1
|
Kavakli E, Gul N, Begentas OC, Kiris E. Astrocytes in Primary Familial Brain Calcification (PFBC): Emphasis on the Importance of Induced Pluripotent Stem Cell-Derived Human Astrocyte Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 39841380 DOI: 10.1007/5584_2024_840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Primary familial brain calcification (PFBC) is a rare, progressive central nervous system (CNS) disorder without a cure, and the current treatment methodologies primarily aim to relieve neurological and psychiatric symptoms of the patients. The disease is characterized by abnormal bilateral calcifications in the brain, however, our mechanistic understanding of the biology of the disease is still limited. Determining the roles of the specific cell types and molecular mechanisms involved in the pathophysiological processes of the disease is of great importance for the development of novel and effective treatment methodologies. There is a growing interest in the involvement of astrocytes in PFBC, as recent studies have suggested that astrocytes play a central role in the disease and that functional defects in these cells are critical for the development and progression of the disease. This review aims to discuss recent findings on the roles of astrocytes in PFBC pathophysiology, with a focus on known expression and roles of PFBC genes in astrocytes. Additionally, we discuss the importance of human astrocytes for PFBC disease modeling, and astrocytes as a potential therapeutic target in PFBC. Utilization of species-specific and physiologically relevant PFBC model systems can open new avenues for basic research, drug development, and regenerative medicine.
Collapse
Affiliation(s)
- Ebru Kavakli
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Nazli Gul
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Onur Can Begentas
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Erkan Kiris
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye.
| |
Collapse
|
2
|
Ishibashi K, Hirata E. Multifaceted interactions between cancer cells and glial cells in brain metastasis. Cancer Sci 2024; 115:2871-2878. [PMID: 38992968 PMCID: PMC11462981 DOI: 10.1111/cas.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer brain metastasis has a poor prognosis, is commonly observed in clinical practice, and the number of cases is increasing as overall cancer survival improves. However, experiments in mouse models have shown that brain metastasis itself is an inefficient process. One reason for this inefficiency is the brain microenvironment, which differs significantly from that of other organs, making it difficult for cancer cells to adapt. The brain microenvironment consists of unique resident cell types such as neurons, oligodendrocytes, astrocytes, and microglia. Accumulating evidence over the past decades suggests that the interactions between cancer cells and glial cells can positively or negatively influence the development of brain metastasis. Nevertheless, elucidating the complex interactions between cancer cells and glial cells remains challenging, in part due to the limitations of existing experimental models for glial cell culture. In this review, we first provide an overview of glial cell culture methods and then examine recent discoveries regarding the interactions between brain metastatic cancer cells and the surrounding glial cells, with a special focus on astrocytes and microglia. Finally, we discuss future perspectives for understanding the multifaceted interactions between cancer cells and glial cells for the treatment of metastatic brain tumors.
Collapse
Affiliation(s)
- Kojiro Ishibashi
- Division of Tumor Cell Biology and BioimagingCancer Research Institute of Kanazawa UniversityKanazawaIshikawaJapan
| | - Eishu Hirata
- Division of Tumor Cell Biology and BioimagingCancer Research Institute of Kanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute, Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
3
|
Serafini MM, Sepehri S, Midali M, Stinckens M, Biesiekierska M, Wolniakowska A, Gatzios A, Rundén-Pran E, Reszka E, Marinovich M, Vanhaecke T, Roszak J, Viviani B, SenGupta T. Recent advances and current challenges of new approach methodologies in developmental and adult neurotoxicity testing. Arch Toxicol 2024; 98:1271-1295. [PMID: 38480536 PMCID: PMC10965660 DOI: 10.1007/s00204-024-03703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
Adult neurotoxicity (ANT) and developmental neurotoxicity (DNT) assessments aim to understand the adverse effects and underlying mechanisms of toxicants on the human nervous system. In recent years, there has been an increasing focus on the so-called new approach methodologies (NAMs). The Organization for Economic Co-operation and Development (OECD), together with European and American regulatory agencies, promote the use of validated alternative test systems, but to date, guidelines for regulatory DNT and ANT assessment rely primarily on classical animal testing. Alternative methods include both non-animal approaches and test systems on non-vertebrates (e.g., nematodes) or non-mammals (e.g., fish). Therefore, this review summarizes the recent advances of NAMs focusing on ANT and DNT and highlights the potential and current critical issues for the full implementation of these methods in the future. The status of the DNT in vitro battery (DNT IVB) is also reviewed as a first step of NAMs for the assessment of neurotoxicity in the regulatory context. Critical issues such as (i) the need for test batteries and method integration (from in silico and in vitro to in vivo alternatives, e.g., zebrafish, C. elegans) requiring interdisciplinarity to manage complexity, (ii) interlaboratory transferability, and (iii) the urgent need for method validation are discussed.
Collapse
Affiliation(s)
- Melania Maria Serafini
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| | - Sara Sepehri
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Miriam Midali
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Marth Stinckens
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Marta Biesiekierska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Anna Wolniakowska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Alexandra Gatzios
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Elise Rundén-Pran
- The Climate and Environmental Research Institute NILU, Kjeller, Norway
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Center of Research on New Approach Methodologies (NAMs) in chemical risk assessment (SAFE-MI), Università degli Studi di Milano, Milan, Italy
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Joanna Roszak
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Center of Research on New Approach Methodologies (NAMs) in chemical risk assessment (SAFE-MI), Università degli Studi di Milano, Milan, Italy
| | - Tanima SenGupta
- The Climate and Environmental Research Institute NILU, Kjeller, Norway
| |
Collapse
|
4
|
Jonnalagadda D, Kihara Y, Groves A, Ray M, Saha A, Ellington C, Lee-Okada HC, Furihata T, Yokomizo T, Quadros EV, Rivera R, Chun J. FTY720 requires vitamin B 12-TCN2-CD320 signaling in astrocytes to reduce disease in an animal model of multiple sclerosis. Cell Rep 2023; 42:113545. [PMID: 38064339 PMCID: PMC11066976 DOI: 10.1016/j.celrep.2023.113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Vitamin B12 (B12) deficiency causes neurological manifestations resembling multiple sclerosis (MS); however, a molecular explanation for the similarity is unknown. FTY720 (fingolimod) is a sphingosine 1-phosphate (S1P) receptor modulator and sphingosine analog approved for MS therapy that can functionally antagonize S1P1. Here, we report that FTY720 suppresses neuroinflammation by functionally and physically regulating the B12 pathways. Genetic and pharmacological S1P1 inhibition upregulates a transcobalamin 2 (TCN2)-B12 receptor, CD320, in immediate-early astrocytes (ieAstrocytes; a c-Fos-activated astrocyte subset that tracks with experimental autoimmune encephalomyelitis [EAE] severity). CD320 is also reduced in MS plaques. Deficiency of CD320 or dietary B12 restriction worsens EAE and eliminates FTY720's efficacy while concomitantly downregulating type I interferon signaling. TCN2 functions as a chaperone for FTY720 and sphingosine, whose complex induces astrocytic CD320 internalization, suggesting a delivery mechanism of FTY720/sphingosine via the TCN2-CD320 pathway. Taken together, the B12-TCN2-CD320 pathway is essential for the mechanism of action of FTY720.
Collapse
Affiliation(s)
- Deepa Jonnalagadda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Aran Groves
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Neuroscience Graduate Program, School of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Manisha Ray
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Clayton Ellington
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Edward V Quadros
- Department of Medicine, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Richard Rivera
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Gonzalez H, Narasipura SD, Shull T, Shetty A, Teppen TL, Naqib A, Al-Harthi L. An Efficient and Cost-Effective Approach to Generate Functional Human Inducible Pluripotent Stem Cell-Derived Astrocytes. Cells 2023; 12:2357. [PMID: 37830571 PMCID: PMC10571578 DOI: 10.3390/cells12192357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
Human inducible pluripotent stem cell (hiPSC)-derived astrocytes (iAs) are critical to study astrocytes in health and disease. They provide several advantages over human fetal astrocytes in research, which include consistency, availability, disease modeling, customization, and ethical considerations. The generation of iAs is hampered by the requirement of Matrigel matrix coating for survival and proliferation. We provide a protocol demonstrating that human iAs cultured in the absence of Matrigel are viable and proliferative. Further, through a side-by-side comparison of cultures with and without Matrigel, we show significant similarities in astrocyte-specific profiling, including morphology (shape and structure), phenotype (cell-specific markers), genotype (transcriptional expression), metabolic (respiration), and functional aspects (glutamate uptake and cytokine response). In addition, we report that, unlike other CNS cell types, such as neuronal progenitor cells and neurons, iAs can withstand the absence of Matrigel coating. Our study demonstrates that Matrigel is dispensable for the culture of human iPSC-derived astrocytes, facilitating an easy, streamlined, and cost-effective method of generating these cells.
