1
|
Spagnolo P, Cela E, Patel MA, Tweddell D, Daley M, Clarson C, Stranges S, Cepinskas G, Fraser DD. Differential expression of plasma proteins and pathway enrichments in pediatric diabetic ketoacidosis. Mol Med 2025; 31:4. [PMID: 39773407 PMCID: PMC11707870 DOI: 10.1186/s10020-024-01056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND In children with type 1 diabetes (T1D), diabetic ketoacidosis (DKA) triggers a significant inflammatory response; however, the specific effector proteins and signaling pathways involved remain largely unexplored. This pediatric case-control study utilized plasma proteomics to explore protein alterations associated with severe DKA and to identify signaling pathways that associate with clinical variables. METHODS We conducted a proteome analysis of plasma samples from 17 matched pairs of pediatric patients with T1D; one cohort with severe DKA and another with insulin-controlled diabetes. Proximity extension assays were used to quantify 3072 plasma proteins. Data analysis was performed using multivariate statistics, machine learning, and bioinformatics. RESULTS This study identified 214 differentially expressed proteins (162 upregulated, 52 downregulated; adj P < 0.05 and a fold change > 2), reflecting cellular dysfunction and metabolic stress in severe DKA. We characterized protein expression across various organ systems and cell types, with notable alterations observed in white blood cells. Elevated inflammatory pathways suggest an enhanced inflammatory response, which may contribute to the complications of severe DKA. Additionally, upregulated pathways related to hormone signaling and nitrogen metabolism were identified, consistent with increased hormone release and associated metabolic processes, such as glycogenolysis and lipolysis. Changes in lipid and fatty acid metabolism were also observed, aligning with the lipolysis and ketosis characteristic of severe DKA. Finally, several signaling pathways were associated with clinical biochemical variables. CONCLUSIONS Our findings highlight differentially expressed plasma proteins and enriched signaling pathways that were associated with clinical features, offering insights into the pathophysiology of severe DKA.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, Rome, Italy, 00128
| | - Enis Cela
- Physiology and Pharmacology, Western University, London, ON, Canada, N6A 3K7
| | - Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, Canada, N6A 3K7
| | - David Tweddell
- Computer Science, Western University, London, ON, Canada, N6A 3K7
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, Canada, N6A 3K7
- Computer Science, Western University, London, ON, Canada, N6A 3K7
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada, M5G 0C6
| | - Cheril Clarson
- Pediatrics, Western University, London, ON, Canada, N6A 3K7
- Children's Health Research Institute, London, ON, Canada, N6C 4V3
| | - Saverio Stranges
- Epidemiology and Biostatistics, Western University, London, ON, Canada, N6A 3K7
- Medicine, Western University, London, ON, Canada, N6A 3K7
- Family Medicine, Western University, London, ON, Canada, N6A 3K7
- Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy, 80131
| | - Gediminas Cepinskas
- Medical Biophysics, Western University, London, ON, Canada, N6A 3K7
- London Health Sciences Centre Research Institute (LHSC-RI), London, ON, Canada, N6A 5W9
- Anatomy and Cell Biology, Western University, London, ON, Canada, N6A 3K7
| | - Douglas D Fraser
- Physiology and Pharmacology, Western University, London, ON, Canada, N6A 3K7.
- Pediatrics, Western University, London, ON, Canada, N6A 3K7.
- Children's Health Research Institute, London, ON, Canada, N6C 4V3.
- London Health Sciences Centre Research Institute (LHSC-RI), London, ON, Canada, N6A 5W9.
- Clinical Neurological Sciences, Western University, London, ON, Canada, N6A 3K7.
- Room A5-132, Victoria Research Laboratories, LHSC-VC, 800 Commissioners Road E., London, ON, Canada, N6A 5W9.
| |
Collapse
|
2
|
Du J, Zhong Y, Fan B, Yang X, Ye R, Huang Y, Li Z, Liang B, Xian H, Deng Y, Huang X, Chen X, Shi C, Yu X, Wu B, Yang X, Huang Z. Human umbilical cord mesenchymal stem cells mitigate A1 astrocyte neuroinflammation induced by 1,2-dichloroethane via ERBB pathway inhibition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117365. [PMID: 39571258 DOI: 10.1016/j.ecoenv.2024.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
1,2-Dichloroethane (1,2-DCE), a prevalent industrial and environmental contaminant, induces toxic encephalopathy through inhalation, leading to neurotoxic effects and inflammation-driven brain edema. Human umbilical cord mesenchymal stem cells (HUCMSCs) secrete bioactive factors, including miRNAs, proteins, and lipids via exosomes, exhibiting anti-inflammatory and immune-regulatory properties. However, their potential in treating 1,2-DCE-induced neuroinflammation and the underlying mechanisms remain unclear. This study investigates how HUCMSCs mitigate 1,2-DCE-induced neuroinflammation. We exposed SVG p12 cells to 1,2-DCE and assessed inflammatory markers and A1 astrocyte activation. Co-culturing these cells with HUCMSCs, we used RNA sequencing to analyze inflammatory modulation. Additionally, HUCMSCs were administered to CD-1 male mice post-1,2-DCE exposure, evaluating the reduction in A1 astrocyte inflammation via behavioral tests, molecular analyses, and tissue staining. Pre-treating HUCMSCs with exosome inhibitors and co-culturing them with 1,2-DCE-treated SVG p12 cells investigated miRNA transfer. Results showed that 1,2-DCE activated A1 astrocytes, leading to increases in interleukin-1β (IL-1β, 4.9-fold), tumor necrosis factor-α (TNF-α, 2.5-fold), complement 3 (C3, 2.1-fold), and glial fibrillary acidic protein (GFAP, 1.4-fold). HUCMSCs effectively reversed 1,2-DCE-induced A1 astrocyte inflammation, attenuating IL-1β, TNF-α, and A1 astrocyte activation. RNA-seq highlighted modulation of the erb-b2 receptor tyrosine kinase (ERBB) pathway via Ral-binding protein 1-associated Eps domain-containing 2 (REPS2). In vivo confirmation underscored these findings. Importantly, HUCMSC-derived exosomes, particularly miR-3064-5p, reversed 1,2-DCE-activated A1 astrocyte inflammation, suggesting therapeutic potential. Collectively, HUCMSCs alleviate 1,2-DCE-induced neuroinflammation via exosome-mediated miR-3064-5p secretion, targeting REPS2 to mitigate neuroinflammation. This study advances the understanding of their therapeutic roles and highlights HUCMSC exosomal miRNA transfer for treating 1,2-DCE-induced neuroinflammatory conditions.
Collapse
Affiliation(s)
- Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bingchi Fan
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiyun Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Chen
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Congying Shi
- Institution of Guangdong Cord Blood Bank, Guangdong Women and Children Hospital, Guangzhou, Guangdong 510663, China; Department of Experimental Center, Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd, Guangzhou, Guangdong 510663, China
| | - Xibao Yu
- Institution of Guangdong Cord Blood Bank, Guangdong Women and Children Hospital, Guangzhou, Guangdong 510663, China; Department of Experimental Center, Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd, Guangzhou, Guangdong 510663, China
| | - Banghua Wu
- Institute of Chemical Surveillance, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
3
|
Burkhart A, Helgudóttir SS, Mahamed YA, Fruergaard MB, Holm-Jacobsen JN, Haraldsdóttir H, Dahl SE, Pretzmann F, Routhe LG, Lambertsen K, Moos T, Thomsen MS. Activation of glial cells induces proinflammatory properties in brain capillary endothelial cells in vitro. Sci Rep 2024; 14:26580. [PMID: 39496829 PMCID: PMC11535503 DOI: 10.1038/s41598-024-78204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
Neurodegenerative diseases are often accompanied by neuroinflammation and impairment of the blood-brain barrier (BBB) mediated by activated glial cells through their release of proinflammatory molecules. To study the effects of glial cells on mouse brain endothelial cells (mBECs), we developed an in vitro BBB model with inflammation by preactivating mixed glial cells (MGCs) with lipopolysaccharide (LPS) before co-culturing with mBECs to study the influence of molecules released by activated MGCs. The response of the mBECs to activated MGCs was compared to direct stimulation with LPS. The cytokine profile of activated MGCs was analyzed together with their effects on the mBEC's integrity, expression of tight junction proteins, adhesion molecules, and BBB-specific transport proteins. Stimulation of MGCs significantly upregulated mRNA expression and secretion of several pro-inflammatory cytokines. Co-culturing mBECs with pre-stimulated MGCs significantly affected the barrier integrity of mBECs similar to direct stimulation with LPS. The gene expression levels of tight junction proteins were unaltered, but tight junction proteins revealed rearrangements with respect to subcellular distribution. Compared to direct stimulation with LPS, the expression of cell-adhesion molecules was significantly increased when mBECs were co-cultured with prestimulated MGCs and thus pre-activating MGCs transforms mBECs into a proinflammatory phenotype.
Collapse
Affiliation(s)
- Annette Burkhart
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Steinunn Sara Helgudóttir
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Yahye A Mahamed
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Mikkel B Fruergaard
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Julie N Holm-Jacobsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Hulda Haraldsdóttir
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Sara E Dahl
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Freja Pretzmann
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Lisa Greve Routhe
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Kate Lambertsen
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- BRIDGE - Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 4, 5000, Odense C, Denmark
| | - Torben Moos
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark.
| | - Maj Schneider Thomsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| |
Collapse
|
4
|
Shuvalova M, Dmitrieva A, Belousov V, Nosov G. The role of reactive oxygen species in the regulation of the blood-brain barrier. Tissue Barriers 2024:2361202. [PMID: 38808582 DOI: 10.1080/21688370.2024.2361202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
The blood-brain barrier (BBB) regulates the exchange of metabolites and cells between the blood and brain, and maintains central nervous system homeostasis. Various factors affect BBB barrier functions, including reactive oxygen species (ROS). ROS can act as stressors, damaging biological molecules, but they also serve as secondary messengers in intracellular signaling cascades during redox signaling. The impact of ROS on the BBB has been observed in multiple sclerosis, stroke, trauma, and other neurological disorders, making blocking ROS generation a promising therapeutic strategy for BBB dysfunction. However, it is important to consider ROS generation during normal BBB functioning for signaling purposes. This review summarizes data on proteins expressed by BBB cells that can be targets of redox signaling or oxidative stress. It also provides examples of signaling molecules whose impact may cause ROS generation in the BBB, as well as discusses the most common diseases associated with BBB dysfunction and excessive ROS generation, open questions that arise in the study of this problem, and possible ways to overcome them.
