1
|
Chen X, Ma L, Zhao J, Pan X, Chen S. Effect of empagliflozin on cytoskeletal repair in the hippocampus of obese mice. Front Neurosci 2022; 16:1000839. [PMID: 36408417 PMCID: PMC9667058 DOI: 10.3389/fnins.2022.1000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE We aimed to investigate the effect of empagliflozin on hippocampal phosphorylated protein levels in obese mice. MATERIALS AND METHODS Sixteen obese mice successfully modeled on high-fat diet were randomly divided into high-fat feeding group (group H) and empagliflozin group (group H + empagliflozin, group E), eight mice in each group, and eight C57BL/6J male normal mice were selected as the control group (normal control, group C). Group E was treated with empagliflozin 10 mg/kg/d for 12 weeks, while mice in groups H and C were treated with equal amounts of saline. The spatial learning memory ability of the mice was determined by the Morris water maze experiment. Further, their body weights and serological indices were measured. Finally, total proteins were extracted from hippocampal tissues for functional analysis by the phosphorylated proteomics method. RESULTS The results showed that escape latency was prolonged, retention time in the target quadrant was shortened, and the number of loop penetrations was reduced in the obese mice induced by a high-calorie diet compared with normal controls, whereas escape latency was shortened, retention time in the target quadrant was increased, and the number of loop penetrations was increased after empagliflozin treatment. Phosphoproteomics in the high-fat/control (H/C), empagliflozin/high-fat (E/H), and E/C groups showed 844, 1,552, and 1,512 differentially significant phosphorylation sites, respectively. The proteins corresponding to these differentially phosphorylated sites were mainly involved in neurodegenerative pathways and actin cytoskeleton regulation. Notably, myosin heavy chain 10 (MYH10), p21 protein-activated kinase 4 (PAK4), phosphatidylinositol 3 -phosphate 5-kinase (PIKfyve), and other differentially phosphorylated proteins were involved in actin cytoskeleton regulation. CONCLUSION We concluded that empagliflozin protects cognitive functions by inducing serine phosphorylation in MYH10, PAK4, and PIKfyve in the hippocampal tissue of obese mice.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Graduate School of Hebei North University, Zhangjiakou, China,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Liang Ma
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Jingyu Zhao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China,Graduate School of North China University of Science and Technology, Tangshan, China
| | - Xiaoyu Pan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China,*Correspondence: Shuchun Chen,
| |
Collapse
|
2
|
Holtz AM, VanCoillie R, Vansickle EA, Carere DA, Withrow K, Torti E, Juusola J, Millan F, Person R, Guillen Sacoto MJ, Si Y, Wentzensen IM, Pugh J, Vasileiou G, Rieger M, Reis A, Argilli E, Sherr EH, Aldinger KA, Dobyns WB, Brunet T, Hoefele J, Wagner M, Haber B, Kotzaeridou U, Keren B, Heron D, Mignot C, Heide S, Courtin T, Buratti J, Murugasen S, Donald KA, O'Heir E, Moody S, Kim KH, Burton BK, Yoon G, Campo MD, Masser-Frye D, Kozenko M, Parkinson C, Sell SL, Gordon PL, Prokop JW, Karaa A, Bupp C, Raby BA. Heterozygous variants in MYH10 associated with neurodevelopmental disorders and congenital anomalies with evidence for primary cilia-dependent defects in Hedgehog signaling. Genet Med 2022; 24:2065-2078. [PMID: 35980381 PMCID: PMC10765599 DOI: 10.1016/j.gim.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 10/15/2022] Open
Abstract
PURPOSE Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.