Collapse
Affiliation(s)
- Hemil Gonzalez
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush Medical College, Chicago, IL 60612, USA; (S.D.N.); (T.S.)
| | - Srinivas D. Narasipura
- Department of Microbial Pathogens and Immunity, Rush Medical College, Chicago, IL 60612, USA; (S.D.N.); (T.S.)
| | - Tanner Shull
- Department of Microbial Pathogens and Immunity, Rush Medical College, Chicago, IL 60612, USA; (S.D.N.); (T.S.)
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois, Chicago, IL 60608, USA
| | - Amogh Shetty
- Illinois Mathematics and Science Academy, Aurora, IL 60506, USA
| | - Tara L. Teppen
- Molecular Neurobiology Division, Rush Alzheimer’s Disease Center, Rush University, Chicago, IL 60612, USA
| | - Ankur Naqib
- Genome Core Facility, Rush University, Chicago, IL 60612, USA;
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush Medical College, Chicago, IL 60612, USA; (S.D.N.); (T.S.)
| |
Collapse
|
6
|
Zhang H, Kang DH, Piantino M, Tominaga D, Fujimura T, Nakatani N, Taylor JN, Furihata T, Matsusaki M, Fujita S. Rapid Quantification of Microvessels of Three-Dimensional Blood-Brain Barrier Model Using Optical Coherence Tomography and Deep Learning Algorithm. BIOSENSORS 2023; 13:818. [PMID: 37622905 PMCID: PMC10452445 DOI: 10.3390/bios13080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
The blood-brain barrier (BBB) is a selective barrier that controls the transport between the blood and neural tissue features and maintains brain homeostasis to protect the central nervous system (CNS). In vitro models can be useful to understand the role of the BBB in disease and assess the effects of drug delivery. Recently, we reported a 3D BBB model with perfusable microvasculature in a Transwell insert. It replicates several key features of the native BBB, as it showed size-selective permeability of different molecular weights of dextran, activity of the P-glycoprotein efflux pump, and functionality of receptor-mediated transcytosis (RMT), which is the most investigated pathway for the transportation of macromolecules through endothelial cells of the BBB. For quality control and permeability evaluation in commercial use, visualization and quantification of the 3D vascular lumen structures is absolutely crucial. Here, for the first time, we report a rapid, non-invasive optical coherence tomography (OCT)-based approach to quantify the microvessel network in the 3D in vitro BBB model. Briefly, we successfully obtained the 3D OCT images of the BBB model and further processed the images using three strategies: morphological imaging processing (MIP), random forest machine learning using the Trainable Weka Segmentation plugin (RF-TWS), and deep learning using pix2pix cGAN. The performance of these methods was evaluated by comparing their output images with manually selected ground truth images. It suggested that deep learning performed well on object identification of OCT images and its computation results of vessel counts and surface areas were close to the ground truth results. This study not only facilitates the permeability evaluation of the BBB model but also offers a rapid, non-invasive observational and quantitative approach for the increasing number of other 3D in vitro models.
Collapse
Affiliation(s)
- Huiting Zhang
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (H.Z.); (J.N.T.); (M.M.)
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (D.-H.K.); (M.P.)
| | - Dong-Hee Kang
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (D.-H.K.); (M.P.)
| | - Marie Piantino
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (D.-H.K.); (M.P.)
| | - Daisuke Tominaga
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Takashi Fujimura
- SCREEN Holdings Co., Ltd., 322 Furukawa-cho, Hazukashi, Fushimi-ku, Kyoto 612-8486, Kyoto, Japan; (T.F.); (N.N.)
| | - Noriyuki Nakatani
- SCREEN Holdings Co., Ltd., 322 Furukawa-cho, Hazukashi, Fushimi-ku, Kyoto 612-8486, Kyoto, Japan; (T.F.); (N.N.)
| | - J. Nicholas Taylor
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (H.Z.); (J.N.T.); (M.M.)
| | - Tomomi Furihata
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan;
| | - Michiya Matsusaki
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (H.Z.); (J.N.T.); (M.M.)
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (D.-H.K.); (M.P.)
| | - Satoshi Fujita
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (H.Z.); (J.N.T.); (M.M.)
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (D.-H.K.); (M.P.)
| |
Collapse
|
7
|
Shang Y, Piantino M, Zeng J, Louis F, Xie Z, Furihata T, Matsusaki M. Control of blood capillary networks and holes in blood-brain barrier models by regulating elastic modulus of scaffolds. Mater Today Bio 2023; 21:100714. [PMID: 37545563 PMCID: PMC10401288 DOI: 10.1016/j.mtbio.2023.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
The blood-brain barrier (BBB) is a type of capillary network characterized by a highly selective barrier, which restricts the transport of substances between the blood and nervous system. Numerous in vitro models of the BBB have been developed for drug testing, but a BBB model with controllable capillary structures remains a major challenge. In this study, we report for the first time a unique method of controlling the blood capillary networks and characteristic holes formation in a BBB model by varying the elastic modulus of a three-dimensional scaffold. The characteristic hole structures are formed by the migration of endothelial cells from the model surface to the interior, which have functions of connecting the model interior to the external environment. The hole depth increased, as the elastic modulus of the fibrin gel scaffold increased, and the internal capillary network length increased with decreasing elastic modulus. Besides, internal astrocytes and pericytes were also found to be important for inducing hole formation from the model surface. Furthermore, RNA sequencing indicated up-regulated genes related to matrix metalloproteinases and angiogenesis, suggesting a relationship between enzymatic degradation of the scaffolds and hole formation. The findings of this study introduce a new method of fabricating complex BBB models for drug assessment.
Collapse
Affiliation(s)
- Yucheng Shang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, Kojimachi, Tokyo, Japan
| | - Fiona Louis
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan
| | - Zhengtian Xie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Tomomi Furihata
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Minteer CJ, Thrush K, Gonzalez J, Niimi P, Rozenblit M, Rozowsky J, Liu J, Frank M, McCabe T, Sehgal R, Higgins-Chen AT, Hofstatter E, Pusztai L, Beckman K, Gerstein M, Levine ME. More than bad luck: Cancer and aging are linked to replication-driven changes to the epigenome. SCIENCE ADVANCES 2023; 9:eadf4163. [PMID: 37467337 PMCID: PMC10355820 DOI: 10.1126/sciadv.adf4163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Aging is a leading risk factor for cancer. While it is proposed that age-related accumulation of somatic mutations drives this relationship, it is likely not the full story. We show that aging and cancer share a common epigenetic replication signature, which we modeled using DNA methylation from extensively passaged immortalized human cells in vitro and tested on clinical tissues. This signature, termed CellDRIFT, increased with age across multiple tissues, distinguished tumor from normal tissue, was escalated in normal breast tissue from cancer patients, and was transiently reset upon reprogramming. In addition, within-person tissue differences were correlated with predicted lifetime tissue-specific stem cell divisions and tissue-specific cancer risk. Our findings suggest that age-related replication may drive epigenetic changes in cells and could push them toward a more tumorigenic state.