Collapse
Affiliation(s)
- Margarita Shuvalova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of metabolism and redox biology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiia Dmitrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vsevolod Belousov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of metabolism and redox biology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, Russia
| | - Georgii Nosov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, Russia
| |
Collapse
|
5
|
Huang H, Liao X, Zhang A, Qiu B, Mei F, Liu F, Zeng K, Yang C, Ma H, Ding W, Qi S, Bao Y. Cerebrospinal Fluid from Patients After Craniotomy with the Appearance of Interleukin-6 Storm Can Activate Microglia to Damage the Hypothalamic Neurons in Mice. Mol Neurobiol 2024; 61:2707-2718. [PMID: 37924484 DOI: 10.1007/s12035-023-03693-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
We monitored CSF (cerebrospinal fluid) for Th1/Th2 inflammatory cytokines in a patient with unexplained postoperative disturbance of consciousness after craniotomy and found that the level of IL-6 (interleukin-6) concentrations was extremely high, meeting the traditional criteria for an inflammatory cytokine storm. Subsequently, the cerebrospinal fluid specimens of several patients were tested, and it was found that IL-6 levels were increased in different degrees after craniotomy. Previous studies have focused more on mild and long-term IL-6 elevation, but less on the effects of this short-term IL-6 inflammatory cytokine storm. Cerebrospinal fluid rich in IL-6 may play a significant role in patients after craniotomy. The objective is to explore the degree of IL-6 elevation and the incidence of IL-6 inflammatory cytokine storm in patients after craniotomy, as well as the effect of IL-6 elevation on the brain. In this study, the levels and clinical manifestations of inflammatory factors in cerebrospinal fluid after craniotomy were statistically classified, and the underlying mechanisms were discussed preliminarily. CSF specimens of patients after craniotomy were collected, IL-6 level was measured at 1, 5, and 10 days after operation, and cognitive function was analyzed at 1, 10, and 180 days after surgery. Craniotomy mouse model, cerebrospinal fluid of patients with the appearance of IL-6 storm after craniotomy, and IL-6 at the same concentration stimulation model were established. Behavioral tests, fluorescence in situ hybridization (FISH), pathological means, western blot, and ELISA (enzyme-linked immune-sorbent assay) were performed for verification. CSF from patients after craniotomy caused disturbance of consciousness in mice, affected neuronal damage in the hypothalamus, activation of microglia in the hypothalamus, and decreased expression of barrier proteins in the hypothalamus and brain. The large amount of interleukin-6 in CSF after craniotomy was found to be mainly derived from astrocytes. The IL-6 level in CSF after craniotomy correlated inversely with patients' performance in MoCA test. High levels of IL-6 in the cerebrospinal fluid derived from astrocytes after craniotomy may lead to disruption of the brain-cerebrospinal fluid barrier, most notably around the hypothalamus, which might result in inflammatory activation of microglia to damage the hypothalamic neurons and impaired cognitive function/more gradual cognitive repairment in patients after craniotomy with the appearance of IL-6 storm.
Collapse
Affiliation(s)
- Haorun Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Xixian Liao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - An Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Binghui Qiu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fen Mei
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fan Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Kai Zeng
- The First Clinical College, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Chunen Yang
- The First Clinical College, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Haidie Ma
- The First Clinical College, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Wenjie Ding
- The First Clinical College, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China.
| | - Yun Bao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
6
|
Bettinetti-Luque M, Trujillo-Estrada L, Garcia-Fuentes E, Andreo-Lopez J, Sanchez-Varo R, Garrido-Sánchez L, Gómez-Mediavilla Á, López MG, Garcia-Caballero M, Gutierrez A, Baglietto-Vargas D. Adipose tissue as a therapeutic target for vascular damage in Alzheimer's disease. Br J Pharmacol 2024; 181:840-878. [PMID: 37706346 DOI: 10.1111/bph.16243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Miriam Bettinetti-Luque
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Laura Trujillo-Estrada
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Garcia-Fuentes
- Unidad de Gestión Clínica Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana Andreo-Lopez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Raquel Sanchez-Varo
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Ángela Gómez-Mediavilla
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Melissa Garcia-Caballero
- Departamento de Biología Molecular y Bioquímica, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonia Gutierrez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Baglietto-Vargas
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Wong Zhang DE, Tran V, Vinh A, Dinh QN, Drummond GR, Sobey CG, Jelinic M, De Silva TM. Pathophysiological Links Between Obesity and Dementia. Neuromolecular Med 2023; 25:451-456. [PMID: 37086380 PMCID: PMC10721659 DOI: 10.1007/s12017-023-08746-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
Obesity is a major global health concern, with prevalence rates rapidly rising due to increased availability of highly processed foods rich in fats and/or sugars and technological advances promoting more sedentary behaviour. There is increasing evidence to suggest that obesity predisposes individuals to developing cognitive impairment and dementia. However, the relationship between the brain and the peripheral metabolic state is complex, and many of the underlying mechanisms of cognitive impairment in obesity are yet to be fully elucidated. To better understand the links between obesity and dementia, further work is required to determine pathological changes occurring in the brain during obesity. In this mini-review, we discuss the role of two pathological features of obesity (the gut-brain axis and systemic inflammation) and their potential contribution to dementia.
Collapse
Affiliation(s)
- David E Wong Zhang
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Vivian Tran
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Antony Vinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Quynh Nhu Dinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Christopher G Sobey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Maria Jelinic
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, VIC, 3086, Australia
| | - T Michael De Silva
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
8
|
Mengozzi A, de Ciuceis C, Dell'oro R, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Anyfanti P, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Mavraganis G, Montezano AC, Rios FJ, Winklewski PJ, Wolf J, Costantino S, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Triantafyllou A, Virdis A. The importance of microvascular inflammation in ageing and age-related diseases: a position paper from the ESH working group on small arteries, section of microvascular inflammation. J Hypertens 2023; 41:1521-1543. [PMID: 37382158 DOI: 10.1097/hjh.0000000000003503] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Microcirculation is pervasive and orchestrates a profound regulatory cross-talk with the surrounding tissue and organs. Similarly, it is one of the earliest biological systems targeted by environmental stressors and consequently involved in the development and progression of ageing and age-related disease. Microvascular dysfunction, if not targeted, leads to a steady derangement of the phenotype, which cumulates comorbidities and eventually results in a nonrescuable, very high-cardiovascular risk. Along the broad spectrum of pathologies, both shared and distinct molecular pathways and pathophysiological alteration are involved in the disruption of microvascular homeostasis, all pointing to microvascular inflammation as the putative primary culprit. This position paper explores the presence and the detrimental contribution of microvascular inflammation across the whole spectrum of chronic age-related diseases, which characterise the 21st-century healthcare landscape. The manuscript aims to strongly affirm the centrality of microvascular inflammation by recapitulating the current evidence and providing a clear synoptic view of the whole cardiometabolic derangement. Indeed, there is an urgent need for further mechanistic exploration to identify clear, very early or disease-specific molecular targets to provide an effective therapeutic strategy against the otherwise unstoppable rising prevalence of age-related diseases.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | - Raffaella Dell'oro
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - George Pavlidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Panagiota Anyfanti
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine
- Center of Translational Medicine
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University, Gdansk, Poland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Cardiovascular Science, University College London, London, UK
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Francesco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | | | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Ignatios Ikonomidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
- Division of Medicine, Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site
- Department of Cardiology, University Hospital Mannheim, Heidelberg University, Manheim, Germany
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Zhao T, Lu J, Qin J, Chen Y, Shi Z, Wei W, Xiong P, Ma D, Song X. Altered intestinal barrier contributes to cognitive impairment in old mice with constipation after sevoflurane anesthesia. Front Nutr 2023; 10:1117028. [PMID: 37771755 PMCID: PMC10523324 DOI: 10.3389/fnut.2023.1117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/24/2023] [Indexed: 09/30/2023] Open
Abstract
Background Elderly patients have a high risk of developing postoperative cognitive dysfunction (POCD). Gastrointestinal disorders, such as constipation, in the elderly population may be involved in the pathogenesis of neurological disorders by promoting inflammatory responses due to a 'leaky gut'. General anesthetic sevoflurane may impair gastrointestinal function in elderly patients to trigger neurological complications following surgery. Therefore, we hypothesized that elderly individuals with gastrointestinal dysfunction may be more vulnerable to sevoflurane and consequently develop POCD. Methods Aged mice were randomly divided into four groups: control (CTRL), CTRL+sevoflurane (Sev), slow transit constipation (STC), and STC + Sev. Mice in the STC and STC + Sev groups were intra-gastrically administrated loperamide (3 mg/kg, twice a day for 7 days) to induce a slow transit constipation (STC) model determined with fecal water content and the time of first white fecal pellet, whereas mice in the other groups received the similar volume of saline. One week later, mice in the CTRL+Sev group and STC + Sev group received 2% sevoflurane for 2 h. The gut permeability evaluated with 4-kDa fluorescein isothiocyanate (FITC)-dextran, serum cytokines, microglia density, TLR4/NF-κB signaling expression, and POCD-like behavioral changes were determined accordingly. Results The loperamide-induced STC mice had decreased fecal water content and prolonged time of first white fecal pellet. Sevoflurane exposure caused significantly increased gut permeability and serum cytokines, as well as the activation of microglia and the TLR4/NF-κB signaling pathway in the prefrontal cortex of the aged STC mice. Sevoflurane also caused cognitive impairment and emotional phenotype abnormality in aged STC mice. Conclusion Aged STC mice were more vulnerable to sevoflurane anesthesia and consequently developed POCD-like behavioral changes. Our data suggest that gastrointestinal disorders including constipation may contribute to the development of POCD.
Collapse
Affiliation(s)
- Tianyun Zhao
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junming Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingwen Qin
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanxin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwen Shi
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Wei
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peng Xiong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
- National Clinical Research Center for Child Health, Zhejiang, China
| | - Xingrong Song
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Gao X, Bayraktutan U. TNF-α evokes blood-brain barrier dysfunction through activation of Rho-kinase and neurokinin 1 receptor. Immunobiology 2023; 228:152706. [PMID: 37454559 DOI: 10.1016/j.imbio.2023.152706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Ischaemic stroke, accompanied by neuroinflammation, impairs blood-brain barrier (BBB) integrity through a complex mechanism involving activation of both RhoA/Rho kinase/myosin light chain-2 and neurokinin 1 receptor (NK1R). Using an in vitro model of human BBB composed of brain microvascular endothelial cells (BMEC), astrocytes and pericytes, this study examined the potential contributions of these elements to BBB damage induced by elevated availability of pro-inflammatory cytokine, TNF-α. Treatment of human BMECs with TNF-α significantly enhanced RhoA activity and the protein expressions of Rho kinase and phosphorylated Ser19MLC-2 while decreasing that of NK1R. Pharmacological inhibition of Rho kinase by Y-27632 and NK1R by CP96345 neutralised the disruptive effects of TNF-α on BBB integrity and function as ascertained by reversal of decreases in transendothelial electrical resistance and increases in paracellular flux of low molecular weight permeability marker, sodium fluorescein, respectively. Suppression of RhoA activation, mitigation of actin stress fibre formation and restoration of plasma membrane localisation of tight junction protein zonula occludens-1 appeared to contribute to the barrier-protective effects of both Y-27632 and CP96345. Attenuation of TNF-α-mediated increases in NK1R protein expression in BMEC by Y-27632 suggests that RhoA/Rho kinase pathway acts upstream to NK1R. In conclusion, specific inhibition of Rho kinase in cerebrovascular conditions, accompanied by excessive release of pro-inflammatory cytokine TNF-α, helps preserve endothelial cell morphology and inter-endothelial cell barrier formation and may serve as an important therapeutic target.