Collapse
Affiliation(s)
- Alexander M Holtz
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA.
| | - Rachel VanCoillie
- Medical Genetics, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI
| | - Elizabeth A Vansickle
- Medical Genetics, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI
| | | | | | | | | | | | | | | | | | | | - Jada Pugh
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD; Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melissa Rieger
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emanuela Argilli
- Brain Development Research Program, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Elliott H Sherr
- Brain Development Research Program, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
| | - William B Dobyns
- Division of Pediatric Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Theresa Brunet
- Institute of Human Genetics, Technical University Munich School of Medicine, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Technical University Munich School of Medicine, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich School of Medicine, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Division of Pediatric Neurology, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
| | - Benjamin Haber
- Division of Child Neurology and Inherited Metabolic Diseases, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Delphine Heron
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Cyril Mignot
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Solveig Heide
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Thomas Courtin
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Julien Buratti
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Serini Murugasen
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch, South Africa
| | - Emily O'Heir
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Shade Moody
- Division of Child and Adolescent Neurology, The University of Texas Health Science Center, Houston, TX
| | - Katherine H Kim
- Division of Genetics, Birth Defects, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Barbara K Burton
- Division of Genetics, Birth Defects, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Miguel Del Campo
- Division of Dysmorphology & Teratology, Department of Pediatrics, University of California San Diego, San Diego, CA
| | - Diane Masser-Frye
- Division of Genetics/ Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA
| | - Mariya Kozenko
- Division of Genetics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Christina Parkinson
- Division of Genetics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Susan L Sell
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA
| | - Patricia L Gordon
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Amel Karaa
- Division of Genetics and Genomics, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Caleb Bupp
- Medical Genetics, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI.
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
3
|
Alexander CJ, Barzik M, Fujiwara I, Remmert K, Wang YX, Petralia RS, Friedman TB, Hammer JA. Myosin 18Aα targets the guanine nucleotide exchange factor β-Pix to the dendritic spines of cerebellar Purkinje neurons and promotes spine maturation. FASEB J 2021; 35:e21092. [PMID: 33378124 PMCID: PMC8357457 DOI: 10.1096/fj.202001449r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Myosin 18Aα is a myosin 2-like protein containing unique N- and C-terminal protein interaction domains that co-assembles with myosin 2. One protein known to bind to myosin 18Aα is β-Pix, a guanine nucleotide exchange factor (GEF) for Rac1 and Cdc42 that has been shown to promote dendritic spine maturation by activating the assembly of actin and myosin filaments in spines. Here, we show that myosin 18A⍺ concentrates in the spines of cerebellar Purkinje neurons via co-assembly with myosin 2 and through an actin binding site in its N-terminal extension. miRNA-mediated knockdown of myosin 18A⍺ results in a significant defect in spine maturation that is rescued by an RNAi-immune version of myosin 18A⍺. Importantly, β-Pix co-localizes with myosin 18A⍺ in spines, and its spine localization is lost upon myosin 18A⍺ knockdown or when its myosin 18A⍺ binding site is deleted. Finally, we show that the spines of myosin 18A⍺ knockdown Purkinje neurons contain significantly less F-actin and myosin 2. Together, these data argue that mixed filaments of myosin 2 and myosin 18A⍺ form a complex with β-Pix in Purkinje neuron spines that promotes spine maturation by enhancing the assembly of actin and myosin filaments downstream of β-Pix's GEF activity.