Collapse
Affiliation(s)
| | - Kyra Thrush
- Department of Pathology, Yale School of Medicine,
New Haven, CT, USA
- San Diego Institute of Science, Altos Labs, San
Diego, CA, USA
| | - John Gonzalez
- Department of Pathology, Yale School of Medicine,
New Haven, CT, USA
| | - Peter Niimi
- Department of Pathology, Yale School of Medicine,
New Haven, CT, USA
- San Diego Institute of Science, Altos Labs, San
Diego, CA, USA
| | - Mariya Rozenblit
- Department of Internal Medicine, Section of
Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Joel Rozowsky
- Department of Molecular Biophysics and
Biochemistry, Yale University, New Haven, CT, USA
| | - Jason Liu
- Department of Molecular Biophysics and
Biochemistry, Yale University, New Haven, CT, USA
| | - Mor Frank
- Department of Molecular Biophysics and
Biochemistry, Yale University, New Haven, CT, USA
| | - Thomas McCabe
- Department of Pathology, Yale School of Medicine,
New Haven, CT, USA
| | - Raghav Sehgal
- Department of Pathology, Yale School of Medicine,
New Haven, CT, USA
| | | | - Erin Hofstatter
- Department of Internal Medicine, Section of
Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Lajos Pusztai
- Department of Internal Medicine, Section of
Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth Beckman
- Biomedical Genomics Center, University of
Minnesota, Minneapolis, MN, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and
Biochemistry, Yale University, New Haven, CT, USA
| | - Morgan E. Levine
- Department of Pathology, Yale School of Medicine,
New Haven, CT, USA
- San Diego Institute of Science, Altos Labs, San
Diego, CA, USA
| |
Collapse
|
9
|
Yan M, Yong F, Ji W, Zhang L, Zhao S, Gao Y. Construction and Characterization of Immortalized Fibroblast Cell Line from Bactrian Camel. Life (Basel) 2023; 13:1337. [PMID: 37374120 PMCID: PMC10302944 DOI: 10.3390/life13061337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Immortalized cell lines with many advantages are widely used in various experimental contexts by many different labs. However, the absence of available cell lines poses difficulties for research in some species, such as camels. To establish an immortalized Bactrian camel fibroblast (iBCF) cell line and understand its biological characteristics, primary fibroblast cells from Bactrian camels were isolated and purified using enzymatic digestion in this study, and telomerase reverse transcriptase (hTERT) vectors were introduced into primary BCF (pBCF) for continuous passage to 80 generations after screening with G418. The cell morphology of different generations was examined under a microscope. Cell cycle and viability were evaluated by flow cytometry and CCK-8 assay, respectively. Cellular genes expression was monitored by qPCR, immunofluorescence, and Western blot, respectively. Chromosomes were determined by karyotyping. The results showed that like most other cells, both pBCF and iBCF were sensitive to nutrient concentrations and adapted to culture in the medium with 4.5 g/L glucose and 10% fetal bovine serum (FBS) concentration. hTERT gene was introduced and stably expressed in iBCF cells, which promoted BCF cell immortalization. The fibroblast specific marker vimentin (VIM) is expressed in both pBCF and iBCF, but epithelial marker cytokeratin18 (CK18) expression is weak in BCF cells. Proliferation and viability detection showed that hTERT-induced iBCF exhibits faster growth rates and higher viability than pBCF. Karyotyping showed that iBCF maintained the same number and morphology of chromosomes as the pBCF. This study demonstrated that we have successfully constructed an immortalized Bactrian camel fibroblast cell line, which was named BCF23. The establishment of the BCF23 cell line provides a foundation for expanding camel-related research.
Collapse
Affiliation(s)
- Meilin Yan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fang Yong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangye Ji
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lili Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuqin Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
10
|
An D, Xu W, Ge Y, Ge Y, Zhang L, Zhu Y, Zhang Z, Fan J, Gao R, Jiang L, Huang P, Wang J, Chen X. Protection of Oxygen Glucose Deprivation-Induced Human Brain Vascular Pericyte Injury: Beneficial Effects of Bellidifolin in Cellular Pyroptosis. Neurochem Res 2023:10.1007/s11064-023-03943-7. [PMID: 37127800 DOI: 10.1007/s11064-023-03943-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Pericytes play critical roles in the maintenance of brain vascular homeostasis. However, very little is currently known about how pericytes regulate ischemic stroke-induced brain injury. Inflammation is a key event in the pathobiology of stroke, in which the nod-like receptor protein-3 (NLRP3) inflammasome is involved in, triggering sterile inflammatory responses and pyroptosis. In the current study, an immortalized cell line derived from human brain vascular pericytes (HBVPs) was constructed, and it showed that HBVPs challenged with oxygen glucose deprivation (OGD) displays pronounced cellular excretion of LDH, IL-1β, IL-18 and increased PI positive staining. Mechanistically, upon OGD treatment, NLRP3 forms an inflammasome with its adaptor protein apoptosis-associated speck-like protein, containing a caspase recruitment domain (ASC) and caspase-1, manifested as much more co-stainings of NLRP3, ASC and Caspase-1 in HBVPs, accompanied by the increased protein levels of NLRP3, ASC, caspase-1 as well as the pyroptosis-associated protein gasdermin D (GSDMD). Intriguingly, GSDMD-N shuttled to the mitochondrial membrane triggered by OGD exposure, which promoted massive mitochondria-derived ROS generation. Importantly, the invention value of the specific targets was evaluated by treatment with bellidifolin, a kind of ketone compound derived from Swertia chirayita in traditional Tibetan medicine. It showed that bellidifolin exerts beneficial effects and attenuates the formation of NLRP3/ASC/Caspase-1 complex, thereby impeding GSDMD-N shuttling and resultant ROS generation, protecting against OGD-induced HBVPs pyroptosis. Overall, these findings unravel the potential mechanisms of pericyte injury induced by OGD and indicate that bellidifolin may exert its beneficial effects on pyroptosis, thus providing new therapeutic insights into stroke.
Collapse
Affiliation(s)
- Di An
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Weixiao Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yingxin Ge
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Yaning Ge
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Linwei Zhang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Yi Zhu
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Zhongman Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Junting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Peipei Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China.
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China.
| | - Xufeng Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
11
|
Tao F, Kitamura K, Hanada S, Sugimoto K, Furihata T, Kojima N. Rapid and Stable Formation Method of Human Astrocyte Spheroid in a High Viscous Methylcellulose Medium and Its Functional Advantages. Bioengineering (Basel) 2023; 10:bioengineering10030349. [PMID: 36978740 PMCID: PMC10045153 DOI: 10.3390/bioengineering10030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Astrocytes, a type of glial cell in the brain, are thought to be functionally and morphologically diverse cells that regulate brain homeostasis. Cell immortalization is a promising technique for the propagation of primary human astrocytes. The immortalized cells retain their astrocytic marker mRNA expression at lower levels than the primary cells. Therefore, improvement of the differentiation status is required. The use of a 3D formation technique to mimic structural tissue is a good strategy for reflecting physiological cell–cell interactions. Previously, we developed a spheroid formation method using highly viscous methyl cellulose (MC) medium. In this study, we applied this formation method to the well-established immortalized human astrocyte cell line HASTR/ci35. Stable HASTR/ci35 spheroids were successfully formed in MC medium, and laminin deposition was detected inside of the spheroids. Their functional markers were enhanced compared to conventional spheroids formed in U-bottom plates. The inflammatory response was moderately sensitive, and the ability to support neurite growth was confirmed. The HASTR/ci35 spheroid in the MC medium demonstrated the differentiation phenotype and could serve as a potent in vitro model for matured astrocytes.
Collapse
Affiliation(s)
- Fumiya Tao
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Keita Kitamura
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0355, Japan
| | - Sanshiro Hanada
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Kazuyuki Sugimoto
- Yokogawa Electric Corp., 2-3, Hokuyodai, Kanazawa, Ishikawa 920-0177, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0355, Japan
| | - Nobuhiko Kojima
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
- Correspondence:
| |
Collapse
|
12
|
Nakayama-Kitamura K, Shigemoto-Mogami Y, Toyoda H, Mihara I, Moriguchi H, Naraoka H, Furihata T, Ishida S, Sato K. Usefulness of a humanized tricellular static transwell blood-brain barrier model as a microphysiological system for drug development applications. - A case study based on the benchmark evaluations of blood-brain barrier microphysiological system. Regen Ther 2023; 22:192-202. [PMID: 36891355 PMCID: PMC9988422 DOI: 10.1016/j.reth.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Microphysiological system (MPS), a new technology for in vitro testing platforms, have been acknowledged as a strong tool for drug development. In the central nervous system (CNS), the blood‒brain barrier (BBB) limits the permeation of circulating substances from the blood vessels to the brain, thereby protecting the CNS from circulating xenobiotic compounds. At the same time, the BBB hinders drug development by introducing challenges at various stages, such as pharmacokinetics/pharmacodynamics (PK/PD), safety assessment, and efficacy assessment. To solve these problems, efforts are being made to develop a BBB MPS, particularly of a humanized type. In this study, we suggested minimal essential benchmark items to establish the BBB-likeness of a BBB MPS; these criteria support end users in determining the appropriate range of applications for a candidate BBB MPS. Furthermore, we examined these benchmark items in a two-dimensional (2D) humanized tricellular static transwell BBB MPS, the most conventional design of BBB MPS with human cell lines. Among the benchmark items, the efflux ratios of P-gp and BCRP showed high reproducibility in two independent facilities, while the directional transports meditated through Glut1 or TfR were not confirmed. We have organized the protocols of the experiments described above as standard operating procedures (SOPs). We here provide the SOPs with the flow chart including entire procedure and how to apply each SOP. Our study is important developmental step of BBB MPS towards the social acceptance, which enable end users to check and compare the performance the BBB MPSs.