Collapse
Affiliation(s)
- Xin Gao
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
11
|
Escaffre O, Szaniszlo P, Törő G, Vilas CL, Servantes BJ, Lopez E, Juelich TL, Levine CB, McLellan SLF, Cardenas JC, Freiberg AN, Módis K. Hydrogen Sulfide Ameliorates SARS-CoV-2-Associated Lung Endothelial Barrier Disruption. Biomedicines 2023; 11:1790. [PMID: 37509430 PMCID: PMC10376201 DOI: 10.3390/biomedicines11071790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Recent studies have confirmed that lung microvascular endothelial injury plays a critical role in the pathophysiology of COVID-19. Our group and others have demonstrated the beneficial effects of H2S in several pathological processes and provided a rationale for considering the therapeutic implications of H2S in COVID-19 therapy. Here, we evaluated the effect of the slow-releasing H2S donor, GYY4137, on the barrier function of a lung endothelial cell monolayer in vitro, after challenging the cells with plasma samples from COVID-19 patients or inactivated SARS-CoV-2 virus. We also assessed how the cytokine/chemokine profile of patients' plasma, endothelial barrier permeability, and disease severity correlated with each other. Alterations in barrier permeability after treatments with patient plasma, inactivated virus, and GYY4137 were monitored and assessed by electrical impedance measurements in real time. We present evidence that GYY4137 treatment reduced endothelial barrier permeability after plasma challenge and completely reversed the endothelial barrier disruption caused by inactivated SARS-CoV-2 virus. We also showed that disease severity correlated with the cytokine/chemokine profile of the plasma but not with barrier permeability changes in our assay. Overall, these data demonstrate that treatment with H2S-releasing compounds has the potential to ameliorate SARS-CoV-2-associated lung endothelial barrier disruption.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity, Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Peter Szaniszlo
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabor Törő
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Caitlyn L. Vilas
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Brenna J. Servantes
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ernesto Lopez
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Corri B. Levine
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Susan L. F. McLellan
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jessica C. Cardenas
- The Center for Translational Injury Research, Department of Surgery, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity, Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Katalin Módis
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
12
|
Sibilia F, Sheikh-Bahaei N, Mack WJ, Choupan J. Perivascular spaces in Alzheimer's disease are associated with inflammatory, stress-related, and hypertension biomarkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543504. [PMID: 37333097 PMCID: PMC10274635 DOI: 10.1101/2023.06.02.543504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Perivascular spaces (PVS) are fluid-filled spaces surrounding the brain vasculature. Literature suggests that PVS may play a significant role in aging and neurological disorders, including Alzheimer's disease (AD). Cortisol, a stress hormone, has been implicated in the development and progression of AD. Hypertension, a common condition in older adults, has been found to be a risk factor for AD. Hypertension may contribute to PVS enlargement, impairing the clearance of waste products from the brain and promoting neuroinflammation. This study aims to understand the potential interactions between PVS, cortisol, hypertension, and inflammation in the context of cognitive impairment. Using MRI scans acquired at 1.5T, PVS were quantified in a cohort of 465 individuals with cognitive impairment. PVS was calculated in the basal ganglia and centrum semiovale using an automated segmentation approach. Levels of cortisol and angiotensin-converting enzyme (ACE) (an indicator of hypertension) were measured from plasma. Inflammatory biomarkers, such as cytokines and matrix metalloproteinases, were analyzed using advanced laboratory techniques. Main effect and interaction analyses were performed to examine the associations between PVS severity, cortisol levels, hypertension, and inflammatory biomarkers. In the centrum semiovale, higher levels of inflammation reduced cortisol associations with PVS volume fraction. For ACE, an inverse association with PVS was seen only when interacting with TNFr2 (a transmembrane receptor of TNF). There was also a significant inverse main effect of TNFr2. In the PVS basal ganglia, a significant positive association was found with TRAIL (a TNF receptor inducing apoptosis). These findings show for the first time the intricate relationships between PVS structure and the levels of stress-related, hypertension, and inflammatory biomarkers. This research could potentially guide future studies regarding the underlying mechanisms of AD pathogenesis and the potential development of novel therapeutic strategies targeting these inflammation factors.
Collapse
Affiliation(s)
- Francesca Sibilia
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nasim Sheikh-Bahaei
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- NeuroScope Inc. Scarsdale, New York
| |
Collapse
|
13
|
Villalba N, Ma Y, Gahan SA, Joly-Amado A, Spence S, Yang X, Nash KR, Yuan SY. Lung infection by Pseudomonas aeruginosa induces neuroinflammation and blood-brain barrier dysfunction in mice. J Neuroinflammation 2023; 20:127. [PMID: 37245027 PMCID: PMC10223932 DOI: 10.1186/s12974-023-02817-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. METHODS Lung infection in mice was induced by instilling Pseudomonas aeruginosa (PA) intratracheally. We determined bacterial colonization in tissue, microvascular leakage, expression of cytokines and leukocyte infiltration into the brain. RESULTS Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 h and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b + CD45+ cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1β induced a significant reduction of barrier function coupled with tight junction (TJ) and adherens junction (AJ) diffusion and disorganization. Combined treatment with IL-1β and TNFα augmented the barrier injury. CONCLUSIONS Lung bacterial infection is associated with BBB disruption and behavioral changes, which are mediated by systemic cytokine release.
Collapse
Affiliation(s)
- Nuria Villalba
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Sarah A. Gahan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Sam Spence
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| |
Collapse
|
14
|
Zhou J, Chen B. Retinal Cell Damage in Diabetic Retinopathy. Cells 2023; 12:1342. [PMID: 37174742 PMCID: PMC10177610 DOI: 10.3390/cells12091342] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular complication that occurs in diabetes mellitus (DM), is the leading cause of vision loss in working-age adults. The prevalence of diabetic retinopathy is approximately 30% of the diabetic population and untreated DR can eventually cause blindness. For decades, diabetic retinopathy was considered a microvascular complication and clinically staged by its vascular manifestations. In recent years, emerging evidence has shown that diabetic retinopathy causes early neuronal dysfunction and neurodegeneration that may precede vascular pathology and affect retinal neurons as well as glial cells. This knowledge leads to new therapeutic strategies aiming to prevent dysfunction of retinal neurons at the early stage of DR. Early detection and timely treatment to protect retinal neurons are critical to preventing visual loss in DR. This review provides an overview of DR and the structural and functional changes associated with DR, and discusses neuronal degeneration during diabetic retinopathy, the mechanisms underlying retinal neurodegeneration and microvascular complications, and perspectives on current and future clinic therapies.
Collapse
Affiliation(s)
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
15
|
Villalba N, Ma Y, Gahan SA, Joly-Amado A, Spence S, Yang X, Nash K, Yuan SY. Lung infection by P. aeruginosa induces neuroinflammation and blood-brain barrier dysfunction in mice. RESEARCH SQUARE 2023:rs.3.rs-2511441. [PMID: 36778380 PMCID: PMC9915779 DOI: 10.21203/rs.3.rs-2511441/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. Methods Pneumonia was induced in adult C57BL/6 mice by intratracheal inoculation of Pseudomonas aeruginosa (PA). Solute extravasation, histology, immunofluorescence, RT-PCR, multiphoton imaging and neurological testing were performed in this study. Results Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 hours and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b + cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1β induced a significant reduction of barrier function coupled with tight junction (TJ) diffusion and disorganization. Combined treatment with IL-1β and TNFα augmented the barrier injury. Conclusions These results suggest that lung bacterial infection causes cerebral microvascular leakage and neuroinflammation via a mechanism involving cytokine-induced BBB injury.
Collapse
Affiliation(s)
| | - Yonggang Ma
- University of South Florida Morsani College of Medicine
| | - Sarah A Gahan
- University of South Florida Morsani College of Medicine
| | | | - Sam Spence
- University of South Florida Morsani College of Medicine
| | - Xiaoyuan Yang
- University of South Florida Morsani College of Medicine
| | - Kevin Nash
- University of South Florida Morsani College of Medicine
| | - Sarah Y Yuan
- University of South Florida Morsani College of Medicine
| |
Collapse
|
16
|
Villalba N, Ma Y, Gahan SA, Joly-Amado A, Spence S, Yang X, Nash K, Yuan SY. Lung infection by P. aeruginosa induces neuroinflammation and blood-brain barrier dysfunction in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.524949. [PMID: 36747856 PMCID: PMC9900744 DOI: 10.1101/2023.01.23.524949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. Methods Pneumonia was induced in adult C57BL/6 mice by intratracheal inoculation of Pseudomonas aeruginosa (PA). Solute extravasation, histology, immunofluorescence, RT-PCR, multiphoton imaging and neurological testing were performed in this study. Results Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 hours and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b+ cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1β induced a significant reduction of barrier function coupled with tight junction (TJ) diffusion and disorganization. Combined treatment with IL-1β and TNFα augmented the barrier injury. Conclusions These results suggest that lung bacterial infection causes cerebral microvascular leakage and neuroinflammation via a mechanism involving cytokine-induced BBB injury.
Collapse
|
17
|
Chen Y, Heng W, Hao M, Li L, Xu M, Li X. Therapeutic Effects of Naloxone Combined with Edaravone on Elderly Patients with Acute Cerebral Infarction. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1568.1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Plasmodium falciparum and TNF-α Differentially Regulate Inflammatory and Barrier Integrity Pathways in Human Brain Endothelial Cells. mBio 2022; 13:e0174622. [PMID: 36036514 PMCID: PMC9601155 DOI: 10.1128/mbio.01746-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection characterized by the loss of blood-brain barrier (BBB) integrity, which is associated with brain swelling and mortality in patients. P. falciparum-infected red blood cells and inflammatory cytokines, like tumor necrosis factor alpha (TNF-α), have been implicated in the development of cerebral malaria, but it is still unclear how they contribute to the loss of BBB integrity. Here, a combination of transcriptomic analysis and cellular assays detecting changes in barrier integrity and endothelial activation were used to distinguish between the effects of P. falciparum and TNF-α on a human brain microvascular endothelial cell (HBMEC) line and in primary human brain microvascular endothelial cells. We observed that while TNF-α induced high levels of endothelial activation, it only caused a small increase in HBMEC permeability. Conversely, P. falciparum-infected red blood cells (iRBCs) led to a strong increase in HBMEC permeability that was not mediated by cell death. Distinct transcriptomic profiles of TNF-α and P. falciparum in HBMECs confirm the differential effects of these stimuli, with the parasite preferentially inducing an endoplasmic reticulum stress response. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics.