Collapse
Affiliation(s)
- Christopher J Alexander
- Molecular Cell Biology Laboratory, Cell and Developmental Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Melanie Barzik
- Laboratory of Molecular Genetics, NIDCD, NIH, Bethesda, MD, USA
| | - Ikuko Fujiwara
- Graduate School of Science, Osaka City University, Osaka, Japan
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD, NIH, Betheda, MD, USA
| | | | | | - John A Hammer
- Molecular Cell Biology Laboratory, Cell and Developmental Biology Center, NHLBI, NIH, Bethesda, MD, USA
| |
Collapse
|
4
|
Conventional and Non-Conventional Roles of Non-Muscle Myosin II-Actin in Neuronal Development and Degeneration. Cells 2020; 9:cells9091926. [PMID: 32825197 PMCID: PMC7566000 DOI: 10.3390/cells9091926] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Myosins are motor proteins that use chemical energy to produce mechanical forces driving actin cytoskeletal dynamics. In the brain, the conventional non-muscle myosin II (NMII) regulates actin filament cytoskeletal assembly and contractile forces during structural remodeling of axons and dendrites, contributing to morphology, polarization, and migration of neurons during brain development. NMII isoforms also participate in neurotransmission and synaptic plasticity by driving actin cytoskeletal dynamics during synaptic vesicle release and retrieval, and formation, maturation, and remodeling of dendritic spines. NMIIs are expressed differentially in cerebral non-neuronal cells, such as microglia, astrocytes, and endothelial cells, wherein they play key functions in inflammation, myelination, and repair. Besides major efforts to understand the physiological functions and regulatory mechanisms of NMIIs in the nervous system, their contributions to brain pathologies are still largely unclear. Nonetheless, genetic mutations or deregulation of NMII and its regulatory effectors are linked to autism, schizophrenia, intellectual disability, and neurodegeneration, indicating non-conventional roles of NMIIs in cellular mechanisms underlying neurodevelopmental and neurodegenerative disorders. Here, we summarize the emerging biological roles of NMIIs in the brain, and discuss how actomyosin signaling contributes to dysfunction of neurons and glial cells in the context of neurological disorders. This knowledge is relevant for a deep understanding of NMIIs on the pathogenesis and therapeutics of neuropsychiatric and neurodegenerative diseases.
Collapse
|
5
|
Methamphetamine Learning Induces Persistent and Selective Nonmuscle Myosin II-Dependent Spine Motility in the Basolateral Amygdala. J Neurosci 2020; 40:2695-2707. [PMID: 32066582 DOI: 10.1523/jneurosci.2182-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Nonmuscle myosin II inhibition (NMIIi) in the basolateral amygdala (BLA), but not dorsal hippocampus (CA1), selectively disrupts memories associated with methamphetamine (METH) days after learning, without retrieval. However, the molecular mechanisms underlying this selective vulnerability remain poorly understood. A known function of NMII is to transiently activate synaptic actin dynamics with learning. Therefore, we hypothesized that METH-associated learning perpetuates NMII-driven actin dynamics in synapses, leading to an extended window of vulnerability for memory disruption. We used time-lapse two-photon imaging of dendritic spine motility in acutely prepared brain slices from female and male mice following METH-associated learning as a readout of actin-myosin dynamics. Spine motility was persistently increased in the BLA, but not in CA1. Consistent with the memory disrupting effect of intra-BLA NMII inhibition, METH-induced changes to BLA spine dynamics were reversed by a single systemic injection of an NMII inhibitor. Intra-CA1 NMII inhibition, on the other hand, did not disrupt METH-associated memory. Thus, we report identification of a previously unknown ability for spine actin dynamics to persist days after stimulation and that this is under the control of NMII. Further, these perpetual NMII-driven spine actin dynamics in BLA neurons may contribute to the unique susceptibility of METH-associated memories.SIGNIFICANCE STATEMENT There are no Food and Drug Administration-approved pharmacotherapies to prevent relapse to the use of stimulants, such as methamphetamine (METH). Environmental cues become associated with drug use, such that the memories can elicit strong motivation to seek the drug during abstinence. We previously reported that the storage of METH-associated memories is uniquely vulnerable to immediate, retrieval-independent, and lasting disruption by direct actin depolymerization or by inhibiting the actin driver nonmuscle myosin II (NMII) in the BLA or systemically. Here we report a potential structural mechanism responsible for the unique vulnerability of METH-associated memories and METH-seeking behavior to NMII inhibition within the BLA.
Collapse
|
6
|
Creson TK, Rojas C, Hwaun E, Vaissiere T, Kilinc M, Jimenez-Gomez A, Holder JL, Tang J, Colgin LL, Miller CA, Rumbaugh G. Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior. eLife 2019; 8:46752. [PMID: 31025938 PMCID: PMC6504227 DOI: 10.7554/elife.46752] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
It remains unclear to what extent neurodevelopmental disorder (NDD) risk genes retain functions into adulthood and how they may influence disease phenotypes. SYNGAP1 haploinsufficiency causes a severe NDD defined by autistic traits, cognitive impairment, and epilepsy. To determine if this gene retains therapeutically-relevant biological functions into adulthood, we performed a gene restoration technique in a mouse model for SYNGAP1 haploinsufficiency. Adult restoration of SynGAP protein improved behavioral and electrophysiological measures of memory and seizure. This included the elimination of interictal events that worsened during sleep. These events may be a biomarker for generalized cortical dysfunction in SYNGAP1 disorders because they also worsened during sleep in the human patient population. We conclude that SynGAP protein retains biological functions throughout adulthood and that non-developmental functions may contribute to disease phenotypes. Thus, treatments that target debilitating aspects of severe NDDs, such as medically-refractory seizures and cognitive impairment, may be effective in adult patients.