Collapse
Key Words
- BBB, blood-brain barrier
- BCRP
- BCRP, Breast cancer resistance protein
- Blood‒brain barrier (BBB)
- CNS, central nervous system
- Glut1, Glucose transporter 1
- HASTR, Human astrocytes
- HBMEC, Human brain microvascular endothelial cells
- HBPC, Human brain pericyte
- LC-MS/MS, Liquid chromatography with tandem mass spectrometry
- LY, Lucifer yellow
- MPS, Microphysiological system
- Microphysiological system (MPS)
- P-gp
- P-gp, P-glycoprotein
- TEER, Trans-endothelial electrical resistance
- TfR, Transferrin receptor
Collapse
Affiliation(s)
- Kimiko Nakayama-Kitamura
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Yukari Shigemoto-Mogami
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Hiroko Toyoda
- Stem Cell Evaluation Technology Research Association, Grande Building 8F, 2-26-9 Hatchobori, Chuo-ku, Tokyo 104-0032, Japan
| | - Ikue Mihara
- Stem Cell Evaluation Technology Research Association, Grande Building 8F, 2-26-9 Hatchobori, Chuo-ku, Tokyo 104-0032, Japan
| | - Hiroyuki Moriguchi
- Stem Cell Evaluation Technology Research Association, Grande Building 8F, 2-26-9 Hatchobori, Chuo-ku, Tokyo 104-0032, Japan
| | - Hitoshi Naraoka
- Stem Cell Evaluation Technology Research Association, Grande Building 8F, 2-26-9 Hatchobori, Chuo-ku, Tokyo 104-0032, Japan
| | - Tomomi Furihata
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Seiichi Ishida
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan.,Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto City, Kumamoto, Japan
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| |
Collapse
|
13
|
Li Y, Huang Y, Cai J, Jiang D, Jian JC, Lu YS, Wang B. Establishment of an astrocyte-like cell line from the brain of tilapia (Oreochromis niloticus) for virus pathogenesis and a vitro model of the blood-brain barrier. JOURNAL OF FISH DISEASES 2022; 45:1451-1462. [PMID: 35758189 DOI: 10.1111/jfd.13674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
A new cell line was established from the brain of a cultured fish, tilapia (Oreochromis niloticus), designated as TA-02 (Tilapia Astrocyte clone 02 cell line). The TA-02 cells are grown for 300 days in an L-15 medium supplemented with 10% fetal bovine serum (FBS). This cell line showed excellent proliferative capacity and expressed various neuroglial cell markers, including SOX2, SOX10, Hes1, Notch1, Occludin, E-cadherin, and GFAP. In addition, TA-02 cells were susceptible to Tilapia Lake Virus (TiLV) as demonstrated by the presence of a severe cytopathic effect (CPE), virus particle in a transmission electron microscope (TEM), and PCR positive signal. Bacterial cytotoxicity studies showed that Streptococcus agalactiae was toxic to TA-02 cells. When co-culture with trans-well, TA-02 exhibited prominent barrier properties, manifested by tight intercellular junctions and increased trans-endothelial electrical resistance (TEER). In addition, the barrier is effective against Escherichia coli (non-meningitis pathogenic bacteria). In contrast, S. agalactiae (meningitis pathogenic bacteria) can pass through the membrane comprising the cells in the trans-well insert. The newly established TA-02 cell line provided a valuable tool for virus pathogenesis and a vitro model of the fish blood-brain barrier.
Collapse
Affiliation(s)
- Yuan Li
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P. R. China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China
| | - Yu Huang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, P. R. China
| | - Jia Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, P. R. China
| | - Dongneng Jiang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Ji-Chang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, P. R. China
| | - Yi-Shan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P. R. China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, P. R. China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, P. R. China
| |
Collapse
|
14
|
Kutryb-Zajac B, Kawecka A, Caratis F, Urbanowicz K, Braczko A, Furihata T, Karaszewski B, Smolenski RT, Rutkowska A. The impaired distribution of adenosine deaminase isoenzymes in multiple sclerosis plasma and cerebrospinal fluid. Front Mol Neurosci 2022; 15:998023. [PMID: 36204140 PMCID: PMC9530629 DOI: 10.3389/fnmol.2022.998023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Adenosine deaminase (ADA) via two isoenzymes, ADA1 and ADA2, regulates intra- and extracellular adenosine concentrations by converting it to inosine. In the central nervous system (CNS), adenosine modulates the processes of neuroinflammation and demyelination that together play a critical role in the pathophysiology of multiple sclerosis (MS). Except for their catalytic activities, ADA isoenzymes display extra-enzymatic properties acting as an adhesion molecule or a growth factor. Aims This study aimed to explore the distribution and activity of ADA1 and ADA2 in the plasma and the CSF of MS patients as well as in the human brain microvascular endothelial cells (HBMEC), human brain vascular pericytes and human astrocytes. Methods and results The enzyme assay following reverse phase-high performance liquid chromatography (HPLC) analysis was used to detect the ADA1 and ADA2 activities and revealed an increased ratio of ADA1 to ADA2 in both the plasma and the CSF of MS patients. Plasma ADA1 activity was significantly induced in MS, while ADA2 was decreased in the CSF, but significance was not reached. The brain astrocytes, pericytes and endothelial cells revealed on their surface the activity of ADA1, with its basal level being five times higher in the endothelial cells than in the astrocytes or the pericytes. In turn, ADA2 activity was only observed in pericytes and endothelial cells. Stimulation of the cells with pro-inflammatory cytokines TNFα/IL17 for 18 h decreased intracellular nucleotide levels measured by HPLC only in pericytes. The treatment with TNFα/IL17 did not modulate cell-surface ATP and AMP hydrolysis nor adenosine deamination in pericytes or astrocytes. Whereas in endothelial cells it downregulated AMP hydrolysis and ADA2 activity and upregulated the ADA1, which reflects the ADA isoenzyme pattern observed here in the CSF of MS patients. Conclusion In this study, we determined the impaired distribution of both ADA isoenzymes in the plasma and the CSF of patients with MS. The increased ADA1 to ADA2 ratio in the CSF and plasma may translate to unfavorable phenotype that triggers ADA1-mediated pro-inflammatory mechanisms and decreases ADA2-dependent neuroprotective and growth-promoting effects in MS.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
- *Correspondence: Barbara Kutryb-Zajac,
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Fionä Caratis
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Bartosz Karaszewski
- Department of Adult Neurology, Medical University of Gdańsk and University Clinical Center, Gdańsk, Poland
| | | | - Aleksandra Rutkowska
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
- Aleksandra Rutkowska,
| |
Collapse
|
15
|
Kitamura K, Okamoto A, Morio H, Isogai R, Ito R, Yamaura Y, Izumi S, Komori T, Ito S, Ohtsuki S, Akita H, Furihata T. Human Immortalized Cell-Based Blood-Brain Barrier Spheroid Models Offer an Evaluation Tool for the Brain Penetration Properties of Macromolecules. Mol Pharm 2022; 19:2754-2764. [PMID: 35766901 DOI: 10.1021/acs.molpharmaceut.2c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Blood-brain barrier (BBB)-permeable middle- or macromolecules (middle/macromolecules) have recently attracted significant attention as new drug delivery carriers into the human brain via receptor-mediated transcytosis (RMT). During the development process of such carriers, it is necessary to thoroughly evaluate their human BBB permeability levels. In such evaluations, our recently established human immortalized cell-based multicellular spheroidal BBB models (hiMCS-BBB models) have shown high potential. However, the specifics of those capabilities have yet to be elucidated. Therefore, in this study, we characterize the ability of the hiMCS-BBB models to evaluate RMT-mediated BBB penetration properties of middle/macromolecules. More specifically, we began by validating transferrin receptor (TfR)-mediated RMT functionalities using transferrin in the hiMCS-BBB models and then examined the BBB permeability levels of MEM189 antibodies (known BBB-permeable anti-TfR antibodies). The obtained results showed that, as with the case of transferrin, temperature-dependent uptake of MEM189 antibodies was observed in the hiMCS-BBB models, and the extent of that uptake increased in a time-dependent manner until reaching a plateau after around 2 h. To further expand the evaluation applicability of the models, we also examined the BBB permeability levels of the recently developed SLS cyclic peptide and observed that peptide uptake was also temperature-dependent. To summarize, our results show that the hiMCS-BBB models possess the ability to evaluate the RMT-mediated BBB-permeable properties of antibodies and peptides and thus have the potential to provide valuable tools for use in the exploration and identification of middle/macromolecules showing excellent BBB permeability levels, thereby contributing powerfully to the development of new drug delivery carriers for transporting drugs into the human brain.