Collapse
|
19
|
Pediaditakis I, Kodella KR, Manatakis DV, Le CY, Barthakur S, Sorets A, Gravanis A, Ewart L, Rubin LL, Manolakos ES, Hinojosa CD, Karalis K. A microengineered Brain-Chip to model neuroinflammation in humans. iScience 2022; 25:104813. [PMID: 35982785 PMCID: PMC9379671 DOI: 10.1016/j.isci.2022.104813] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Species differences in brain and blood-brain barrier (BBB) biology hamper the translation of findings from animal models to humans, impeding the development of therapeutics for brain diseases. Here, we present a human organotypic microphysiological system (MPS) that includes endothelial-like cells, pericytes, glia, and cortical neurons and maintains BBB permeability at in vivo relevant levels. This human Brain-Chip engineered to recapitulate critical aspects of the complex interactions that mediate neuroinflammation and demonstrates significant improvements in clinical mimicry compared to previously reported similar MPS. In comparison to Transwell culture, the transcriptomic profiling of the Brain-Chip displayed significantly advanced similarity to the human adult cortex and enrichment in key neurobiological pathways. Exposure to TNF-α recreated the anticipated inflammatory environment shown by glia activation, increased release of proinflammatory cytokines, and compromised barrier permeability. We report the development of a robust brain MPS for mechanistic understanding of cell-cell interactions and BBB function during neuroinflammation.
Collapse
Affiliation(s)
| | - Konstantia R. Kodella
- Emulate Inc., 27 Drydock Avenue, Boston, MA 02210, USA
- University of Crete Medical School, Department of Pharmacology, Heraklion, 71110 Greece
| | | | | | | | | | - Achille Gravanis
- University of Crete Medical School, Department of Pharmacology, Heraklion, 71110 Greece
| | - Lorna Ewart
- Emulate Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Elias S. Manolakos
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Greece
- Northeastern University, Bouvé College of Health Sciences, Boston, MA, USA
| | | | - Katia Karalis
- Emulate Inc., 27 Drydock Avenue, Boston, MA 02210, USA
- Endocrine Division, Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Remenyik J, Biró A, Klusóczki Á, Juhász KZ, Szendi-Szatmári T, Kenesei Á, Szőllősi E, Vasvári G, Stündl L, Fenyvesi F, Váradi J, Markovics A. Comparison of the Modulating Effect of Anthocyanin-Rich Sour Cherry Extract on Occludin and ZO-1 on Caco-2 and HUVEC Cultures. Int J Mol Sci 2022; 23:ijms23169036. [PMID: 36012299 PMCID: PMC9408816 DOI: 10.3390/ijms23169036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Increased permeability of the epithelial and endothelial cell layers results in the onset of pathogenic mechanisms. In both cell types, cell–cell connections play a regulatory role in altering membrane permeability. The aim of this study was to investigate the modulating effect of anthocyanin-rich extract (AC) on TJ proteins in inflammatory Caco-2 and HUVEC monolayers. Distribution of Occludin and zonula occludens-1 (ZO-1) were investigated by immunohistochemical staining and the protein levels were measured by flow cytometry. The mRNA expression was determined by quantitative real-time PCR. The transepithelial electrical resistance (TEER) values were measured during a permeability assay on HUVEC cell culture. As a result of inflammatory induction by TNF-α, redistribution of proteins was observed in Caco-2 cell culture, which was reduced by AC treatment. In HUVEC cell culture, the decrease in protein and mRNA expression was more dominant during inflammatory induction, which was compensated for by the AC treatment. Overall, AC positively affected the expression of the examined cell-binding structures forming the membrane on both cell types.
Collapse
Affiliation(s)
- Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Biró
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Klusóczki
- Institute of Healthcare Industry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztián Zoltán Juhász
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tímea Szendi-Szatmári
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ádám Kenesei
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Erzsébet Szőllősi
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: (J.V.); (A.M.)
| | - Arnold Markovics
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: (J.V.); (A.M.)
| |
Collapse
|
21
|
Tran VTA, Lee LP, Cho H. Neuroinflammation in neurodegeneration via microbial infections. Front Immunol 2022; 13:907804. [PMID: 36052093 PMCID: PMC9425114 DOI: 10.3389/fimmu.2022.907804] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent epidemiological studies show a noticeable correlation between chronic microbial infections and neurological disorders. However, the underlying mechanisms are still not clear due to the biological complexity of multicellular and multiorgan interactions upon microbial infections. In this review, we show the infection leading to neurodegeneration mediated by multiorgan interconnections and neuroinflammation. Firstly, we highlight three inter-organ communications as possible routes from infection sites to the brain: nose-brain axis, lung-brain axis, and gut-brain axis. Next, we described the biological crosstalk between microglia and astrocytes upon pathogenic infection. Finally, our study indicates how neuroinflammation is a critical player in pathogen-mediated neurodegeneration. Taken together, we envision that antibiotics targeting neuro-pathogens could be a potential therapeutic strategy for neurodegeneration.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, United States
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| | - Hansang Cho
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| |
Collapse
|
22
|
Urbanczyk M, Zbinden A, Schenke-Layland K. Organ-specific endothelial cell heterogenicity and its impact on regenerative medicine and biomedical engineering applications. Adv Drug Deliv Rev 2022; 186:114323. [PMID: 35568103 DOI: 10.1016/j.addr.2022.114323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) are a key cellular component of the vascular system as they form the inner lining of the blood vessels. Recent findings highlight that ECs express extensive phenotypic heterogenicity when following the vascular tree from the major vasculature down to the organ capillaries. However, in vitro models, used for drug development and testing, or to study the role of ECs in health and disease, rarely acknowledge this EC heterogenicity. In this review, we highlight the main differences between different EC types, briefly summarize their different characteristics and focus on the use of ECs in in vitro models. We introduce different approaches on how ECs can be utilized in co-culture test systems in the field of brain, pancreas, and liver research to study the role of the endothelium in health and disease. Finally, we discuss potential improvements to current state-of-the-art in vitro models and future directions.
Collapse
|
23
|
Potential Pathophysiological Mechanisms Underlying Multiple Organ Dysfunction in Cytokine Release Syndrome. Mediators Inflamm 2022; 2022:7137900. [PMID: 35431655 PMCID: PMC9007670 DOI: 10.1155/2022/7137900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
In recent decades, many serious respiratory infections have broken out all over the world, including SARS-CoV, MERS, and COVID-19. They are characterized by strong infectivity, rapid disease progression, high mortality, and poor prognosis. Excessive immune system activation results in cytokine hypersecretion, which is an important reason for the aggravation of symptoms, and can spread throughout the body leading to systemic multiple organ dysfunction, namely, cytokine release syndrome (CRS). Although many diseases related to CRS have been identified, the mechanism of CRS is rarely mentioned clearly. This review is intended to clarify the pathogenetic mechanism of CRS in the deterioration of related diseases, describe the important signaling pathways and clinical pathophysiological characteristics of CRS, and provide ideas for further research and development of specific drugs for corresponding targets to treat CRS.
Collapse
|
24
|
Rosenblum SL, Kosman DJ. Aberrant Cerebral Iron Trafficking Co-morbid With Chronic Inflammation: Molecular Mechanisms and Pharmacologic Intervention. Front Neurol 2022; 13:855751. [PMID: 35370907 PMCID: PMC8964494 DOI: 10.3389/fneur.2022.855751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The redox properties that make iron an essential nutrient also make iron an efficient pro-oxidant. Given this nascent cytotoxicity, iron homeostasis relies on a combination of iron transporters, chaperones, and redox buffers to manage the non-physiologic aqueous chemistry of this first-row transition metal. Although a mechanistic understanding of the link between brain iron accumulation (BIA) and neurodegenerative diseases is lacking, BIA is co-morbid with the majority of cognitive and motor function disorders. The most prevalent neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple System Atrophy (MSA), and Multiple Sclerosis (MS), often present with increased deposition of iron into the brain. In addition, ataxias that are linked to mutations in mitochondrial-localized proteins (Friedreich's Ataxia, Spinocerebellar Ataxias) result in mitochondrial iron accumulation and degradation of proton-coupled ATP production leading to neuronal degeneration. A comorbidity common in the elderly is a chronic systemic inflammation mediated by primary cytokines released by macrophages, and acute phase proteins (APPs) released subsequently from the liver. Abluminal inflammation in the brain is found downstream as a result of activation of astrocytes and microglia. Reasonably, the iron that accumulates in the brain comes from the cerebral vasculature via the microvascular capillary endothelial cells whose tight junctions represent the blood-brain barrier. A premise amenable to experimental interrogation is that inflammatory stress alters both the trans- and para-cellular flux of iron at this barrier resulting in a net accumulation of abluminal iron over time. This review will summarize the evidence that lends support to this premise; indicate the mechanisms that merit delineation; and highlight possible therapeutic interventions based on this model.
Collapse
Affiliation(s)
| | - Daniel J. Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
25
|
Clinical Onset and Multiple Sclerosis Relapse after SARS-CoV-2 Infection. Neurol Int 2021; 13:695-700. [PMID: 34940752 PMCID: PMC8707620 DOI: 10.3390/neurolint13040066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with several neurological disorders including headache, facial palsy, encephalitis, stroke, demyelinating disorders. The present report will discuss cases of multiple sclerosis (MS) onset and relapse both beginning early after SARS-CoV-2 infection. In both cases, magnetic resonance imaging (MRI) showed widespread bilateral subcortical and periventricular active lesions. Serum IgG against SARS-CoV-2 Spike antigens confirmed seroconversion with titers that are considered not definitely protective against possible reinfection. We hypothesize that SARS-CoV-2 infection, as previously reported for other viruses, could drive an active inflammatory response that can contribute either to the onset of MS or its relapse. The presented data further support the importance of vaccination in individuals with MS.