Collapse
Affiliation(s)
- Thomas K Creson
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Camilo Rojas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Ernie Hwaun
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, United States
| | - Thomas Vaissiere
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Murat Kilinc
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Andres Jimenez-Gomez
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Jimmy Lloyd Holder
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Laura L Colgin
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, United States
| | - Courtney A Miller
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
7
|
Michaelson SD, Ozkan ED, Aceti M, Maity S, Llamosas N, Weldon M, Mizrachi E, Vaissiere T, Gaffield MA, Christie JM, Holder JL, Miller CA, Rumbaugh G. SYNGAP1 heterozygosity disrupts sensory processing by reducing touch-related activity within somatosensory cortex circuits. Nat Neurosci 2018; 21:1-13. [PMID: 30455457 PMCID: PMC6309426 DOI: 10.1038/s41593-018-0268-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023]
Abstract
In addition to cognitive impairments, neurodevelopmental disorders often result in sensory processing deficits. However, the biological mechanisms that underlie impaired sensory processing associated with neurodevelopmental disorders are generally understudied and poorly understood. We found that SYNGAP1 haploinsufficiency in humans, which causes a sporadic neurodevelopmental disorder defined by cognitive impairment, autistic features, and epilepsy, also leads to deficits in tactile-related sensory processing. In vivo neurophysiological analysis in Syngap1 mouse models revealed that upper-lamina neurons in somatosensory cortex weakly encode information related to touch. This was caused by reduced synaptic connectivity and impaired intrinsic excitability within upper-lamina somatosensory cortex neurons. These results were unexpected, given that Syngap1 heterozygosity is known to cause circuit hyperexcitability in brain areas more directly linked to cognitive functions. Thus, Syngap1 heterozygosity causes a range of circuit-specific pathologies, including reduced activity within cortical neurons required for touch processing, which may contribute to sensory phenotypes observed in patients.
Collapse
Affiliation(s)
| | - Emin D Ozkan
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
| | - Massimiliano Aceti
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Nerea Llamosas
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
| | - Monica Weldon
- Bridge-the-GAP Educational Research Foundation, Cyprus, TX, USA
| | - Elisa Mizrachi
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
| | | | | | | | - J Lloyd Holder
- Jan and Dan Duncan Neurological Research Institute and Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Courtney A Miller
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA
- Department of Molecular Medicine, Scripps Florida, Jupiter, Fl, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, Scripps Florida, Jupiter, FL, USA.
- Department of Molecular Medicine, Scripps Florida, Jupiter, Fl, USA.
| |
Collapse
|
8
|
Evans MD, Tufo C, Dumitrescu AS, Grubb MS. Myosin II activity is required for structural plasticity at the axon initial segment. Eur J Neurosci 2017; 46:1751-1757. [PMID: 28452088 PMCID: PMC5573965 DOI: 10.1111/ejn.13597] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/29/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
In neurons, axons possess a molecularly defined and highly organised proximal region – the axon initial segment (AIS) – that is a key regulator of both electrical excitability and cellular polarity. Despite existing as a large, dense structure with specialised cytoskeletal architecture, the AIS is surprisingly plastic, with sustained alterations in neuronal activity bringing about significant alterations to its position, length or molecular composition. However, although the upstream activity‐dependent signalling pathways that lead to such plasticity have begun to be elucidated, the downstream mechanisms that produce structural changes at the AIS are completely unknown. Here, we use dissociated cultures of rat hippocampus to show that two forms of AIS plasticity in dentate granule cells – long‐term relocation, and more rapid shortening – are completely blocked by treatment with blebbistatin, a potent and selective myosin II ATPase inhibitor. These data establish a link between myosin II and AIS function, and suggest that myosin II's primary role at the structure may be to effect activity‐dependent morphological alterations.