Collapse
Affiliation(s)
- Keita Kitamura
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8670, Japan.,Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Ayaka Okamoto
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hanae Morio
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Ryuto Isogai
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Ryo Ito
- Research Center of Neurology, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Yoshiyuki Yamaura
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Saki Izumi
- Global Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co. Ltd., 5-1-3 Tokodai, Ibaraki 300-2635, Japan
| | - Takafumi Komori
- Global Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co. Ltd., 5-1-3 Tokodai, Ibaraki 300-2635, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8670, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| |
Collapse
|
16
|
Tan HY, Yong YK, Xue YC, Liu H, Furihata T, Shankar EM, Ng CS. cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. iScience 2022; 25:104404. [PMID: 35712074 PMCID: PMC9194172 DOI: 10.1016/j.isci.2022.104404] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/22/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Neuroinflammation exacerbates the progression of SOD1-driven amyotrophic lateral sclerosis (ALS), although the underlying mechanisms remain largely unknown. Herein, we demonstrate that misfolded SOD1 (SOD1Mut)-causing ALS results in mitochondrial damage, thus triggering the release of mtDNA and an RNA:DNA hybrid into the cytosol in an mPTP-independent manner to activate IRF3- and IFNAR-dependent type I interferon (IFN-I) and interferon-stimulating genes. The neuronal hyper-IFN-I and pro-inflammatory responses triggered in ALS-SOD1Mut were sufficiently robust to cause a strong physiological outcome in vitro and in vivo. cGAS/DDX41-STING-signaling is amplified in bystander cells through inter-neuronal gap junctions. Our results highlight the importance of a common DNA-sensing pathway between SOD1 and TDP-43 in influencing the progression of ALS. Constitutive basal activation of IFN-I was found in the SOD1-ALS animal model SOD1-ALS damaged mitochondria to release mtDNA and RNA:DNA to activate the STING-pathway Blocking cGAS and STING diminishes neurodegeneration in vivo in the SOD1-ALS model Connexin and pannexin channels are required to propagate neuroinflammation in SOD1-ALS
Collapse
Affiliation(s)
- Hong Yien Tan
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia.,School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Yuan Chao Xue
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Huitao Liu
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Esaki Muthu Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Chen Seng Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
17
|
Piantino M, Kang DH, Furihata T, Nakatani N, Kitamura K, Shigemoto-Mogami Y, Sato K, Matsusaki M. Development of a three-dimensional blood-brain barrier network with opening capillary structures for drug transport screening assays. Mater Today Bio 2022; 15:100324. [PMID: 35757028 PMCID: PMC9214798 DOI: 10.1016/j.mtbio.2022.100324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
The blood-brain barrier (BBB), a selective barrier regulating the active and passive transport of solutes in the extracellular fluid of the central nervous system, prevents the delivery of therapeutics for brain disorders. The BBB is composed of brain microvascular endothelial cells (BMEC), pericytes and astrocytes. Current in vitro BBB models cannot reproduce the human structural complexity of the brain microvasculature, and thus their functions are not enough for drug assessments. In this study, we developed a 3D self-assembled microvascular network formed by BMEC covered by pericytes and astrocyte end feet. It exhibited perfusable microvasculature due to the presence of capillary opening ends on the bottom of the hydrogel. It also demonstrated size-selective permeation of different molecular weights of fluorescent-labeled dextran, as similarly reported for in vivo rodent brain, suggesting the same permeability with actual in vivo brain. The activity of P-glycoprotein efflux pump was confirmed using the substrate Rhodamine 123. Finally, the functionality of the receptor-mediated transcytosis, one of the main routes for drug delivery of large molecules into the brain, could be validated using transferrin receptor (TfR) with confocal imaging, competition assays and permeability assays. Efficient permeability coefficient (Pe) value of transportable anti-TfR antibody (MEM-189) was seven-fold higher than those of isotype antibody (IgG1) and low transportable anti-TfR antibody (13E4), suggesting a higher TfR transport function than previous reports. The BBB model with capillary openings could thus be a valuable tool for the screening of therapeutics that can be transported across the BBB, including those using TfR-mediated transport.
Collapse
Affiliation(s)
- Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Dong-Hee Kang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Tomomi Furihata
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Noriyuki Nakatani
- SCREEN Holdings Co.,Ltd. Development Section 2, R&D Department 1, Furukawa-cho, Hazukashi, Fushimi-ku, Kyoto, Japan
| | - Kimiko Kitamura
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Yukari Shigemoto-Mogami
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Kaoru Sato
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Corresponding author.
| |
Collapse
|
18
|
In Vitro-In Vivo Correlation of Blood-Brain Barrier Permeability of Drugs: A Feasibility Study Towards Development of Prediction Methods for Brain Drug Concentration in Humans. Pharm Res 2022; 39:1575-1586. [PMID: 35288803 DOI: 10.1007/s11095-022-03189-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/03/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE In vitro human blood-brain barrier (BBB) models in combination with central nervous system-physiologically based pharmacokinetic (CNS-PBPK) modeling, hereafter referred to as the "BBB/PBPK" method, are expected to contribute to prediction of brain drug concentration profiles in humans. As part of our ongoing effort to develop a BBB/PBPK method, we tried to clarify the relationship of in vivo BBB permeability data to those in vitro obtained from a human immortalized cell-based tri-culture BBB model (hiBBB), which we have recently created. METHODS The hiBBB models were developed and functionally characterized as previously described. The in vitro BBB permeabilities (Pe, × 10-6 cm/s) of seventeen compounds were determined by permeability assays, and in vivo BBB permeabilities (QECF) for eight drugs were estimated by CNS-PBPK modeling. The correlation of the Pe values with the QECF values was analyzed by linear regression analysis. RESULTS The hiBBB models showed intercellular barrier properties and several BBB transporter functions, which were enough to provide a wide dynamic range of Pe values from 5.7 ± 0.7 (rhodamine 123) to 2580.4 ± 781.9 (rivastigmine). Furthermore, the in vitro Pe values of the eight drugs showed a good correlation (R2 = 0.96) with their in vivo QECF values estimated from human clinical data. CONCLUSION We show that in vitro human BBB models provide clinically relevant BBB permeability that can be used as input for CNS-PBPK modeling. Therefore, our findings will encourage the development of a BBB/PBPK method as a promising approach for predicting brain drug concentration profiles in humans.
Collapse
|
19
|
Astrocyte Control of Zika Infection Is Independent of Interferon Type I and Type III Expression. BIOLOGY 2022; 11:biology11010143. [PMID: 35053142 PMCID: PMC8772967 DOI: 10.3390/biology11010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Zika virus (ZIKV) is a mosquito-borne virus first isolated from the Zika forest, Uganda, in 1947, which has been spreading across continents since then. We now know ZIKV causes both microencephaly in newborns and neurological complications in adults; however, no effective treatment options have yet been found. A more complete understanding of Zika-infection-mediated pathogenesis and host responses is required to enable the development of novel treatment strategies. In this study, efforts were made to elucidate the host responses following Zika virus infection using several astrocyte cell models, as astrocytes are a major cell type within the central nervous system (CNS) with significant antiviral ability. Our data suggest that astrocytes can resist ZIKV both in an interferon type I- and III-independent manner and suggest that an early and more diverse antiviral response may be more effective in controlling Zika infection. This study also identifies astrocyte cellular models that appear to display differential abilities in the control of viral infection, which may assist in the study of alternate neurotropic virus infections. Overall, this work adds to the growing body of knowledge surrounding ZIKV-mediated cellular host interactions and will contribute to a better understanding of ZIKV-mediated pathogenesis. Abstract Zika virus (ZIKV) is a pathogenic neurotropic virus that infects the central nervous system (CNS) and results in various neurological complications. Astrocytes are the dominant CNS cell producer of the antiviral cytokine IFN-β, however little is known about the factors involved in their ability to mediate viral infection control. Recent studies have displayed differential responses in astrocytes to ZIKV infection, and this study sought to elucidate astrocyte cell-specific responses to ZIKV using a variety of cell models infected with either the African (MR766) or Asian (PRVABC59) ZIKV strains. Expression levels of pro-inflammatory (TNF-α and IL-1β) and inflammatory (IL-8) cytokines following viral infection were low and mostly comparable within the ZIKV-resistant and ZIKV-susceptible astrocyte models, with better control of proinflammatory cytokines displayed in resistant astrocyte cells, synchronising with the viral infection level at specific timepoints. Astrocyte cell lines displaying ZIKV-resistance also demonstrated early upregulation of multiple antiviral genes compared with susceptible astrocytes. Interestingly, pre-stimulation of ZIKV-susceptible astrocytes with either poly(I:C) or poly(dA:dT) showed efficient protection against ZIKV compared with pre-stimulation with either recombinant IFN-β or IFN-λ, perhaps indicating that a more diverse antiviral gene expression is necessary for astrocyte control of ZIKV, and this is driven in part through interferon-independent mechanisms.