Collapse
|
26
|
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci 2021; 15:661838. [PMID: 34588955 PMCID: PMC8475767 DOI: 10.3389/fncel.2021.661838] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the onset or progression of various neurodegenerative diseases. Initiation of neuroinflammation is triggered by endogenous substances (damage-associated molecular patterns) and/or exogenous pathogens. Activation of glial cells (microglia and astrocytes) is widely recognized as a hallmark of neuroinflammation and triggers the release of proinflammatory cytokines, leading to neurotoxicity and neuronal dysfunction. Another feature associated with neuroinflammatory diseases is impairment of the blood-brain barrier (BBB). The BBB, which is composed of brain endothelial cells connected by tight junctions, maintains brain homeostasis and protects neurons. Impairment of this barrier allows trafficking of immune cells or plasma proteins into the brain parenchyma and subsequent inflammatory processes in the brain. Besides neurons, activated glial cells also affect BBB integrity. Therefore, BBB dysfunction can amplify neuroinflammation and act as a key process in the development of neuroinflammation. BBB integrity is determined by the integration of multiple signaling pathways within brain endothelial cells through intercellular communication between brain endothelial cells and brain perivascular cells (pericytes, astrocytes, microglia, and oligodendrocytes). For prevention of BBB disruption, both cellular components, such as signaling molecules in brain endothelial cells, and non-cellular components, such as inflammatory mediators released by perivascular cells, should be considered. Thus, understanding of intracellular signaling pathways that disrupt the BBB can provide novel treatments for neurological diseases associated with neuroinflammation. In this review, we discuss current knowledge regarding the underlying mechanisms involved in BBB impairment by inflammatory mediators released by perivascular cells.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
27
|
Wang T, Sun Q, Yang J, Wang G, Zhao F, Chen Y, Jin Y. Reactive astrocytes induced by 2-chloroethanol modulate microglia polarization through IL-1β, TNF-α, and iNOS upregulation. Food Chem Toxicol 2021; 157:112550. [PMID: 34517076 DOI: 10.1016/j.fct.2021.112550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023]
Abstract
The synthetic organic chemical, 1,2-dichloroethane (1,2-DCE), can cause brain edemas under subacute poisoning. Our previous studies indicated that neuroinflammation could be induced due to astrocytes and microglia activation during brain edemas in 1,2-DCE-intoxicated mice. However, the crosstalk between these two glial cells in 1,2-DCE-induced neuroinflammation remained unclear. In this study, primary cultured rat astrocytes and microglia, as well as an immortalized microglia cell line were employed to study the effects of 2-chloroethanol (2-CE, a 1,2-DCE intermediate metabolite in vivo) treated astrocytes on microglia polarization. Our current results revealed that 2-CE treated rat astrocytes were activated through p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor-κB (NF-κB), and activator protein-1 (AP-1) signaling pathways. Theses pathways were triggered by reactive oxygen species (ROS) produced during 2-CE metabolism. Also, astrocytes were more sensitive to 2-CE effects than microglia. Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) expressions were upregulated in 2-CE-induced reactive astrocytes, enhancing IL-1β, TNF-α, and nitric oxide (NO) excretions, which stimulated microglia polarization. Therefore, the neuroinflammation induced by 1,2-DCE in mice's brains is probably triggered by reactive astrocytes.
Collapse
Affiliation(s)
- Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Qi Sun
- Department of Child and Adolescent Health, China Medical University, Shenyang, China
| | - Jinhan Yang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuhua Chen
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
28
|
Kurmann L, Okoniewski M, Dubey RK. Estradiol Inhibits Human Brain Vascular Pericyte Migration Activity: A Functional and Transcriptomic Analysis. Cells 2021; 10:cells10092314. [PMID: 34571963 PMCID: PMC8472363 DOI: 10.3390/cells10092314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Stroke is the third leading cause of mortality in women and it kills twice as many women as breast cancer. A key role in the pathophysiology of stroke plays the disruption of the blood–brain barrier (BBB) within the neurovascular unit. While estrogen induces vascular protective actions, its influence on stroke remains unclear. Moreover, experiments assessing its impact on endothelial cells to induce barrier integrity are non-conclusive. Since pericytes play an active role in regulating BBB integrity and function, we hypothesize that estradiol may influence BBB by regulating their activity. In this study using human brain vascular pericytes (HBVPs) we investigated the impact of estradiol on key pericyte functions known to influence BBB integrity. HBVPs expressed estrogen receptors (ER-α, ER-β and GPER) and treatment with estradiol (10 nM) inhibited basal cell migration but not proliferation. Since pericyte migration is a hallmark for BBB disruption following injury, infection and inflammation, we investigated the effects of estradiol on TNFα-induced PC migration. Importantly, estradiol prevented TNFα-induced pericyte migration and this effect was mimicked by PPT (ER-α agonist) and DPN (ER-β agonist), but not by G1 (GPR30 agonist). The modulatory effects of estradiol were abrogated by MPP and PHTPP, selective ER-α and ER-β antagonists, respectively, confirming the role of ER-α and ER-β in mediating the anti-migratory actions of estrogen. To delineate the intracellular mechanisms mediating the inhibitory actions of estradiol on PC migration, we investigated the role of AKT and MAPK activation. While estradiol consistently reduced the TNFα-induced MAPK and Akt phosphorylation, only the inhibition of MAPK, but not Akt, significantly abrogated the migratory actions of TNFα. In transendothelial electrical resistance measurements, estradiol induced barrier function (TEER) in human brain microvascular endothelial cells co-cultured with pericytes, but not in HBMECs cultured alone. Importantly, transcriptomics analysis of genes modulated by estradiol in pericytes showed downregulation of genes known to increase cell migration and upregulation of genes known to inhibit cell migration. Taken together, our findings provide the first evidence that estradiol modulates pericyte activity and thereby improves endothelial integrity.
Collapse
Affiliation(s)
- Lisa Kurmann
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
| | | | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
29
|
Huang X, Ying J, Yang D, Fang P, Wang X, Zhou B, Zhang L, Fang Y, Yu W, Liu X, Zhen Q, Hua F. The Mechanisms of Sevoflurane-Induced Neuroinflammation. Front Aging Neurosci 2021; 13:717745. [PMID: 34421578 PMCID: PMC8375153 DOI: 10.3389/fnagi.2021.717745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Sevoflurane is one of the most commonly used inhaled anesthetics due to its low blood gas coefficient, fast onset, low airway irritation, and aromatic smell. However, recent studies have reported that sevoflurane exposure may have deleterious effects on cognitive function. Although neuroinflammation was most widely mentioned among the established mechanisms of sevoflurane-induced cognitive dysfunction, its upstream mechanisms have yet to be illustrated. Thus, we reviewed the relevant literature and discussed the most mentioned mechanisms, including the modulation of the microglial function, blood–brain barrier (BBB) breakdown, changes in gut microbiota, and ease of cholinergic neurotransmission to help us understand the properties of sevoflurane, providing us new perspectives for the prevention of sevoflurane-induced cognitive impairment.
Collapse
Affiliation(s)
- Xiangfei Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Qingcui Zhen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
30
|
Asby D, Boche D, Allan S, Love S, Miners JS. Systemic infection exacerbates cerebrovascular dysfunction in Alzheimer's disease. Brain 2021; 144:1869-1883. [PMID: 33723589 PMCID: PMC8320299 DOI: 10.1093/brain/awab094] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/01/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
We studied the effects of systemic infection on brain cytokine level and cerebral vascular function in Alzheimer's disease and vascular dementia, in superior temporal cortex (Brodmann area 22) from Alzheimer's disease patients (n = 75), vascular dementia patients (n = 22) and age-matched control subjects (n = 46), stratified according to the presence or absence of terminal systemic infection. Brain cytokine levels were measured using Mesoscale Discovery Multiplex Assays and markers of cerebrovascular function were assessed by ELISA. Multiple brain cytokines were elevated in Alzheimer's disease and vascular dementia: IL-15 and IL-17A were maximally elevated in end-stage Alzheimer's disease (Braak tangle stage V-VI) whereas IL-2, IL-5, IL12p40 and IL-16 were highest in intermediate Braak tangle stage III-IV disease. Several cytokines (IL-1β, IL-6, TNF-α, IL-8 and IL-15) were further raised in Alzheimer's disease with systemic infection. Cerebral hypoperfusion-indicated by decreased MAG:PLP1 and increased vascular endothelial growth factor-A (VEGF)-and blood-brain barrier leakiness, indicated by raised levels of fibrinogen, were exacerbated in Alzheimer's disease and vascular dementia patients, and also in non-dementia controls, with systemic infection. Amyloid-β42 level did not vary with infection or in association with brain cytokine levels. In controls, cortical perfusion declined with increasing IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-12p70, IL-13 and tumour necrosis factor-α (TNF-α) but these relationships were lost with progression of Alzheimer's disease, and with infection (even in Braak stage 0-II brains). Cortical platelet-derived growth factor receptor-β (PDGFRβ), a pericyte marker, was reduced, and endothelin-1 (EDN1) level was increased in Alzheimer's disease; these were related to amyloid-β level and disease progression and only modestly affected by systemic infection. Our findings indicate that systemic infection alters brain cytokine levels and exacerbates cerebral hypoperfusion and blood-brain barrier leakiness associated with Alzheimer's disease and vascular dementia, independently of the level of insoluble amyloid-β, and highlight systemic infection as an important contributor to dementia, requiring early identification and treatment in the elderly population.
Collapse
Affiliation(s)
- Daniel Asby
- Dementia Research Group, Bristol Medical School, University of Bristol, Bristol BS2 8DZ, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton S017 1BJ, UK
| | - Stuart Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, AV Hill Building, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group and University of Manchester, Manchester, M13 9PT, UK
| | - Seth Love
- Dementia Research Group, Bristol Medical School, University of Bristol, Bristol BS2 8DZ, UK
| | - J Scott Miners
- Dementia Research Group, Bristol Medical School, University of Bristol, Bristol BS2 8DZ, UK
| |
Collapse
|
31
|
Augustine R, Aqel AH, Kalva SN, Joshy KS, Nayeem A, Hasan A. Bioengineered microfluidic blood-brain barrier models in oncology research. Transl Oncol 2021; 14:101087. [PMID: 33865030 PMCID: PMC8066424 DOI: 10.1016/j.tranon.2021.101087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Metastasis is the major reason for most brain tumors with up to a 50% chance of occurrence in patients with other types of malignancies. Brain metastasis occurs if cancer cells succeed to cross the 'blood-brain barrier' (BBB). Moreover, changes in the structure and function of BBB can lead to the onset and progression of diseases including neurological disorders and brain-metastases. Generating BBB models with structural and functional features of intact BBB is highly important to better understand the molecular mechanism of such ailments and finding novel therapeutic agents targeting them. Hence, researchers are developing novel in vitro BBB platforms that can recapitulate the structural and functional characteristics of BBB. Brain endothelial cells-based in vitro BBB models have thus been developed to investigate the mechanism of brain metastasis through BBB and facilitate the testing of brain targeted anticancer drugs. Bioengineered constructs integrated with microfluidic platforms are vital tools for recapitulating the features of BBB in vitro closely as possible. In this review, we outline the fundamentals of BBB biology, recent developments in the microfluidic BBB platforms, and provide a concise discussion of diverse types of bioengineered BBB models with an emphasis on the application of them in brain metastasis and cancer research in general. We also provide insights into the challenges and prospects of the current bioengineered microfluidic platforms in cancer research.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar.