Collapse
Affiliation(s)
- Mark D Evans
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Candida Tufo
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Adna S Dumitrescu
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK.,FENS-Kavli Network of Excellence, Europe-wide
| |
Collapse
|
9
|
Wang Y, Xu Y, Liu Q, Zhang Y, Gao Z, Yin M, Jiang N, Cao G, Yu B, Cao Z, Kou J. Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis. Front Mol Neurosci 2017; 10:75. [PMID: 28352215 PMCID: PMC5348499 DOI: 10.3389/fnmol.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Yingqiong Xu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine Nanjing, China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Zhen Gao
- Department of Medicine-Ather and Lipo, Baylor College of Medicine Houston, TX, USA
| | - Mingzhu Yin
- Department of Pathology, Yale School of Medicine New Haven, CT, USA
| | - Nan Jiang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Guosheng Cao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Boyang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Junping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| |
Collapse
|
10
|
Loss of Myh14 Increases Susceptibility to Noise-Induced Hearing Loss in CBA/CaJ Mice. Neural Plast 2016; 2016:6720420. [PMID: 28101381 PMCID: PMC5215640 DOI: 10.1155/2016/6720420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/08/2016] [Accepted: 11/07/2016] [Indexed: 01/24/2023] Open
Abstract
MYH14 is a member of the myosin family, which has been implicated in many motile processes such as ion-channel gating, organelle translocation, and the cytoskeleton rearrangement. Mutations in MYH14 lead to a DFNA4-type hearing impairment. Further evidence also shows that MYH14 is a candidate noise-induced hearing loss (NIHL) susceptible gene. However, the specific roles of MYH14 in auditory function and NIHL are not fully understood. In the present study, we used CRISPR/Cas9 technology to establish a Myh14 knockout mice line in CBA/CaJ background (now referred to as Myh14−/− mice) and clarify the role of MYH14 in the cochlea and NIHL. We found that Myh14−/− mice did not exhibit significant hearing loss until five months of age. In addition, Myh14−/− mice were more vulnerable to high intensity noise compared to control mice. More significant outer hair cell loss was observed in Myh14−/− mice than in wild type controls after acoustic trauma. Our findings suggest that Myh14 may play a beneficial role in the protection of the cochlea after acoustic overstimulation in CBA/CaJ mice.
Collapse
|
11
|
Ogden KK, Ozkan ED, Rumbaugh G. Prioritizing the development of mouse models for childhood brain disorders. Neuropharmacology 2015; 100:2-16. [PMID: 26231830 DOI: 10.1016/j.neuropharm.2015.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
Abstract
Mutations in hundreds of genes contribute to cognitive and behavioral dysfunction associated with developmental brain disorders (DBDs). Due to the sheer number of risk factors available for study combined with the cost of developing new animal models, it remains an open question how genes should be prioritized for in-depth neurobiological investigations. Recent reviews have argued that priority should be given to frequently mutated genes commonly found in sporadic DBD patients. Intrigued by this idea, we explored to what extent "high priority" risk factors have been studied in animals in an effort to assess their potential for generating valuable preclinical models capable of advancing the neurobiological understanding of DBDs. We found that in-depth whole animal studies are lacking for many high priority genes, with relatively few neurobiological studies performed in construct valid animal models aimed at understanding the pathological substrates associated with disease phenotypes. However, some high priority risk factors have been extensively studied in animal models and they have generated novel insights into DBD patho-neurobiology while also advancing early pre-clinical therapeutic treatment strategies. We suggest that prioritizing model development toward genes frequently mutated in non-specific DBD populations will accelerate the understanding of DBD patho-neurobiology and drive novel therapeutic strategies. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Kevin K Ogden
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Emin D Ozkan
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|