Collapse
|
20
|
Kitamura K, Umehara K, Ito R, Yamaura Y, Komori T, Morio H, Akita H, Furihata T. Development, Characterization and Potential Applications of a Multicellular Spheroidal Human Blood-Brain Barrier Model Integrating Three Conditionally Immortalized Cell Lines. Biol Pharm Bull 2021; 44:984-991. [PMID: 33896887 DOI: 10.1248/bpb.b21-00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro blood-brain barrier (BBB) models are essential research tools for use in developing brain-targeted drugs and understanding the physiological and pathophysiological functions of the BBB. To develop BBB models with better functionalities, three-dimensional (3D) culture methods have gained significant attention as a promising approach. In this study, we report on the development of a human conditionally immortalized cell-based multicellular spheroidal BBB (hiMCS-BBB) model. After being seeded into non-attachment culture wells, HASTR/ci35 (astrocytes) and HBPC/ci37 cells (brain pericytes) self-assemble to form a spheroid core that is then covered with an outer monolayer of HBMEC/ci18 cells (brain microvascular endothelial cells). The results of immunocytochemistry showed the protein expression of several cellular junction and BBB-enriched transporter genes in HBMEC/ci18 cells of the spheroid model. The permeability assays showed that the hiMCS-BBB model exhibited barrier functions against the penetration of dextran (5 and 70 kDa) and rhodamine123 (a P-glycoprotein substrate) into the core. On the other hand, facilitation of 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]amino)-2-deoxyglucose (2-NBDG; a fluorescent glucose analog) uptake was observed in the hiMCS-BBB model. Furthermore, tumor necrosis factor-alpha treatment elicited an inflammatory response in HBMEC/ci18 cells, thereby suggesting that BBB inflammation can be recapitulated in the hiMCS-BBB model. To summarize, we have developed an hiMCS-BBB model that possesses fundamental BBB properties, which can be expected to provide a useful and highly accessible experimental platform for accelerating various BBB studies.
Collapse
Affiliation(s)
- Keita Kitamura
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University.,Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Kenta Umehara
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Ryo Ito
- Research Center of Neurology, Ono Pharmaceutical Co., Ltd
| | | | - Takafumi Komori
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd
| | - Hanae Morio
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
21
|
Cameron T, Bennet T, Rowe EM, Anwer M, Wellington CL, Cheung KC. Review of Design Considerations for Brain-on-a-Chip Models. MICROMACHINES 2021; 12:441. [PMID: 33921018 PMCID: PMC8071412 DOI: 10.3390/mi12040441] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, the need for sophisticated human in vitro models for integrative biology has motivated the development of organ-on-a-chip platforms. Organ-on-a-chip devices are engineered to mimic the mechanical, biochemical and physiological properties of human organs; however, there are many important considerations when selecting or designing an appropriate device for investigating a specific scientific question. Building microfluidic Brain-on-a-Chip (BoC) models from the ground-up will allow for research questions to be answered more thoroughly in the brain research field, but the design of these devices requires several choices to be made throughout the design development phase. These considerations include the cell types, extracellular matrix (ECM) material(s), and perfusion/flow considerations. Choices made early in the design cycle will dictate the limitations of the device and influence the end-point results such as the permeability of the endothelial cell monolayer, and the expression of cell type-specific markers. To better understand why the engineering aspects of a microfluidic BoC need to be influenced by the desired biological environment, recent progress in microfluidic BoC technology is compared. This review focuses on perfusable blood-brain barrier (BBB) and neurovascular unit (NVU) models with discussions about the chip architecture, the ECM used, and how they relate to the in vivo human brain. With increased knowledge on how to make informed choices when selecting or designing BoC models, the scientific community will benefit from shorter development phases and platforms curated for their application.
Collapse
Affiliation(s)
- Tiffany Cameron
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tanya Bennet
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mehwish Anwer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
22
|
Agathe F, Yasuhiro N, Yukari SM, Tomomi F, Kaoru S, Matsusaki M. An in vitro self-organized three-dimensional model of the blood-brain barrier microvasculature. Biomed Mater 2020; 16:015006. [PMID: 33331293 DOI: 10.1088/1748-605x/aba5f1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) protects the human brain from external aggression. Despite its great importance, very few in vitro models of the BBB reproducing its complex organization are available yet. Here we fabricated such a three-dimensional (3D) self-organized in vitro model of BBB microvasculature by means of a combination of collagen microfibers (CMF) and fibrin gel. The interconnected fibers supported human brain microvascular endothelial cell migration and the formation of a capillary-like network with a lumen diameter close to in vivo values. Fibrin, a protein involved in blood vessel repair, favored the further 3D conformation of the brain microvascular endothelial cells, astrocytes and pericytes, ensured gel cohesion and avoided shrinkage. The maturation of the BBB microvasculature network was stimulated by both the CMF and the fibrin in the hydrogel. The expression of essential tight-junction proteins, carriers and transporters was validated in regards to bidimensional simple coculture. The volume of gel drops was easily tunable to fit in 96-well plates. The cytotoxicity of D-Mannitol and its impacts on the microvascular network were evaluated, as an example of the pertinence of this 3D BBB capillary model for screening applications.
Collapse
Affiliation(s)
- Figarol Agathe
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Franklin H, Clarke BE, Patani R. Astrocytes and microglia in neurodegenerative diseases: Lessons from human in vitro models. Prog Neurobiol 2020; 200:101973. [PMID: 33309801 PMCID: PMC8052192 DOI: 10.1016/j.pneurobio.2020.101973] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 12/16/2022]
Abstract
Astrocytes and microglia key fulfil homeostatic and immune functions in the CNS. Dysfunction of these cell types is implicated in neurodegenerative diseases. Understanding cellular autonomy and early pathogenic changes is a key goal. New human iPSC models will inform on disease mechanisms and therapy development.
Both astrocytes and microglia fulfil homeostatic and immune functions in the healthy CNS. Dysfunction of these cell types have been implicated in the pathomechanisms of several neurodegenerative diseases. Understanding the cellular autonomy and early pathological changes in these cell types may inform drug screening and therapy development. While animal models and post-mortem tissue have been invaluable in understanding disease processes, the advent of human in vitro models provides a unique insight into disease biology as a manipulable model system obtained directly from patients. Here, we discuss the different human in vitro models of astrocytes and microglia and outline the phenotypes that have been recapitulated in these systems.
Collapse
Affiliation(s)
- Hannah Franklin
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Benjamin E Clarke
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
24
|
Figarol A, Piantino M, Furihata T, Satoh T, Sugiura S, Kanamori T, Matsusaki M. Interstitial flow regulates in vitro three-dimensional self-organized brain micro-vessels. Biochem Biophys Res Commun 2020; 533:600-606. [PMID: 32988592 DOI: 10.1016/j.bbrc.2020.09.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023]
Abstract
Cell culture under medium flow has been shown to favor human brain microvascular endothelial cells function and maturation. Here a three-dimensional in vitro model of the human brain microvasculature, comprising brain microvascular endothelial cells but also astrocytes, pericytes and a collagen type I microfiber - fibrin based matrix, was cultured under continuous medium flow in a pressure driven microphysiological system (10 kPa, in 60-30 s cycles). The cells self-organized in micro-vessels perpendicular to the shear flow. Comparison with static culture showed that the resulting interstitial flow enhanced a more defined micro-vasculature network, with slightly more numerous lumens, and a higher expression of transporters, carriers and tight junction genes and proteins, essential to the blood-brain barrier functions.