| | - Ahmad H Aqel
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar
| | - Sumama Nuthana Kalva
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar
| | - K S Joshy
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar
| | - Ajisha Nayeem
- Department of Biotechnology, St. Mary's College, Thrissur 680020, Kerala, India
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar.
| |
Collapse
|
32
|
Yang R, Lv Y, Miao L, Zhang H, Qu X, Chen J, Xu B, Yang B, Fu J, Tan C, Chen H, Wang X. Resveratrol Attenuates Meningitic Escherichia coli-Mediated Blood-Brain Barrier Disruption. ACS Infect Dis 2021; 7:777-789. [PMID: 33723986 DOI: 10.1021/acsinfecdis.0c00564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Meningitic Escherichia coli can infiltrate the central nervous system (CNS), consequently increasing the levels of proinflammatory cytokines and chemokines and deteriorating the integrity of the blood-brain barrier (BBB). Resveratrol has emerged in recent years as a compound with antioxidant and anti-inflammatory properties. However, it is still unknown how resveratrol affects meningitic E. coli-induced CNS dysfunction. Here, by using in vivo and in vitro BBB models, we demonstrated that resveratrol treatment significantly inhibited meningitic E. coli invasion of the BBB, protected the integrity of the BBB, and reduced neuroinflammation and lethality. In mechanism, resveratrol inhibited bacterial penetration of the BBB by attenuating the upregulation of caveolin-1 (CAV-1), a class of lipid rafts maintaining endothelial cell function. Resveratrol treatment also maintained BBB permeability by suppressing the ERK1/2-VEGFA signaling cascade. In vivo treatment of resveratrol decreased the production of inflammatory cytokines and improved the survival rate in mice challenged with meningitic E. coli. These findings collectively indicated that resveratrol could attenuate meningitic E. coli-induced CNS injury, which might constitute a new approach for future prevention and treatment of E. coli meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yujin Lv
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| | - Ling Miao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huipeng Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinyi Qu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiaqi Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bojie Xu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Yang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei 430070, China
| |
Collapse
|
33
|
Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and Oxidative Stress. BIOCHEMISTRY (MOSCOW) 2021; 85:1543-1553. [PMID: 33705292 PMCID: PMC7768996 DOI: 10.1134/s0006297920120068] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenesis of the novel coronavirus infection COVID-19 is the subject of active research around the world. COVID-19 caused by the SARS-CoV-2 is a complex disease in which interaction of the virus with target cells, action of the immune system and the body’s systemic response to these events are closely intertwined. Many respiratory viral infections, including COVID-19, cause death of the infected cells, activation of innate immune response, and secretion of inflammatory cytokines. All these processes are associated with the development of oxidative stress, which makes an important contribution to pathogenesis of the viral infections. This review analyzes information on the oxidative stress associated with the infections caused by SARS-CoV-2 and other respiratory viruses. The review also focuses on involvement of the vascular endothelium in the COVID-19 pathogenesis.
Collapse
Affiliation(s)
- B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - E N Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A S Prikhodko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O A Grebenchikov
- Negovsky Scientific Research Institute of General Reanimatology, Moscow, 107031, Russia
| | - L A Zinovkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - R A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, 119992, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| |
Collapse
|
34
|
Tembusu Virus entering the central nervous system caused nonsuppurative encephalitis without disrupting the blood-brain barrier. J Virol 2021; 95:JVI.02191-20. [PMID: 33472933 PMCID: PMC8092698 DOI: 10.1128/jvi.02191-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tembusu Virus (TMUV) is an emerging and re-emerging zoonotic pathogen that adversely affects poultry industry in recent years. TMUV disease is characterized by nonsuppurative encephalitis in ducklings. The duckling infection model was established to study the mechanism of TMUV crossing the blood-brain barrier (BBB) into the central nervous system (CNS). Here, we showed that no obvious clinical symptoms and enhancement of BBB permeability occurred at the early stage of infection (3∼5 dpi). While simultaneously virus particles were observed by transmission electron microscopy in the brain, inducing the accumulation of inflammatory cytokines. Neurological symptoms and disruption of BBB appeared at the intermediate stage of infection (7∼9 dpi). It was confirmed that TMUV could survive and propagate in brain microvascular endothelial cells (BMECs), but did not affect the permeability of BBB in vivo and in vitro at an early date. In conclusion, TMUV enters the CNS then causes encephalitis, and finally destruct the BBB, which may be due to the direct effect of TMUV on BMECs and the subsequent response of "inflammatory storm".IMPORTANCE The TMUV disease has caused huge losses to the poultry industry in Asia, which is potentially harmful to public health. Neurological symptoms and their sequelae are the main characters of this disease. However, the mechanism of how this virus enters the brain and causes encephalitis is unclear. In this study, we confirmed that the virus entered the CNS and then massively destroyed BBB and the BBB damage was closely associated with the subsequent outbreak of inflammation. TMUV may enter the CNS through the transcellular and "Trojan horse" pathways. These findings can fill the knowledge gap in the pathogenesis of TMUV-infected poultry and be benefit for the treatment of TMUV disease. What's more, TMUV is a representative to study the infection of avian flavivirus. Therefore, our studies have significances both for understanding of the full scope of mechanisms of TMUV and other flavivirus infection, and conceivably, for therapeutics.
Collapse
|
35
|
Zhong J, Yu R, Zhou Q, Liu P, Liu Z, Bian Y. Naringenin prevents TNF-α-induced gut-vascular barrier disruption associated with inhibiting the NF-κB-mediated MLCK/p-MLC and NLRP3 pathways. Food Funct 2021; 12:2715-2725. [PMID: 33667286 DOI: 10.1039/d1fo00155h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microvasculature endothelium accurately regulates the passage of molecules across the gut-vascular barrier (GVB), which plays an essential role in intestinal immunity. Naringenin is reported to have therapeutic potential against several intestinal disorders. However, the effect of naringenin on GVB disruption has been rarely studied. This study aims to investigate the effect of naringenin on GVB function and the potential mechanism. In the present study, the in vitro GVB disruption of rat intestinal microvascular endothelial cells (RIMVEC) was induced by 50 ng mL-1 of tumor necrosis factor-α (TNF-α). The integrity of the in vitro GVB was determined by Evans blue (EB)-albumin efflux assay and trans-endothelial electrical resistance (TER). Meanwhile, the expression of tight junction proteins and the related NF-κB, MLCK/p-MLC and NLRP3 pathways were determined using enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunofluorescence. The results show that naringenin (100 μM) inhibits TNF-α-induced interleukin (IL)-6 hypersecretion, alleviates GVB disruption and mitigates the change in the tight junction protein expression pattern. Naringenin inhibits the GVB-disruption-associated activation of the MLCK/p-MLC system and TLR4/NF-κB/NLRP3 pathways. Furthermore, naringenin shows a similar effect to that of NF-κB inhibitor Bay 11-7082 in reducing the TNF-α-induced activation of NLRP3, p-MLC and secondary GVB disruption. The results suggest that naringenin evidently alleviates TNF-α-induced in vitro GVB disruption via the maintenance of a tight junction protein pattern, partly with the inhibition of the NF-κB-mediated MLCK/p-MLC and NLRP3 pathway activation.
Collapse
Affiliation(s)
- Jia Zhong
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China.
| | | | | | | | | | | |
Collapse
|
36
|
Wang R, Song W, Xie C, Zhong W, Xu H, Zhou Q, Deng Y, Hong Y, Li X, Fang M. Urinary Trypsin Inhibitor Protects Tight Junctions of Septic Pulmonary Capillary Endothelial Cells by Regulating the Functions of Macrophages. J Inflamm Res 2021; 14:1973-1989. [PMID: 34045879 PMCID: PMC8149216 DOI: 10.2147/jir.s303577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Our previous study found that urinary trypsin inhibitor (ulinastatin, UTI) protected tight junctions (TJs) of lung endothelia via TNF-α inhibition, thereby alleviating pulmonary capillary permeability in septic rats. As the activated macrophage is the main source of TNF-α in sepsis, we speculate that UTI may exert the above effects by regulating the functions of macrophages. METHODS Bone-marrow derived macrophages (BMDM) were divided into control, lipopolysaccharide (LPS), UTI+LPS and UTI groups. TNF-α, TGF-β, IL-10, CD86, CD206 and MCP-1 expression were assessed by Western blot. The phagocytosis and migration of BMDM were detected. Pulmonary microvascular endothelial cells (PMVECs) were cultured with the conditioned medium (CM) from each group of BMDM above. Sprague-Dawley rats were divided into sham, cecal ligation and puncture (CLP), and UTI+CLP groups. Western blot and immunofluorescence were used to detected zonula occludens-1 (ZO-1), occludin and claudin-5 expression in PMVECs, as well as TNF-α, TGF-β, iNOS, CD86 and CD206 expression in lungs. Pulmonary capillary permeability was assessed by extravasated Evans blue, lung injury score (LIS), wet-to-dry weight ratio and electron microscope. RESULTS TNF-α and CD86 expression were increased in LPS-treated BMDM, but were reversed by UTI pretreatment. TGF-β, IL-10 and CD206 expression were the opposite. UTI markedly decreased phagocytosis and migration of LPS-treated BMDM. ZO-1, occludin and claudin-5 expression were markedly decreased in PMVECs of the CM-LPS group, but significantly increased in the CM-UTI+LPS group. TNF-α, iNOS and CD86 expression were increased in the lungs of CLP-rats but decreased with UTI pretreatment, while TGF-β and CD206 expression were the opposite. UTI markedly ameliorated the lung EB leakage, improved LIS, reduced the wet-to-dry ratio and revised the damaged TJs of PMVECs in CLP-rats. CONCLUSION UTI effectively inhibits the conversion of M1 macrophage but increases M2, reduces the phagocytosis and migration, which helps to protect endothelia TJs and reduce pulmonary capillary permeability during sepsis.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Intensive Care Unit, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Wenliang Song
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Chengyuan Xie
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wenhong Zhong
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Hui Xu
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Shantou University Medical College, Shantou, People’s Republic of China
| | - Qiuping Zhou
- Department of Intensive Care Unit, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Yiyu Deng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Yimei Hong
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Xin Li
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Ming Fang
- Department of Intensive Care Unit, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- Correspondence: Ming Fang Department of Intensive Care Unit, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, People’s Republic of ChinaTel +8613527774075 Email
| |
Collapse
|
37
|
