with PD.
Collapse
Affiliation(s)
- Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Alberto Di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Parisa Lotfi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Arindam Chaudhury
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Joel Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
33
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Yap YW, Llanos RM, La Fontaine S, Cater MA, Beart PM, Cheung NS. Comparative Microarray Analysis Identifies Commonalities in Neuronal Injury: Evidence for Oxidative Stress, Dysfunction of Calcium Signalling, and Inhibition of Autophagy-Lysosomal Pathway. Neurochem Res 2015; 41:554-67. [PMID: 26318862 DOI: 10.1007/s11064-015-1666-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction, ubiquitin-proteasomal system impairment and excitotoxicity occur during the injury and death of neurons in neurodegenerative conditions. The aim of this work was to elucidate the cellular mechanisms that are universally altered by these conditions. Through overlapping expression profiles of rotenone-, lactacystin- and N-methyl-D-aspartate-treated cortical neurons, we have identified three affected biological processes that are commonly affected; oxidative stress, dysfunction of calcium signalling and inhibition of the autophagic-lysosomal pathway. These data provides many opportunities for therapeutic intervention in neurodegenerative conditions, where mitochondrial dysfunction, proteasomal inhibition and excitotoxicity are evident.
Collapse
Affiliation(s)
- Yann Wan Yap
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Roxana M Llanos
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Sharon La Fontaine
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Michael A Cater
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Nam Sang Cheung
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.
| |
Collapse
|
35
|
Chang SH, Hwang CS, Yin JH, Chen SD, Yang DI. Oncostatin M-dependent Mcl-1 induction mediated by JAK1/2-STAT1/3 and CREB contributes to bioenergetic improvements and protective effects against mitochondrial dysfunction in cortical neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2306-25. [PMID: 25986861 DOI: 10.1016/j.bbamcr.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 11/27/2022]
Abstract
Oncostatin M (OSM), a cytokine in the interleukin-6 (IL-6) family, has been proposed to play a protective role in the central nervous system, such as attenuation of excitotoxicity induced by N-methyl-D-aspartate (NMDA) and glutamate. However, the potential neuroprotective effects of OSM against mitochondrial dysfunction have never been reported. In the present study, we tested the hypothesis that OSM may confer neuronal resistance against 3-nitropropionic acid (3-NP), a plant toxin that irreversibly inhibits the complex II of the mitochondrial electron transport chain, and characterized the underlying molecular mechanisms. We found that OSM preconditioning dose- and time-dependently protected cortical neurons against 3-NP toxicity. OSM stimulated expression of myeloid cell leukemia-1 (Mcl-1), an anti-apoptotic Bcl-2 family member expressed in differentiating myeloid cells, that required prior phosphorylation of Janus kinase-1 (JAK1), JAK2, extracellular signal-regulated kinase-1/2 (ERK1/2), signal transducer and activator of transcription-3 (STAT3), STAT1, and cAMP-response element-binding protein (CREB). Pharmacological inhibitors of JAK1, JAK2, ERK1/2, STAT3, STAT1, and CREB as well as the siRNA targeting at STAT3 and Mcl-1 all abolished OSM-dependent 3-NP resistance. Finally, OSM-dependent Mcl-1 induction contributed to the enhancements of mitochondrial bioenergetics including increases in spare respiratory capacity and ATP production. In conclusion, our findings indicated that OSM induces Mcl-1 expression via activation of ERK1/2, JAK1/2, STAT1/3, and CREB; furthermore, OSM-mediated Mcl-1 induction contributes to bioenergetic improvements and neuroprotective effects against 3-NP toxicity in cortical neurons. OSM may thus serve as a novel neuroprotective agent against mitochondrial dysfunction commonly associated with pathogenic mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Shih-Hsin Chang
- Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Shin Hwang
- Department of Neurology, Taipei City Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jiu-Haw Yin
- Department of Neurology, Cheng Hsin General Hospital, Taipei, Taiwan; Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ding-I Yang
- Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
36
|
Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015; 27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile,
| | | |
Collapse
|
37
|
Teaching the basics of autophagy and mitophagy to redox biologists--mechanisms and experimental approaches. Redox Biol 2015; 4:242-59. [PMID: 25618581 PMCID: PMC4803799 DOI: 10.1016/j.redox.2015.01.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/24/2014] [Accepted: 01/01/2015] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a lysosomal mediated degradation activity providing an essential mechanism for recycling cellular constituents, and clearance of excess or damaged lipids, proteins and organelles. Autophagy involves more than 30 proteins and is regulated by nutrient availability, and various stress sensing signaling pathways. This article provides an overview of the mechanisms and regulation of autophagy, its role in health and diseases, and methods for its measurement. Hopefully this teaching review together with the graphic illustrations will be helpful for instructors teaching graduate students who are interested in grasping the concepts and major research areas and introducing recent developments in the field. mTOR, Beclin–VPS34, LC3 homologs, and adaptor proteins in autophagy. Autophagosomal membranes may derive from multiple sources. Autophagosomal–lysosomal fusion contributes to the control of autophagic flux. Assess autophagy by autophagosomal and protein turnover, and morphological alterations. Autophagy adysfunction in cancer, aging, neurodegeneration and infection.
Collapse
|