Collapse
Affiliation(s)
- Agathe Figarol
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | - Taku Satoh
- Stem Cell Evaluation Technology Research Association, Tokyo, Japan.
| | - Shinji Sugiura
- Cellular and Molecular Biotechnology Research Institute, Bio-Nanomaterials Team, Research Center of Advanced Bionics, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| | - Toshiyuki Kanamori
- Cellular and Molecular Biotechnology Research Institute, Bio-Nanomaterials Team, Research Center of Advanced Bionics, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
25
|
Watanabe S, Nishijima N, Hirai K, Shibata K, Hase A, Yamanaka T, Inazu M. Anticancer Activity of Amb4269951, a Choline Transporter-Like Protein 1 Inhibitor, in Human Glioma Cells. Pharmaceuticals (Basel) 2020; 13:E104. [PMID: 32466342 PMCID: PMC7281368 DOI: 10.3390/ph13050104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
Choline transporter-like protein 1 (CTL1) is highly expressed in glioma cells, and inhibition of CTL1 function induces apoptotic cell death. Therefore, CTL1 is a potential target molecule for glioma therapy. Here, we investigated the therapeutic mechanism underlying the antitumor effects of Amb4269951, a recently discovered novel CTL1 inhibitor, in the human glioma cell line U251MG, and evaluated its in vivo effects in a mouse xenograft model. Amb4269951 inhibited choline uptake and cell viability and increased caspase-3/7 activity. CTL1-mediated choline uptake is associated with cell viability, and the functional inhibition of CTL1 by Amb4269951 may promote apoptotic cell death via ceramide-induced suppression of the expression of survivin, an apoptotic inhibitory factor. Finally, Amb4269951 demonstrated an antitumor effect in a mice xenograft model by significantly inhibiting tumor growth without any weight loss. Amb4269951 is the lead compound in the treatment of glioma and exhibits a novel therapeutic mechanism. These results may lead to the development of novel anticancer drugs targeting the choline transporter CTL1, which has a different mechanism of action than conventional anticancer drugs against gliomas.
Collapse
Affiliation(s)
- Saiichiro Watanabe
- Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (S.W.); (N.N.); (K.H.); (K.S.); (A.H.)
| | - Nozomi Nishijima
- Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (S.W.); (N.N.); (K.H.); (K.S.); (A.H.)
| | - Kaho Hirai
- Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (S.W.); (N.N.); (K.H.); (K.S.); (A.H.)
| | - Kaoru Shibata
- Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (S.W.); (N.N.); (K.H.); (K.S.); (A.H.)
| | - Akane Hase
- Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (S.W.); (N.N.); (K.H.); (K.S.); (A.H.)
| | - Tsuyoshi Yamanaka
- Department of Molecular Preventive Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan;
| | - Masato Inazu
- Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (S.W.); (N.N.); (K.H.); (K.S.); (A.H.)
- Department of Molecular Preventive Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan;
| |
Collapse
|
26
|
Ito R, Umehara K, Suzuki S, Kitamura K, Nunoya KI, Yamaura Y, Imawaka H, Izumi S, Wakayama N, Komori T, Anzai N, Akita H, Furihata T. A Human Immortalized Cell-Based Blood-Brain Barrier Triculture Model: Development and Characterization as a Promising Tool for Drug-Brain Permeability Studies. Mol Pharm 2019; 16:4461-4471. [PMID: 31573814 DOI: 10.1021/acs.molpharmaceut.9b00519] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain microvascular endothelial cells (BMEC), together with astrocytes and pericytes, form the blood-brain barrier (BBB) that strictly restricts drug penetration into the brain. Therefore, in central nervous system drug development, the establishment of an in vitro human BBB model for use in studies estimating the in vivo human BBB permeability of drug candidates has long been awaited. The current study developed and characterized a human immortalized cell-based BBB triculture model, termed the "hiBBB" model. To set up the hiBBB model, human immortalized BMEC (HBMEC/ci18) were cocultured with human immortalized astrocytes (HASTR/ci35) and brain pericytes (HBPC/ci37) in a transwell system. The trans-endothelial electrical resistance of the hiBBB model was 134.4 ± 5.5 (Ω × cm2), and the efflux ratios of rhodamine123 and dantrolene were 1.72 ± 0.11 and 1.72 ± 0.45, respectively, suggesting that the hiBBB model possesses essential cellular junction and efflux transporter functions. In BBB permeability assays, the mean value of the permeability coefficients (Pe) of BBB permeable compounds (propranolol, pyrilamine, memantine, and diphenhydramine) was 960 × 10-6 cm/s, which was clearly distinguishable from that of BBB nonpermeable compounds (sodium fluorescein and Lucifer yellow, 18 × 10-6 cm/s). Collectively, this study successfully developed the hiBBB model, which exhibits essential BBB functionality. Taking into consideration the high availability of the immortalized cells used in the hiBBB model, our results are expected to become an initial step toward the establishment of a useful human BBB model to investigate drug penetration into the human brain.
Collapse
Affiliation(s)
- Ryo Ito
- Pharmacokinetic Research Laboratories , Ono Pharmaceutical Co., Ltd. , Osaka 618-8585 , Japan
| | - Kenta Umehara
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba 260-8670 , Japan
| | - Shota Suzuki
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba 260-8670 , Japan
| | - Keita Kitamura
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba 260-8670 , Japan
| | - Ken-Ichi Nunoya
- Pharmacokinetic Research Laboratories , Ono Pharmaceutical Co., Ltd. , Osaka 618-8585 , Japan
| | - Yoshiyuki Yamaura
- Pharmacokinetic Research Laboratories , Ono Pharmaceutical Co., Ltd. , Osaka 618-8585 , Japan
| | - Haruo Imawaka
- Pharmacokinetic Research Laboratories , Ono Pharmaceutical Co., Ltd. , Osaka 618-8585 , Japan
| | - Saki Izumi
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories , Eisai Co., Ltd. , Ibaraki 300-2635 , Japan
| | - Naomi Wakayama
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories , Eisai Co., Ltd. , Ibaraki 300-2635 , Japan
| | - Takafumi Komori
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories , Eisai Co., Ltd. , Ibaraki 300-2635 , Japan
| | - Naohiko Anzai
- Department of Pharmacology, Graduate School of Medicine , Chiba University , Chiba 260-8670 , Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba 260-8670 , Japan
| | - Tomomi Furihata
- Department of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy , Tokyo University of Pharmacy and Life Sciences , Tokyo 192-0392 , Japan
| |
Collapse
|
27
|
Galland F, Seady M, Taday J, Smaili SS, Gonçalves CA, Leite MC. Astrocyte culture models: Molecular and function characterization of primary culture, immortalized astrocytes and C6 glioma cells. Neurochem Int 2019; 131:104538. [PMID: 31430518 DOI: 10.1016/j.neuint.2019.104538] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/10/2019] [Accepted: 08/17/2019] [Indexed: 12/22/2022]
Abstract
The understanding of the physiology of astrocytes and their role in brain function progresses continuously. Primary astrocyte culture is an alternative method to study these cells in an isolated system: in their physiologic and pathologic states. Cell lines are often used as an astrocyte model, since they are easier and faster to manipulate and cost less. However, there are a few studies evaluating the different features of these cells which may put into question the validity of using them as astrocyte models. The aim of this study was to compare primary cultures (PC) with two cell lines - immortalized astrocytes and C6 cells, in terms of protein characterization, morphology and metabolic functional activity. Our results showed, under the same culture condition, that immortalized astrocytes and C6 are positive for differentiated astrocytic markers (eg. GFAP, S100B, AQP4 and ALDH1L1), although expressing them in less quantities then primary astrocyte cultures. Glutamate metabolism and cell communication are reduced in proliferative cells. However, glucose uptake is elevated in C6 lineage cells in comparison with primary astrocytes, probably due to their tumorigenic origin and high proliferation rate. Immortalized astrocytes presented a lower growth rate than C6 cells, and a similar basal morphology as primary astrocytes. However, they did not prove to be as good reproductive models of some of the classic astrocytic functions, such as S100B secretion and GFAP content, especially while under stimulation. In contrast, C6 cells presented similar results in comparison to primary astrocytes in response to stimuli. Here we provide a functional comparison of three astrocytic models, in an attempt to select the most suitable model for the study of astrocytes, optimizing the research in this area of knowledge.