Zhou Y, Wang J, Li X, Li K, Chen L, Zhang Z, Peng M. Neuroprotectin D1 Protects Against Postoperative Delirium-Like Behavior in Aged Mice. Front Aging Neurosci 2020; 12:582674. [PMID: 33250764 PMCID: PMC7674198 DOI: 10.3389/fnagi.2020.582674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Postoperative delirium (POD) is the most common postoperative complication affecting elderly patients, yet the underlying mechanism is elusive, and effective therapies are lacking. The neuroinflammation hypothesis for the pathogenesis of POD has recently emerged. Accumulating evidence is supporting the role of specialized proresolving lipid mediators (SPMs) in regulating inflammation. Neuroprotectin D1 (NPD1), a novel docosahexaenoic acid (DHA)-derived lipid mediator, has shown potent immunoresolvent and neuroprotective effects in several disease models associated with inflammation. Here, using a mouse model of POD, we investigated the role of NPD1 in postoperative cognitive impairment by assessing systemic inflammatory changes, the permeability of the blood–brain barrier (BBB), neuroinflammation, and behavior in aged mice at different time points. We report that a single dose of NPD1 prophylaxis decreased the expression of tumor necrosis factor alpha TNF-α and interleukin (IL)-6 and upregulated the expression of IL-10 in peripheral blood, the hippocampus, and the prefrontal cortex. Additionally, NPD1 limited the leakage of the BBB by increasing the expression of tight junction (TJ)-associated proteins such as ZO-1, claudin-5, and occludin. NPD1 also abolished the activation of microglia and astrocytes in the hippocampus and prefrontal cortex, which is associated with improved general and memory function after surgery. In addition, NPD1 treatment modulated the inflammatory cytokine expression profile and improved the expression of the M2 marker CD206 in lipopolysaccharide (LPS)-stimulated macrophages, which may partly explain the beneficial effects of NPD1 on inflammation. Collectively, these findings shed light on the proresolving activities of NPD1 in the pro-inflammatory milieu both in vivo and in vitro and may bring a novel therapeutic approach for POD.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiayu Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaofeng Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Huang HH, Chang JCY, Liu HC, Yang ZY, Yang YJ, Chen LK, Yen DHT. Handgrip strength, tumor necrosis factor-α, interlukin-6, and visfatin levels in oldest elderly patients with cognitive impairment. Exp Gerontol 2020; 142:111138. [PMID: 33122129 DOI: 10.1016/j.exger.2020.111138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Handgrip strength is associated with mild cognitive impairment. Tumor necrosis factor [TNF]-α and interleukin [IL]-6 were pro-inflammatory cytokines influencing the severity of initial neurological deficit. Visfatin is a novel adipokine and has a strong correlation with inflammation. The relationships of TNF-α, IL-6 and visfatin are not consistent, and no study has investigated them in the elderly patients with cognitive impairment. METHODS This study included patients aged ≥75 years at the emergency department from August 2018 to February 2019. All patients underwent comprehensive geriatric assessment and blood tests for fasting plasma TNF-α, IL-6 and visfatin levels. RESULTS We enrolled 106 elderly patients with a mean age of 87.3 years, including 62 (58.4%) patients in cognitive impairment group (Mini-Mental State Examination [MMSE] < 24) and 44 (41.5%) patients in the non-cognitive impairment group. Compared to the non-cognitive impairment group, the cognitive impairment group had significantly lower handgrip strength, and significantly higher TNF-α, IL-6 and visfatin levels. TNF-α positively correlated with IL-6. Both TNF-α and IL-6 negatively correlated with Barthel index and MMSE. Handgrip strength negatively correlated with TNF-α but positively correlated with Barthel index and MMSE scores. Backward and stepwise multiple logistic regression analyses showed that the independent predictor for cognitive impairment was handgrip strength and age. CONCLUSION The cognitive impairment group had significantly higher serum TNF-α, IL-6, and visfatin levels. The independent predictors of cognitive impairment were handgrip strength and age. Handgrip strength negatively correlated with TNF-α and IL-6 but positively with Barthel index and MMSE scores.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Julia Chia-Yu Chang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hui-Chia Liu
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Zhi-Yu Yang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Jie Yang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang-Kung Chen
- Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan; Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - David Hung-Tsang Yen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
39
|
Porphyromonas gingivalis disrupts vascular endothelial homeostasis in a TLR-NF-κB axis dependent manner. Int J Oral Sci 2020; 12:28. [PMID: 32999278 PMCID: PMC7527479 DOI: 10.1038/s41368-020-00096-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is still the leading cause of mortality worldwide. Vascular endothelial dysfunction is viewed as the initial step of most cardiovascular diseases. Many studies have indicated that periodontal pathogens, especially Porphyromonas gingivalis, are closely correlated with vascular endothelial homeostasis, but the function of P. gingivalis and the underlying mechanisms are still elusive. To illuminate the effects and elucidate the mechanisms of P. gingivalis on endothelial structural integrity, we developed P. gingivalis infection models in vivo and in vitro. Endothelial cell proliferation, differentiation and apoptosis were detected. Here, we showed that P. gingivalis can impair endothelial integrity by inhibiting cell proliferation and inducing endothelial mesenchymal transformation and apoptosis of endothelial cells, which reduce the cell levels and cause the endothelium to lose its ability to repair itself. A mechanistic analysis showed that TLR antagonist or NF-κB signalling inhibitor can largely rescue the damaged integrity of the endothelium caused by P. gingivalis, suggesting that TLR-NF-κB signalling plays a vital role in vascular endothelial homeostasis destroyed by P. gingivalis. These results suggest a potential intervention method for the prevention and treatment of cardiovascular disease.
Collapse
|
40
|
Furutama D, Matsuda S, Yamawaki Y, Hatano S, Okanobu A, Memida T, Oue H, Fujita T, Ouhara K, Kajiya M, Mizuno N, Kanematsu T, Tsuga K, Kurihara H. IL-6 Induced by Periodontal Inflammation Causes Neuroinflammation and Disrupts the Blood-Brain Barrier. Brain Sci 2020; 10:brainsci10100679. [PMID: 32992470 PMCID: PMC7599694 DOI: 10.3390/brainsci10100679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Periodontal disease (PD) is a risk factor for systemic diseases, including neurodegenerative diseases. The role of the local and systemic inflammation induced by PD in neuroinflammation currently remains unclear. The present study investigated the involvement of periodontal inflammation in neuroinflammation and blood–brain barrier (BBB) disruption. Methods: To induce PD in mice (c57/BL6), a ligature was placed around the second maxillary molar. Periodontal, systemic, and neuroinflammation were assessed based on the inflammatory cytokine mRNA or protein levels using qPCR and ELISA. The BBB permeability was evaluated by the mRNA levels and protein levels of tight junction-related proteins in the hippocampus using qPCR and immunofluorescence. Dextran tracing in the hippocampus was also conducted to examine the role of periodontal inflammation in BBB disruption. Results: The TNF-α, IL-1β, and IL-6 levels markedly increased in gingival tissue 1 week after ligation. The IL-6 serum levels were also increased by ligature-induced PD. In the hippocampus, the IL-1β mRNA expression levels were significantly increased by ligature-induced PD through serum IL-6. The ligature-induced PD decreased the claudin 5 expression levels in the hippocampus, and the neutralization of IL-6 restored its levels. The extravascular 3-kDa dextran levels were increased by ligature-induced PD. Conclusions: These results suggest that the periodontal inflammation-induced expression of IL-6 is related to neuroinflammation and BBB disruption in the hippocampus, ultimately leading to cognitive impairment. Periodontal therapy may protect against neurodegenerative diseases.
Collapse
Affiliation(s)
- Daisuke Furutama
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
- Correspondence: ; Tel.: +81-082-257-5663
| | - Yosuke Yamawaki
- Department of Advanced Pharmacology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku Fukuoka 815-8511, Japan;
| | - Saki Hatano
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Ai Okanobu
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Takumi Memida
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Hiroshi Oue
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (H.O.); (K.T.)
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Takashi Kanematsu
- Laboratory of Cell Biology and Pharmacology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (H.O.); (K.T.)
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| |
Collapse
|
41
|
Pleskova SN, Kriukov RN, Bobyk SZ, Boryakov AV, Gorelkin PV, Erofeev AS. Conditioning adhesive contacts between the neutrophils and the endotheliocytes by Staphylococcus aureus. J Mol Recognit 2020; 33:e2846. [PMID: 32212219 DOI: 10.1002/jmr.2846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
Abstract
We have developed a model for evaluating the integral intercellular interactions in the "endotheliocyte-neutrophil" system and have shown the high variability of adhesion contacts in different donors associated with different expression profiles of neutrophils. Two methods (forсe spectroscopy-spectroscopy and scanning ion-conductance microscopy) showed a decrease in the rigidity of the membrane-cytoskeletal complex of neutrophils under the influence of Staphylococcus aureus 2879 M. Adding this strain to the "endotheliocyte-neutrophil" system caused a statistically significant decrease in the adhesion force and adhesion work, which indicates a change in the expression profile and physicochemical properties of membranes of both types of interacting cells (neutrophils and endotheliocytes).
Collapse
Affiliation(s)
- Svetlana N Pleskova
- Research and Education Center for Physics of Solid State Nanostructures, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Department "Nanotechnology and Biotechnology", R.E. Alekseev Technical State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ruslan N Kriukov
- Research and Education Center for Physics of Solid State Nanostructures, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Sergey Z Bobyk
- Research and Education Center for Physics of Solid State Nanostructures, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey V Boryakov
- Research and Education Center for Physics of Solid State Nanostructures, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Peter V Gorelkin
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISiS», Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander S Erofeev
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISiS», Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
42
|
Voirin AC, Perek N, Roche F. Inflammatory stress induced by a combination of cytokines (IL-6, IL-17, TNF-α) leads to a loss of integrity on bEnd.3 endothelial cells in vitro BBB model. Brain Res 2020; 1730:146647. [DOI: 10.1016/j.brainres.2020.146647] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 01/05/2023]
|
43
|
Bernard-Patrzynski F, Lécuyer MA, Puscas I, Boukhatem I, Charabati M, Bourbonnière L, Ramassamy C, Leclair G, Prat A, Roullin VG. Isolation of endothelial cells, pericytes and astrocytes from mouse brain. PLoS One 2019; 14:e0226302. [PMID: 31851695 PMCID: PMC6919623 DOI: 10.1371/journal.pone.0226302] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/22/2019] [Indexed: 11/24/2022] Open
Abstract
Primary cell isolation from the central nervous system (CNS) has allowed fundamental understanding of blood-brain barrier (BBB) properties. However, poorly described isolation techniques or suboptimal cellular purity has been a weak point of some published scientific articles. Here, we describe in detail how to isolate and enrich, using a common approach, endothelial cells (ECs) from adult mouse brains, as well as pericytes (PCs) and astrocytes (ACs) from newborn mouse brains. Our approach allowed the isolation of these three brain cell types with purities of around 90%. Furthermore, using our protocols, around 3 times more PCs and 2 times more ACs could be grown in culture, as compared to previously published protocols. The cells were identified and characterized using flow cytometry and confocal microscopy. The ability of ECs to form a tight monolayer was assessed for passages 0 to 3. The expression of claudin-5, occludin, zonula occludens-1, P-glycoprotein-1 and breast cancer resistance protein by ECs, as well as the ability of the cells to respond to cytokine stimuli (TNF-α, IFN-γ) was also investigated by q-PCR. The transcellular permeability of ECs was evaluated in the presence of pericytes or astrocytes in a Transwell® model by measuring the transendothelial electrical resistance (TEER), dextran-FITC and sodium fluorescein permeability. Overall, ECs at passages 0 and 1 featured the best properties valued in a BBB model. Furthermore, pericytes did not increase tightness of EC monolayers, whereas astrocytes did regardless of their seeding location. Finally, ECs resuspended in fetal bovine serum (FBS) and dimethyl sulfoxide (DMSO) could be cryopreserved in liquid nitrogen without affecting their phenotype nor their capacity to form a tight monolayer, thus allowing these primary cells to be used for various longitudinal in vitro studies of the blood-brain barrier.
Collapse
Affiliation(s)
| | - Marc-André Lécuyer
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Ina Puscas
- Faculty of Pharmacy, Université de Montréal, Montreal, Québec, Canada
| | - Imane Boukhatem
- Faculty of Pharmacy, Université de Montréal, Montreal, Québec, Canada
| | - Marc Charabati
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Lyne Bourbonnière
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Charles Ramassamy
- Institut National de la Recherche Scientifique, Armand-Frappier Institute, Laval, Québec, Canada
| | - Grégoire Leclair
- Faculty of Pharmacy, Université de Montréal, Montreal, Québec, Canada
| | - Alexandre Prat
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - V Gaëlle Roullin
- Faculty of Pharmacy, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
44
|
Buie JJ, Watson LS, Smith CJ, Sims-Robinson C. Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol Dis 2019; 132:104580. [PMID: 31454547 PMCID: PMC6834913 DOI: 10.1016/j.nbd.2019.104580] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/27/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity is a global pandemic associated with macro- and microvascular endothelial dysfunction. Microvascular endothelial dysfunction has recently emerged as a significant risk factor for the development of cognitive impairment. In this review, we present evidence from clinical and preclinical studies supporting a role for obesity in cognitive impairment. Next, we discuss how obesity-related hyperinsulinemia/insulin resistance, systemic inflammation, and gut dysbiosis lead to cognitive impairment through induction of endothelial dysfunction and disruption of the blood brain barrier. Finally, we outline the potential clinical utility of dietary interventions, exercise, and bariatric surgery in circumventing the impacts of obesity on cognitive function.
Collapse
Affiliation(s)
- Joy Jones Buie
- WISSDOM Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Luke S Watson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Crystal J Smith
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Catrina Sims-Robinson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
45
|
Shou J, Peng J, Zhao Z, Huang X, Li H, Li L, Gao X, Xing Y, Liu H. CCL26 and CCR3 are associated with the acute inflammatory response in the CNS in experimental autoimmune encephalomyelitis. J Neuroimmunol 2019; 333:576967. [DOI: 10.1016/j.jneuroim.2019.576967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
|
46
|
Astrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis: Star-shaped cells illuminating the darkness of CNS autoimmunity. Brain Behav Immun 2019; 80:10-24. [PMID: 31125711 DOI: 10.1016/j.bbi.2019.05.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathology in the human autoimmune disease multiple sclerosis (MS) is considered to be mediated by autoreactive leukocytes, such as T cells, B cells, and macrophages. However, the inflammation and tissue damage in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also critically regulated by astrocytes, the most abundant cell population in the central nervous system (CNS). Under physiological conditions, astrocytes are integral to the development and function of the CNS, whereas in CNS autoimmunity, astrocytes influence the pathogenesis, progression, and recovery of the diseases. In this review, we summarize recent advances in astrocytic functions in the context of MS and EAE, which are categorized into two opposite aspects, one being detrimental and the other beneficial. Inhibition of the detrimental functions and/or enhancement of the beneficial functions of astrocytes might be favorable for the treatment of MS.
Collapse
|
47
|
Pretreatment Cancer-Related Cognitive Impairment-Mechanisms and Outlook. Cancers (Basel) 2019; 11:cancers11050687. [PMID: 31100985 PMCID: PMC6562730 DOI: 10.3390/cancers11050687] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
Cognitive changes are common in patients with active cancer and during its remission. This has largely been blamed on therapy-related toxicities and diagnosis-related stress, with little attention paid to the biological impact of cancer itself. A plethora of clinical studies demonstrates that cancer patients experience cognitive impairment during and after treatment. However, recent studies show that a significant portion of patients with non-central nervous system (CNS) tumors experience cognitive decline prior to treatment, suggesting a role for tumor-derived factors in modulating cognition and behavior. Cancer-related cognitive impairment (CRCI) negatively impacts a patient’s quality of life, reduces occupational and social functioning, and increases morbidity and mortality. Furthermore, patients with cancer cachexia frequently experience a stark neurocognitive decline, suggesting peripheral tumors exert an enduring toll on the brain during this chronic paraneoplastic syndrome. However, the scarcity of research on cognitive impairment in non-CNS cancers makes it difficult to isolate psychosocial, genetic, behavioral, and pathophysiological factors in CRCI. Furthermore, clinical models of CRCI are frequently confounded by complicated drug regimens that inherently affect neurocognitive processes. The severity of CRCI varies considerably amongst patients and highlights its multifactorial nature. Untangling the biological aspects of CRCI from genetic, psychosocial, and behavioral factors is non-trivial, yet vital in understanding the pathogenesis of CRCI and discovering means for therapeutic intervention. Recent evidence demonstrating the ability of peripheral tumors to alter CNS pathways in murine models is compelling, and it allows researchers to isolate the underlying biological mechanisms from the confounding psychosocial stressors found in the clinic. This review summarizes the state of the science of CRCI independent of treatment and focuses on biological mechanisms in which peripheral cancers modulate the CNS.
Collapse
|
48
|
Yang RC, Qu XY, Xiao SY, Li L, Xu BJ, Fu JY, Lv YJ, Amjad N, Tan C, Kim KS, Chen HC, Wang XR. Meningitic Escherichia coli-induced upregulation of PDGF-B and ICAM-1 aggravates blood-brain barrier disruption and neuroinflammatory response. J Neuroinflammation 2019; 16:101. [PMID: 31092253 PMCID: PMC6521501 DOI: 10.1186/s12974-019-1497-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/30/2019] [Indexed: 01/13/2023] Open
Abstract
Background Blood-brain barrier (BBB) disruption and neuroinflammation are considered key mechanisms of pathogenic Escherichia coli invasion of the brain. However, the specific molecules involved in meningitic E. coli-induced BBB breakdown and neuroinflammatory response remain unclear. Our previous RNA-sequencing data from human brain microvascular endothelial cells (hBMECs) revealed two important host factors: platelet-derived growth factor-B (PDGF-B) and intercellular adhesion molecule-1 (ICAM-1), which were significantly upregulated in hBMECs after meningitic E. coli infection. Whether and how PDGF-B and ICAM-1 contribute to the development of E. coli meningitis are still unclear. Methods The western blot, real-time PCR, enzyme-linked immunosorbent assay, immunohistochemistry, and immunofluorescence were applied to verify the significant induction of PDGF-B and ICAM-1 by meningitic E. coli in vivo and in vitro. Evan’s blue assay and electric cell-substrate impedance sensing assay were combined to identify the effects of PDGF-B on BBB permeability. The CRISPR/Cas9 technology, cell-cell adhesion assay, and electrochemiluminescence assay were used to investigate the role of ICAM-1 in neuroinflammation subversion. Results We verified the significant induction of PDGF-B and ICAM-1 by meningitic E. coli in mouse as well as monolayer hBMECs models. Functionally, we showed that the increase of PDGF-B may directly enhance the BBB permeability by decreasing the expression of tight junction proteins, and the upregulation of ICAM-1 contributed to neutrophils or monocytes recruitment as well as neuroinflammation subversion in response to meningitic E. coli infection. Conclusions Our findings demonstrated the roles of PDGF-B and ICAM-1 in mediating bacterial-induced BBB damage as well as neuroinflammation, providing new concepts and potential targets for future prevention and treatment of bacterial meningitis.
Collapse
Affiliation(s)
- Rui-Cheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin-Yi Qu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Si-Yu Xiao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liang Li
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo-Jie Xu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji-Yang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yu-Jin Lv
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, China
| | - Nouman Amjad
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chen Tan
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kwang Sik Kim
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Huan-Chun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Ru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
49
|
Shi D, Dong Y, Dai P, Gao J, Yin J, Xie M. Dentin matrix protein 1 correlates with the severity of hemorrhagic fever with renal syndrome and promotes hyper-permeability of endothelial cells infected by Hantaan virus. Microbes Infect 2019; 21:321-327. [PMID: 30735719 DOI: 10.1016/j.micinf.2019.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Hantaviruses are the major causative agents of hemorrhagic fever with renal syndrome (HFRS) in humans, which is characterized by increased capillary permeability. Dentin matrix protein 1 (DMP1) has been shown to degrade components of the basal membrane and interendothelial junctions via matrix metalloproteinase-9. To study the changes of serum DMP1 in HFRS, we determined the concentration of DMP1 using sandwich enzyme-linked immunosorbent assay. We found that serum DMP1 concentrations increased significantly, and reached peak value during the oliguric phase and in the critical group in HFRS patients. Moreover, serum DMP1 concentrations were closely related to blood urea nitrogen, creatinine, cystatin C, and vascular endothelial growth factor (VEGF). We further explored the role of DMP1 in HTNV-infected human umbilical vein endothelial cells (HUVECs) model. Data from immunocytochemistry showed that VEGF and tumor necrosis factor-α (TNF-α) promoted the expression of DMP1 on HTNV-infected HUVECs. Results from transwell assays demonstrated that the permeability of HUVECs increased significantly after HTNV infection with the addition of DMP1, VEGF, and TNF-α. This study suggests that elevated DMP1 concentrations may be associated with disease stage, severity, and the degree of acute kidney injury. DMP1 is involved in the regulation of capillary permeability in HFRS caused by hantavirus infection.
Collapse
Affiliation(s)
- Dongsha Shi
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanying Dong
- Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pengfei Dai
- Department of Ophthalmology, Xi'an No. 4 Hospital, Xi'an, Shaanxi, China
| | - Juan Gao
- Clinical Laboratory, Xi'an Gaoxin Hospital, Xi'an, Shaanxi, China
| | - Jingjing Yin
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ming Xie
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
50
|
Mancini M, Caignard G, Charbonneau B, Dumaine A, Wu N, Leiva-Torres GA, Gerondakis S, Pearson A, Qureshi ST, Sladek R, Vidal SM. Rel-Dependent Immune and Central Nervous System Mechanisms Control Viral Replication and Inflammation during Mouse Herpes Simplex Encephalitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:1479-1493. [DOI: 10.4049/jimmunol.1800063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023]
|