Collapse
Affiliation(s)
- Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Seady
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jessica Taday
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Soraya Soubhi Smaili
- Departamento de Farmacologia da Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
28
|
Rocchio F, Tapella L, Manfredi M, Chisari M, Ronco F, Ruffinatti FA, Conte E, Canonico PL, Sortino MA, Grilli M, Marengo E, Genazzani AA, Lim D. Gene expression, proteome and calcium signaling alterations in immortalized hippocampal astrocytes from an Alzheimer's disease mouse model. Cell Death Dis 2019; 10:24. [PMID: 30631041 PMCID: PMC6328590 DOI: 10.1038/s41419-018-1264-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
Evidence is rapidly growing regarding a role of astroglial cells in the pathogenesis of Alzheimer’s disease (AD), and the hippocampus is one of the important brain regions affected in AD. While primary astroglial cultures, both from wild-type mice and from rodent models of AD, have been useful for studying astrocyte-specific alterations, the limited cell number and short primary culture lifetime have limited the use of primary hippocampal astrocytes. To overcome these limitations, we have now established immortalized astroglial cell lines from the hippocampus of 3xTg-AD and wild-type control mice (3Tg-iAstro and WT-iAstro, respectively). Both 3Tg-iAstro and WT-iAstro maintain an astroglial phenotype and markers (glutamine synthetase, aldehyde dehydrogenase 1 family member L1 and aquaporin-4) but display proliferative potential until at least passage 25. Furthermore, these cell lines maintain the potassium inward rectifying (Kir) current and present transcriptional and proteomic profiles compatible with primary astrocytes. Importantly, differences between the 3Tg-iAstro and WT-iAstro cell lines in terms of calcium signaling and in terms of transcriptional changes can be re-conducted to the changes previously reported in primary astroglial cells. To illustrate the versatility of this model we performed shotgun mass spectrometry proteomic analysis and found that proteins related to RNA binding and ribosome are differentially expressed in 3Tg-iAstro vs WT-iAstro. In summary, we present here immortalized hippocampal astrocytes from WT and 3xTg-AD mice that might be a useful model to speed up research on the role of astrocytes in AD.
Collapse
Affiliation(s)
- Francesca Rocchio
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.,International Center for T1D, Pediatric Clinic Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy.,ISALIT S.r.l., Spin-off of Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy
| | - Francesca Ronco
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | | | - Eleonora Conte
- Department of Sciences and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
29
|
Zhang L, Ma P, Guan Q, Meng L, Su L, Wang L, Zhao J, Ji S. Protein phosphatase 2A regulates the p38 signaling pathway to affect the migration of astrocytes. Mol Med Rep 2018; 18:4328-4334. [PMID: 30152844 PMCID: PMC6172367 DOI: 10.3892/mmr.2018.9425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/08/2018] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to investigate the effect and mechanism of protein phosphatase 2A (PP2A) on the migration of astrocytes. The primary astrocytes of neonatal mice were isolated and cultured in vitro, and treated with the PP2A activator D-erythro-sphingosine (DES) (activated group) or inhibitor okadaic acid (inhibitory group). The control group was treated with equal amounts of dimethyl sulfoxide. The activity of PP2A in the cells was detected using a commercial kit and the migration of cells was investigated using a Transwell migration assay. The protein expression of p38, phosphorylated (p)-p38, matrix metalloproteinase (MMP)-2 and MMP-9 was detected by western blotting. Cell migration and the protein expression of p38, p-p38, MMP-2 and MMP-9 was also determined following treatment of astrocytes with the p38 signaling pathway inhibitor SB202190 with or without the PP2A activator DES. The results demonstrated that the activity of PP2A in the PP2A inhibitory group was significantly decreased compared with the control group, while that of the PP2A-activated cells was significantly increased compared with the control. The protein levels of MMP-2 and MMP-9 in the PP2A inhibitory group astrocytes were significantly decreased compared with the control group, while PP2A-activated astrocytes exhibited significantly increased levels of these proteins. By contrast, the p-p38 level in PP2A inhibitory group astrocytes was significantly increased compared with the control group, while astrocytes in the activated group exhibited significantly lower levels compared with the control group. Furthermore, the cell migration ability, and MMP-2 and MMP-9 protein levels, of astrocytes that received combined treatment with SB202190 and the PP2A activator DES were significantly increased compared with the levels in astrocytes treated with SB202190 alone. The results of the current study indicate that PP2A may negatively regulate the p38 signaling pathway to promote astrocyte migration.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Pengju Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Qingkai Guan
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Lei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Linlin Su
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Lina Wang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Jianhua Zhao
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Sibei Ji
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|
30
|
Differentiated HASTR/ci35 cells: A promising in vitro human astrocyte model for facilitating CNS drug development studies. J Pharmacol Sci 2018; 137:350-358. [PMID: 30150146 DOI: 10.1016/j.jphs.2018.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023] Open
Abstract
Astrocytes have shown longstanding promise as therapeutic targets for various central nervous system diseases. To facilitate drug development targeting astrocytes, we have recently developed a new conditionally immortalized human astrocyte cell line, termed HASTR/ci35 cells. In this study, in order to further increase their chances to contribute to various astrocyte studies, we report on the development of a culture method that improves HASTR/ci35 cell differentiation status and provide several proofs related to their astrocyte characteristics. The culture method is based on the simultaneous elimination of serum effects and immortalization signals. The results of qPCR showed that the culture method significantly enhanced several astrocyte marker gene expression levels. Using the differentiated HASTR/ci35, we examined their response profiles to nucleotide treatment and inflammatory stimuli, along with their membrane fatty acid composition. Consequently, we found that they responded to ADP or UTP treatment with a transient increase of intracellular Ca2+ concentration, and that they could show reactive response to interleukin-1β treatments. Furthermore, the membrane phospholipids of the cells were enriched with polyunsaturated fatty acids. To summarize, as a unique human astrocyte model carrying the capability of a differentiation induction properties, HASTR/ci35 cells are expected to contribute substantially to astrocyte-oriented drug development studies.
Collapse
|
31
|
Umehara K, Sun Y, Hiura S, Hamada K, Itoh M, Kitamura K, Oshima M, Iwama A, Saito K, Anzai N, Chiba K, Akita H, Furihata T. A New Conditionally Immortalized Human Fetal Brain Pericyte Cell Line: Establishment and Functional Characterization as a Promising Tool for Human Brain Pericyte Studies. Mol Neurobiol 2017; 55:5993-6006. [PMID: 29128907 DOI: 10.1007/s12035-017-0815-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
Abstract
While pericytes wrap around microvascular endothelial cells throughout the human body, their highest coverage rate is found in the brain. Brain pericytes actively contribute to various brain functions, including the development and stabilization of the blood-brain barrier (BBB), tissue regeneration, and brain inflammation. Accordingly, detailed characterization of the functional nature of brain pericytes is important for understanding the mechanistic basis of brain physiology and pathophysiology. Herein, we report on the development of a new human brain pericyte cell line, hereafter referred to as the human brain pericyte/conditionally immortalized clone 37 (HBPC/ci37). Developed via the cell conditionally immortalization method, these cells exhibited excellent proliferative ability at 33 °C. However, when cultured at 37 °C, HBPC/ci37 cells showed a differentiated phenotype that was marked by morphological alterations and increases in several pericyte-enriched marker mRNA levels, such as platelet-derived growth factor receptor β. It was also found that HBPC/ci37 cells possessed the facilitative ability of in vitro BBB formation and differentiation into a neuronal lineage. Furthermore, HBPC/ci37 cells exhibited the typical "reactive" features of brain pericytes in response to pro-inflammatory cytokines. To summarize, our results clearly demonstrate that HBPC/ci37 cells possess the ability to perform several key brain pericyte functions while also showing the capacity for extensive and continuous proliferation. Based on these findings, it can be expected that, as a unique human brain pericyte model, HBPC/ci37 cells have the potential to contribute to significant advances in the understanding of human brain pericyte physiology and pathophysiology.
Collapse
Affiliation(s)
- Kenta Umehara
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yuchen Sun
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Satoshi Hiura
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Koki Hamada
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Keita Kitamura
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Motohiko Oshima
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kosuke Saito
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Division of Medical Safety Science, National Institute of Health Sciences, Tokyo, 158-8501, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kan Chiba
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Hidetaka Akita
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Tomomi Furihata
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
- Department of Pharmacology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| |
Collapse
|
32
|
Furihata T, Anzai N. Functional Expression of Organic Ion Transporters in Astrocytes and Their Potential as a Drug Target in the Treatment of Central Nervous System Diseases. Biol Pharm Bull 2017; 40:1153-1160. [DOI: 10.1248/bpb.b17-00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomomi Furihata
- Department of Pharmacology, Graduate School of Medicine, Chiba University
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Naohiko Anzai
- Department of Pharmacology, Graduate School of Medicine, Chiba University
| |
Collapse
|
33
|
Chen X, Hao J, Fu T, Liu J, Yu M, He S, Qian R, Zhang F. Temporal and Spatial Expression of LGR5 After Acute Spinal Cord Injury in Adult Rats. Neurochem Res 2016; 41:2645-2654. [DOI: 10.1007/s11064-016-1977-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/05/2016] [Accepted: 06/08/2016] [Indexed: 01/21/2023]
|